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Introduction

Let £ be a field of characteristic not 2 or 3. The classical constructions of Tits
give all exceptional central simple Jordan algebras a@vén this paper, we give
constructions of Jordan algebras over any commutative domain (in which 2 and 3
are invertible), which place, in a general set up, Tits constructions of exceptional
Jordan algebras. We use these to produce nontrivial Jordan algebra bundles on
the affine plane\?, whose fibre is a given exceptional Jordan division algebra
overk. If G =Aut J, we further show that the associated princigabundles on

A? admit no reduction of the structure group to any proper connected reductive
subgroup ofG. This theorem, along with the results of ([PST]), completes the case
G = F,which is left out in a theorem of Raghunathan on the existence of principal
G-bundles onA? for a connected reductive anisotropic groGpover k, whose
structure group has no reduction to any proper connected reductive subgroup ([R],
4.9).

Let R be a commutative domain in which 2 and 3 are invertible. Adie an
Azumaya algebra oveR of degree 3. LetP be a projective module of rank 1
over A. We assume that the reduced nowi(P) of P (cf. [KOS]) is free. Let
w: N (P) >~ R be an isomorphism aR-modules. We associate to the paft, ),
in a functorial way, a Jordan algebva P, 1) (Section 1), whose underlying-
module isA® P& P, whereP™® = Hom, (P, A). We call a Jordan algebralits
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first construction algebr# it is isomorphic toJ (P, u) for some pail( P, 1) over a
degree 3 Azumaya algebraover R. We show that such an algebraeisceptional
in the sense of ([PST]), containing a Jordan subalgebra isomorpAic.td/e prove
conversely that if/ is an exceptional Jordan algebra atiis an Azumaya algebra
of degree 3 oveR such that the special Jordan algelrais contained inJ as a
Jordan subalgebra, thehis a Tits first construction Jordan algebra.

Let B be an Azumaya algebra of degree 3 over an étale quadratic extehsion
of R and with an involutioro of second kind. LetP, k) be a projective module of
rank 1 overB with a Hermitian formi over (B, o). Suppose that the discriminant
disa(h) of (P, h) is trivial. Let§: disc(h) =~ (S, (1)) be a trivialization. Then to the
triple (P, h, 8), we associate, functorially, a Jordan algeb«#, &, §) (Section 2)
with the underlyingR-moduleB™ @ P, whereB™ is the Jordan algebra consisting
of symmetric elements i for 0. We call a Jordan algebraTts second con-
struction algebraif it is isomorphic toJ (P, k, §) for some triple(P, h, §) over an
Azumaya algebréB, o) of degree 3 over an étale quadratic extensipR with an
involution of second kind. We show that these Jordan algebras are exceptional and
contain a Jordan subalgebra isomorphi@ta We prove that if/ is an exceptional
Jordan algebra an@B, o) as above such tha™ is contained inJ as a Jordan
subalgebra, thed is a Tits second construction Jordan algebra. These results for
Jordan algebras over fields are due to McCrimmon, which in fact we use in our
proofs.

The idea behind the construction of nontrivial Jordan algebra bundlesigver
is the following. LetJ = J(D, u) be the Jordan algebra ovkrassociated to
the pair(D, w) arising from Tits first construction, whem is a degree 3 central
division algebra ovek and u € k* is not a norm fromD. We choose a non-
free projectiveD[X, Y]-module P of rank 1 together with a trivializatiom of
the reduced norm such thaP, it) specializes tq D, n) at a rational point. We
then construct/ (P, 11) as indicated before. Using these algebras as prototypes on
open sets and through a patching argument, one gets an infinite family of mutually
nonisomorphic Jordan algebras ovgrwith J as the fibre.

Let D be a central division algebra of degree 3 over a quadratic extersion
of k, together with an involutionr of second kind. LetV/ = J(D, o, u, u) be
a Tits second construction algebra withe D*, u € K*, Nrd(u) = o (i)
and 1 not a norm fromD*. We choose nonfree projectiv@[X, Y]-modulesP
of rank 1 with Hermitian formg and trivializationsyi: disc(h) >~ (S, (1)) of their
discriminants. The existence of such triplé} &, 1) is guaranteed by a theorem of
Raghunathan ([R], 4.9). These give rise to Jordan algehiBsh, i) overk[X, Y]
as explained earlier. Once again, using these as prototypes on open sets and by
patching arguments, one gets an infinite family of Jordan algebra bundlespver
with J as the fibre.

In Section 3, we prove some results (which are of independent interest) on the
rigidity of bundles onP? with a D-structure obtained by extending nonfree pro-
jective D[ X, Y]-modules, for a central division algebfaoverk of prime degree.
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Using these results, we show that the princiBabundles associated to the Jordan
algebras, constructed as above, do not admit reduction of the structure group to any
proper connected reductive subgroupGof

As is well known, every exceptional central simple Jordan algebra over a field
arises from the first or the second construction of Tits and, hence, the assdgiated
bundle admits reduction of the structure group tq &) or SW(D, o) for some
D ando. However, the above constructions of Jordan algebra bundlesAgver
yield F4-bundles with no reduction of the structure group to any proper connec-
ted reductive subgroup. In particular, thdg not arisefrom a generalised Tits
construction.

It has been pointed out to us by Prof. H. P. Petersson that the (unpublished)
thesis of G. Achhammer also contains a generalized construction of Jordan
algebras.

1. A General Tits First Construction of Jordan Algebras

Let R be a commutative domain in which 2 and 3 are invertible. Aebe an
Azumaya algebra of degree 3 ovRri.e., A ®g R >~ M3(R) for some faithfully
flat extensionR of R. Letu € R* and

J(A, ) = Ao @ A1 ® Ay,
whereA; = A,i = 0, 1, 2. Following Tits, we define a multiplication ah(A, )
by

(ao, a1, az) (ag, ay, ay)

1

= (ao.ay + aray + ajaz, agay + ajar + p"az X ap,

/= 7 ’
asag + azag + pai x ap),

whereqg;, a; € A;, 0< i < 2. Here, forx, y € A, iftr: A — R is the reduced trace
map,

xy=3@&y+yx),  X=3(trkx)—x),

XXy=Xx.y— %tr(x)y — %tr(y)x + %(tr(x) tr(y) — tr(x.y)).

