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Abstract We show a result on propagation of the anisotropic Gabor wave front set for linear operators
with a tempered distribution Schwartz kernel. The anisotropic Gabor wave front set is parametrized
by a positive parameter relating the space and frequency variables. The anisotropic Gabor wave front
set of the Schwartz kernel is assumed to satisfy a graph type criterion. The result is applied to a class
of evolution equations that generalizes the Schrödinger equation for the free particle. The Laplacian is
replaced by any partial differential operator with constant coefficients, real symbol and order at least
two.
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1. Introduction

The paper treats the propagation of the anisotropic Gabor wave front set for a class of
continuous linear operators.
Hörmander [9] introduced in 1991 the Gabor wave front set of a tempered distribution

as a closed conic subset of the phase space T ∗Rd \ 0. It consists of directions in T ∗Rd \ 0
of global singularities, in no neighbourhood of which the short-time Fourier transform
decays superpolynomially. The Gabor wave front set is empty precisely when the tem-
pered distribution is a Schwartz function, so it records smoothness and decay at infinity
simultaneously.
Recent works [1, 4, 15, 17, 20, 22, 23] treat the Gabor wave front set and similar

concepts. The Gabor wave front set is identical to Nakamura’s homogeneous wave front
set [13, 20]. Hörmander’s original paper [9] contains results on the action of a linear
continuous operator on the Gabor wave front set. Propagation of the Gabor wave front
set for the solution to evolution equations with quadratic Hamiltonian with non-negative
real part is treated in [15, 23]. The singular space of such a quadratic form, introduced
by Hitrik and Pravda–Starov [7], then plays a crucial role.
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Propagation of anisotropic Gabor wave front sets 675

We have defined and studied an anisotropic version of the Gabor wave front set, which
is parametrized by s > 0, in [19]. The new feature is to replace the superpolynomial decay
along straight lines in phase space T ∗Rd \ 0, characteristic to the Gabor wave front set,
by decay along curves of the form:

R+ 3 λ 7→ (λx, λsξ) ∈ T ∗Rd \ 0,

where (x, ξ) ∈ T ∗Rd \ 0. The resulting wave front set is baptized to the anisotropic
s-Gabor wave front set, and it is denoted WFsg(u) ⊆ T ∗Rd \0 for a tempered distribution

u ∈ S ′(Rd). If s =1, we recover the standard Gabor wave front set.
In [19], we develop pseudodifferential calculus and microlocal analysis for the

anisotropic s-Gabor wave front set, inspired by e.g. [2, 3] which treat anisotropic partial
differential operators with polynomial coefficients. This means that we study pseudodif-
ferential calculus with symbol classes that are anisotropic modifications of the standard
Shubin symbols. The anisotropic symbols [21] satisfy estimates of the form:

|∂αx ∂
β
ξ a(x, ξ)| . (1 + |x|+ |ξ|1s )m−|α|−s|β|, (x, ξ) ∈ T ∗Rd, α, β ∈ Nd.

It also means results on microlocality and microellipticity in the anisotropic framework.
For this purpose, we benefit from ideas and techniques from papers on microlocal anal-

ysis that is anisotropic in the dual (frequency) variables only (see, e.g., [14]), as opposed
to our anisotropy, which refers to the space and frequency variables comprehensively. An
overall summary of [19] is an anisotropic version of Shubin’s calculus of pseudodifferential
operators [21].
The anisotropic s-Gabor wave front describes accurately the global singularities of

oscillatory functions of chirp type [19, Theorem 7.1]. These are exponentials with real
polynomial phase functions.
In this paper, the chief result concerns propagation of the anisotropic s-Gabor wave

front set by a continuous linear operator K : S (Rd) → S ′(Rd) defined by a Schwartz
kernel K ∈ S ′(R2d). Suppose that the s-Gabor wave front set of K contains no points
of the form (x, 0, ξ, 0) ∈ T ∗R2d \ 0 nor of the form (0, y, 0,−η) ∈ T ∗R2d \ 0, with
x, y, ξ, η ∈ Rd. (Roughly speaking, this amounts to that WFsg(K) resembles the graph

of an invertible matrix.) Then K : S (Rd) → S (Rd) acts continuously and extends
uniquely to a sequentially continuous linear operator K : S ′(Rd) → S ′(Rd), and for
u ∈ S ′(Rd), we have

WFsg(K u) ⊆ WFsg(K)′ ◦WFsg(u). (1.1)

Here, we use the notation

A′ ◦B = {(x, ξ) ∈ R2d : ∃(y, η) ∈ B : (x, y, ξ,−η) ∈ A},

for A ⊆ R4d and B ⊆ R2d.
The inclusion (1.1) is conceptually similar to propagation results for other types of

wave front sets, local [8], or global [1, 15, 22].
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As an application of the inclusion (1.1), we study propagation of the anisotropic s-
Gabor wave front set for the initial value Cauchy problem for an evolution equation of
the form {

∂tu(t, x) + ip(Dx)u(t, x) = 0, x ∈ Rd,

u(0, ·) = u0 ∈ S ′(Rd),

where p : Rd → R is a polynomial with real coefficients of order m > 2. This generalizes
the Schrödinger equation for the free particle where m =2 and p(ξ) = |ξ|2.
Provided s = 1

m−1 , we show that WFsg of the solution at time t ∈ R equals WFsg(u0)
transported by the Hamilton flow χt with respect to the principal part pm of p(ξ), that
is

(x(t), ξ(t)) = χt(x, ξ) = (x+ t∇pm(ξ), ξ), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0.

The conclusion is again conceptually similar to other results on propagation of singu-
larities [1, 8, 22], and generalizes known results when p is a homogeneous quadratic form
and s =1 [15].
The article [24] contains results similar to those of this paper but in the functional

framework of Gelfand–Shilov spaces and their ultradistribution dual spaces.
The article is organized as follows. Notations and definitions are collected in § 2.

Section 3 recalls the definition of the anisotropic s-Gabor wave front set, and a result
on tensorization is proved as well as a characterization of the anisotropic s-Gabor wave
front set in terms of characteristic sets of symbols. Then, § 4 is devoted to a proof of the
main result on propagation of the anisotropic s-Gabor wave front set. Finally, § 5 treats
an application to a class of evolution equations of Schrödinger type.

2. Preliminaries

The unit sphere in Rd is denoted Sd−1 ⊆ Rd. A ball of radius r > 0 centred in x ∈ Rd

is denoted Br(x), and Br(0) = Br. The transpose of a matrix A ∈ Rd×d is denoted
AT, and the inverse transpose of A ∈ GL(d,R) is A−T. We write f(x) . g(x) provided
there exists C > 0 such that f(x) 6 C g(x) for all x in the domain of f and of g. If

f(x) . g(x) . f(x), then we write f � g. We use the bracket 〈x〉 = (1 + |x|2)
1
2 for

x ∈ Rd. Peetre’s inequality with optimal constant [18, Lemma 2.1] is

〈x+ y〉s 6
(

2√
3

)|s|

〈x〉s〈y〉|s| x, y ∈ Rd, s ∈ R. (2.1)

The normalization of the Fourier transform is

Ff(ξ) = f̂(ξ) = (2π)−
d
2

∫
Rd

f(x)e−i〈x,ξ〉 dx, ξ ∈ Rd,

for f ∈ S (Rd) (the Schwartz space), where 〈 · , · 〉 denotes the scalar product on Rd.
The conjugate linear action of a distribution u on a test function φ is written (u, φ),
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consistent with the L2 inner product ( · , · ) = ( · , · )L2 which is conjugate linear in the
second argument.
Denote translation by Txf(y) = f(y − x) and modulation by Mξf(y) = ei〈y,ξ〉f(y) for

x, y, ξ ∈ Rd, where f is a function or distribution defined on Rd. The composed operator
is denoted Π(x, ξ) = MξTx. Let ϕ ∈ S (Rd) \ {0}. The short-time Fourier transform
(STFT) of a tempered distribution u ∈ S ′(Rd) is defined by

Vϕu(x, ξ) = (2π)−
d
2 (u,MξTxϕ) = F (uTxϕ)(ξ), x, ξ ∈ Rd.

