
Macroeconomic Dynamics (2023), 27, pp. 297–330
doi:10.1017/S1365100521000407

ARTICLE

Estimating the FOMC’s interest rate rule with variable
selection and partial regime switching
Adam Check

University of St. Thomas, St Paul, MN 55105, USA
Email: ajc@stthomas.edu.

Abstract
When studying the Federal Open Market Committee’s (FOMC’s) interest rate rule, some authors, such as
Gonzalez-Astudillo [(2018) Journal of Monetary, Credit, and Banking 50(1), 115–154.], find evidence for
changes in inflation and output gap responses. Others, such as Sims and Zha [(2006) American Economic
Review 96(1), 54–81.], only find evidence for a change in the variance of the interest rate rule. In this paper,
I develop a new two-regimeMarkov-switchingmodel that probabilistically performs variable selection and
identification of parameter change for each variable in themodel. I find substantial evidence that there have
been changes in the FOMC’s response to the unemployment gap and in the volatility of the rule. When the
FOMC responds strongly to the unemployment gap, I find a bimodal density for the inflation response
coefficient. Despite the bimodal density, there is a low probability that there have been changes in the
FOMC’s response to inflation.
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1. Introduction
Themodern view of monetary policy is that the Federal OpenMarket Committee (FOMC) adjusts
the federal funds rate based on measures of economic performance. Mathematically, this is typi-
cally formulated as a version of the the Taylor Rule, first described in Taylor (1993), in which the
target nominal federal funds rate is a linear function of output and inflation. This policy rule and
others taking very similar forms are the foundation of the past three decades of empirical analysis
of historical FOMC behavior.

Many researchers allow for the possibility that the coefficients of the policy rule change over
time. In part, this is due to observed macroeconomic variables such as inflation changing sub-
stantially over time, suggesting possible changes in FOMC priorities. Additionally, narrative
approaches such as Romer and Romer (2004) have found systematic differences in policy imple-
mentation under different Federal Reserve chairs, and text analyses such as that performed in Kaya
et al. (2019) have found that the topics of discussion at the FOMCmeetings have shifted over time.
The possibility of changing coefficients in the policy rule has been modeled many different ways.
Various measures of inflation, output, and employment have been used when estimating the pol-
icy rule, and several time samples have been used. This has led to a proliferation of results, with
four different findings appearing commonly in this literature:

1. The FOMC’s inflation response has changed over time, becoming more aggressive against
inflation after the appointment of Paul Volker in 1979 (e.g. Clarida et al. (2000)).
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2. The FOMC’s output response has changed over time, becoming less responsive to changes
in the output gap after the 1970s (e.g. Orphanides (2004)).

3. The FOMC’s inflation and output response have both changed over time, typically accord-
ing to the patterns identified in (1) and (2) (e.g. Gonzalez-Astudillo (2018)).

4. The coefficients of the FOMC’s interest rate rule have not changed over time, but the
variance has (e.g. Sims and Zha (2006)).

Addressing the nature and timing of structural change in FOMC behavior is of importance
to both academics and policymakers. In many different types of DSGE models, coefficients in
the interest rate rule help to determine inflation volatility and persistence, as well as short-term
output growth rates and volatility. If monetary policy in the USA has changed, it is crucial that
we document how, as it will eventually allow us to attribute changes in economic performance to
changes in policy. This is especially important in light of the claim made by Taylor (2013) that a
weak inflation response returned in the mid-2000s and engendered the housing bubble.

While the early papers in this literature such as Clarida et al. (2000) andOrphanides (2004) used
split-sample regressions to model possible coefficient change, later work has used models explic-
itly designed to detect structural change. Some authors have used a time-varying parametermodel,
allowing the interest rate rule parameters to slowly change over time.1 In more recent work, it has
been common to model changes in the FOMC’s interest rate rule as a Markov-switching model.2
However, the exact nature and timing of coefficient change is disputed, with many of these studies
using different specifications of the interest rate rule, different time periods, or different informa-
tion sets. In addition, in some studies such as Bennani et al. (2018) and Gonzalez-Astudillo (2018),
the authors have searched for parsimonious models by “pretesting”—performing frequentist test-
ing of coefficient constancy in an unrestricted Markov-switching model, and then re-estimating a
smaller model with a subset of coefficients restricted to be identical across regimes. Other studies,
such as Murray et al. (2015), have simply estimated the unrestricted Markov-switching model.

The contribution of the current paper to this literature is threefold. First, I develop a new
two-regime Markov-switching model that endogenously determines whether variables belong in
a regression and if so, whether they switch across regimes. Second, I document substantial evi-
dence of parameter change in the volatility of the interest rate rule and in the FOMC’s response
to the unemployment gap. Third, I find that there is little-to-no evidence of parameter change in
any of the other coefficients of the model: the intercept, the degree of interest rate smoothing, the
response to the inflation gap, or the response to the change in the unemployment rate. However,
I do find evidence of a bimodal density for the inflation response coefficient in one regime, which
highlights the importance of averaging over different specifications rather than estimating a single
Markov-switching model.

In this paper, I introduce a novel Bayesian econometric model that is able to probabilistically
determine the specification of the FOMC’s interest rate rule in the presence of a two-regime
Markov-switching process. This Markov-Switching Stochastic Search Variable Selection (MS-
SSVS) model nests both a constant coefficient model, consistent with the findings of Sims and Zha
(2006), and a full Markov-switchingmodel, consistent withMurray et al. (2015) as special cases. In
addition, the MS-SSVS model can probabilistically restrict a subset of coefficients to remain con-
stant across regimes, nesting FOMC behavior like that identified by Orphanides (2004), Bennani
et al. (2018), or Gonzalez-Astudillo (2018) where only a subset of coefficients change over time.
The MS-SSVS model can also restrict coefficients in either one or both regimes to be zero, so
that a variable may be completely excluded from the regression in either one regime or in both
regimes. In short, for each coefficient in each regime, there are three possibilities: (1) the coeffi-
cient is restricted to zero; (2) the coefficient is restricted to be the same as the coefficient in the
other regime; and (3) the coefficient is freely estimated independently of the coefficient in the
other regime. The restrictions and coefficients are estimated at the same time in a unified model,
which avoids pretesting and makes the estimated coefficients easily interpretable.3 In addition,
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MS-SSVS averages over the uncertainty associated with model choice, so rather than only estimat-
ing a final “best” model, inference is performed by weighing estimates across models according to
their posterior probabilities.

The MS-SSVS model builds on the work of George and McCulloch (1993) and George et al.
(2008), who developed SSVS in order to perform variable selection in linear regression mod-
els and linear Vector Autoregressions (VARs).4 SSVS has some differences with competing
methodologies such as Bayesian Model Averaging (BMA) that make it especially attractive in
a Markov-switching environment. One major advantage of SSVS is that it is not necessary to
directly compute or approximate the marginal likelihood, which is a computationally intensive
task in Markov-switching models. Instead, the uncertainty associated with variable inclusion and
variable switching is nested within a unified hierarchical model.

Using Monte-Carlo exercises with simulated data, I show that the newly developed MS-SSVS
model is able to correctly identify when coefficients should be freely estimated and when they
should be restricted—this is true both when the actual coefficients are zero, and when the coef-
ficients are the same across regimes. As expected, the MS-SSVS model is better able to identify
coefficient restrictions as the signal to noise ratio increases. This increase in signal is modeled in
two ways, either as a reduction in error volatility or as an increase in sample size. The MS-SSVS
model is particularly adept at identifying linear cross-regime restrictions with a high degree of
accuracy, even as the amount of noise increases.

When I apply this new methodology to federal funds rate data from 1970 to 2007, I find
three things. First, I find evidence for two distinct regimes in the unemployment gap response
coefficient. I find that there was a relatively strong unemployment gap response coefficient in
the mid 1970s, the late 1980s and early 1990s, and between 2004 and 2006, with the weakest
unemployment response coming during the leadership of Paul Volcker. Second, I find that the
point-estimates of the other parameters in the rule are roughly constant, regardless of regime.
This includes the FOMC’s response to inflation, although I do find that the density of the inflation
response coefficient is bimodal in the strong unemployment response regime. Finally, similar to
Sims and Zha (2006), I find strong evidence of changes in the volatility of the federal funds rate.

I also consider an extension with a sample from 1970 to 2015, since 2015 is the last year for
which FOMC Greenbook forecasts are available, as of writing. This extension introduces the
period covering the zero-lower-bound (ZLB) episode during and after the Great Recession, which
lasted from 2008 to 2015. In order to avoid econometric issues that arise when using a censored
dependent variable, for the period 2008–2015 I replace the federal funds rate with an estimate of
the shadow rate from Johannsen and Mertens (forthcoming). The results are qualitatively similar
to those described above. However, the model now prefers shifts in both the FOMC’s response to
the change in unemployment and the unemployment gap. For the period 2008–2015, I find a high
probability that the FOMC was responding relatively weakly to the change in the unemployment
rate, instead putting relatively more emphasis on changes in the inflation gap. This makes intuitive
sense, as the unemployment rate was steadily decreasing over this period, but inflation remained
persistently below target.