With this multiplication, J (A, n) is a Jordan algebra ové¥ of rank 27 andAg =

A, is a Jordan subalgebra, where for any associative algéb, denotes the
corresponding special Jordan algebra. It can be checked (Aat) is anexcep-
tional Jordan algebra i.e., locally for the étale topologyA, n) is isomorphic to

the split 27-dimensional exceptional Jordan algebra (cf. [PST]). We would like to
give a construction of exceptional Jordan algebras, which we shall call Tits’ first
construction, which include$(A, 1) as a subclass.
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Let, for the momentA denote any Azumaya algebra ovRr We recall the
notion of a reduced norm functe¥: sMod — Mod, defined in ([KOS]). This
functor associates to a projectiviemodule P, a projectiveR-module (P) with
the following properties:

(1) N(A) = R.

(2) The mapNp: P = Hom, (A, P) — Homg(N (A), N (P)) = N (P), induced
by the functoriality, has the propertyp (ax) = Nrds(a)Np(x) for a €
A, x € P,whereNrd, is the reduced norm oA.

(3) If P hasrank 1, theav (P) is invertible. Further&,: A — R is the reduced
norm map ofA.

There is also a functaw': Mod, — Mod which has similar properties. We
have, for a projective lefd-module P, P® = Hom, (P, A) is a projective right
A-module, N (P®) = N(P)* = Homg(N (P), R) and the mapNpw: P —
N (P)* is the composite

P = Homy(P, A) — Homg(N (P), N (A)) = HOMz (N (P), R) = N (P)*,

induced by the functoriality ofv’ on sMod. We abbreviateV, = V.

Let A, B be Azumaya algebras ové® and P, Q projective left A-modules
over A and B respectively. Letf: A — B be an isomorphism oR-algebras and
f:P — Q an f-semilinear isomorphism. Then there is Adinear isomorph-
ism N (f): N(P) — N(Q) such thatN (f)Np = Ny f. The mapN (f) is
constructed by descent.

PROPOSITION 1.1Let A be an Azumaya algebra ov&and P a projective left
A-module of rank 1. Suppose thsit P — R is a map such that

(1) N(ax) = Ny(@)N(x),a € A, x € P.
(2) The values oiN generate the unit ideal iR.

Then there exists a unique isomorphigmv (P) ~ R such thatv = n.V. Further,
if v € P is such thatN (v) is a unit, thenP is free andv is a basis element foP
as anA-module.

Proof. Since the values ofy generaten (P), if n exists, it is unique. Hence
it is enough to show thaj exists if R is local. In this caseP is free. Lete be an
A-basis element foP. SinceN (ae) = Nrds(a)N(e), by (2),N(e) is a unitinR.
The isomorphism,: A — P, a +— ae induces an isomorphisV (¢,): N (A) =
R — N (P), which gives a generatar, = N (¢.)(1) of & (P) as anR-module
and by definitionV (e) = y.. We definen: & (P) — R by settingn(y.) = N(e).
Then

nN(ae) = n(Nrda(a)y.) = Nrda(a)N(e) = N(ae).
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ThusnyN = N. To prove the last assertion of the proposition, it suffices to show
that v generatesP locally on R. We assume therefore th&tis local ande is a
basis element foP. We have seen above thiie) is a unitinR. Letv = ae with
a € A. ThenN(v) = Nrds(a)N (e) and henceéVrd, (a) is a unit inR so thata is
a unitinA. This proves thab is an A-basis element foP. O

Let now A be an Azumaya algebra of degree 3 oRer_et P be a projectiveA-
module of rank 1. The magy': P — N (P) yields anR-trilinear mapA: P x P X
P — N (P) with the properties:

Q) M(x,x,x) =N(x)forx e P.

(2) If P isfree withe as a basis element (ae, be, ce) = N4(a, b, c)N (e), where
Ny A X A x A — R is the linearization of the reduced norm 4f namely
Ny(a, b, c) =tr((a x b)c),a, b, c € A, tr being the reduced trace df

We assume thaV (P) is free. Letu: & (P) >~ R be an isomorphism a®-modules.
To (P, u) we associate a Jordan algebtéP, 1) as follows: TheR-trilinear map
N induces arR-bilinear mapp given by the composite

-1
P x P — Homg(P, N (P)) = Homg(P, R) S Hom, (P, A) = P™

where, tt P® = Hom, (P, A) — P* = Homg(P, R) is the isomorphism given
by tr(f)(x) = tr(f(x)). Similarly, we havep,: P* x P* — P defined as the
composite

P® x P® — Homg(P™, N(P™))

1 tr-1
") Homg(P™, R) ~ Hom,(P®, A) ~ P.

LetJ(P,u) =A@ P @ P™. We define a multiplication ot (P, 1) by
(a,x, @, x', f)
= (a.a' + f'(0) + f(x),ax' +a'x + ¢.(f, ), fla+ fa + ¢(x,x)),
foralla,a’ € A,x,x’ € P, f, f € P™.
THEOREM 1.2. The multiplication above make& P, 1) an exceptional Jordan
algebra.
Proof. It suffices to check this after a faithfully flat base change. We therefore
assume thap is free. Lete € P be a basis element éf ande* € P™ its dual, i.e.,

e*(e) = 1. Let¢: P x P — P™ be defined by’ = tr¢, tr andg being defined
as above. We have,

¢'(ae, be)(ce) = wu(Na(a,b,c)N (e))
= MNa(a, b, ) (N(e)) =tr((a x b)c) e,
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wherep, = (N (e)). Thereforep (ae, be) = e* . (a x b). Sinceu! " (N (e*)) =
w1, by a similar calculation one hag.(e*a, e*b) = p;(a x b)e. It is easily
checked, using the above identities, that the miap, ©.) — J(P, u) given by
(ag, ay, ap) — (ag, aze, e*ay), is an isomorphism of Jordan algebras. O

PROPOSITION 1.3 (Functoriality).Let A and B be Azumaya algebras of de-
gree 3 overR and P, Q be projective modules of rank 1 ovdrand B respect-
ively, with isomorphismg.: & (P) — R andv: N (Q) — R of R-modules. Let
g: (A, P, ) — (B, Q,v) be an isomorphism i.eg: A >~ B an isomorphism of
R-algebras,g: P >~ Q a g-semilinear isomorphism aR-modules such that the
diagram

NPy~ N (0)
\
R

commutes. Then the mdpg): J(P, u) — J(Q, v) given by

T(@(a. x, ) = (g(a), 2x). & (f))

is an isomorphism of Jordan algebras.