Then, Vϕu is smooth and polynomially bounded [6, Theorem 11.2.3], that is there exists
k > 0 such that

|Vϕu(x, ξ)| . 〈(x, ξ)〉k, (x, ξ) ∈ T ∗Rd. (2.2)

We have u ∈ S (Rd) if and only if

|Vϕu(x, ξ)| . 〈(x, ξ)〉−N , (x, ξ) ∈ T ∗Rd, ∀N > 0. (2.3)

The inverse transform is given by

u = (2π)−
d
2

∫∫
R2d

Vϕu(x, ξ)MξTxϕdx dξ (2.4)

provided ‖ϕ‖L2 = 1, with action under the integral understood, that is

(u, f) = (Vϕu, Vϕf)L2(R2d), (2.5)

for u ∈ S ′(Rd) and f ∈ S (Rd), cf. [6, Theorem 11.2.5].
By [6, Corollary 11.2.6], the topology for S (Rd) can be defined by the collection of

seminorms

S (Rd) 3 ψ 7→ ‖ψ‖n := sup
z∈R2d

〈z〉n|Vϕψ(z)|, n ∈ N, (2.6)

for any ϕ ∈ S (Rd) \ 0.

2.1. s-conic subsets

We will use subsets of T ∗Rd \ 0 that are s-conic, that is closed under the operation
T ∗Rd \ 0 3 (x, ξ) 7→ (λx, λsξ) for all λ> 0.
Let s > 0 be fixed. We need the following simplified version of a tool taken from [14]

and its references. Given (x, ξ) ∈ R2d \ 0, there is a unique λ = λ(x, ξ) = λs(x, ξ) > 0
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such that

λ(x, ξ)−2|x|2 + λ(x, ξ)−2s|ξ|2 = 1.

Then, (x, ξ) ∈ S2d−1 if and only if λ(x, ξ) = 1. By the implicit function theorem, the
function λ : R2d \ 0 → R+ is smooth [11]. We have [19, Eq. (3.1)]

λs(µx, µ
sξ) = µλs(x, ξ), (x, ξ) ∈ R2d \ 0, µ > 0. (2.7)

The projection πs(x, ξ) of (x, ξ) ∈ R2d \ 0 along the curve R+ 3 µ 7→ (µx, µsξ) onto
S2d−1 is defined as

πs(x, ξ) =
(
λ(x, ξ)−1x, λ(x, ξ)−sξ

)
, (x, ξ) ∈ R2d \ 0. (2.8)

Then, πs(µx, µ
sξ) = πs(x, ξ) does not depend on µ> 0. The function πs : R

2d\0 → S2d−1

is smooth since λ ∈ C∞(R2d \ 0) and λ(x, ξ) > 0 for all (x, ξ) ∈ R2d \ 0.
From [14], or by straightforward arguments, we have the bounds

|x|+ |ξ|1s . λ(x, ξ) . |x|+ |ξ|1s , (x, ξ) ∈ R2d \ 0 (2.9)

and

〈(x, ξ)〉min
(
1, 1s

)
. 1 + λ(x, ξ) . 〈(x, ξ)〉max

(
1,1s

)
, (x, ξ) ∈ R2d \ 0. (2.10)

We will use two types of s-conic neighbourhoods. The first type is defined as follows.

Definition 2.1. Suppose s, ε > 0 and z0 ∈ S2d−1. Then,

Γs,z0,ε = {(x, ξ) ∈ R2d \ 0, |z0 − πs(x, ξ)| < ε} ⊆ T ∗Rd \ 0.

We write Γz0,ε = Γs,z0,ε when s is fixed and understood from the context. If ε> 2 then

Γz0,ε = T ∗Rd \ 0 so we usually restrict to ε 6 2.
The second type of s-conic neighbourhood is defined as follows.

Definition 2.2. Suppose s, ε > 0 and (x0, ξ0) ∈ S2d−1. Then

Γ̃(x0,ξ0),ε
= Γ̃s,(x0,ξ0),ε

= {(y, η) ∈ R2d \ 0 : (y, η) = (λ(x0 + x), λs(ξ0 + ξ), λ > 0, (x, ξ) ∈ Bε}
= {(y, η) ∈ R2d \ 0 : ∃λ > 0 : (λy, λsη) ∈ (x0, ξ0) + Bε}.

By [19, Lemma 3.7], the two types of s-conic neighbourhoods are topologically equiv-
alent. This means that if z0 ∈ S2d−1 then for each ε> 0 there exists δ > 0 such that
Γz0,δ ⊆ Γ̃z0,ε and Γ̃z0,δ ⊆ Γz0,ε.
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2.2. Pseudodifferential operators and anisotropic Shubin symbols

We need some elements from the calculus of pseudodifferential operators [5, 8, 12, 21].
Let a ∈ C∞(R2d), m ∈ R and 0 6 ρ 6 1. Then, a is a Shubin symbol of order m and
parameter ρ, denoted a ∈ Gmρ , if for all α, β ∈ Nd, there exists a constant Cα,β > 0 such
that

|∂αx ∂
β
ξ a(x, ξ)| 6 Cα,β〈(x, ξ)〉m−ρ|α+β|, x, ξ ∈ Rd. (2.11)

The Shubin symbols Gmρ form a Fréchet space where the seminorms are given by the
smallest possible constants in (2.11). We write Gm1 = Gm.
For a ∈ Gmρ and t ∈ R, a pseudodifferential operator in the t-quantization is defined

by

at(x,D)f(x) = (2π)−d
∫
R2d

ei〈x−y,ξ〉a((1− t)x+ ty, ξ) f(y) dy dξ, f ∈ S (Rd), (2.12)

when m < −d. The definition extends to m ∈ R if the integral is viewed as an oscillatory
integral. If t =0, we get the Kohn–Nirenberg quantization a0(x,D) and if t = 1

2 we
get the Weyl quantization a1/2(x,D) = aw(x,D). The Weyl product is the product of
symbols corresponding to operator composition (when well defined): (a#b)w(x,D) =
aw(x,D)bw(x,D).
Anisotropic versions of the Shubin classes are defined as follows [19, Definition 3.1].

Definition 2.3. Let s> 0 and m ∈ R. The space of (s-)anisotropic Shubin symbols
Gm,s of order m consists of functions a ∈ C∞(R2d) that satisfy the estimates

|∂αx ∂
β
ξ a(x, ξ)| . (1 + |x|+ |ξ|1s )m−|α|−s|β|, (x, ξ) ∈ T ∗Rd, α, β ∈ Nd.

We have ⋂
m∈R

Gm,s = S (R2d),

and Gm,1 = Gm = Gm1 , that is the usual Shubin class, but we cannot embed Gmρ in a
space Gn,s unless ρ = s = 1. Using (2.9) and (2.10), the embedding

Gm,s ⊆ G
m0
ρ , (2.13)

where m0 = max(m,m/s) and ρ = min(s, 1/s) can be confirmed. Thus, the Shubin
calculus [12, 21] applies to the anisotropic Shubin symbols. However, there is a more
subtle anisotropic subcalculus adapted to the anisotropic Shubin symbols Gm,s, for each
fixed s > 0. In fact by [19, Proposition 3.3], the symbol classes Gm,s are invariant under
a change of the quantization parameter t ∈ R in (2.12), and the Weyl product # :
Gm,s ×Gn,s → Gm+n,s is continuous.
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The following two definitions are taken from [19, Definitions 3.8 and 6.1]. The
anisotropic weight is denoted

µs(x, ξ) = 1 + |x|+ |ξ|1s .