2. Previous studies of the FOMC interest rate rule
In an attempt to distill previous findings on changes in the FOMC’s interest rate rule, I have
grouped papers according to their main conclusion as it relates to monetary policy. Broadly
speaking, these papers typically fall into one of four categories:

1. The FOMC’s inflation response has changed over time, but the output response has not.
2. The FOMC’s output response has changed over time, but the inflation response has not.
3. The FOMC’s inflation and output response have both changed over time.
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Table 1. Evidence of parameter change in previous studies

Study Smoothing Output Inflation Variance

Clarida et al. (2000) – – Y –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Orphanides (2004) – Y – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Boivin (2006) – Y Y –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sims and Zha (2006) – – – Y
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Murray et al. (2015) Y Y Y Y
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alba and Wang (2017) – Y Y Y
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gonzalez-Astudillo (2018) – Y Y Y
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bennani et al. (2018) Y Y – –

Note: Smoothing, output, inflation, and variance indicate whether coefficients in each respec-
tive variable were found to change across regimes. “Y” means that there was evidence that it
switched, “–” means that the variable was excluded from consideration, was not allowed to
switch, or was not found to switch.

4. None of the coefficients of the FOMC’s interest rate rule have changed over time, but the
variance has.

The findings of some recent and well-known studies of the FOMC’s interest rate rule are high-
lighted in Table 1. This table is not meant to be an exhaustive list of all papers in this strand of
literature, but instead it is meant to provide enough examples that the reader can get a sense of
the types of differences seen across studies. In some of these studies, the findings are more subtle;
for instance, Boivin (2006) finds that the point estimates of both the output and inflation response
coefficients change substantially over time, but that the confidence interval at any given point in
time is very wide. In ambiguous cases like this, I did my best to summarize the author’s views
about their findings.

From Table 1, we see that conclusions about changes in the policy rule are mixed. For example,
two papers find strong evidence for changes in the interest rate smoothing parameter, while other
papers find weak or no evidence for changes in this parameter. In many papers, the exact variables
used (e.g. output gap vs. unemployment gap) affect the results, even when the methodology is the
same. Furthermore, even when two papers find that the same parameter switched, the qualitative
conclusions could differ. For instance, Clarida et al. (2000) and Alba and Wang (2017) both find
evidence that the FOMC’s inflation response has changed over time. However, Clarida et al. (2000)
find that the Taylor principle was likely not satisfied during the 1970s, while Alba andWang (2017)
find that the Taylor principle was always satisfied.

The source of the conflicting results is unclear. Bae et al. (2012) explored this issue within
Chib’s (1998) model of structural breaks, with their main area of interest being distinguishing the
importance of sample start date and the use of real-time data. With a sample that begins in 1960,
similar to the sample used by Clarida et al. (2000), they find that there was an abrupt increase
in the inflation response coefficient in 1968, with the pre-1968 regime not satisfying the Taylor
principle, but the 1968–1979 regime doing so. Since the sample in Orphanides (2004) begins in
1966, Bae et al. (2012) attribute the higher inflation response found by Orphanides (2004) to the
sample start date rather than the use of real-time data. However, they did not consider all possible
sources of differences between prior studies, as they did not analyze the impact of using monthly
or quarterly data or the impact of using different modeling techniques. While fully addressing
the cause of the discrepancy in results among previous studies is beyond the scope of the current
paper, I aim to shed light on the impact of modeling assumptions made within regime-switching
models in this literature. Namely, I develop a model that takes uncertainty about the nature of
regime-switching in each coefficient into account.
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3. Data andmodel outline
For simplicity, I will first proceed as if the fully unrestricted Markov-switching model is being
estimated. In that case, the model setup is similar to others in the recent literature:

it = μst + ρst it−1 + φπst (π
e
t − πT

t )+ φust u
e
t + φ�ust �uet + σtεt

st ∈ {0, 1}
P(st = j|st−1 = i)= qij

εt ∼N(0, 1),

where it is the nominal federal funds rate in period t, π e
t is the average three-quarter-ahead

expected inflation rate at time t, πT is the FOMC’s inflation target estimated by Chan et al. (2013),
uet is the average three-quarter-ahead expected unemployment gap at time t, and �uet is the total
expected change in the unemployment rate between time t and time t + 3, and qij is the transition
probability between regime i and regime j.

Finally, I assume that the volatility of the error term follows a random walk (i.e. the model
exhibits “stochastic volatility”). Let σt = exp ( ht2 ). Then:

ht = ht−1 + vt
vt ∼N(0,Q).

There are a few differences between the model above and some of the other models in the lit-
erature. First, while most papers have included interest rate smoothing (ρst it−1), not all have.5
Second, most papers in the literature use a measure of the output gap rather than the unemploy-
ment rate. However, as argued in Kozicki and Tinsley (2006) and (2009), the historical narrative
evidence from the 1970s and 1980s is much more consistent with an FOMC that responded to
unemployment rather than output. In addition, Kozicki and Tinsley (2009) note that the federal
funds rate target may depend on changes in real activity rather than (or in addition to) gaps in real
activity. Therefore, I include measures of both the real-time unemployment gap and the change in
the unemployment rate. Since the MS-SSVS model performs variable selection, the model should
be able to identify if one or more of these variables does not belong in the policy rule.6

In addition to differences in data and timing, I believe that the use of a stochastic volatility
process is unique in the single-equation interest rate rule literature.7 Since the main focus of this
study is to identify possible change in coefficient values, it is important to allow the variance to
evolve separately from the coefficient regimes. If the regimes covered both the coefficients as well
as the variance, relatively large changes in the variance could drive the estimated regimes, which
would then mainly identify periods of high and low volatility, rather than identifying changes in
coefficients. While modeling the variance as a separate regime switching process would also break
this link, identifying variance regimes is not the main focus of the study, and stochastic volatility
is robust to different types of parameter change.8

The data are recorded at each FOMC meeting and are gathered from historical FOMC
Greenbooks. For inflation I use the relevant GNP or GDP Deflator inflation. I use “meeting-based
timing”, developed in Check (2016), in which the federal funds rate is averaged between meeting
dates. In the baseline estimation, I assume a constant natural rate of unemployment and I use the
methodology of Chan et al. (2013) to estimate the inflation target, using GDP Deflator data.9 In
the baseline estimation, I restrict the sample from late 1969 through the end of 2007. The start
date coincides with when the FOMC began regularly reporting three-quarter-ahead forecasts, and
the end date is chosen to avoid the ZLB.10 In an extended sample that goes through 2015, I instead
replace the federal funds rate with an estimate of the shadow rate.

The choice of FOMC Greenbook data is consequential, as it helps avoid possible endogeneity
but limits the available sample. In the standard Taylor rule framework, there is an endogeneity
concern—while the FOMC adjusts the federal funds rate based on changes in macroeconomic

https://doi.org/10.1017/S1365100521000407 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000407


302 Adam Check

variables such as inflation and unemployment, these variables also respond to changes, or expected
changes, in the federal funds rate. However, since the Greenbook forecasts are created prior to each
FOMC meeting under the assumption of no change in the federal funds rate at that meeting, the
endogeneity concern is greatly alleviated. In other words, the forecasts may cause the FOMC to
adjust the federal funds rate, but the potential for a federal funds rate adjustment is ignored when
the forecasts are created, breaking the link of possible endogeneity. This feature of the Greenbook
forecasts was summarized nicely by Romer and Romer (2004),

The Greenbook forecast is almost always predicated on the assumption of no change
in monetary policy in the very short run, where the very short run means at least until
the FOMC meeting after the one for which the forecast is being made. This charac-
teristic, along with the usual assumption of some lag in the effects of monetary policy,
makes it unlikely that forecasts zero, one, and two quarters ahead are contaminated by
assumptions or inside information about the course of monetary policy. As a result,
these near-term forecasts provide information about what the Federal Reserve expected
to happen to the economy in the absence of changes in monetary policy.

For this reason, along with the fact that Greenbook data provide insights into the real-time
information available to the FOMC at the time of their decisions, use of Greenbook data is popular
in this literature. In studies that specifically investigate endogeneity in these types of regressions,
Coibion andGorodnichenko (2011) use Greenbook data and find support for standardOLS rather
than IV estimation, and Carvalho et al. (2019) use OLS with non-Greenbook data as an example
of a regression that may suffer from endogeneity and then compare this to OLS using Greenbook
data which they argue should not suffer from endogeneity.

While the benefit of the Greenbook data is that it breaks the endogeneity link, amajor drawback
is that it is released with a five-year lag. As of writing, this limits the potential sample to the end of
2015, which covers a portion of the ZLB episode but does not cover the more recent liftoff period.
In my main results, I limit the sample through the end of 2007 to avoid the period of the ZLB. In
a robustness exercise, I extend my sample, replacing the federal funds rate with the shadow rate
of Johannsen and Mertens (forthcoming). This shadow rate is produced at a quarterly frequency,
so I am unable to map this directly into the meeting-based-timing used in my baseline results.
Nevertheless, the results of this extension are qualitatively similar to the results for the 1970–2007
period.

4. Full econometric model
The model I introduced is based on a Markov-switching model with switching in coefficients:

yt = XtβSt + εt

εt ∼N(0, σ 2)
St ∈ {0, 1},

The regime, St follows a first-order Markov process:

Pr(St = j|St−1 = i)= qij
i, j ∈ {0, 1}.