Proof. It is enough to show thal(g) is an isomorphism after a faithfully flat
base change aR. We may therefore assume that= Ae is free. ThenQ = B¢’
with ¢ = g(e). Let u, = w(N(e)) andv, = v(N(¢')). Then, by(x), we have
u. = ve. Therefore the isomorphisgt A — B induces amag (g): J(A, w.) —
J (B, v.) given by J(g)(aog, a1, az) = (g(ap), g(a1), g(az)), which is clearly an
isomorphism of Jordan algebras. It can be easily checked that the following
diagram

J(A’ Me) - J(P’ M)

J
7 (g){ \ (8)

J(B’ UE’) - J(Q’ U),

is commutative, where the horizontal maps are the isomorphisms given in the proof
of (1.2). ThusJ (g): J(P, u) — J(Q, v) is an isomorphism of Jordan algebras.

COROLLARY 1.4. Let# be an invertible element of. ThenJ (P, u) and J (P,
N4 (0)u) are isomorphic.
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Proof.Let g: A — A be the inner automorphism given By*. Letg: P — P
be defined byg(x) = 6~1x. Theng is g-semilinear ang* " (f) = f6. Further,
the diagram

N(P) ——— N(P)

\ ArdA Ou

is commutative. Thus by (1.3},induces an isomorphism
J(@):J(P, ) = J(P,Nrda(O)p)
given by(a, x, f) — (0~ta6, 6 1x, £0). 0

We call a Jordan algebra isomorphic 0P, ) a Tits first construction Jordan
algebra This construction can be globalised to yield Tits’ first construction Jordan
algebra bundles over any integral scheme for which 2 and 3 are invertible.

Let £ be a field of characteristic different from 2 and 3 ahdn exceptional
central simple Jordan algebra ovelLet D be a central simple algebra of degree 3
overk such that the special Jordan algebra is a subalgebra af. We record the
following result of McCrimmon ([M-1], Theorem 8).

PROPOSITION 1.5.Let J, D, k be as above and, — J. Then there exists
u € k* such that/ >~ J(D, u). a

We shall prove a similar result in a more general setting.R.&e a commutative
domain in which 2 and 3 are invertible. Latbe an Azumaya algebra over. Let

M be a projectiveR-module which is am , -module, i.e., there is a Jordan algebra
homomorphismp: A, — (Endz M), . Since the unital special universal envelope
SU(A,) of A, is A x A% (cf. [J], p. 143, Corollary 2, [JR], Theorem 4), there
exists a homomorphisg: A x A°” — Endy M of associativeR-algebras making

the diagram
A x AP
EndR

commutative, wheré: A, — A x A°? is given bys(a) = (a, a). Letey, e, denote
the images of the idempotents, 0), (0, 1) respectively under the maj so that
e1+ex;=1.LetM; = ex(M), My = ex(M). ThenM, is a left andM; a right A-
module through the restriction gfto A and A?” respectively and/ = My & M.
In fact,

My = {m € M|¢(a)(¢(b)(m)) = ¢(ab)(m),a,b € A},

https://doi.org/10.1023/A:1001507928187 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001507928187

20 R. PARIMALA ET AL.
M = {m € M|p(a)(¢(b)(m)) = ¢(ba)(m),a,b € A}.

Let J be an exceptional Jordan algebra oRerLet A be an Azumaya algebra
of degree 3 oveR such thatA, — J as a Jordan subalgebra. L&t c J be
the orthogonal complement ef, in J with respect to the trace form of. Then
J=A, ®M.Forx,y e J let

xxy=xy—3T@®)y—3Tx + 3(T@T Q) — T(xy)),

whereT is the trace map od. The mapA, — (Endz(M)), given bya — S,,
S.(m) = —2a x m, is a Jordan algebra homomorphism (cf. [PR-1], 3.2) and thus
factors through a homomorphism 84,) = A x A” — EndyM. We have a
decompositiolM = M, & M, as described above, where

My ={me Mla x (b xm) =—3(ab) x m,a,b €, A},
My ={m e Mla x (b xm) = —3(ba) x m,a,b € A}.

Since J is a projectiveR-module, eachV; is R-projective and sincel is an
Azumaya algebra oveR, eachM; is A-projective. We writer.x foranya € A, x €
M, (resp.x.a for x € M) for the module action ofA on M, (resp.M,). We note
that by ([M-2], proof of Theorem 8); ®z K has rank 1 oveA® K, K denoting
the quotient field ofR. HenceM; is of rank 1 overA.

LEMMA 1.6. LetN; be the restriction of the cubic norm éfto M;. ThenN;: M; —
R has the properties:

(1) N;(—2a x x) = Nrds(a)N;(x),forall a € A andx € M;.
(2) The image olV; generates the unit ideal dt.

Proof. By going over to the quotient fiel& of R, property (1) reduces to a
simple computation. To prove (2), we may assume i local. In this case, it
suffices to show thadv;(v) is a unit of R for somev € M;. Let M denote the
maximal ideal ofR. ThenJ ®z R/M is an exceptional simple Jordan algebra over
R /M with a decomposition

JOR/M=(A, R/M)D (M1 Q R/M) D (M ® R/M)

and in view of ([M-2], proof of Theorem 8)I; takes a nonzero value a; ®
R/M. SinceN;(x) = N;(x), for x € M;, bar denoting modulow, it follows that
the image ofN; contains a unit oRR. O

Let forx € J, x¥ = x x x denote theadjointof x in J, i.e.,xx* = N,(x), N,
denoting the cubic norm on. ThenM} C M;,i # j andM1M, C A.. This can
be shown by going to the quotient field &f (cf. [M-2], proof of Theorem 8), in
view of the factthalA, ® K)NJ = A, and(M;  K)NJ = M,.
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LEMMA 1.7. The mapp: M, — M. given byy > ¢,, where,(x) = xy,
x € My, y € M, is an isomorphism afi-modules.