Definition 2.4. Let s> 0, z0 ∈ R2d \ 0 and a ∈ Gm,s. Then, z0 is called non-
characteristic of order m1 6 m, z0 /∈ chars,m1

(a), if there exists ε> 0 such that, with
Γ = Γs,πs(z0),ε,

|a(x, ξ)| > Cµs(x, ξ)
m1 , (x, ξ) ∈ Γ , |x|+ |ξ|1s > R, (2.14)

|∂αx ∂
β
ξ a(x, ξ)| . |a(x, ξ)|µs(x, ξ)−|α|−s|β|, α, β ∈ Nd, (x, ξ) ∈ Γ, |x|+ |ξ| 1s > R,

(2.15)

for suitable C,R > 0.

Ifm1 = m, we write chars,m(a) = chars(a), and then the condition (2.15) is redundant.
Note that chars,m1

(a) is a closed s-conic subset of T ∗Rd\0 and chars,m1
(a) ⊆ chars,m2

(a)
if m1 6 m2 6 m.

Definition 2.5. Suppose s> 0, a ∈ Gm,s and let πs be the projection (2.8). The
s-conical support conesupps(a) ⊆ T ∗Rd\0 of a is defined as follows. A point z0 ∈ T ∗Rd\0
satisfies z0 /∈ conesupps(a) if there exists ε> 0 such that

supp(a) ∩ {z ∈ R2d \ 0, |πs(z)− πs(z0)| < ε}
=supp(a) ∩ Γπs(z0),ε is compact in R2d.

Clearly, conesupps(a) ⊆ T ∗Rd \ 0 is s-conic. Note that for any a ∈ Gm,s and any
m1 6 m, we have

conesupps(a) ∪ chars,m1
(a) = T ∗Rd \ 0.

3. Anisotropic Gabor wave front sets

The following definition is inspired by Zhu [25, Definition 1.3] of a quasi-homogeneous
wave front set defined by two non-negative parameters. Zhu uses a semiclassical formu-
lation, whereas we use the STFT. As far as we know it is an open question to determine
if the concepts coincide.
Given a parameter s > 0, we define the s-Gabor wave front set WFsg(u) ⊆ T ∗Rd \ 0 of

u ∈ S ′(Rd).

Definition 3.1. Suppose u ∈ S ′(Rd), ϕ ∈ S (Rd) \ 0 and s> 0. A point z0 =
(x0, ξ0) ∈ T ∗Rd \ 0 satisfies z0 /∈ WFs

g(u) if there exists an open set U ⊆ T ∗Rd such that
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z0 ∈ U and

sup
(x,ξ)∈U, λ>0

λN |Vϕu(λx, λsξ)| < +∞ ∀N > 0. (3.1)

If s =1, we have WF1
g(u) = WFg(u) which denotes the usual Gabor wave front set

[9, 17]. We call WFs
g(u) the s-Gabor wave front set or the anisotropic Gabor wave front

set. It is clear that WFs
g(u) is s-conic. In Definition 3.1, we may therefore assume that

(x0, ξ0) ∈ S2d−1.
Referring to (2.2) and (2.3), we see that WFsg(u) records curves 0 < λ 7→ (λx, λsξ)

where Vϕu does not behave like the STFT of a Schwartz function. We have WFs
g(u) = ∅

if and only if u ∈ S (Rd) [19, Section 4].
If s > 0, then (2.9) and (2.10) give the bounds

〈(x, ξ)〉min
(
1, 1s

)
. 1 + |x|+ |ξ|1s . 〈(x, ξ)〉max

(
1,1s

)
, (x, ξ) ∈ R2d \ 0. (3.2)

If (y, η) ∈ Γ̃(x0,ξ0),ε
for 0 < ε < 1, then for some λ> 0 and (x, ξ) ∈ Bε, we have

(y, η) = (λ(x0 + x), λs(ξ0 + ξ)). Thus, |y|+ |η|1s � λ, so combining with (3.2), we obtain
the following equivalent criterion to the condition (3.1) in Definition 3.1. The point
(x0, ξ0) ∈ S2d−1 satisfies (x0, ξ0) /∈ WFs

g(u) if and only if for some ε> 0 we have

sup
(x,ξ)∈Γ̃(x0,ξ0),ε

〈(x, ξ)〉N |Vϕu(x, ξ)| < +∞ ∀N > 0. (3.3)

We will need the following result on the anisotropic Gabor wave front set of a tensor
product. The corresponding result for the Gabor wave front set is [9, Proposition 2.8].
Here, we use the notation x = (x′, x′′) ∈ Rm+n, x′ ∈ Rm, x′′ ∈ Rn.

Proposition 3.2. If s> 0, u ∈ S ′(Rm), and v ∈ S ′(Rn) then

WFs
g(u⊗ v) ⊆

(
(WFs

g(u) ∪ {0})× (WFs
g(v) ∪ {0})

)
\ 0

= {(x, ξ) ∈ T ∗Rm+n \ 0 : (x′, ξ′) ∈ WFs
g(u) ∪ {0}, (x′′, ξ′′) ∈ WFs

g(v) ∪ {0}} \ 0.

Proof. Let ϕ ∈ S (Rm)\0 and ψ ∈ S (Rn)\0. Suppose (x0, ξ0) ∈ T ∗Rm+n\0 does not
belong to the set on the right-hand side. Then, either (x′0, ξ

′
0) /∈ WFs

g(u)∪{0} or (x′′0 , ξ′′0 ) /∈
WFs

g(v) ∪ {0}. For reasons of symmetry, we may assume (x′0, ξ
′
0) /∈ WFs

g(u) ∪ {0}.
Thus, there exists ε> 0 such that

sup
(x′,ξ′)∈(x′0,ξ

′
0)+Bε, λ>0

λN |Vϕu(λx′, λsξ′)| <∞ ∀N > 0.

Let (x′, ξ′) ∈ (x′0, ξ
′
0) + Bε, (x

′′, ξ′′) ∈ (x′′0 , ξ
′′
0 ) + Bε, let N ∈ N be arbitrary and let

λ > 1. We obtain using (2.2), for some k ∈ N
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λN |Vϕ⊗ψu⊗ v(λx, λsξ)| = λN |Vϕu(λx′, λsξ′)| |Vψv(λx′′, λsξ′′)|
. λN |Vϕu(λx′, λsξ′)| 〈(λx′′, λsξ′′)〉k

6 λN+kmax(1,s)
(
1 + (|(x′′0 , ξ′′0 )|+ ε)2|

)k
2 |Vϕu(λx′, λsξ′)|

. λN+kmax(1,s)|Vϕu(λx′, λsξ′)| <∞.

It follows that (x0, ξ0) /∈ WFs
g(u⊗ v). �

For the next result, we need the following lemma to construct functions in a ∈ Gm,s

such that chars,m(a) = ∅.

Lemma 3.3. If s> 0 and m ∈ R, then there exists a ∈ Gm,s such that chars,m(a) = ∅.

Proof. Let g ∈ C∞(R) satisfy 0 6 g 6 1, g(x) = 0 if x 6 1
2 and g(x) = 1 if x > 1. Set

ψ(λx, λsξ) = λm, (x, ξ) ∈ S2d−1, λ > 0, (3.4)

and

a(z) = g(|z|)ψ(z), z ∈ R2d. (3.5)

Note that (3.4) can be written as

ψ(x, ξ) = λms (x, ξ), (x, ξ) ∈ R2d \ 0,

and it follows that ψ ∈ C∞(R2d \ 0), and thus a ∈ C∞(R2d).
If (x, ξ) ∈ R2d \ 0 and λ> 0, then by (2.7)

ψ(λx, λsξ) = λms (λx, λsξ) = λmψ(x, ξ).

This gives

(∂αx ∂
β
ξ ψ)(λx, λ

sξ) = λm−|α|−s|β|∂αx ∂
β
ξ ψ(x, ξ), (x, ξ) ∈ R2d \ 0, λ > 0, α, β ∈ Nd.