The model as detailed above has been well studied, and there exist well-known frequentist and
Bayesian procedures to estimate it. These methods are described in Hamilton (1989), Kim and
Nelson (1999), Frühwirth-Schnatter (2006), and Piger (2009), among others. While these tech-
niques make it feasible to estimate the model, model comparison remains relatively cumbersome.
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The estimation process itself can be time consuming, making the estimation of more than a hand-
ful of models potentially infeasible. This problem is only exacerbated when performing BMA, as
this requires estimation of the marginal likelihood of each model—this is an extra, complicated,
and time-consuming step that needs to be undertaken after estimation of the model.11 Finally,
the total number of models to consider grows more rapidly in this class of models than in lin-
ear models. In linear models, there are only two possibilities for each regressor—either it belongs
in the model or it does not. However, in a Markov-switching model with two regimes, there are
five possibilities for each regressor: (1) it does not belong in either regime, (2) it belongs in each
regime, and the true effect is distinct under each regime, (3) it belongs in each regime but the
true effect is the same regardless of regime, (4) the variable belongs in the first regime but not the
second, or (5) the variable belongs in the second regime but not the first. This only increases the
burden of model comparison, as the number of models to consider expands more rapidly when
the possibility of switching is properly accounted for.

Despite the numerical difficulties with marginal likelihood calculations, model comparison in
this class of models remains important. In this paper, I build an econometric model that allows
for the five possibilities described above. It does so in a computationally feasible manner by uti-
lizing a hierarchical prior to nest all of these possibilities within a single model. To do this, I build
on Stochastic Search Variable Selection (SSVS), which was developed in George and McCulloch
(1993) and further studied and implemented in George et al. (2008) and Koop and Korobilis
(2010). In SSVS, a mixture distribution of normal priors is used on the regression coefficients
to allow researchers to place prior weight on the possibility that the coefficient may be exactly
equal to zero (i.e. that the variable does not belong in the model). This prior impacts the model
likelihood and allows the data to inform whether the variable belongs in the model. Since variable
selection is built into the model likelihood, only one model needs to be estimated. This framework
is therefore simpler and more efficient than performing BMA by estimating hundreds, thousands,
or more models and then comparing them based on their marginal likelihoods.

To help elicit the mathematical details of this model, let βk = [βk,i βk,j] be a vector that contains
coefficient k in regime i and regime j. Under the MS-SSVS model, the prior p(βk) is assumed to be
a mixture of normal distributions with 	 = 5 components:

βk ∼ γk,1N
([

0
0

]
, τ0

[
1 0
0 1

])
+ γk,2N

([
0
0

]
, τ1

[
1 0
0 1

])
+ γk,3N

([
β̂k,OLS

β̂k,OLS

]
, τ1

[
1 1− ε

1− ε 1

])

+ γk,4N
([

0
0

]
,

[
τ1 0
0 τ0

])
+ γk,5N

([
0
0

]
,

[
τ0 0
0 τ1

])

γ k = (γ k
1 , γ

k
2 , γ

k
3 , γ

k
4 , γ

k
5 ) ∈ {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}

τ0 = 0.1×
√
Var

(
β̂k,OLS

)

τ1 = 15×
√
Var

(
β̂k,OLS

)
,

where β̂k,OLS is the OLS estimate of βk under the assumption of no regime switching, Var(β̂k,OLS)
is the OLS estimate of the variance, and τ0, τ1, and ε are parameters chosen by the researcher that
control the variances of each distribution in the prior.12

The mixture distribution described above represents five distinct possibilities:

1. The coefficient is restricted to be approximately zero in each regime, that is, the variable is
excluded in both regimes.
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2. The coefficient estimates are freely estimated, independently of each other, that
is, the variable is included in each regime, and the effect in each regime is
different.

3. The coefficient estimates are freely estimated, but identical, that is, the variable is included
in each regime, and the effect in each regime is the same.

4. The coefficient in regime 0 is freely estimated, but the coefficient in regime 1 is restricted
to be near zero, that is, the variable is excluded from regime 1.

5. The coefficient in regime 1 is freely estimated, but the coefficient in regime 0 is restricted
to be near zero, that is, the variable is excluded from regime 0.

For the coefficient on each variable, the prior distribution over the five indicator vectors, γk, I
assume that each comes from the following categorical distribution:

γk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1, 0, 0, 0, 0) with probability pk,1
(0, 1, 0, 0, 0) with probability pk,2
(0, 0, 1, 0, 0) with probability pk,3
(0, 0, 0, 1, 0) with probability pk,4
(0, 0, 0, 0, 1) with probability pk,5

5∑
	=1

pk,	 = 1

0< pk,	 < 1 ∀ 	 ∈ {1, 2, 3, 4, 5}

where each prior mixture probability, pk,	, is a fixed constant set by the researcher, and the prior
probabilities can differ across different coefficients, k. Once a researcher has set the five relevant
prior probabilities, this categorical distribution is a valid discrete distribution over the indicator
vectors representing the mixture components.13

In many cases, researchers may not be interested in exactly which of these five distributions
is most probable. Instead, they may be interested in some type of combination of these five dis-
tributions. For example, in some applications, for each parameter in each regime, they may be
interested instead in three possibilities: (1) the parameter is restricted to zero, (2) the param-
eter is freely estimated, and (3) the parameter is nonzero but restricted to be identical to the
parameter estimate in the other regime. These could be found by combining the relevant prob-
abilities of the categorical distribution. For example, in regime 0, the probability of parameter k
being restricted to zero is pk,1 + pk,5, since pk,1 is the probability of the coefficient being zero in
both regimes and pk,5 is the probability of the coefficient being zero in regime 0 but nonzero in
regime 1.

5. Monte-Carlo analysis
To test the power of this procedure to identify coefficient restrictions, I perform a Monte-Carlo
analysis. I consider two data generating processes (DGPs): one in which data are generated from
a process that has several types of restrictions and another that corresponds to linear regression.
The first Monte-Carlo exercise is analogous to a situation in which some parameters in the Taylor
rule switch, some remain constant across regimes, and others are zero in both regimes. The second
Monte-Carlo exercise is analogous to a situation in which the Taylor rule variables are correctly
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specified, but that there is actually no switching—the parameter values are all identical across
regimes.

In both cases, the true model can be written in matrix notation as

yt = XtβSt + εt

εt ∼N(0, σ 2)
Pr(St = j|St−1 = i)= qij.

I assume that there is an intercept and two independent regressors with mean zero:

Xt =
[
1 X2,t X3,t

]
[
X2,t

X3,t

]
∼N

([
0
0

]
,

[
1 0
0 1

])
.

Since there are three columns in Xt , K = 3. Recall that the pair of coefficients multiplying the
variable k but under regime 0 and regime 1 is given by βk = [βk,0 βk,1]′ for k ∈ {1, · · · ,K}.

5.1 DGP 1: restricted coefficients and Markov-switching
For the first Monte-Carlo exercise, I assume that the intercept is different in each regime, the coef-
ficient on the first regressor is identical across regimes, and the coefficient on the second regressor
is zero in both regimes. This setup is analogous to a situation where, for example, the real inter-
est rate switches, the FOMC has the same response to inflation (x1) across regimes, but does not
respond to the output gap (x2) in either regime. As defined above, we have:

β1 =
[

1.0
−0.5

]
β2 =

[
1.0
1.0

]
β3 =

[
0.0
0.0

]
.

Finally, the transition probabilities for each regime are given by

P =
[
q00 q01
q10 q11

]
=
[
0.8 0.2
0.3 0.7

]
,

which implies that the system will spend roughly 60% of time periods in regime 0 and 40% of time
periods in regime 1.

5.1.1 Priors
In this exercise, I assume that the variance term is constant. Therefore, I set an inverse-Gamma
prior on the variance term. The priors are presented in Table 2.

5.1.2 Results
In the Monte-Carlo exercise, I vary both the number of observations, T, and the standard devi-
ation of the error term, σ . I consider T ∈ {50, 100, 150, 200, 250} and σ ∈ {0.1, 0.5, 1.0}. Models
estimated on DGPs with large T and small σ are most able to pick out the correct restrictions, as
these models have the largest sample size and smallest variance.