Proof. We may assume without loss of generality thét are free. LetM; be
free withe as a basis element. By (1.6Y;(e) = u is a unit of R. By the remarks
above,u~te* € M, and sinceN,(u=t ) = pu=t, by (1.1), Mo = pnte?A. We
have¢,-1,#,(a.e) = ab. This can be seen by going over to the quotient field
of R. This shows thap, € M.” for y € M, and that¢ is linear. Moreover,
P14 (€) = e(ue”) = 1. Thus¢ maps the generatgr—e” of M, to the dual
basis element* of M.”. This shows thap is an isomorphism ofi-modules. O

THEOREM 1.8. Let J be an exceptional Jordan algebra over a commutative
domainR in which 2 and 3 are invertible. Suppose thais an Azumaya algebra
over R of degree 3 such that, is a Jordan subalgebra af. Then there exists a
projective A-moduleP of rank 1 and an isomorphisf: N (P) >~ R such that the
inclusionA, < J induces an isomorphism >~ J(P, j1).

Proof. Let M; and M, be as above. LeV; denote the restriction of the Jordan
norm onJ to M;. By (1.1) and (1.6) we have an isomorphigma (M1) >~ R such
that N, = V. We define

ViJ =A; ® ML DMy, — J(My, 1)

by ¥ (a,x,y) = (a,x,¢,). By (1.7), ¢ is an isomorphism oR- modules. We
show thatyr preserves multiplication. It suffices to do this after a faithfully flat
base change. Therefore we assume Miats free. LetM; = Ae andNi(e) = L.
Then, as in the proof of (1.7M, = n=e?A andNo(u=te”) = . We have

Y((a, x.e, u e y)(@, x' e, ute".y))

=Y(a.d +xy +x'y, @x' +ax+pnty xy).e,
wte®.(ya + ya’ + px x x'))
= (a.d +xy +x'y, @' +dx+pty x y).e,
Pu-1e# (yatyatuxxx'))-

On the other hand, we have as in the proof of (1¢/)..+ = e*. This shows that
¥ is multiplicative. O

Remark. Given a Jordan algebré containingA ., where A is an Azumaya
algebra of degree 3 oveét, we decomposd = A, ® M, & M, as in the theorem
and treatingy: M, — M. as an identification, we writ¢ = J (M, [1), by an
abuse of notation.
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2. A General Tits Second Construction of Jordan Algebras

Let R be as in Section 1. Lef/R be an étale quadratic algebra overLet B be
an Azumaya algebra of degree 3 ovewith an involutiono of second kind, i.e.,
o restricted toS is the nontrivial automorphismy of S over R. Letu € B* with
o(u) =uandNrdg(u) = uto(p) for someu € S*. LetJ(B, o, u, u) = BT ® B,
B denoting the Jordan algebra of symmetric elementB8.dfollowing Tits, we
define a multiplication oy (B, o, u, 1) by

(bo, b)(by, b') = (bo.by + buo (b')

+b'uo (b), bob' + bph + o (1) (o (b) x o (B')u™),

wherebg, by € B*,b, b’ € B andx.y, X, x x y are defined as in Section 1. With this
multiplication, J (B, o, u, i) is an exceptional Jordan algebra owerwith B as
a Jordan subalgebra. We give a construction of exceptional Jordan algebras, which
we shall call Tits’ second construction, which includes, o, u, ) as a subclass.

Let P be a projective module of rank 1 ovBr Let P = Homg (P, B) regarded
as a leftB- module throughv. Leth: P x P — B be a nonsingulas -Hermitian
form. We regard: as an isomorphisrh: P >~ P, whereh(x)(y) = h(y, x). Then
disah): N (P) x N (P) — S is arank one Hermitian form ovés, to) satisfying

disa(i) (N (x), N (y)) = Nrdp(h(x, y)).

We assume that this form is trivial. Let (N (P), disah)) >~ (S, (1)) be an iso-
morphism of Hermitian spaces. Let= u¥ " : N (P)¥ ~ S. Let¢: P x P — P®
be the map defined as the composite

-1
P x P - Homg(P, N (P)) -2 Homg(P, S) > Homg(P, B) = P",

where w is the trilinearization of the reduced nori: P — & (P). With this
notation, we sef (P, h, ©) = BT & P and define multiplication by

(a,v)(d, V) = (a.a +h(, V) +hQ,v),av +a'v+h 1P, v))).

THEOREM 2.1. The algebraJ (P, h, 1) is an exceptional Jordan algebra.

Proof. It suffices to check this in a faithfully flat extension Bf We therefore
assume tha® is free and choose a generatofor P. Let h(e,e¢) = u.. Then
u, is a unit of B with o (u,) = u, andh(be, b'e) = bu.o (b'). Further,u: (N (P),
disah)) ~ (S, (1)) isanisometry. Lett, = w(N (e)). ThenNrdp(u,) = p.o (i.).
We show that the map: J(P, h, u) — J(B,o,u,, iu.) given by n(a, be) =
(a, b), is an isomorphism of Jordan algebras. We have, as in Secti®h & Be”,
e’ (e) = 1l and¢(ae, be) = o (u.)(o(a) x o(b))e”. Thus

h(¢(ae,be)) = h™ (o (1) (o (@) x o(b))e”)
= o(u)(a(a) x o(b)u,te. (#)
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Hence
(a,be)(d',be) = (a.d + h(be,be) +
+ 7 (De, be), ab'e + a'be + h™ (¢ (be, b'e)))

= (a.d’ + bu,o(b') + b'u.o(b),
@b’ + a’b + o (1) (0 (b) x o (B)u;Ye),

so that n((a, be)(a’,b'e)) = (a,b)(d’,b’). This completes the proof of the
theorem. O

PROPOSITION 2.2 (Functoriality)Let f: (B, 0) — (B’, o) be an isomorphism

of S-algebras with involutions of second kind o\&fR. Let (P, k) (resp.(P’, h'))

be a Hermitian (B, o) (resp (B’,0")) space with a trivializationu: (N (P),
disah)) ~ (S, (1)) (resp.u': (N (P'), disah’)) ~ (S, (1)). Let f:(P,h) —
(P’,h") be an f-semilinear isomorphism of Hermitian spaces such that the
diagram

(N (P), disc(h)) AP, (N (P), disc('))

()
w o

(S, (1)

commutes. Thenthe mapf): J (P, h, u) — J(P', h', n') givenbyJ (f)(a, x) =
(f(a), f(x)), is an isomorphism of Jordan algebras.
Proof. The proof runs on the same lines as that of (1.3). O

We call a Jordan algebra isomorphic f@P, h, 1) a Tits second construction
Jordan algebra

PROPOSITION 2.3.Let (B, o) be an Azumaya algebra of degree 3 over a quad-
ratic étale extensiors of R, with an involutiono of second kind ovef/R. Let

(P, h, &) be a Hermitian space ovéB, o) of rank 1 with a trivializationyt of its
discriminant. Let/ = J(P, h, i1) be the Tits second construction Jordan algebra
over R associated to this data. Then there is an isomorphism

¢3JS: J(thvﬁ)®RSZJ(P’ﬁ)
of Jordan algebras ove$ such that the transport of the involutidn® o on Jg to
J(P, v) through is given byr (a, x, f) = (o (a), h=2(f), h(x)).
Proof. Let v (h): Jgs — J (P, i) be given by

Yv((a,x)®1) =(a,x,h(x)) (a,x)el
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and
Yv(A®r) =(2,00, reSs.

