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1. Introduction. In a paper published in 1936 Burkill (2) proved that, 
if the trigonometrical series 

oo 

(1.1) X) cnexp(int), cn = an - ibn, 

is bounded except on a countable set and if the series obtained by integrating 
series (1.1) once converges everywhere, then the coefficients can be written 
in Fourier form using the CiP-integral. In §3 of this paper an analogous result 
is shown to be true when (1.1) is bounded (C, k), k > 0. The proof of this 
depends on generalizations of theorems by Verblunsky and Zygmund and 
both of these generalizations are obtained in §2. 

For convenience, the definitions of the de la Valée Poussin derivative 
(cf. 6, p. 59) and the CrP-integral (1) are given here. 

DEFINITION 1.1. Let g(t) be a function defined in the closed interval [a, b]. 
If, for a given t0 in [a, b], 

g(to + h) = co + dh + c2h
2/2\ + . . . + ckh*/k\ + o(hk), 

as h —» 0, where the numbers c3 = c3(to) are independent of h, then ck is called 
the &th de la Vallée Poussin derivative of g at the point to and is denoted by 
g(k)(to). If <t>(t) = f(t) +ig(t), then 4>(k)(t) = f(k)(t) + ig(k)(t) wherever f(k)(t) 
and g(k) (t) are defined. 

The CnP-integral is defined by induction. Suppose that for n > 1 the 
Cn_iP-integral has been defined taking as the C0P-integral the Perron 
integral (4, p. 201). Assuming that u{t) is Cra_iP-integrable, let 

s*t+h 

Cn(u, t,t + h) = (n/hn)Cn^P J (t + h- £)n-lu{£)dl 

DEFINITION 1.2. The function u(t) is said to be Cn-continuous at to if 
Cn(u, to, to + h) —> u{to) as h —> 0. 

DEFINITION 1.3. The upper and lower Cn-derivates of u(t) denoted by 
CnD*u(t) and CnD*u(t)j respectively, are defined to be the lint sup and the Urn 
inf, respectively, as h —> 0 of the expression 

[n + y(Cn(u, tj + h) - u(t)). 
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DEFINITION 1.4. / / CnD*u(t) = CnD*u(t), their common value is defined to 
be the Cn-derivative of u (t) and is denoted by CnD u (t). 

DEFINITION 1.5. The function M(t) is said to be a Cn-major function of u(t) 
over [a, b] if 
(1.2.1) M(t) is Cn-continuous ; 
(1.2.2) M (a) = 0; 
(1.2.3) CnD*M(t) >u(t), p.p. in [a, b]\ 
(1.2.4) CnD*M{t) > - oo in [a, b}. 

A Cn-minor function m{t) is denned in a similar way. 

DEFINITION 1.6. If\ for every e > 0, there is a pair M if), m(t) satisfying the 
conditions of Definition 1.5 and such that \M(b) — m(b)\ < e, then u(t) is said 
to be CnP-integrable over [a, b]. 

DEFINITION 1.7. Let 1(b) = lower bound of all M(b) and J(b) == upper 
bound of all m (b). For a CnP-integrable function u (t) the bounds have a common 
limit (1) which is called the definite CnP-integral of u(t) over [a, b]. 

If 4>(f) = f(t) + ig{t) then the definition of the Cw-derivative is extended to 
4>{t) in the usual way, and 

CnPJ 4>{f)dt = CnPJf(t)dt + i CnPJ g(t)dt, 

whenever the integrals on the right-hand side are denned. 

2. The integrated series. 

THEOREM 2.1. Let the series 
oo 

(2.1) X cnexp(int) 
n=l 

be bounded (C, k) for a fixed k = 0, 1, 2, . . . , and t 6 E, \E\ > 0. If r = k + 2, 
then for each t G E, 

oo 

(2.2.J) Z [Cn ^v(int)/(jn)s] = Hr~\t), (C, r - j - 1) 
7 1 = 1 

for j = 1, 2, . . . , r. Further the series (2.2.r) converges absolutely and uniformly 
to H°(t) [ = H(t), say] for all t G EandH(s)(t) exists and is finite 0 < s < r — 1, 
t 6 E and 
(2.3) H(s)(t) =H'(t). 

Furthermore for all t G E 

(2.4) H(t + h) = H(t) + hHa)(t) + . . . + 

where w(t, h) = 0(1) as h—>0, and in particular H(T)(f) exists p.p. in E. 
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Proof. It is clear that cn exp(int) = 0{nk) and this is sufficient to guarantee 
the convergence property of series (2.2.r). The summability (C, k) of series 
(2.2.1) and the summability of series (2.2.2), (2.2.3), . . . , (2.2.r - 1) follows 
from two theorems by Hardy (3, Theorem 71, p. 128) and (3, Theorem 76, 
p. 131). 

To obtain (2.3) and (2.4) it may be assumed without loss of generality that 
t = 0. Let 

, x exp(m) 

p(h) = E ^ , x w = e x p ( ? ." p ( * ) , 
.=o v\ (til) 

and for any sequence {um} let A un = Alun = un — un+i, Ajun = A(Aj~lun). 
Then Zygmund's proof (6, p. 66), with condition sn

k = o{nk) replaced by 
sn

k = 0(nk) yields 

(2.5) H(h) = g ( ^ ) + h'R{h), 

where Av = ]T s/A*+1(w)"- r and i£(A) = J^ sn
kAk+l\(nh) both converge 

absolutely, and i?(&) = 0(1) as h —> 0. Thus 

1?(* + A) = H(t) + hHa){t) +-.. +7J^L- f f ( r_1 )(f) + ^ M Â ' , 
(r — 1)1 r\ 

where w(t, h) = 0(1) as h —» 0. It follows from a theorem due to Marcinkie-
wicz and Zygmund (6, p. 76) that H(r)(t) exists p.p. in E. 