In Tables 3–5, I present the average accuracy of identification of the correct restriction by the
estimation procedure. This number has been averaged over the results across 200 separate data
generation and estimation procedures. For example, for the first column of table (2), I set σ = 0.1
and T = 50. I then generate 200 data sets and run the estimation procedure on each. For each
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Table 2. Monte-Carlo priors

Parameter Prior distribution Prior mean Prior S.D.

c0 Constant 0.1 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c1 Constant 15 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ k0 Constant c0

√
Var
(
β̂kOLS

)
–

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τ k1 Constant c1

√
Var
(
β̂kOLS

)
–

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p1 Constant 0.25 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p2 Constant 1/12 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p3 Constant 0.50 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p4 Constant 1/12 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p5 Constant 1/12 –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γ kj Categorical
[
p1 p2 p3 p4 p5

] [
0.432 0.275 0.5 0.275 0.275

]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q00 Beta 0.8 0.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q11 Beta 0.8 0.16
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 2 Inverse Gamma Improper Infinite

Table 3. DGP1—low variance (σ = 0.1)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 100% 100% 100% 100% 100%

β1,1 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 100% 100% 100% 100% 100%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 99.4% 99.7% 99.8% 99.9% 99.9%

β3,0 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 94.4% 95.4% 95.8% 95.8% 95.9%

β3,1 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%

Posterior 94.4% 95.4% 95.8% 95.8% 95.9%

Note: β1,i �= 0 refers to the total probability that the intercept is (correctly) not restricted to be zero
in regime i. For β1,0 this is given by p1,2 + p1,3 + p1,4. For β1,0 this is given by p1,2 + p1,3 + p1,5. β2,0 =
β2,1 refers to the probability that the coefficient on X2,t is (correctly) restricted to be very close to
equal across regimes. This is given by p2,3. β3,i = 0 refers to the total probability that the coefficient
on X3,t is (correctly) restricted to be very close to zero. For β3,0 = 0 this is given by p3,1 + p3,5, while
for β3,1 = 0 this is given by p3,1 + p3,4.

Table 4. DGP1—medium variance (σ = 0.5)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 75.3% 98.8% 100% 100% 100%

β1,1 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 57.7% 95.2% 99.4% 100% 100%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 93.3% 97.8% 98.5% 98.9% 99.0%

β3,0 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%

Posterior 79.5% 82.5% 83.9% 83.1% 82.7%

β3,1 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%

Posterior 78.8% 81.8% 84.0% 83.3% 83.7%

Note: See the footnote under Table 3.
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Table 5. DGP1—high variance (σ = 1.0)

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 31.5% 55.6% 71.0% 81.2% 90.3%

β1,1 �= 0 Prior 66.7% 66.7% 66.7% 66.7% 66.7%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 13.0% 25.7% 42.1% 52.6% 64.8%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 80.1% 88.1% 93.0% 94.2% 96.4%

β3,0 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 74.3% 76.6% 78.2% 76.3% 76.6%

β3,1 = 0 Prior 33.3% 33.3% 33.3% 33.3% 33.3%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 74.4% 75.9% 78.6% 76.3% 77.4%

Note: See the footnote under Table 3.

data set, I calculate the percentage of draws in which the appropriate restriction was chosen, and I
average this percentage across all 200 data sets. For the estimation procedure, I use 15,000 burn-in
draws and 20,000 posterior draws.

Three things become apparent when looking at Tables 3–5. First, the MS-SSVS model is able
to correctly identify all types of restrictions when the data have a high signal to noise ratio. This
shows that the estimation procedure is well behaved when the amount of noise in the data gen-
erating process is relatively small. Second, the model performs very well at detecting the linear
regression restriction, β2,0 = β2,1, and fairly well at detection of the zero-restriction for the coef-
ficients β3,0 and β3,1. Third, as the noise increases, the model has a relatively more difficult time
detecting that β1,1 is actually different than zero compared to β1,0. This is likely due to the fact
that the absolute value of β1,1 is smaller than the absolute value of β1,0.

5.2 DGP 2: linear model with no switching
I repeat the same exercise as above, except I change the true value of the coefficients so that all
regressors belong in the model, the effect is different than zero for all regressors, and the effect is
the same in both regimes for all regressors. This corresponds to a linear regression in which there
is no misspecification—all the variables included in the model have a non-zero effect, and there
are no excluded relevant variables. This setup is analogous to a situation in which the Taylor rule
was correctly specified and there was no parameter change over time, similar to what was found
by Sims and Zha (2006).

β1 =
[
1.0
1.0

]
β2 =

[
1.0
1.0

]
β3 =

[
1.0
1.0

]

I leave everything else, including the priors, unchanged and conduct the same analysis as above. I
present the results in Tables 6–8.

Under the linear regression DGP, the model performs remarkably well under all sample sizes
and all variance sizes. This may be partially driven by the fact that there is a 50% prior prob-
ability placed on each of these coefficients being identical. It is important to note that while I
have fixed the prior mixture probabilities to be identical for all sets of parameters, in general a
researcher could relax this assumption, placing different prior mixture probabilities on each pair
of coefficients.14
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Table 6. DGP2—low variance (σ = 0.1), linear regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 100% 100% 100% 100% 100%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 100% 100% 100% 100% 100%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β3,0 = β3,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 100% 100% 100% 100% 100%

Note: β1,0 = β1,1 refers to the total probability that the intercept is (correctly) restricted to be very
close to equal across regimes. This is given by p1,3. β2,0 = β2,1 refers to the total probability that the
coefficient on X2,t is (correctly) restricted to be very close to equal across regimes. This is given by
p2,3. β3,0 = β3,1 refers to the total probability that the coefficient on X3,t is (correctly) restricted to
be very close to equal across regimes. This is given by p3,3.

Table 7. DGP2—medium variance (σ = 0.5), linear regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 92.8% 96.5% 97.9% 99.4% 99.3%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 92.4% 96.0% 98.1% 99.0% 99.7%

β3,0 = β3,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 92.8% 96.6% 97.6% 99.2% 99.6%

Note: See the footnote under Table 6.

Table 8. DGP2—high variance (σ = 1.0), linear regression

T = 50 T = 100 T = 150 T = 200 T = 250

β1,0 = β1,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 81.8% 85.7% 87.5% 90.6% 91.8%

β2,0 = β2,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 84.1% 86.1% 89.3% 92.4% 93.4%

β3,0 = β3,1 Prior 50.0% 50.0% 50.0% 50.0% 50.0%
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Posterior 84.2% 88.3% 90.3% 92.3% 93.3%

Note: See the footnote under Table 6.

6. Application: interest rate rules
6.1 Baseline sample: 1970–2007
Next, I apply the MS-SSVS model to the interest rate rule equation and data described in section
three. Recall that I estimate a rule of the form:

it = μst + ρst it−1 + φπst (π
e
t − πT

t )+ φust u
e
t + φ�ust �uet + σtεt

εt ∼N(0, 1)

σt = exp
(
ht
2

)
ht = ht−1 + vt
vt ∼N(0,Q)
st ∈ {0, 1}

P(st = j|st−1 = i)= qij

https://doi.org/10.1017/S1365100521000407 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000407


Macroeconomic Dynamics 309

Table 9. Estimated restrictions in the “Strong” unemployment response regime

Zero-restriction (%) Freely estimated (%) Identical restriction (%)

μ1 0.0 0.0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ1 0.0 0.0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φπ1 13.1 4.5 82.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φu1 0.0 89.9 9.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ�u1 0.3 7.4 89.9

Note: Here, “Zero-restriction” is the percentage of posterior draws in which a prior mixture distribu-
tion centered on zero and with a small variance was selected, and the parameter was restricted to
be very close to zero. “Freely Estimated” is the percentage of posterior draws in which a prior mix-
ture distribution centered on zerowith a very wide variancewas selected, so the parameter estimate
would likely differ from zero and from its value in the other regime. “Identical Restriction” is the per-
centage of posterior draws in which the prior mixture distribution that restricts the parameters to be
equal across regimes, but different from zero, was selected.

Table 10. Estimated restrictions in the “Weak” unemployment response regime

Zero-restriction (%) Freely estimated (%) Identical restriction (%)

μ0 0.0 0.0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ0 0.0 0.0 100
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φπ ,0 4.0 13.7 82.3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φUN,0 67.2 23.5 9.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ�UN,0 4.5 5.5 89.9

Note: See the footnote under Table 9.

Table 11. Mean coefficient values in each regime

“Weak” UN regime “Strong” UN regime

μ 6.622 6.622
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.949 0.949
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φπ 0.245 0.218
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φUN −0.070 −0.331
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ�UN −0.185 −0.195
Note: The columns here represent the posterior mean for each
regression coefficient, conditional on being in either the “weak”
unemployment response regime or the “strong” unemployment
response regime. In this table, φπ , φUN , and φ�UN represent one-
period responses. The long-run responses are a function of these
coefficients and ρ.

while also allowing for MS-SSVS coefficient restrictions on μst , ρst , φπst , φust , and
φ�ust .

I have three major findings: (1) I find evidence of distinct regimes in monetary policy, with the
response to the unemployment gap changing substantially between regimes; (2) at the posterior
mean, the FOMC’s response to the inflation gap is similar across both regimes; and (3) the volatil-
ity of the error term varies substantially across time and the timing does not appear to coincide
with the estimated regimes.

Detailed findings for the regression parameters are presented in Tables 9, 10 and 11, as well as
in Figure 1. In the last column of Tables 9 and 10, we see that there is substantial evidence that
four of the five regression coefficients have entered the Taylor rule linearly, remaining constant
regardless of regime. The only coefficient that exhibits strong evidence of regime switching is
the unemployment gap response coefficient, which has over a 90% posterior probability of being
distinct across regimes. This is further evidenced in Table 11, which shows that the posterior mean
for all coefficients are very similar across regimes, with the exception of the unemployment gap
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Figure 1. Regression parameters.
Note: Each panel of this plot contains two normalized histograms. In each, the y-axis is scaled so the area covered by the bars
in the histogram sums to one. The orange bars correspond to the posterior densities in the “strong” unemployment response
regime, while the blue bars correspond to the posterior densities in the “weak” unemployment response regime. For most
parameters, the normalized histograms are closely aligned, suggesting no major differences in coefficient values between
the two regimes. The major exception is the posterior densities for the FOMC’s response to the unemployment gap—hence
the two regimes can be categorized as “strong” or “weak” unemployment response regimes.

response coefficient. Finally, this is visualized in Figure 1, which plots the entire estimated density
of coefficients in each regime. While most densities lie largely on top of each other, the densities
of the unemployment gap response coefficient are largely separated, indicating that it is distinct
across regimes.