SinceB is generated by over S, ¢ is anS-linear bijection. We show thaf is
multiplicative. It suffices to check this ahsinceJ generateds overS. For(a, x),
(d',x') e J,wehaveg(a) =a,0() =d,¥((a,x)d, x)) =

(a.d +hx,xX) +h(x', x),ax' +a'x+
+h X (x, X)), h(x")a + h(x)a’ + ¢ (x, x))
and
Yia, )y (@, x") = (a,x, h(x))(d,x', h(x))
= (a.d +h(x,x) +h(x, x),ax +a'x +

+ ¢ (h(x), h(x")), h(x")a + h(x)a’ + ¢(x, x")).
So we need to verify that
b (h(x), h(x)) = h Y (¢ (x, x")), forall x,x" € P.

This we may check in a faithfully flat extension. We therefore assumePtimfree
with e as a basis element. Let = h(e, ¢) andu, = it N (e). Then, as in the proof
of (1.2),

. (h(ae), h(be)) = $.(e*u.o(a), e*u.o (b)) = u, *(u.0o(a) x u.o(b))e
and

h™H(@(ae, be)) = h™ (e pea x b) = o (pe)(0 (@) x o (b))u, e.
By ([J], p.413, (63)), we have

g ()o@ x ou;t = pu*Nrd(u,)(o (@) x o (b)u;*

= p, (w0 (@) x u.o(b)).

This shows that/ (k) is an isomorphism of Jordan algebras. The last assertion
follows from the commutativity of the diagram

J(P, i) ——— J(P,})
i Y (h)
J(P.h, ) ® S 223 J(P, h, 1) o
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Remark.ldentifying B ® S with B, and treatingy/ as an identification, we
write J(P, h, i) Qg S = J(P, [i).

Let J be an exceptional Jordan algebra over a donkain which 2 and 3 are
invertible. Let(B, o) be an Azumaya algebra of degree 3 over a quadratic étale
extensionS of R, with an involutiono of second kind. Assume tha&" is a Jordan
subalgebra of . Let M denote the orthogonal complement’f in J with respect
to the trace form of/, so that/ = B* @ M. Foranyb € Bandx € M,bxx € M
and the mag: BT — (EndM). given byg(b)(x) = —2bxx, isa homomorphism
of Jordan algebras. This is verified by going over to the quotient fiel# ahd
using ([PR-1], 3.2). Since the unital special universal envekipéB ") of B is B
(cf. [J], p. 141, Theorem 6, [JR], Theorem 4)factors through a homomorphism
g:B — EndM, of associative algebras, thus makifnf into a left B-module.
SinceM is S-projective andB is Azumaya,M is B-projective. ObviouslyM has
rank 1 overB. Forb € B andx € M, we writeb.x = g(b)(x).

LEMMA 2.4. LetJ and (B, o) be as above. Le¥ denote the orthogonal com-
plement ofB* in J with respect to the trace form. There exists a mapv — S
making the diagram

ML,
o /o
R

commutative, N, denoting the cubic norm od. Further, N has the following
properties:

(1) N(b.x) = Nrdg(b)N(x),b € B, x € M.
(2) The values oV generate the unit ideal of.

Proof. Identifying Bt ®z S with B, and as in the proof of (1.8) we have
J®rS=(B"QrS)®M &M,

with M, a left andM, a right projectiveB-module. Lett = 1 ® 1o. Thent is an
involution onJs = J ®z S which coincides withr on B,. We have, forx € M,
anda, b € B,

T(a) X (t(b) x T(x)) =7t(a x (b X x))

= —%t((ab) X X) = —%((r(b)t(a)) X T(x)),

which shows that (x) € M,. Thust(M1) C My; similarly, (M) C M,, SO
thatt(M,) = M, andt(M;,) = M,. ldentifying M with the fixed points oft in
M®S =M &M, we have

M = {(v1, T(v1))|v1 € M1}
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Letd: M — M, be given byd(v) = vy, wherev ® 1 = (vy, T(vy)). It is easily
verified thatd is an isomorphism oB-modules. We defin&: M — S by

N() = Ny (0, v1, 0).

We observe thaw ,, restricted ta/; is simply the reduced norm af for a choice
of an isomorphismv (M) ~ S (1.1, 1.6), which gives the two listed properties of
N. Further,

tr(N(U)) = tr(NJs (0’ %) 0)) = NJS (0’ Uy, O) + TO(NJS (0’ %) 0))
= NJs(ov U1, 0) +N15(0’ O,f(Ul)),
= NJs(ov Ul,f(Ul)) :NJS(U®1) :NJ(U)‘

which by ([M-1], 85).
Thus the diagram of the lemma is commutative. This proves the lemmaz]

THEOREM 2.5. Let J be an exceptional Jordan algebra over a dom&nin
which 2 and 3 are invertible. L&tB, o) be an Azumaya algebra of degree 3 over
a quadratic étale extensiofi of R, with an involution of second kind. Suppose
that Bt — J is a Jordan subalgebra. Then there exists a projecivenodule
M of rank 1 together with a Hermitian forr of trivial discriminant and a trivi-
alization n of disc(h) such that the inclusioB* < J induces an isomorphism
J~J(M,h,n).