(3.6)

Let (y, η) ∈ R2d \ B1. Then (y, η) = (λx, λsξ) for a unique (x, ξ) ∈ S2d−1 and λ =
λs(y, η) > 1. Combining

1 + |y|+ |η|1s = 1 + λ(|x|+ |ξ|1s ) � 1 + λ

with (3.6), we obtain for any α, β ∈ Nd

∣∣∂αy ∂βηψ(y, η)∣∣ 6 Cα,β(1 + λ)m−|α|−s|β| . (1 + |y|+ |η|1s )m−|α|−s|β|.

Referring to (3.5), we may conclude that a ∈ Gm,s.
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For the same reason, we have

|a(y, η)| = λm � (1 + |y|+ |η| 1s )m, |(y, η)| > 1,

which shows that chars,m(a) = ∅. �

Remark 3.4. The proof of Lemma 3.3 gives a correction of the slightly erroneous
argument in the proof of [19, Lemma 3.5]. More precisely [19, Eq. (3.16)] is not well
motivated. But the conclusion χ ∈ G0,s follows from a homogeneity argument as above.

The following result generalizes [17, Definitions 2.6 and 3.1 combined with
Theorems 4.1 and 4.2] and is a characterization of the s-Gabor wave front set which
is conceptually similar to characterizations of other types of wave front sets [8].

Proposition 3.5. If s> 0, m ∈ R and u ∈ S ′(Rd), then

WFs
g(u) =

⋂
a∈Gm,s: aw(x,D)u∈S

chars,m(a).

Proof. First, we show

WFs
g(u) ⊆

⋂
a∈Gm,s: aw(x,D)u∈S

chars,m(a). (3.7)

Suppose a ∈ Gm,s, aw(x,D)u ∈ S , z0 ∈ T ∗Rd \ 0 and z0 /∈ chars,m(a). We may
assume that |z0| = 1. Let ε> 0 be small enough to guarantee Γz0,2ε ∩ chars,m(a) = ∅. By
[19, Lemma 3.5], there exists for any ρ> 0 an s-conic cutoff function χ ∈ G0,s such that
0 6 χ 6 1, suppχ ⊆ Γz0,2ε \ Bρ/2 and χ|Γz0,ε\Bρ ≡ 1.

If ρ> 0 is sufficiently large, then by [19, Lemma 6.3], there exists b ∈ G−m,s and
r ∈ S (R2d) such that

b#a = χ− r.

Thus, we may write

u = (1− χ)w(x,D)u+ bw(x,D)aw(x,D)u+ rw(x,D)u,

where rw(x,D)u ∈ S since rw(x,D) : S ′ → S is regularizing, and bw(x,D)aw(x,D)u ∈
S since aw(x,D)u ∈ S and bw(x,D) : S → S is continuous [21, Section 23.2]. It follows
that WFs

g(u) = WFs
g((1− χ)w(x,D)u), and finally [19, Proposition 6.2] yields

WFs
g(u) = WFs

g((1− χ)w(x,D)u) ⊆ conesupps(1− χ) ⊆ T ∗Rd \ Γz0,ε.

It follows that z0 /∈ WFs
g(u), so we have proved (3.7).
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It remains to show

WFs
g(u) ⊇

⋂
a∈Gm,s: aw(x,D)u∈S

chars,m(a). (3.8)

Suppose z0 ∈ T ∗Rd \ 0, z0 /∈ WFs
g(u) and |z0| = 1. Let ε> 0 be small enough to

guarantee Γz0,2ε ∩WFs
g(u) = ∅. Let ρ> 0 and let χ ∈ G0,s satisfy 0 6 χ 6 1, suppχ ⊆

Γz0,2ε\Bρ/2 and χ|Γz0,ε\Bρ ≡ 1. Using Lemma 3.3, we let b ∈ Gm,s satisfy chars,m(b) = ∅,
and we set a = bχ ∈ Gm,s. Then, z0 /∈ chars,m(a).
We have conesupps(a) ⊆ Γz0,2ε, and by the microlocal inclusion [19, Proposition 5.1],

we have WFs
g(a

w(x,D)u) ⊆ WFs
g(u). Combining with [19, Proposition 6.2] this implies

WFs
g(a

w(x,D)u) ⊆ conesupps(a) ∩WFs
g(u) ⊆ Γz0,2ε ∩WFs

g(u) = ∅.

It follows that aw(x,D)u ∈ S , which means that we have proved (3.8). �

4. Propagation of anisotropic Gabor wave front sets

Define for K ∈ S ′(R2d)

WFsg,1(K) = {(x, ξ) ∈ T ∗Rd : (x, 0, ξ, 0) ∈ WFs
g(K)} ⊆ T ∗Rd \ 0,

WFsg,2(K) = {(y, η) ∈ T ∗Rd : (0, y, 0,−η) ∈ WFs
g(K)} ⊆ T ∗Rd \ 0.

We will use the assumption

WFsg,1(K) = WFsg,2(K) = ∅. (4.1)

We note that the condition (4.1) appears in several other works for various global
isotropic [1, 9, 15, 22] and anisotropic [24] wave front sets. The following lemma is a
version of [24, Lemma 5.1] for tempered distributions and the s-Gabor wave front set (cf.
[1, Lemma 6.1]).

Lemma 4.1. If s> 0, K ∈ S ′(R2d) and (4.1) holds, then there exists c> 1 such that

WFsg(K) ⊆ Γ1 :=
{
(x, y, ξ, η) ∈ T ∗R2d : c−1

(
|x|+ |ξ|1s

)
< |y|+ |η| 1s < c

(
|x|+ |ξ| 1s

)}
.

(4.2)

Proof. Suppose that

WFs
g(K) ⊆

{
(x, y, ξ, η) ∈ T ∗R2d : |y|+ |η|1s < c

(
|x|+ |ξ|1s

)}
does not hold for any c> 0. Then, for each n ∈ N, there exists (xn, yn, ξn, ηn) ∈ WFs

g(K)
such that

|yn|+ |ηn|
1
s > n

(
|xn|+ |ξn|

1
s

)
. (4.3)
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By rescaling (xn, yn, ξn, ηn) as (xn, yn, ξn, ηn) 7→ (λxn, λyn, λ
sξn, λ

sηn), we obtain for a
unique λ = λ(xn, yn, ξn, ηn) > 0 a vector in WFs

g(K) ∩ S4d−1, cf. § 2.1. This s-conic
rescaling leaves (4.3) invariant. Abusing notation we still denote the rescaled vector
(xn, yn, ξn, ηn) ∈ WFs

g(K) ∩ S4d−1.
From (4.3), it follows that (xn, ξn) → 0 as n→ ∞. Passing to a subsequence (without

change of notation) and using the closedness of WFs
g(K) gives

(xn, yn, ξn, ηn) → (0, y, 0, η) ∈ WFs
g(K), n→ ∞,

for some (y, η) ∈ S2d−1. This implies (y,−η) ∈ WFsg,2(K), which is a contradiction.
Similarly, one shows

WFs
g(K) ⊆

{
(x, y, ξ, η) ∈ T ∗R2d : |x|+ |ξ| 1s < c

(
|y|+ |η|1s

)}
for some c> 0 using WFsg,1(K) = ∅. �

The set Γ1 ⊆ R4d \ 0 in (4.2) is open and s-conic in the sense that it is closed with
respect to (x, y, ξ, η) 7→ (λx, λy, λsξ, λsη) for any λ> 0. Hence, (R4d \ Γ1) is s-conic and
(R4d \ Γ1) ∩ S4d−1 is compact. From (3.3), we then obtain if Φ ∈ S (R2d) \ 0

|VΦK(x, y, ξ,−η)| . 〈(x, y, ξ, η)〉−m, m ∈ N, (x, y, ξ,−η) ∈ R4d \ Γ1. (4.4)

From (4.2) and (2.10), it follows that

(x, y, ξ,−η) ∈ Γ1 =⇒ 〈(y, η)〉min
(
s,1s

)
. 〈(x, ξ)〉 . 〈(y, η)〉max

(
s,1s

)
. (4.5)