To get a better sense of the magnitude of the difference across regimes, Figure 2 plots the
FOMC’s expected response to a persistent one-percentage-point unemployment gap up to 40
meetings (roughly 4–5 years) in the future. Clearly, the responses differ across the regimes. In
the strong unemployment response regime, if this unemployment gap persisted for 40 meetings,
the FOMCwould have decreased the federal funds rate by a total of roughly 4.2 percentage points,
vs. only a 0.9 percentage point reduction in the weak unemployment response regime.

On the contrary, in Figure 3, we see that even in the long run, the FOMC’s response to expected
inflation is roughly constant across regimes. After a one-percentage-point inflation gap lasting 40
meetings, the FOMC would likely increase the federal funds rate by between roughly 2.0 and 2.5
percentage-points under either regime. For all periods, the credible intervals from each regime
overlap substantially, indicating that there is very weak evidence of any meaningful difference
between the inflation response across regimes.
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Figure 2. Response to 100 basis point unemployment gap.

Figure 3. Response to 100 basis point inflation gap.

Despite the fact that the posterior mean for the inflation response is roughly equal across
regimes, the inflation response coefficient has a bimodal density in the strong unemployment
response regime, as can be seen in Figure 1. In this regime, there is roughly a 13% probability that
the FOMC was responding only very weakly to the inflation gap. This finding would be missed
if parameter constancy had been “pre-tested” in an unrestricted model, with the final estimated
model only allowing for changes in the unemployment gap. The bimodal inflation response shows
the importance of averaging over uncertainty with respect to parameter switching and underlines
a strength of the MS-SSVS approach taken in this paper.

I also find strong evidence of change in the volatility of the interest rate rule. This change can
be seen in Figure 4, with the standard deviation of the error in the interest rate rule peaking in
the early 1980s at around 150 basis points and falling substantially since then, to below 25 basis
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Figure 4. Stochastic volatility.

Figure 5. Probability of strong unemployment response regime.
Note: The solid blue line represents the probability of the “strong unemployment response.” The vertical dashed lines denote
changes in Fed chair, and the orangehorizontal lines represent the averageprobability of being in the “strongunemployment
response” regime under the different chairs.

points. The spike in volatility in the interest rate rule in the late 1970s and early 1980s is expected,
as the Federal Reserve was on record as targeting the money supply rather than the interest rate
rule during this time period. Once they returned to targeting the federal funds rate, the volatility
steadily declined, as the interest rate rule matched actual FOMC behavior much more accurately.

Along with the estimated parameter values, the timing of regimes and regime changes are of
interest. These are presented in Figure 5, which plots the posterior mean of being in the strong
unemployment gap response at each meeting date. Also displayed in Figure 5 are the dates of
changes in Fed chair, and for each Fed chair, the average probability that the FOMC was in the
strong unemployment gap response regime during their time as chair. While there are certainly
swings in estimated regime probabilities within each chair’s tenure, especially under Burns and
Greenspan, the transition period between chairs also seems to correspond to regime change. For
instance, the probability of being in the strong unemployment response regime begins declining
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Figure 6. Johannsen and Mertens (forthcoming) shadow rate.

Figure 7. Johannsen and Mertens (forthcoming) and Wu and Xia (2016) shadow rates.

from over 80% very late in Burns’ tenure, continues sliding throughout Miller’s brief leadership,
and bottoms out below 20% as Volcker takes control in 1979. Interestingly, despite the fact that I
am using a very different proxy of the output gap than Orphanides (2004), my findings are largely
consistent with his—the FOMC under Burns was more likely to respond strongly to the output
gap, with the FOMCunder Volcker much less likely to do so. Under Burns, the average probability
of being in the strong unemployment response regime was roughly 60%, while under Volcker it
was roughly 20%. Because the inflation response coefficient is largely similar across regimes, this
means that the FOMC under Volcker put relatively more weight on its inflation response, which
is consistent with narrative historical evidence (e.g. Kaya et al. (2019)).

While my results are consistent with some of the previous literature, such as Orphanides (2004)
and Sims and Zha (2006), they stand in contrast to some others. For example, in a recent appli-
cation of a Markov-switching model to interest rate rules in Murray et al. (2015), the authors
find that the inflation response in one regime was much lower than in the other regime, and
there were periods in which it was highly probable that the FOMC failed to satisfy the “Taylor
Principle.” However, they find that this weak inflationary response occurred during the Volcker
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years, 1979–1985 (among other times). This seems highly counterfactual, as it goes against his-
torical accounts, narrative evidence from the FOMC meetings during this time period, and other
statistical evidence found by Clarida et al. (2000) among others, all of which attribute the fall in
inflation after 1980 to the strong inflation response during Volcker’s tenure. My findings are more
consistent with this latter strand of literature, since I find a reduction in the unemployment gap
response during the Volcker years.

6.2 Extended sample: 1970–2015
As of writing, FOMC Greenbook forecasts—incorporated into the newly created “Tealbook” in
2010—are available through the last FOMC meeting of 2015. The additional period 2008–2015
spans the ZLB episode and coincides with other changes in monetary policy, such as the intro-
duction of the Fed’s official 2% inflation target, which was first announced in early 2012. Most
importantly for this study, the ZLB period violates assumptions of the MS-SSVS model developed
in section four. The model assumes that the residuals are normally distributed, independent, and
identically distributed. These assumptions are violated when the dependent variable is censored,
like the federal funds rate was during the ZLB period.

Therefore, during the period for which the ZLB is binding, nearly all of the 2008–2015 period,
I replace the observed federal funds rate with an estimate of the “shadow rate” from Johannsen
and Mertens (forthcoming). This estimate of the shadow rate, over the ZLB period, can be seen in
Figure 6.

This shadow rate, like those constructed in Aruoba et al. (2021a) and (2021), comes from the
output of a multiple equation macroeconomic model for the US economy. This is conceptually
different from the shadow rate in Wu and Xia (2016), which is instead constructed based on
the term structure of interest rates (i.e., the yield curve). As discussed in Aruoba et al. (2021a),
VAR- or DSGE-based estimates tend to be qualitatively similar to each other, but distinct from
the Wu and Xia (2016) estimate. As shown in Figure 7, the VAR-based estimate from Johannsen
and Mertens (forthcoming) shows the lowest shadow rate early in the Great Recession, which
later rises to about −1% until mid-late 2015. In contrast, the Wu and Xia (2016) estimate is only
marginally accommodative (around −0.5%) during 2009 and continues becoming more accom-
modative throughout the economic recovery, bottoming out in the second quarter of 2014 at
about −3%, before sharply rising right before liftoff at the end of 2015. As noted by Aruoba et al.
(2021a), this seems like an unrealistic path of the stance of monetary policy given the narrative evi-
dence from the time, which suggests that monetary policy was at its most accommodative during
and just following the Great Recession.15

While there are limitations to this approach, the results in this extended sample are qualitatively
similar to those described in Section 6.1. One limitation of using a shadow rate estimate to extend
the sample in this study is that it changes the construction of the dependent variable. For periods in
which the federal funds rate is above the ZLB, the dependent variable is constructed by averaging
the daily FF rate between meeting dates. Once the ZLB is binding, I use the estimated shadow
rate, which is only available quarterly. Therefore, when the FOMC meeting date falls within a
given quarter, I use that quarter’s shadow rate estimate. Nevertheless, as seen in Figures 8 and 9,
the results over 1970–2015 sample are qualitatively similar to the estimates produced using only
the 1970–2007 data. I still find that the intercept, AR(1) parameter and inflation gap response
are roughly constant between regimes. In addition to switching occurring in the unemployment
gap response coefficient, switching also appears to occur in the FOMCs response to the change
in the unemployment rate. This is qualitatively similar to the findings in the limited sample, as
switching occurs in unemployment response but not inflation response. The estimated regimes
throughout the 1970–2007 period are similar to the baseline results.16 The new 2008–2015 period
is characterized by a very high probability of being in the regime with the more muted response
to the unemployment rate. This makes intuitive sense, since the unemployment rate was steadily
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Figure 8. Regression parameters (extended sample, 1970–2015).
Note: Each panel of this plot contains two normalized histograms. In each, the y-axis is scaled so the area covered by the bars
in the histogram sums to one. The orange bars correspond to the posterior densities in the “strong” unemployment response
regime, while the blue bars correspond to the posterior densities in the “weak” unemployment response regime.

Figure 9. Probability of strong unemployment response regime (extended sample, 1970–2015).
Note: The solid blue line represents the probability of the “strong unemployment response.” The vertical dashed lines denote
changes in Fed chair, and the orangehorizontal lines represent the averageprobability of being in the “strongunemployment
response” regime under the different chairs.
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falling during this period, without a corresponding increase in interest rates. Meanwhile, inflation
remained below target throughout most of this period, which would be consistent with the low or
negative target federal funds rate that actually occurred.