Proof. Let M denote the orthogonal complement Bf in J with respect to
the trace form so thaf = B™ & M. We have seen tha¥ is a projectiveB-
module of rank 1. We construct a Hermitian fofimon M with a trivialization for
the discriminant. Fop € J, let v™ denote the component ofin B™. We have an

R-quadratic magh: M — B given by2h(x) = (x2)+;We show that there exists
a hermitian formh: M x M — B such that:(x, x) = h(x). By (1.8), we have

J®rS=B.& M &M,

We have aB-isomorphisnd: M >~ M, given by6 (v) = v (cf. proof of 2.4), where
v® 1= (0,v,1(v1)) € Js. Suppose thad/ is free with a basis elemeant. Let
e = 6(¢), so thatM; = Be. If N;,(0,e,0) = pn € §%, then,M, = ¢*B with
e* = ute® Lett = 1® 0. Sincer (M;) = M;,i # j (cf. proof of 2.4), we have

7(0,e,0) = (0,0, e*.u), 7(0,0,¢*) = (0, v.e, 0),
for someu, v € B*. Further, by (1.6, (1))Na(e*.u) = u~*Nrd(u) and we have
uw'Nrdu) = Nyg(0,0,e*.u) = Ny (z(0, e, 0))

= TO(NJs(O’ e, 0)) = TO(M)'
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ThusNrd(u) = uto(u). Further,

(1,0,0) = 7(1,0,0) = 7((0,¢,0)(0, 0, ¢"))

= 7(0,2,0)7(0,0,¢*) = (0,0, e*.u)(0, v.e, 0) = (vu, 0, 0),

so thatvu = 1. Moreover, multiplicativity ofr gives

7(0,b.,0) = t(—2(b,0,0) x (0, ¢, 0))

= —2(0(b),0,0) x (0,0, e*.u) = (0,0, e*.uc (b)).

Similarly,

7(0,0, ¢*.c) = (0, o (c)u"t.e, 0).
Hence,

7(a, b.e,e*.c) = (o(a),o(c)u e, e .uc(b)).
Since

(0, e,0) = 72(0,e,0) = (0,0, ¢*.u) = (0, o (w)u"t.e, 0),
it follows thato () = u. We have,

M = {(0, b.e, e*.uo (b))|b € B} = Be’
with ¢’ ®1 = (0, e, ¢*.u). We defineh,: M x M — Bbyh,(a.¢, b.e') = auo (b).
Since(e®)*t = ((0, e, e*.u)®)*t = 2u, we have . (¢/, ¢') = u = h(e'). Lete” be
another basis element faf. Thene” = a.¢/ for @ € B* ande; = 6(¢”) =
a.0(e) =a.e. Lett(0,e1,0) = (0,0, ej.u"). We have,

e = st(el)flef = (uNrd(@)) Ya.e)* = (uNrd(@)) (" o) = e* a7t
and

7(0, 1,0) = (0, a.e, 0) = (0, 0, e*.uo (x)).

Thereforeuw’ = auo (o). Now, fora.e’ = a’.¢”, b.e’ = b'.¢”, we havea = d'«a,
b ="b'a and

ho(a.e,b.e) = auo(b),
he(a.e,b.e) = hp(a'.e’ b .e")=auoc)

= dauc(a)o(d) = (@da)uc(b'a) =hy(a.e, b.e).
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Thush, = h. is independent of the choice gfand by patching we get a hermitian
form & defined globally onM. We now give a trivialization for digé). By (2.4)
and (1.1) there exists an isomorphigmy (M) ~ S such thatv = . We claim
thatn: (NN (M), disc(h)) — (S, (1)) is an isometry. We verify this in a faithfully
flat extension. We assumd = Be' is free withe’ as a basis element. Then
h(a.e’,b.e’) = auo(b) with u a symmetric unit andVrd(u) = uto(w), where
w= Ny (0()) = N() (cf. 2.4). We have

disah) (N (¢'), BN (€) = ato(B)Nrd(h(e', €')) = ato(B)uto(i)
and
n(aN () to(n(BN(€))) = aN(e) (BN (e) = anto(Bu).

This shows tha is an isometry. We finally show thdt= BT ® M = J(M, h, n).
It suffices to check that the two multiplications coincide Bh @& M. We may
assume thaM = B¢’ is free withe’ as a basis element. lh — J (cf. proof of
2.4), we have,

(a,b.e(d',b.¢) = (a,b.e e uc))(d, b e, e .uc())

= (a.d' + buo (b') + b'uc (b),
(@b’ + a'b + ¢, (e*.uc (b), e*.uc (b'))).e,
e*.(uo (b')a + uo (b)a' + ¢ (be, b'e)))

= (a.d' + buoc (b') + b'uc (b),
(@b’ + a’b + p tuo (b) x uo (b))).e,
e*.(uo (bya + uo (b)a’ + (b x b))

= (a.d' + buo (b') + b'uc (b),
(@b’ +a'b + o (uu=t(b x b))).e,
e*u(o @b +a'b+o(uutb x b))

= (a.d' + buoc (b') + b'uc (b),

(@b +a'b+o(putd x b))).e).
However, inJ (M, h, n), we have,
(a,b.eYd', b .¢) = (a.a +h(b.e, b.e)+

+h(b.e,b.e),ab.e +ab.e +hpb.e, b .e))

= (a.a’ +buo (') + buc(b),ab .e +
+a'b.e +o(uut(b xb)).e),
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by (#) in the proof of Theorem 2.1. Thus the two multiplications Bh & M
coincide. This proves the theorem. O

3. Rigidity of Nonfree Projective Modules overD[X, Y]

Let k be a field andD a central division algebra of prime degreeoverk. Let P
be a nonfree projective (left) module of rank 1 owB[X, Y]. Then, by ([KPS],
Thm. 7.1),P extends to a vector bundiR overX = IF’,% with a D structure, which
is unique upto a line bundle.

LEMMA 3.1. Let P be a nonfree projectiv®[X, Y]-module andP an extengion
of P as a vector bundle with &-structure toP?. Then the ma@ — Endy, P is
an isomorphism.

Proof. Since Eng, P is a finite-dimensionat-algebra and is central simple
overk with D — Endy, P, we have ([B], 4.3, p.107) E@QP D ®; D', where
D’ = Endpgo, P. Further,

Endpgo, P <> Endpx.v)(P @ k(X,Y)) ~ D(X,Y).