A tempered distribution K ∈ S ′(R2d) defines a continuous linear map K : S (Rd) →
S ′(Rd) by

(K f, g) = (K, g ⊗ f), f, g ∈ S (Rd). (4.6)

The following result says that the condition (4.1) implies continuity of K on S (Rd)
and a unique extension to a continuous operator on S ′(Rd). This is the basis for the
forthcoming result on propagation of the s-Gabor wave front sets Theorem 4.4. In the
proof, we use the conventional notation (cf. [9, 10]) for the reflection operator in the
fourth Rd coordinate in R4d

(x, y, ξ, η)′ = (x, y, ξ,−η), x, y, ξ, η ∈ Rd. (4.7)

Proposition 4.2. Let s> 0 and let K : S (Rd) → S ′(Rd) be the continuous linear
operator (4.6) defined by the Schwartz kernel K ∈ S ′(R2d). If (4.1) holds, then

(1) K : S (Rd) → S (Rd) is continuous;
(2) K extends uniquely to a sequentially continuous linear operator K : S ′(Rd) →

S ′(Rd);
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(3) if ϕ ∈ S (Rd), ‖ϕ‖L2 = 1, Φ = ϕ ⊗ ϕ ∈ S (R2d), u ∈ S ′(Rd) and ψ ∈ S (Rd),
then

(K u, ψ) =

∫
R4d

VΦK(x, y, ξ,−η)Vϕψ(x, ξ)Vϕu(y, η) dx dy dξ dη. (4.8)

Proof. By [22, Lemma 5.1], the formula (4.8) holds for u, ψ ∈ S (Rd).
Let ϕ ∈ S (Rd) satisfy ‖ϕ‖L2 = 1 and set Φ = ϕ⊗ ϕ ∈ S (R2d). Since

VϕΠ(x, ξ)ϕ(y, η) = ei〈y,η−ξ〉Vϕϕ(x− y, ξ − η),

we get from (4.8) for u ∈ S (Rd) and (x, ξ) ∈ T ∗Rd

Vϕ(K u)(x, ξ) = (2π)−
d
2 (K u,Π(x, ξ)ϕ)

= (2π)−
d
2

∫
R4d

ei〈y,η−ξ〉VΦK(y, z, η,−θ)Vϕϕ(x− y, ξ − η)Vϕu(z, θ) dy dz dη dθ (4.9)

which gives

|Vϕ(K u)(x, ξ)| .
∫
R4d

|VΦK(y, z, η,−θ)| |Vϕϕ(x− y, ξ − η)| |Vϕu(z, θ)|dy dz dη dθ.

(4.10)

We use the seminorms (2.6) for S (Rd). Let n ∈ N and consider first the right-hand
side integral in (4.10) over (y, z, η,−θ) ∈ R4d \Γ1 where Γ1 is defined by (4.2) with c> 1
chosen so that WFs

g(K) ⊆ Γ1. By Lemma 4.1, we may use the estimates (4.4). Using
(2.1) and (2.3), we obtain for any m ∈ N

∫
R4d\Γ′1

|VΦK(y, z, η,−θ)| |Vϕϕ(x− y, ξ − η)| |Vϕu(z, θ)|dy dz dη dθ

.
∫
R4d\Γ′1

〈(y, z, η, θ)〉−m 〈(x− y, ξ − η)〉−n |Vϕu(z, θ)| dy dz dη dθ

. ‖u‖0〈(x, ξ)〉−n
∫
R4d

〈(y, z, η, θ)〉n−m dy dz dξ dη

. ‖u‖0〈(x, ξ)〉−n

(4.11)

provided m > n+ 4d.
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Next, we consider the right-hand side integral (4.10) over (y, z, η,−θ) ∈ Γ1. Then, we
may use (4.5). From (2.2) and (2.3), we obtain for some m > 0 and any k > 0∫

Γ′1

|VΦK(y, z, η,−θ)| |Vϕϕ(x− y, ξ − η)| |Vϕu(z, θ)|dy dz dη dθ

. ‖u‖k〈(x, ξ)〉−n
∫
Γ′1

〈(y, z, η, θ)〉m+4d+1−4d−1 〈(y, η)〉n 〈(z, θ)〉−k dx dy dξ dη

. ‖u‖k〈(x, ξ)〉−n∫
Γ′1

〈(y, z, η, θ)〉−4d−1〈(z, θ)〉(m+4d+1)
(
1+max

(
s,1s

))
+nmax

(
s,1s

)−k
dx dy dξ dη

. ‖u‖k〈(x, ξ)〉−n (4.12)

provided k > 0 is sufficiently large.
Combining (4.11) and (4.12), we obtain from (4.10) ‖K u‖n . ‖u‖k, which proves

claim (1).
To show claims (2) and (3), let u ∈ S ′(Rd) and set for N ∈ N

uN = (2π)−
d
2

∫
|z|6N

Vϕu(z)Π(z)ϕdz.

From (2.2) for some k > 0 and (2.3), we obtain for any n > 0

〈w〉n|VϕuN (w)| .
∫
|z|6N

|Vϕu(z)| 〈w〉n|Vϕϕ(w − z)| dz

.
∫
|z|6N

〈z〉k 〈w〉n 〈w − z〉−n dz

.
∫
|z|6N

〈z〉k+n dz 6 CN,n, w ∈ R2d.

Referring to the seminorms (2.6) shows that uN ∈ S (Rd) for N ∈ N. The fact that
uN → u in S ′(Rd) as N → ∞ is a consequence of (2.5), (2.2), (2.3) and dominated
convergence.
We also need the estimate (cf. [6, Eq. (11.29)])

|VϕuN (z)| 6 (2π)−
d
2 |Vϕu| ∗ |Vϕϕ|(z), z ∈ R2d,

which in view of (2.2) and (2.3) gives the bound

|VϕuN (z)| . 〈z〉k+2d+1, z ∈ R2d, N ∈ N, (4.13)

that holds uniformly over N ∈ N, for some k ∈ N.
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We are now in a position to assemble the ingredients into a proof of formula (4.8) for
u ∈ S ′(Rd) and ψ ∈ S (Rd). Set

(K u, ψ) = lim
N→∞

(K uN , ψ)

= lim
N→∞

∫
R4d

VΦK(x, y, ξ,−η)Vϕψ(x, ξ)VϕuN (y, η) dx dy dξ dη.
(4.14)

Since VϕuN (y, η) → Vϕu(y, η) as N → ∞ for all (y, η) ∈ R2d, the formula (4.8) follows
from dominated convergence if we can show that the modulus of the integrand in (4.14)
is bounded by an integrable function that does not depend on N ∈ N, which we now set
out to do.
Consider first the right-hand side integral over (x, y, ξ,−η) ∈ R4d \ Γ1, where Γ1 is

defined by (4.2) with c> 1 again chosen so that WFs
g(K) ⊆ Γ1. By Lemma 4.1, we may

use the estimates (4.4). Using (4.13), we obtain for any m ∈ N∫
R4d\Γ′1

|VΦK(x, y, ξ,−η)| |Vϕψ(x, ξ)| |VϕuN (y, η)| dx dy dξ dη

.
∫
R4d\Γ′1

〈(x, y, ξ, η)〉−m |Vϕψ(x, ξ)| 〈(y, η)〉k+2d+1 dx dy dξ dη

. sup
z∈R2d

|Vϕψ(z)|
∫
R4d

〈(x, y, ξ, η)〉k+2d+1−m dx dy dξ dη

. sup
z∈R2d

|Vϕψ(z)| <∞

(4.15)

provided m > 0 is sufficiently large.
Next, we consider the right-hand side integral (4.14) over (x, y, ξ,−η) ∈ Γ1, where we

may use (4.5). Again, from (2.2), we obtain for some m > 0∫
Γ′1

|VΦK(x, y, ξ,−η)| |Vϕψ(x, ξ)| |VϕuN (y, η)| dx dy dξ dη

.
∫
Γ′1

〈(x, y, ξ, η)〉m+4d+1−4d−1 |Vϕψ(x, ξ)| 〈(y, η)〉k+2d+1 dx dy dξ dη

.
∫
Γ′1

〈(x, y, ξ, η)〉−4d−1 〈(x, ξ)〉(m+6d+2+k)
(
1+max

(
s,1s

))
|Vϕψ(x, ξ)|dx dy dξ dη

. sup
z∈R2d

〈z〉(m+6d+2+k)
(
1+max

(
s,1s

))
|Vϕψ(z)| <∞.