7. Conclusion
Over the past 15 years, there has been considerable disagreement about the existence and nature
of changes in the coefficients in the FOMC’s interest rate rule. In an attempt to clarify the nature of
these changes, I build a Markov-switching model that can endogenously determine the existence
of two types of restrictions: (1) zero restrictions, in which a variable may be excluded from one or
both of the regimes and (2) identity restrictions, in which the regression coefficient on the same
variable may be restricted to be identical across both regimes. The estimation procedure blends
and extends the Gibbs samplers that were previously derived for estimation of Markov-switching
models and SSVS models. I call this unified model an MS-SSVS model.

I find that the MS-SSVS model performs well at identifying true restrictions in a Monte-Carlo
exercise using simulated data. In general, theMS-SSVSmodel performs best in data sets that have a
relatively small amount of noise. In these data sets, it is able to detect zero-restrictions, “identical”
restrictions, and switching in the coefficients with high probability. The MS-SSVS model is still
able to identify these restrictions as the amount of noise grows, and it is able to detect linear
cross-regime restrictions with a surprisingly high degree of accuracy in even the noisiest data sets.

When I apply this model to an interest rate rule for the federal funds rate, I find three things.
First, I find strong evidence that there have been changes in the volatility of interest rate rule over
time. Second, consistent with Orphanides (2004), I find substantial evidence that there have been
changes in the FOMC’s unemployment response over time. I find that the periods least likely to
have had a strong response to unemployment are the 1980s, the period from roughly 1995 to
2004, and in the extended sample, the period from 2008 to 2015. Finally, there is relatively little
evidence that there have been economically meaningful shifts in the FOMC’s inflation response.
Despite the fact that the point estimate of the response to the inflation gap is roughly equivalent
across regimes, I do find a heightened probability of a weak inflation gap response in the 1970s.
This last finding highlights the importance of averaging over the uncertainty regarding parameter
regimes, as is done in the MS-SSVS model.

Acknowledgements. I would like to thank Jeremy Piger, Dean Croushore, Mark Kuperberg, and Eric Gaus, the participants
in the Liberal Arts Macro, Midwest Economic Research Group, and WEAI conferences, and two anonymous referees for
helpful comments and suggestions on previous versions of this paper.

Notes
1 Examples include Boivin (2006), Kim and Nelson (2006), and Primiceri (2005). A somewhat different approach that also
allows the FOMC to shift its policy horizon is considered in Lee et al. (2015).
2 Examples include Soques (2020), Bennani et al. (2018), Gonzalez-Astudillo (2018), Alba and Wang (2017), Murray et al.
(2015), Castelnuovo et al. (2014), Bianchi (2013), and Davig and Leeper (2011).
3 See Giles and Giles (1993) for an overview of some of the problems associated with pre-testing.
4 SSVS restrictions are also utilized in Koop and Korobilis (2018), who allow for parameter restrictions in time-varying
parameter models. The more general class of priors of this type is called “spike and slab” priors.
5 For example, Alba and Wang (2017) does not allow for interest rate smoothing.
6 Additionally, since I am using three-quarter-ahead forecasts from the Greenbook, if I were to use the output gap instead of
the unemployment gap, I would need estimates of the FOMCs beliefs about both the level and growth rate of potential output.
Constructing real-time estimates of both the level and growth rate of potential output that was available to the FOMC at the
time of their decisions is non-trivial. These were typically not published in the Greenbook, and estimates of both output and
potential output tend to be heavily revised relative to the much smaller revisions in the unemployment rate, which typically
only occur if there are changes in the estimated seasonal factors.
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7 Primiceri (2005) allowed for stochastic volatility in a VAR setup.
8 While policy changes by the FOMC may impact the volatility of a monetary policy rule, it is also likely impacted by struc-
tural changes in the banking system and policy implementation. Changes in volatility are therefore less likely to be well
described by a two-regime Markov-switching process.
9 In a robustness exercise presented in Appendix C, I explore alternative assumptions concerning the natural rate of
unemployment and inflation target.
10 While using an averaged three-quarter-ahead forecast is somewhat non-standard in this literature, its choice was a practi-
cal one. The FOMC Greenbook started regularly providing three-quarter-ahead forecasts in the 1970s, but did not regularly
provide four-quarter-ahead forecasts until the 1980s. In addition, averaging the forecasts through three-quarters-ahead has
the effect of dampening the impact of shocks that are expected to be transitory. Intuitively, the FOMC would probably not
want to respond to shocks they expect to be transitory, given that monetary policy impacts the economy with a lag.
11 Additionally, some authors such as Kruschke (2015) argue against using the marginal likelihood for model comparison
due to its high sensitivity to parameter priors. This problem was originally pointed out in Jeffreys (1939) and received more
attention after Lindley (1957) named it a “paradox.”
12 The choices of τ0, τ1, and ε are similar in spirit to Bayesian linear regression, where the researcher typically chooses the
variance of the prior distribution for the regression coefficients. Note that SSVS models are not technically fully Bayesian
since they rely on the data to inform the priors. This can be avoided by running OLS on a pre-sample of data and using those
pre-sample estimates instead. In addition, in SSVS, model restrictions can only be enforced approximately. For more details,
see the Technical Appendix.
13 For more details on the exact estimation procedure, please refer to the Technical Appendix.
14 For example, if a researcher suspected that one pair of coefficients would be different in each regime, she could increase
the prior probability on mixture 2 and reduce the prior probability on mixture 3.
15 Consider one example of why these estimates may diverge. Movement in theWu and Xia shadow rate, driven by a decrease
in the yields on longer-term bonds over the 2010–2014 period, could have been caused by investors coming to believe a
“secular stagnation” hypothesis, rather than from more accommodative monetary policy. As unemployment was steadily
recovering during this period and inflation fairly stable, the values imputed in a VAR or DSGE model would be more stable.
16 One exception is that mean probability of responding strongly to unemployment now appears to be roughly equal across
the Burns and Volcker periods.
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Appendix A. Technical appendix—more information about ssvs and the estimation
procedure

A.1 Enforcing parameter restrictions in ssvs
In an SSVS model, the posterior probability of each restriction is proportional to the prior probability of the restriction times
the prior density for βk under that restriction evaluated at the posterior draw of βk. Therefore, the “restrictions” are only
enforced approximately. To see why this is necessary, consider a prior density for the zero restriction in which τ0 = 0, so
that the coefficient was literally restricted to equal zero. Unless this restriction was chosen, our estimate of βk will almost
surely never be exactly zero. Therefore, the posterior density under this restriction will always be zero, since βk �= 0; therefore
this restriction will never be enforced. Our goal when choosing τ0 is to choose a sensible value that will enforce this zero
restriction when appropriate, while keeping the estimate of βk near zero in the event that this restriction is chosen. Our goal
when choosing ε is similar. We want to choose a number small enough that the prior density under this restriction will be
high when both values of βk are approximately equal, but we need to be careful to not choose a value for ε that is so small
that the restriction will never be enforced.

A.2 Using data to inform ssvs priors
The prior for the regression coefficients is data dependent since ̂Var(bk) depends on the dependent variable. Therefore, it
does not adhere to the requirement, in a Bayesian approach, that the prior be independent of the observed dependent data.
However, as discussed in George and McCulloch (1993), the zero-restriction region depends on the values for both τ0 and
τ1. George and McCulloch (1993) find that using ̂Var(bk) in the choices of τ0 and τ1 helps to ensure that this zero-restriction
region lies over a sensible space so that the coefficients are restricted to be close to zero only where appropriate. This prior,
although not technically valid due to its dependence on the observed data, remains popular in the literature, as evidenced by
its use in Koop and Korobilis (2010).17

A.3 Estimation procedure
I set independent priors across the hierarchical parameters:

p(q00, q11, σ 2, τ0, τ1, p1, p2,p3, p4, p5, ε)=
p(q00)p(q11)p(σ 2)p(τ0)p(τ1)p(p1)p(p2)p(p3)p(p4)p(p5)p(ε)

I assume that the prior parameters τ0, τ1, ε, p1, p2, p3, p4, p5 are each set by the researcher, that is, their prior is a point mass
at a particular value. This is a common assumption in the SSVS literature. The parameters τ0, τ1, and ε control the variance
of the each prior mixture distribution. The probabilities, p1, p2, p3, p4, and p5, control the weights for each prior distribution
and are assumed to be constant across all coefficients, so the k subscript has been dropped for ease of notation.

For the other three hyper-parameters, q00, q11, and σ 2, I set prior distributions:

p(q00)= Beta(a0, b0)
p(q11)= Beta(a1, b1)

p(σ 2)= InverseGamma(αQ, βQ).