ThusD’ is a division algebra ovek. SinceD is of prime degree, in view of ([P]), it
follows that Aufyx y1 P = k™. SinceD” C Aut P = k*, D[X, Y] we haveD’ = k
andD = Endy, P. O

THEOREM 3.2.Let D be a central division algebra of prime degree o¥etet P

be a projective module ovep[X, Y] and P an extension oP as a vector bundle
with aD-structure toP2. If P is nonfree, P is indecomposable as a vector bundle.
Let P(*> be an extension of the righ®[X, Y]-module P*. Then, if degreeD is
odd, P is not isomorphic tQP ™) as a vector bundle.

Proof. By (3.1), D =~ Endy, P is a division algebra, so that is indecompos-
able. By the same argument as in (31D)”’ >~ Endy, P®. If the degree ofD is
odd, D is not isomorphic taD??, so thatP and P® are not isomorphic as vector
bundles orP?. o

Remark. Let D be a central division algebra of degree 3 okelet k denote
the algebraic closure @f. We have Eng, Pk (Endy, P) ®; k >~ Ms(k), so that
F Py ® Py & Py, whereP; is a rank 3 vector bundle dP’E which is simple, i.e,

Endy EPO = k.

4. Nontrivial Jordan Algebra Bundles over A2 via Tits First Construction

We begin by recalling the construction (JOS]) of nonfree projective modules of
rank 1 overD[X, Y], whereD is a noncommutative division ring. Let 8 € D* be
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two noncommuting elements. L& = P, s be the projective lefD[X, Y ]-module
defined as the kernel of the[ X, Y ]-linear mapp, g: D[ X, Y1? - D[X, Y], given
by (1,0) » X + «, (0,1) — Y + B. Then Py is nonfree overD[X, Y] of rank
1. Suppose thab is central and finite-dimensional ovir Then there exists an
irreducible polynomialf (X) e k[X], such that degf) > 2 and Py ® k[X]/[Y]
is free. (We may take for exampl&(X) to be the minimal polynomial of« over
k. SinceX + « is a unit ink(a)[X]; — D[X]/[Y], Po ® k[X]/[Y] contains a
unimodular element and hence is free.)

Letx € k* and P, be the pull back oPy under the automorphisgy,: D[ X, Y] —
D[X, Y] given by ¢, (X) = AX, ¢,(Y) = Y and¢,|p =identity. ThenP, is a
nonfree rank 1 projectivd[X, Y]-module andP, ® k[X],x)[Y]is free, where
f[(X) = f(AX). Since f(X) is irreducible and deg’) > 2, one may choose a
sequence,; € k* such thatf, (X) and f;, (X) are mutually coprime foi # j. We
renamepP,, = P;, f,, = f;. Further, if{g;} is another family of mutually coprime
polynomials, one may choog¢;} in such a way thatf;, g;) = 1 foralli, j. This
can be done inductively.

Let D be a finite-dimensional central division algebra audtet De be the free
D-module of rank 1 witte as a basis element. Lgte k* and letug: N (De) >~ k
be an isomorphism such thahV (e) = . We construct nontrivial forms for
(De, o) overk[X, Y]. Let P be a projective lefiD[ X, Y]-module of rank 1. Let
¢: P ~ De ® k[X, Y] be an isomorphism df[X, Y]-modules such thap: P —
De ® k[X] is an isomorphism oD[X]-modules, bar denoting reduction modulo
Y (cf. [PST], 6.1). LetP, = (De ® k[X, Y])? be theD[X, Y]-module for the
transport of theD[ X, Y]-structure onP through¢. ThenE = De ® k[X] as a
D[X]-module and furtheP ~ P, asD[X, Y]-modules. Ifii: N (Py) ~ k[X, Y] is
an isomorphism of[X, Y]- modulesji: & (Fd,) =N (De®k[X]) — k[X]isan
isomorphism. Suppose thatV (¢) = v. Replacingji by uv=fi, we may assume
without loss of generality thgi = wo. Thus we have constructed a paiy, 1)
whose reduction modulB coincides with(De ® k[ X], ug). We record this as

PROPOSITION 4.1.Let D andk be as above. Lebe be a free module of rank 1
over D anduo: N (De) >~ k an isomorphism. Ledlg; } be an infinite family of mutu-
ally coprime polynomials i[X]. Then there exist nonfree projective modukes
i > 1, overD[X, Y] of rank 1 and polynomialg; in k[ X]with (f;, ;) =1,i # j,
(fi, gj) = 1foralli, j and such thaP; ®k[X][Y]is free for eachi. Further, there
existsii;: N (P)) >~ k[X, Y] such that(P;, ;) moduloY is (De, o) Qi k[X]. O

COROLLARY 4.2. The modules’; in (4.1) are mutually nonisomorphic.
Proof. SupposeP; >~ P; for somei # j. Since(f;, f;) = 1 for and(p;) is
free overD ® k[X]4[Y] for all i, the corollary follows from ([BCW]). O

LEMMA 4.3. LetJ = J(D, u) be an exceptional Jordan division algebra over a
field k arising from Tits’ first construction. Then there exist central division algeb-
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ras Dy, D, overk of degree 3 such thatD,),, (D). are Jordan subalgebras of
and(D1)+ N (D2)+ = k.

Proof. Let L — D be a cubic cyclic extension df. Let D; be the cyclic
cross productL, ¢, ), wherer is a generator of G&L / k). Then, by ([PR-2], 2.7),
(D1), is a Jordan subalgebra 8t D, 11). Letd € D be such tha#—* L6 # L and
Nrd(®) = 1. Thend~! LO N L = k. Let ¢y denote the automorphism dfgiven
by ¢y (ag, a1, az) = (0~ aph, 0~ 1ay, ax0). The subalgebray ((D1).) of J(D, 1)
is equal to(D,),, whereD, = (L',/, /) andL’ = 671L6,/ e Gal(lL'/k)
a generator angk’ € k. We show that(D;), N (D2), = k. Let (bg, b1, by) €
(D1)4+ N(Dy) ., whereb; € L. Then there exist; € L, 0 < i < 2, such that
(bo, b1, by) = (0 tagh, 6~ tay, asf). We therefore have—ta; = by, so thatay # 0
would imply thatd € L, a contradiction. Thus, = 0. Similarlya, = 0. Further,
0~ tag 6 = by € 6L 6 N L = k. This proves thatD,), N (D), = k. 0

Let J be a Tits first construction Jordan division algebra aveBy (4.3), there
exist cyclic division algebra®,, D, of degree 3 ovek such that(Dq), (D),
are Jordan subalgebras.bivith (D1), N (D2), = k. Then (cf. 1.8)J = J(D1e1,
n1) = J(Daez, up) for somee; € J andp;: N(Dje;) =~ k, isomorphisms. By
(4.1), there exists, for each> 1, a pair(P}, i), where P! is a nonfree rank

1 projective D1[X, Y]-module andul.l a trivialization of its reduced norm and a
polynomial f; € k[X] such that the following conditions are satisfied:

(1) The polynomialsf; and f; are coprime foi # j and(P}) ;. is free.
(2) The reduction of P}, 1}) moduloY is (Diey, 1) ® k[X]1.