(4.16)

The estimates (4.15) and (4.16) prove our claim that the modulus of the integrand in
right-hand side of (4.14) is bounded by an L1(R4d) function uniformly over N ∈ N.
Thus, (4.14) extends the domain of K from S (Rd) to S ′(Rd). We have shown claim
(3).
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From (4.15) and (4.16), we also see that K extended to the domain S ′(Rd) satisfies
K u ∈ S ′(Rd) when u ∈ S ′(Rd). To prove claim (2), it remains to show the sequen-
tial continuity of the extension (4.14) on S ′(Rd). The uniqueness of the extension is a
consequence of the continuity.
Let (un)

∞
n=1 ⊆ S ′(Rd) be a sequence such that un → 0 in S ′(Rd) as n → ∞. Then,

Vϕun(y, η) → 0 as n → ∞ for all (y, η) ∈ R2d. By the Banach–Steinhaus theorem [16,
Theorem V.7], (un)

∞
n=1 is equicontinuous. This means that there exists m ∈ N such that

|(un, ψ)| . ‖ψ‖m = sup
w∈R2d

〈w〉m|Vϕψ(w)|, ψ ∈ S (Rd), n ∈ N.

Hence,

|Vϕun(z)| = (2π)−
d
2 |(un,Π(z)ϕ)| . sup

w∈R2d
〈w〉m|Vϕ(Π(z)ϕ)(w)|

= sup
w∈R2d

〈w〉m|Vϕϕ(w − z)| . sup
w∈R2d

〈w〉m〈w − z〉−m . 〈z〉m, z ∈ R2d,

uniformly for all n ∈ N. From (4.8), the estimates (4.15), (4.16) and dominated conver-
gence, it follows that (K un, ψ) → 0 as n → ∞ for all ψ ∈ S (Rd), that is K un → 0 in
S ′(Rd). This finally proves claim (2). �

Now, we start to prepare for the main result Theorem 4.4. We need the relation map-
ping between a subset A ⊆ X×Y of the Cartesian product of two sets X, Y, and a subset
B ⊆ Y ,

A ◦B = {x ∈ X : ∃y ∈ B : (x, y) ∈ A} ⊆ X.

When X = Y = R2d, we use the convention

A′ ◦B = {(x, ξ) ∈ R2d : ∃(y, η) ∈ B : (x, y, ξ,−η) ∈ A}.

Note that there is a swap of the second and third variables.
If we denote by

π1,3(x, y, ξ, η) = (x, ξ),

π2,−4(x, y, ξ, η) = (y,−η), x, y, ξ, η ∈ Rd,

the projections R4d → R2d onto the first and the third Rd coordinate and onto the
second and the fourth Rd coordinate with a change of sign in the latter, respectively,
then we may write

WFs
g(K)′ ◦WFs

g(u) = π1,3
(
WFs

g(K) ∩ π−1
2,−4WFs

g(u)
)
. (4.17)

We need a lemma which is similar to [24, Lemma 5.1].
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Lemma 4.3. If s> 0, K ∈ S ′(R2d), (4.1) holds and u ∈ S ′(Rd) then

WFsg(K)′ ◦WFsg(u) ⊆ T ∗Rd \ 0

is s-conic and closed in T ∗Rd \ 0.

Proof. Let (x, ξ) ∈ WFs
g(K)′ ◦ WFs

g(u). Then, there exists (y, η) ∈ WFs
g(u) such

that (x, y, ξ,−η) ∈ WFs
g(K). Let λ> 0. Since WFs

g(K) and WFs
g(u) are s-conic, we

have (λx, λy, λsξ,−λsη) ∈ WFs
g(K) and (λy, λsη) ∈ WFs

g(u). It follows that (λx, λ
sξ) ∈

WFs
g(K)′ ◦WFs

g(u) which shows that WFs
g(K)′ ◦WFs

g(u) is s-conic.
Next, we assume that (xn, ξn) ∈ WFs

g(K)′◦WFs
g(u) for n ∈ N and (xn, ξn) → (x, ξ) 6= 0

as n→ +∞. For each n ∈ N, there exists (yn, ηn) ∈ WFs
g(u) such that (xn, yn, ξn,−ηn) ∈

WFs
g(K).

Since the sequence {(xn, ξn)n} ⊆ T ∗Rd is bounded it follows from Lemma 4.1 that
also the sequence {(yn, ηn)n} ⊆ T ∗Rd is bounded. Passing to a subsequence (without
change of notation), we get convergence

lim
n→+∞

(xn, yn, ξn,−ηn) = (x, y, ξ,−η) ∈ R4d \ 0.

Here, (x, y, ξ,−η) ∈ WFs
g(K) since WFs

g(K) ⊆ T ∗R2d \ 0 is closed and (y, η) 6= 0 due to

the assumption WFsg,1(K) = ∅. Moreover, (y, η) ∈ WFs
g(u) since WFs

g(u) ⊆ T ∗Rd \ 0 is
closed. We have proved that (x, ξ) ∈ WFs

g(K)′ ◦ WFs
g(u) which shows that WFs

g(K)′ ◦
WFs

g(u) is closed in T ∗Rd \ 0. �

Finally, we may state and prove our main result on propagation of singularities.

Theorem 4.4. Let s> 0 and let K : S (Rd) → S ′(Rd) be the continuous linear
operator (4.6) defined by the Schwartz kernel K ∈ S ′(R2d), and suppose that (4.1)
holds. Then, for u ∈ S ′(Rd), we have

WFsg(K u) ⊆ WFsg(K)′ ◦WFsg(u).

Proof. By Proposition 4.2, K : S (Rd) → S (Rd) is continuous and extends uniquely
to a continuous linear operator K : S ′(Rd) → S ′(Rd).
Let ϕ ∈ S (Rd) satisfy ‖ϕ‖L2 = 1 and set Φ = ϕ⊗ϕ ∈ S (R2d). Proposition 4.2, (4.8)

and (4.9) give for u ∈ S ′(Rd) and (x, ξ) ∈ T ∗Rd and λ> 0

|Vϕ(K u)(λx, λsξ)| .
∫
R4d

|VΦK(y, z, η,−θ)| |Vϕϕ(λx−y, λsξ−η)| |Vϕu(z, θ)| dy dz dη dθ.

(4.18)
Suppose z0 = (x0, ξ0) ∈ T ∗Rd \ 0 and

z0 /∈ WFs
g(K)′ ◦WFs

g(u). (4.19)

To prove the theorem, we will show z0 /∈ WFs
g(K u).
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By Lemma 4.3, the set WFs
g(K)′ ◦WFs

g(u) is s-conic and closed. Thus, we may assume

that z0 ∈ S2d−1. Moreover, with Γ̃z0,2ε = Γ̃s,z0,2ε, there exists ε> 0 such that

Γ̃z0,2ε ∩
(
WFs

g(K)′ ◦WFs
g(u)

)
= ∅.

Here, Γ̃z0,2ε denotes the closure of Γ̃z0,2ε in T
∗Rd \ 0. Using (4.17), we may write this as

Γ̃z0,2ε ∩ π1,3
(
WFs

g(K) ∩ π−1
2,−4WFs

g(u)
)
= ∅

or equivalently

π−1
1,3Γ̃z0,2ε ∩WFs

g(K) ∩ π−1
2,−4WFs

g(u) = ∅.