Equation (2.5) gives iJ(7._7)(0) = Ar_j = £ sn
kAk+1(in)~3\ and since the 

(C, k) sum of the series £ cn/(n)j equals the (C, 0) sum of the series 
£ s/A*+1 (»- ') , (3, p. 128), (2.3) is established. 

THEOREM 2.2. If under the hypothesis of Theorem 2.1 the set E is an open 
interval and 

CoDH = ^ 
at 

then 

(2.6) CsDH(s)(t) = H(s+1)(t) 0 < 5 < k, t £ E, 

(2.7) Ct+lDHa+1)(t) = H(r){t) p.p. inE. 

Further, if H(s)(t) = F(S)(t) + iG(S)(t), 0 < s < r, then for all t € -E, 

(2.8) |Ct+1£>*Fa+1)(0l < - , |Cf t+lJD*F t t+1)(0| < » , |Ct+1.D*Ga+i> (01 < œ -

m < » 
The following lemma is required for the proof. 

https://doi.org/10.4153/CJM-1960-062-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-062-8


TRIGONOMETRICAL SERIES IN FOURIER FORM 697 

LEMMA. If °° 

rc=l 

is summable (C, r + 1), where r > — 1, /Ae« a necessary and sufficient condition 
that it should be bounded (C, r) is that Bn

r = 0{nr+l) where bn = nan and Bn°, 
Bn1, Bn

2, . . . , are formed from the bn as An°, An\ An
2, . . . are from the an (cf. 3, 

p. 96). 

The relation (2.6) will be proved by induction. The result is trivial for 
5 = 0 and in view of (2.3) reduces to a lemma of Verblunsky (5, p. 206). By 
the lemma stated above, series (2.2.1) is bounded (C,k — 1), series (2.2.2) 
is bounded (C, k — 2), . . . , series (2.2.r — 1) is bounded. Assume that the 
relation holds for all s < k and hence that H(s)(t) is a CsP-integral of H(S+i)(t) 
for all s < k. Then (k — 1) integrations by parts (1) gives 

CkDH(k)(t) = 
s* t+h 

(*/A*)C^iP J (t + h- uY-'Hw (u)du - Hm (0 
lim 
?2_>0 */(* + 1) 

s [̂ %(<+h) -H{t) - s ÊK<*>] • 
and, by Theorem 2.1, this limit equals H(k+i)(t). 

It can be shown similarly that 

Ck+iDH(k+i)(t) = 

S? [ ^ t ( / + « - HW - 5 ($*«<'>] 
if the limit on the right-hand side exists. By Theorem 2.1, therefore, 
Ck+iDH(k+i)(t) exists p.p. in E and is equal to H(T)(t). 

Finally, it follows from (2.4) that 

(2.9) &+çpi [H(t + h)- H(t) - £ ( £ î ) f f c>(0 ] = 0(1) 

as h —» 0. This establishes (2.8). 

3. The expression of coefficients in t e rms of t h e C*+iP-integral. 
This section contains the main result of the paper. 

THEOREM 3.1. Under the hypothesis and with the notation of Theorem 2.1 
and Theorem 2.2, if R — [— 7r, IT], then 

cn = 7T C*+lP I H(r)(t) exp(-int)dt. 

Proof. To fix ideas take fe = 2. In virtue of (2.6) it is clear that 

His)(t) - His)(-ir) = CSP ( His+1)(x)dx, 0 < s < 2. 
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Furthermore, since H(^(t) = F(4)(0 + iG(4)(/), it follows from (2.7) and (2.8) 
and the C3-continuity of F(z)(t) and G(3)(0 that 

#(3)(*) -Hw(-ic) = CZP j Hw(x)dx. 

Hence, using the property of integration by parts for the CwP-integral, 

CZP J H(A)(t)exp(-int)dt = C2P I H(z)(t) (~in)exp(-int)dt 

= CiP I ^ (2)(0 (-in)2exp(-int)dt 

= CoP I H(i)(t) ( — in) exp( — int)dt 

= CoP I i^(0 (m)4 exp( — int)dt = 27rcw, 

since series (2.2.4) converges absolutely and uniformly to Hit). This proves 
the theorem. 

COROLLARY 1. If series (2.1) is summable (C, k) for all t to a function 
\j/(t) = u(t) + iv(f), \yp(t)\ < oo, then the coefficients can be written in the form 

i r 
cn = — Ck+1P I \p(t) exp( — int)dt. 

Proof. It is well known (6, p. 69) that if H(t) is defined as in Theorem 2.1, 
then H(r)(f) = ^{t)y and the proof follows from Theorem 3.1. 

COROLLARY 2. (The real analogue of Theorem 3.1.) If Y, -K(x) and 
]£ Bn(x) are bounded (C, k) in [— ir, ir] then 

i r i r 
an = — I F(r)(t) cos(nt)dt = — I G(r)(t) sm(nt)dt, 

IT tZ—fl- 7T t / — i r 

1 ^ - 1 ^ 
K = — I F(r)(t) sm(nt)dt = I C7(r)(0 cos(nt)dt, 

TV J—TT 7T • / — T 

w/zere F(r)(£), G(r)(t) are as defined in Theorem 2.2 a?zd /Ae integrals are 
CJC+IP-integrals. 
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