Drawing from the full posterior directly is intractable. Instead, I draw from each of the conditional posteriors. This is
called the Gibbs sampler. Let β = [β0, β1]′, Ps = [q00 q11]′, τ = [τ0, τ1]′, Pγ = [p1, p2, p3, p4, p5]′, � = γ K . The process is as
follows:

(1) Sample the indicators for the mixture of normals prior each variable:

p(�(z)|Y , β(z−1), P(z−1)
s , σ 2,(z−1), S(z−1)

T , τ , Pγ )= p(�(z)|Y , β(z−1), S(z−1)
T , τ , Pγ )

p(�(z)|Y , β(z−1), S(z−1)
T , τ , Pγ )= Categorical

�
(z)
k = Categorical

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 f (N(0,�1)|βk)∑5
i=1 pif (N(0,�i)|βk)

p2 f (N(0,�2)|βk)∑5
i=1 pif (N(0,�i)|βk)
p3 f (N(0,�3)|βk)∑5
i=1 pif (N(0,�i)|βk)
p4 f (N(0,�4)|βk)∑5
i=1 pif (N(0,�i)|βk)
p5 f (N(0,�5)|βk)∑5
i=1 pif (N(0,�i)|βk)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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This procedure is based on George and McCulloch (1993). In the current paper, their procedure is slightly modified
because I have a mixture of five normal distributions rather than two. Once the prior mixture distributions are
selected, form the prior variance for β as:

D=

⎡
⎢⎢⎢⎢⎢⎢⎣

�k=1 0 · · · 0 0

0 �k=2 0 · · · 0

0 0
. . . · · · 0

0 0 0 · · · �k=K

⎤
⎥⎥⎥⎥⎥⎥⎦

D is block diagonal, with the Cholesky decomposition of the two-by-two mixture variance for each pair of
coefficients, k, �k along the diagonals, with zeros everywhere else.

(2) Sample the regression coefficients:

p(β(z)|Y , �(z), P(z−1)
s , σ 2,(z−1), S(z−1)

T , τ , Pγ )= p(β(z)|Y , �(z), σ 2,(z−1), S(z−1)
T , τ )

p(β(z)|Y , �(z), σ 2,(z−1), S(z−1)
T , τ )∼N

(
β̂ ,V

)
V = ((DRD′)−1 + X′X)−1

β̂ =VX′Y ,

where R is a prior correlation matrix. In this application, R is set to the identity matrix.
(3) Sample the variance of the regression error:

p(σ 2,(z)|Y , �(z), β(z), P(z−1)
s , S(z−1)

T , τ , Pγ )= p(σ 2,(z)|Y , β(z), S(z−1)
T )

p(σ 2,(z)|Y , β(z), S(z−1)
T )= Inverse Gamma

σ 2,(z) ∼ IG
(
aQ + T

2
, βQ + SSE

2

)
,

where T is the sample size and SSE= (Y − Xβ)′(Y − Xβ). This step is replaced by sampling stochastic volatility via
Kim et al. (1998) in the interest rate rule application.

(4) Sample the Markov Regime indicators:

p(S(z)T |Y , �(z), β(z), σ 2,(z), P(z−1)
s , τ , Pγ )= p(S(z)T |Y , β(z), σ 2,(z), P(z−1)

s )

using the procedure described in Kim and Nelson (1999).
(5) Sample the Markov transition probabilities:

p(P(z)s |Y , �(z), β(z), σ 2,(z), S(z)T , τ , Pγ )= p(P(z)s |Y , S(z)T )

p(P(z)s |Y , S(z)T )= Beta

Pii,(z)s = Beta(ai +Nii, bi +Nij),

where Nij is the number of times that the regime transitioned from regime i to regime j in S(z)T .

Appendix B. Overview of the prior distribution for the regression parameters
B.1 Helicopter tour of prior for βk

Recall that the prior for βk = [βk
0 βk

1 ]′ is given by a mixture of five normal distributions:

βk ∼ γ k
1N

⎛
⎝
⎡
⎣0
0

⎤
⎦ , τ0

⎡
⎣1 0

0 1

⎤
⎦
⎞
⎠+ γ k

2N
⎛
⎝
⎡
⎣0
0

⎤
⎦ , τ1

⎡
⎣1 0

0 1

⎤
⎦
⎞
⎠+ γ k

3N
⎛
⎝
⎡
⎣β̂k

OLS

β̂k
OLS

⎤
⎦ , τ1

⎡
⎣ 1 1− ε

1− ε 1

⎤
⎦
⎞
⎠

+ γ k
4N

⎛
⎝
⎡
⎣0
0

⎤
⎦ ,

⎡
⎣τ1 0

0 τ0

⎤
⎦
⎞
⎠+ γ k

5N
⎛
⎝
⎡
⎣0
0

⎤
⎦ ,

⎡
⎣τ0 0

0 τ1

⎤
⎦
⎞
⎠ .
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Figure B.1. Prior probability density function for different values of β0 and β1.

In my application, I choose:

Pr(γ k
1 = 1)= 0.5

Pr(γ k
2 = 1)= 0.25

3
Pr(γ k

3 = 1)= 0.25

Pr(γ k
4 = 1)= 0.25

3

Pr(γ k
5 = 1)= 0.25

3
.

In addition, I choose:

τ k
0 = c0

√
̂var(βk)

τ k
1 = c1

√
̂var(βk)

c0 = 0.1
c1 = 15.0,

where ̂var(βk) is the OLS estimate of the variance of βk under a no regime switching assumption. These priors are similar to
ones suggested in George and McCulloch (1993) and Koop and Korobilis (2010). Finally, for the case of parameters restricted
to be equal across regimes, I set ε = 1.0− 0.99999.

In Figures 1–3, I plot the prior probability density function of β0 and β1, implicitly assuming that β̂k
OLS = 0. This prior

density function has some striking features. It is strongly peaked near β0 = 0 and β1 = 0, so there is a relatively high prior
probability that both coefficients are restricted to zero. If the estimated coefficients land in the orange region of Figure 2 (or
the yellow region of Figure 3), it is almost a certainty that the priors for β0 and β1 will be centered on zero with a very tight
prior variance. Additionally, there are three other regions that receive relatively large prior mass: both regions where one
of the coefficients is restricted to be near zero, and the diagonal region representing coefficients that are (roughly) identical
under each regime. Outside of these four relatively narrow but sharply peaked regions, the normal distribution with the
highest probability density function corresponds to both regimes being freely estimated.
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Figure B.2. Prior probability density function for different values of β0 and β1: view from above.
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Figure B.3. Contour plot of the prior probability density function for different values of β0 and β1.

B.2 Convergence diagnostics
Below, I present evidence that the estimator converges to a unique stationary distribution. I first present running mean plots
throughout the samples that are discarded. If the sampler is converging to a stationary distribution, then the means of all of
the parameters of the model should converge to their means in the stationary distribution. If it is not, then these means will
be trending up, down, or bouncing around. Next, I present the autocorrelation functions for the parameters of the model.
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Figure B.4. Running mean plots, regression parameters.

Figure B.5. Running mean plots, regime probabilities.

These functions show the correlation between the draw of the parameter at one iteration and the draw of the same parameter
t iterations later. If the sampler is well behaved, then the autocorrelation functions should fall toward zero as the number
of iterations increases. A simple rule-of-thumb is that the number of discarded “burn-in” draws should be at least ten times
larger than the maximum number of iterations that it takes the autocorrelation of any parameter to drop to zero.

Both of these metrics suggest that the sampler is well behaved, although the ACF function is declining fairly slowly. The
running mean plots become flat toward the end of the discarded draws, suggesting that the sampler has converged to a
stationary distribution. The autocorrelation plots for a couple of the regression parameters are still fairly high at 100 draws,
suggesting that more than 1000 burn-in draws are needed. I perform 1,000,000 burn-in draws in an abundance of caution. I
keep the next 1,000,000 draws and use them to form posterior inference.

Appendix C. Robustness exercises
In this appendix, I explore alternative formulations of the unemployment gap and the inflation gap. In the main body, for the
unemployment gap, I assume a constant natural unemployment rate. For the inflation gap, I use an estimate of the FOMC’s
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Figure B.6. ACF plots, regression parameters.

Figure B.7. ACF plots, regime probabilities.

inflation target fromChan et al. (2013). However, it is worthwhile to explore alternatives to see if these assumptions are having
a strong influence on the results.

C.1 Alternative unemployment gaps
For the unemployment gap, I consider two possible alternatives. First, I consider a real-time estimate of the natural rate that
comes from various sources, but represents the information available to, and beliefs of, the FOMC. This is stitched together
from the narrative evidence in Orphanides and Williams (2005) for the period before 1989, from the NAIRU estimates pre-
sented in the FOMC Bluebook between 1989 and 1997 and then from the FOMC Greenbook after 1997. This estimate of the
natural rate is presented in Figure C.1.
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Figure C.1. Real-time CBO/FOMC estimate of the natural rate.

Figure C.2. Filtered state-space estimate of the natural rate.

Next, I consider the estimate from a univariate state space model that allows for time variation in the natural rate. The
model is as follows:

ut = ct + ũt
ct = ρct−1 + ωt

ũt = ũt−1 + vt
0≤ |ρ| ≤ 1

ωt ∼N (0, σω)
vt ∼N (0, σv),

where ut is the unemployment rate, ct is the cyclical component of the unemployment rate, ũt is the natural or long-run
unemployment rate, ρ is the persistence of the cyclical component, ωt is the error term in the cyclical component, vt is the
error term of the natural rate, σω is the standard deviation of the error term of the cyclical component, and σv is the standard
deviation of the error term of the natural rate.