Due to assumption (4.1), we may strengthen this into

π−1
1,3 (Γ̃z0,2ε ∪ {0}) \ 0 ∩WFs

g(K) ∩ π−1
2,−4 (WFs

g(u) ∪ {0}) \ 0 = ∅.

Note that π−1
1,3 (Γ̃z0,2ε∪{0})\0, WFs

g(K), and π−1
2,−4 (WFs

g(u)∪{0})\0 are all closed and

s-conic subsets of T ∗R2d \ 0.
Now, [24, Lemma 5.4] gives the following conclusion. There exists open s-conic subsets

Γ1 ⊆ T ∗R2d \ 0 and Γ2 ⊆ T ∗Rd \ 0 such that

WFs
g(K) ⊆ Γ1, WFs

g(u) ⊆ Γ2

and

π−1
1,3Γ̃z0,2ε ∩ Γ1 ∩ π−1

2,−4Γ2 = ∅. (4.20)

By intersecting Γ1 with the set Γ1 defined in (4.2), we may by Lemma 4.1 assume that
(4.2) holds true.
We will now start to estimate the integral (4.18) when (x, ξ) ∈ (x0, ξ0) + Bε for some

0 < ε 6 1
2 and λ > 1.

We split the domain R4d of the integral (4.18) into three pieces. First, we integrate
over R4d \ Γ′

1 where we may use (4.4). Combined with (2.2) and (2.3), this gives if
(x, ξ) ∈ (x0, ξ0) + Bε for some k ∈ N and any n,N ∈ N∫

R4d\Γ′1

|VΦK(y, z, η,−θ)| |Vϕϕ(λx− y, λsξ − η)| |Vϕu(z, θ)|dy dz dη dθ

.
∫
R4d\Γ′1

〈(y, z, η, θ)〉−N 〈(λx− y, λsξ − η)〉−n 〈(z, θ)〉k dy dz dη dθ

. 〈(λx, λsξ)〉−n
∫
R4d\Γ′1

〈(y, z, η, θ)〉−N 〈(y, η)〉n 〈(z, θ)〉k dy dz dη dθ

6
(
λ2min(1,s)|(x, ξ)|2

)−n2 ∫
R4d

〈(y, z, η, θ)〉−N+n+kdy dz dη dθ

. λ−nmin(1,s)2n

(4.21)
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provided N is sufficiently large.
It remains to estimate the integral (4.18) over (y, z, η,−θ) ∈ Γ1 where we may use

(4.5). By (4.20), we have

Γ1 ⊆ Ω0 ∪ Ω2, (4.22)

where

Ω0 = Γ1 \ π−1
1,3Γ̃z0,2ε, Ω2 = Γ1 \ π−1

2,−4Γ2.

First, we estimate the integral over (y, z, η,−θ) ∈ Ω2. Then, (z, θ) ∈ R2d \ Γ2 which is
a closed s-conic set. By the compactness of S2d−1 \Γ2 and (3.3), we obtain the estimates

|Vϕu(z, θ)| . 〈(z, θ)〉−N , (z, θ) ∈ R2d \ Γ2, ∀N > 0.

Together with (4.5), (2.2) and (2.3), this gives if (x, ξ) ∈ (x0, ξ0) + Bε for some m ∈ N
and any n ∈ N∫

Ω′
2

|VΦK(y, z, η,−θ)| |Vϕϕ(λx− y, λsξ − η)| |Vϕu(z, θ)|dy dz dη dθ

.
∫
Ω′
2

〈(y, z, η, θ)〉m| 〈(λx− y, λsξ − η)〉−n |Vϕu(z, θ)| dy dz dη dθ

. 〈(λx, λsξ)〉−n
∫
Ω′
2

〈(y, z, η, θ)〉−4d−1 〈(y, z, η, θ)〉m+4d+1〈(y, η)〉n|Vϕu(z, θ)|dy dz dη dθ

. λ−nmin(1,s)2n

×
∫
Ω′
2

〈(y, z, η, θ)〉−4d−1 〈(z, θ)〉(m+4d+1)
(
1+max

(
s,1s

))
+nmax

(
s,1s

)
|Vϕu(z, θ)| dy dz dη dθ

. λ−nmin(1,s) sup
w∈R2d\Γ2

〈w〉(m+4d+1)
(
1+max

(
s,1s

))
+nmax

(
s,1s

)
|Vϕu(w)|

×
∫
R4d

〈(y, z, η, θ)〉−4d−1dy dz dη dθ

. λ−nmin(1,s).
(4.23)

Finally, we need to estimate the integral over (y, z, η,−θ) ∈ Ω0. Then, (y, η) ∈ R2d \
Γ̃z0,2ε. Hence, ∣∣z0 − (λ−1y, λ−sη

)∣∣ > 2ε ∀λ > 0 ∀(y, η) ∈ R2d \ Γ̃z0,2ε

and we have for (x, ξ) ∈ z0 +Bε∣∣(x, ξ)− (λ−1y, λ−sη
)∣∣ > ε ∀λ > 0 ∀(y, η) ∈ R2d \ Γ̃z0,2ε.
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It follows that for λ > 1, (x, ξ) ∈ z0 +Bε and (y, η) ∈ R2d \ Γ̃z0,2ε we have

|(λx, λsξ)− (y, η)|2 = λ2|x− λ−1y|2 + λ2s|ξ − λ−sη|2

> λ2min(1,s)ε2.

Together with (4.5), (2.2) and (2.3), this gives if (x, ξ) ∈ (x0, ξ0)+Bε for somem, k ∈ N
and any n,N ∈ N∫

Ω′
0

|VΦK(y, z, η,−θ)| |Vϕϕ(λx− y, λsξ − η)| |Vϕu(z, θ)|dy dz dη dθ

.
∫
Ω′
0

〈(y, z, η, θ)〉m 〈(λx− y, λsξ − η)〉−n−N 〈(z, θ)〉k dy dz dη dθ

. λ−nmin(1,s)

∫
Ω′
0

〈(y, z, η, θ)〉−4d−1 〈(λx− y, λsξ − η)〉−N

× 〈(z, θ)〉k+(m+4d+1)
(
1+max

(
s,1s

))
dy dz dη dθ

. λ−nmin(1,s)〈(λx, λsξ)〉N
∫
Ω′
0

〈(y, z, η, θ)〉−4d−1 〈(y, η)〉−N

× 〈(z, θ)〉k+(m+4d+1)
(
1+max

(
s,1s

))
dy dz dη dθ

. CNλ
−nmin(1,s)+N max(1,s)

×
∫
R4d

〈(y, z, η, θ)〉−4d−1 〈(z, θ)〉−N min
(
s,1s

)
+k+(m+4d+1)

(
1+max

(
s,1s

))
dy dz dη dθ

. CNλ
−nmin(1,s)+N max(1,s)

(4.24)
if N is large enough.
Combining (4.21), (4.23) and (4.24) and taking into account (4.22), we have by (4.18)

shown

sup
(x,ξ)∈(x0,ξ0)+Bε, λ>0

λn|Vϕ(K u)(λx, λsξ)| < +∞ ∀n > 0,

which finally proves the claim z0 /∈ WFsg(K u). �

5. Propagation of the s-Gabor wave front set for certain evolution equations

In [18, Remark 4.7], we discuss the initial value Cauchy problem for the evolution equation
in dimension d =1{

∂tu(t, x) + iDm
x u(t, x) = 0, m ∈ N \ 0, x ∈ R, t ∈ R,

u(0, ·) = u0.
(5.1)

It is a generalization of the Schrödinger equation for the free particle where m =2.
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Here, we generalize this equation into{
∂tu(t, x) + ip(Dx)u(t, x) = 0, x ∈ Rd, t ∈ R,

u(0, ·) = u0
(5.2)

where p : Rd → R is a polynomial with real coefficients of order m > 2, that is

p(ξ) =
∑

|α|6m

cαξ
α, cα ∈ R. (5.3)

The principal part is

pm(ξ) =
∑

|α|=m

cαξ
α, (5.4)

and there exists α ∈ Nd such that |α| = m and cα 6= 0.
The Hamiltonian is p(ξ), and the Hamiltonian flow of the principal part pm(ξ) is given

by

(x(t), ξ(t)) = χt(x, ξ) = (x+ t∇pm(ξ), ξ), t ∈ R, (x, ξ) ∈ T ∗Rd \ 0. (5.5)

The explicit solution to (5.2) is

u(t, x) = e−itp(Dx)u0 = (2π)−
d
2

∫
Rd

ei〈x,ξ〉−itp(ξ)û0(ξ)dξ, (5.6)

for u0 ∈ S (Rd). Thus, u(t, x) = Ktu0(x) where Kt is the operator with Schwartz kernel

Kt(x, y) = (2π)−d
∫
Rd

ei〈x−y,ξ〉−itp(ξ)dξ

= (2π)−
d
2 F−1(e−itp)(x− y).