To estimate this model, I place loose priors on ρ, σω , and σv, and use Gibbs sampling to perform Bayesian estimation.
One drawback of this approach is that since estimation uses all of the data, this model does not produce estimates of the
unemployment gap that could have been produced in real time by the FOMC. However, to alleviate this problem somewhat,
after estimating the model parameters I set them to their posterior medians, and use one-sided Kalman filtering to produce
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Figure C.3. All three estimates of the unemployment gap.

Figure C.4. Two estimates of trend inflation.

estimates of the natural rate of unemployment. If the FOMC had access to the model parameters, this portion could have been
done in real time, since it is using filtered, rather than smoothed, estimates of the natural rate. After estimating this model, I
find qualitatively similar results to the CBO/FOMC natural rate, especially after 1980.

In total, I have three separate estimates of the unemployment gap. The first, used in the main body of the paper, assumes
a constant natural rate. The second uses a reconstructed real-time estimate of the natural rate from the FOMC and CBO.
The third uses a state-space model estimated over the full sample. While the first two are fully consistent with a real-time
forecasting rule, the third is not since it uses the full sample for estimation. However, the state-space model was applied in
such a manner that conditional on the model parameters, only “real-time” data are incorporated in the filtered estimates of
the natural rate. In any case, the resulting unemployment gap from all three methods is similar and strongly correlated, as
can bee seen in Figure C.3 and Table C.1.

C.2 Alternative inflation gap
In the baseline results, I use an estimate of trend inflation fromChan et al. (2013) asmy estimate of the FOMC’s target inflation
rate. However, there are other ways to estimate trend inflation. For instance, one could use an AR(1) model, an unobserved
components model, or a state space model with persistence like the one I used for the natural rate of unemployment. In fact,
the latter forms the basis of the trend inflation estimates in Chan et al. (2013), who also allow for bounds on trend inflation. I
believe this is a reasonable course of action, as I share their view that there is,
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Figure C.5. Unemployment gap response coefficient density.
Note: The blue histogram is the posterior density in the “weak” UN response regime, and the orange histogram is the
posterior density in the “strong” UN response regime.

Figure C.6. Inflation gap response coefficient density.
Note: The blue histogram is the posterior density in the “weak” UN response regime, and the orange histogram is the
posterior density in the “strong” UN response regime.

no compelling reason for thinking that, even in high-inflation times, it is likely that central bankers desired high-
trend inflation. Experiences such as the high-inflation period of the 1970s are better thought of as times in which
deviations from the desired trend level of inflation were quite persistent.—Chan et al. (2013)

This is especially relevant in the present study, as I do not simply need a measure of trend inflation. Instead, I need an estimate
of the FOMC’s inflation target (i.e., their desired inflation rate).
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Figure C.7. Estimated probability of “Strong” unemployment response regime.
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Table C.1. Correlation matrix for various unemployment
gaps

Constant CBO/FOMC State space

Constant 1.00 0.82 0.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CBO/FOMC 0.82 1.00 0.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

State space 0.99 0.83 1.00

Table C.2. Posterior mean response coefficients in the “Weak” unemploy-
ment response regime

Baseline CBO/FOMC State space Del Negro et al. (2015)

μ 6.622 6.606 6.622 6.606
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.949 0.938 0.956 0.988
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φπ 0.245 0.252 0.217 0.147
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φUN −0.070 −0.082 −0.091 −0.013
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ�UN −0.185 −0.081 −0.183 −0.108
Note: “Baseline” are the results in the body of the paper. “CBO/FOMC” are the results when
the unemployment gap is replacedwith the CBO/FOMC real-time unemployment gap. “State
Space” are the results when the unemployment gap is replaced with the filtered state-space
estimate. “Del Negro et al. (2015)” are the results when the inflation gap is replaced with
the AR(1) estimate from Del Negro et al. (2015). In this table, φπ , φUN , and φ�UN represent
one-period responses. The long-run responses are a function of these coefficients and ρ.

Table C.3. Posterior mean response coefficients in the “Strong” unemploy-
ment response regime

Baseline CBO/FOMC State space Del Negro et al. (2015)

μ 6.622 6.606 6.622 6.606
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ 0.949 0.938 0.956 0.987
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φπ 0.218 0.178 0.123 −0.064
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φUN −0.331 −0.254 −0.217 −0.158
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ�UN −0.195 −0.271 −0.195 −0.310
Note: See the footnote under Table C.2.

Nevertheless, use of the boundedmodel of trend inflation of Chan et al. (2013) is a choice, and it is important to investigate
how consequential that choice is. In much of the DSGE literature, authors use a random walk (or unobserved components
model) to model trend inflation (e.g., Smets andWouters (2003) and Cogley and Sargent (2005)). One exception is Del Negro
et al. (2015), who model trend inflation as an AR(1) process. After estimating this parameter, they find a posterior mode
for the AR(1) coefficient of 0.99. Using this estimate on GDP deflator inflation, I construct an alternative measure of trend
inflation. The two estimates of trend inflation are presented in Figure C.4. We can see that the estimates from Del Negro et al.
(2015) and Chan et al. (2013) are much different. The Del Negro et al. (2015) estimate is highly volatile and rises to a peak of
12% while the Chan et al. (2013) estimate is much more stable, never exceeding 3.7%. While Del Negro et al.’s 2015 method
is certainly a valid measure of trend inflation, it seems inconsistent with the narrative evidence from the 1970s to use it as a
measure of target inflation, since the FOMC likely did not desire inflation to be as high as 12%, their preferences for inflation
were probablymuch less volatile, and during the early Volcker years they likely did not desire for inflation to remain above 8%.

C.3 Results
Next, I fit the MS-SSVS model using these alternative measures of the unemployment gap or inflation gap. Figure C.3 and
Table C.1 show the unemployment gap constructed using the state space model that is nearly identical to the unemployment
gap that assumes a natural rate. Therefore, the results when using the unemployment gap constructed using the state space
model are very similar to the baseline results. The results when using the CBO/FOMC real-time unemployment gap differ
more from the baseline, but remain qualitatively similar. In both cases, there is substantial evidence of switching in the
unemployment response coefficient(s), but little evidence of switching in the inflation response coefficient. Similarly, the
estimated probability of being in the “strong” or “weak” unemployment response regime are qualitatively similar. Finally, the
volatility of the rule changes in a similar way over time, regardless of which unemployment gap estimate is used.
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On the other hand, when the alternative inflation gap is used, the differences compared to the baseline are more pro-
nounced. This includes the posterior density of the inflation response in one regime having substantial mass in the negative
region, suggesting that in this regime higher inflation would lead to a lower federal funds rate. As discussed above, the AR(1)
estimate of the inflation target does not comport with the narrative evidence, especially during the 1970s, so I take these
estimates with a grain of salt.

In Tables C.2 and C.3, I present summaries of the posterior mean parameter estimates, conditional on regime, for each
of these alternatives. There are some similarities across all alternatives. For instance, we always see at least some evidence of
switching across in the unemployment gap response. For the inflation response coefficient, things are a bit different. Relative
to the baseline, both models using an alternative measure of the unemployment gap show a higher probability of a muted
inflation response in the “strong” unemployment response regime. When using the Del Negro et al. (2015) estimate of trend
inflation, the inflation response in the “strong” unemployment response is more than just muted—it actually reverses sign.
It now suggests that the FOMC had a negative inflation response (i.e., higher inflation implies a lower nominal federal funds
rate target). This seems counterfactual and may be an artifact of this estimate of trend inflation being inconsistent with the
FOMC’s true underlying target.

Finally, we can compare estimated regime probabilities over time. These are displayed in Figure C.7. Looking at the
top three graphs, we can see that when the Chan et al. (2013) estimate of trend inflation is used, the regimes are qualitatively
similar, with a relatively high probability of being in the “strong” unemployment response regime in the early 1970s, late 1980s
to mid 1990s, around 2000, and from roughly 2005 to 2006. When the Del Negro et al. (2015) estimate of trend inflation is
used, the probability of being in that regime rarely rises above 50%, with the exception of the 2005–2006 period, during which
all four versions find a 100% probability of being in the “strong” unemployment response regime.

C.4 Conclusion
The major results of the baseline model are robust to alternative constructions of the unemployment gap: (1) there are two
distinct regimes in unemployment response, (2) there is less evidence of change in the intercept, AR(1), or inflation response
parameters, and (3) there is strong evidence of changes in volatility.

The same cannot be said for the alternative measure of trend inflation considered, namely, themodel fromDel Negro et al.
(2015). However, this estimate of trend inflation seems inconsistent with the narrative evidence of the FOMC’s views during
the 1970s and 1980s. For example, it estimates that trend inflation reached 12% in the 1970s and remained persistently above
8% throughout the early-to-mid 1980s. While this may be a perfectly valid description of the way inflation was behaving at
the time, it seems inconsistent with the desires of the FOMC. Ultimately, I agree with the views expressed in Chan et al. (2013)
that the high inflation of the 1970s was the result of a more persistent deviation from the FOMC’s inflation target. Therefore,
I believe that the Chan et al. (2013) estimate is more suited for use in this context.
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