The propagator Kt is a convolution operator with kernel

kt = (2π)−
d
2 F−1(e−itp) ∈ S ′(Rd), (5.7)

and we may write

Kt(x, y) = (1⊗ kt) ◦ κ−1(x, y) ∈ S ′(R2d), (5.8)

where κ ∈ R2d×2d is the matrix defined by κ(x, y) = (x+ y
2 , x− y

2 ) for x, y ∈ Rd.
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It follows from (5.6) that Kt : S (Rd) → S (Rd) is continuous, invertible with inverse
K−t, and K−t = K ∗

t which denotes the adjoint. Defining for u ∈ S ′(Rd),

(Ktu, ψ) = (u,K ∗
t ψ), ψ ∈ S (Rd),

gives a unique continuous extension Kt : S ′(Rd) → S ′(Rd).
As we will see now the continuity of Kt on S (Rd) and the unique extension to

a continuous operator on S ′(Rd) may alternatively be proved as a consequence of
WFsg,1(Kt) = WFsg,2(Kt) = ∅ and Proposition 4.2.
The next result shows that Kt propagates the anisotropic s-Gabor wave front set along

the Hamiltonian flow of pm if s = 1
m−1 , whereas the anisotropic s-Gabor wave front set

is invariant if s < 1
m−1 . In the proof, we use the symplectic matrix

J =

(
0 Id

−Id 0

)
∈ R2d×2d.

Theorem 5.1. Let m > 2 and let p be defined by (5.3), (5.4) and denote by (5.5)
the Hamiltonian flow of the principal part pm. Suppose Kt : S (Rd) → S (Rd) is the
continuous linear operator with Schwartz kernel (5.8) where kt is defined by (5.7). Then,
if 0 < s 6 1

m−1 , we have for u ∈ S ′(Rd) and t ∈ R

WFs
g(Ktu) = χt

(
WFs

g(u)
)
, s =

1

m− 1
, (5.9)

WFs
g(Ktu) = WFs

g(u), s <
1

m− 1
. (5.10)

Proof. First let s = 1
m−1 . By [19, Theorem 7.1], we have

WFm−1
g (e−itp) ⊆ {(x,−t∇pm(x)) ∈ T ∗Rd : x 6= 0},

and from [19, Eq. (4.6) and Proposition 4.3 (i)], we obtain

WFsg(kt) = WFsg(F
−1e−itp) = −WFsg(F e−itp)

= −JWFm−1
g (e−itp)

⊆ {(t∇pm(x), x) ∈ T ∗Rd : x 6= 0}.

Now, (5.8), [19, Proposition 4.3 (ii)], Proposition 3.2 and [19, Proposition 5.3 (iii)] yield

WFs
g(Kt) = WFs

g((1⊗ kt) ◦ κ−1)

=

(
κ 0

0 κ−T

)
WFs

g (1⊗ kt)
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⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFs
g(1) ∪ {0}, (x2, ξ2) ∈ WFs

g(kt) ∪ {0}} \ 0
= {(κ(x1, t∇pm(x2)), κ

−T (0, x2)) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0

=

{(
x1 + t

1

2
∇pm(x2), x1 − t

1

2
∇pm(x2), x2,−x2

)
∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0

=
{
(x1 + t∇pm(x2), x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

Since m > 2, we have ∇pm(0) = 0 and WFsg,1(Kt) = WFsg,2(Kt) = ∅ follows. By
Proposition 4.2, we thus obtain an alternative proof of the already known fact that Kt

is continuous on S (Rd) and extends uniquely to be continuous on S ′(Rd). Invertibility
also follows since K −1

t = K−t. Moreover, we may apply Theorem 4.4 which gives for
u ∈ S ′(Rd)

WFs
g(Ktu) ⊆ WFs

g(Kt)
′ ◦WFs

g(u)

= {(x, ξ) ∈ T ∗Rd : ∃(y, η) ∈ WFs
g(u), (x, y, ξ,−η) ∈ WFs

g(Kt)}
⊆ {(x1 + t∇pm(x2), x2) ∈ T ∗Rd : (x1, x2) ∈ WFs

g(u)}
= χt

(
WFs

g(u)
)
.

The opposite inclusion follows from K −1
t = K−t,

WFs
g(u) = WFs

g(K−tKtu) ⊆ χ−t
(
WFs

g(Ktu)
)

and χ−t = χ−1
t . We have proved (5.9).

It remains to consider the case s < 1
m−1 . By [19, Theorem 7.2], we have

WFg
1
s (e−itp) ⊆ (Rd \ 0)× {0}

and from [19, Eq. (4.6) and Proposition 4.3 (i)], we obtain

WFs
g(kt) = −JWFg

1
s (e−itp) ⊆ {0} × (Rd \ 0).

Again, (5.8), [19, Propositions 4.3 (ii) and 5.3 (iii)] and Proposition 3.2 yield

WFs
g(Kt) ⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFs
g(1) ∪ {0}, (x2, ξ2) ∈ WFs

g(kt) ∪ {0}} \ 0
⊆ {(κ(x1, 0), κ−T (0, x2) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0
=
{
(x1, x1, x2,−x2) ∈ T ∗R2d : x1, x2 ∈ Rd

}
\ 0.

Again, we have WFsg,1(Kt) = WFsg,2(Kt) = ∅, and Proposition 4.2 gives continu-

ity on S (Rd) and on S ′(Rd); the invertibility also follows since K −1
t = K−t. Now,
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Theorem 4.4 gives for u ∈ S ′(Rd)

WFs
g(Ktu) ⊆ WFs

g(Kt)
′ ◦WFs

g(u) ⊆ WFs
g(u).

The opposite inclusion again follows from K −1
t = K−t and χ−t = χ−1

t . We have
proved (5.10). �

Remark 5.2. If s > 1
m−1 and pm(x) 6= 0 for all x ∈ Rd \ 0, then by [19, Theorem 7.3]

WFg
1
s (e−itp) ⊆ {0} × (Rd \ 0)

so [19, Eq. (4.6) and Proposition 4.3 (i)] give

WFs
g(kt) = −JWFg

1
s (e−itp) ⊆ (Rd \ 0)× {0}.

Again (5.8), [19, Propositions 4.3 (ii) and 5.3 (iii)], and Proposition 3.2 yield

WFs
g(Kt) ⊆ {(κ(x1, x2), κ−T (ξ1, ξ2)) ∈ T ∗R2d :

(x1, ξ1) ∈ WFs
g(1) ∪ {0}, (x2, ξ2) ∈ WFs

g(kt) ∪ {0}} \ 0
⊆ {(κ(x1, x2), κ−T (0, 0) ∈ T ∗R2d : x1, x2 ∈ Rd} \ 0
= (R2d \ 0)× {0}.

In this case, we cannot conclude that WFsg,1(Kt) and WFsg,2(Kt) are empty.
Thus, we cannot conclude any statement on propagation of the anisotropic s-Gabor

wave front set from Theorem 4.4 when s > 1
m−1 .
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