Similarly, for everyi > 1, there exist, by (4.1), pai[(gf’f, ;::.2), P? a nonfree rank

1 projective D,[ X, Y]-module with a trivializationui2 of its reduced norm and
polynomialg; € k[X] satisfying

(1) The polynomialg; andg; are coprime foi # j, the polynomialsf; andg;
are coprime for all, j and(P?),, is free.

(2) The reduction of P2, 1?) moduloY is (Dazez, i2) ® k[X].

Let P be arank 1 nonfree projective[ X, Y]-module andi: N (P) ~ k[ X, Y]
a trivialization of the reduced norm. The p&®, 1) is a principalS L1 (D)-bundle
over AZ which admits an extensiotP, i) to P2 (cf. [PST], 4.5). The bundle?
is simply an extension t&®? of the D[X, Y]-module P. Theng = ¢ (P, )
is a Jordan algebra bundle ov&f which restricts onA? to J(P, x). Since the
extension of/ (P, 1) to IF’,% is unique, we have the following

PROPOSITION 4.4.The Jordan algebra bundlg = J(P, i) admits a unique
extensiond to X = P2 whose underlying vector bundle is given by

I=D®0x)®Pa®PY,
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whereP denote the extension of tHe[ X, Y]-moduleP to IP’,f. O

Let (PL, ub), (P2, 2) be nonfree projectiveDy[X, ¥] and D,[X, ¥] modules
respectively with trivializations of their reduced norms constructed above. Let

R=Jphah,  JE= 1R,

Then{Jl.j,j =1,2,i > 1}, is a family of Jordan algebras ovefX, Y] with the
property that// = J ® k[X] moduloY and

TP KIX],[Y]1 > T @KIX1,[Y],  JP®K[X][Y] > J @ Kk[X],[Y]
with (g;, g;) = 1= (f;, fj),i # jand(f;, g;) = 1foralli, j.

PROPOSITION 4.5The Jordan algebrag?! (respJ?) are mutually nonisomorphic.
Proof. Suppose thai' ~ J}, for somei # j. SinceJ! andJ} are extended

after invertingf; and f; respectively andf;, f;) = 1, by ((BCW]), J} is extended
from J ® k[X]. Then the extensiod! of J? to PZ, by uniqueness of extension, is
isomorphic tor*J, 7: PZ — Spedk denoting the structure morphism. Then

-~ ~ (%)
(D1® Op2) ® Pr@ PY ~=m*]

as vector bundles oR2. While 7*J is a trivial vector bundleP? is an indecom-
posable vector bundle by (3.2). This is a contradiction. O

Let
77,-12 (P,»l, M,~l) Q k[X15[Y] = (D1e1, u1) ® k[X][Y]
and

72 (P2, 12) @ kX1, [Y] = (Dzez, t2) ® k[X],, [Y]

be isomorphisms such thg = identity, for j = 1, 2. We then have induced
isomorphisms

J@H): JF @KIX]5[Y] = J @ k[X]4[Y],

J(@2): JE @ k[X],,[Y] 2 J @ k[X],[Y],

with J(n,.j) = identity, for j = 1,2. Let J; be the Jordan algebra obtained by
patchingJ! onk[X1,,[Y] andJ? onk[X].[Y] overk[X],[Y1by ¢; = J(x?)~?
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J(z}). Then, since? = J moduloY andJ(xr/) = identity, »;, = identity and
J; = J ® k[X] moduloY . By the very construction,

Ji @ kX156, [Y]1 > J Qk[X] 14 [Y]

and the polynomials; = f;g; are mutually coprime. We now show that the al-
gebrasJ/; are mutually nonisomorphic. Suppose thiat>~ J; for i # j. Then
both (J;),, and(J;),; are extended frond. Since(r;, r;) = 1, J; >~ J ® k[X, Y].
RestrictingJ; tok[X],,[Y] we getJ,.l® k[ X1 Y] andJ,.1®k [X]4[Y]are extended.
Since(f;, g) = 1, J} is extended frony . This contradicts (4.5). We record this as

PROPOSITION 4.6.The Jordan algebrag; on A2 have the following properties:

(1) J; = J ® k[X] moduloY .

(2) There are mutually coprime polynomiaise k[ X] such that/; ® k[ X],, [Y] =~
J @ k[X],[Y].

(3) The algebrag/; are nonextended and mutually nonisomorphic. O

5. Nontrivial Jordan Algebra Bundles on AZ via Tits Second Construction

Let K be a quadratic extension &f Let (D, o) be a central division algebra of
degree 3 oveK with an involutiono of second kind oveK /k. Letu € D* be
such thato (u) = u and Nrd(u) = uo(u) for someu € K*. In ([R], 4.9), it
is shown that there exists a rank 1 project®gX, Y]-module P with a nonsin-
gular Hermitian forma: P x P — DI[X, Y] and a trivializationy: disoh) —
(K[X, Y], (1)) with the following properties:

(1) The reduction of P, k, i) moduloY is isomorphic to(D, {(u), i), where{u)
denotes the rank one Hermitian form givendy> auo (a) andu is treated
as a trivialization of the discriminant o).

(2) There existsf € k[X] such thai(P, i, i) ®k[X]; [Y] >~ (D, (u), u) ®k[X]¢
[Y].

(3) The principal SUD, o)-bundle onA? associated t@P, h, ) admits no re-
duction of the structure group to any proper connected reductive subgroup of
SU(D, o). In particular,(P, i, t) is not extended froniD, (u), u).

In (1), we may further assume, through a twist argument ([PST], 6.1) Ehét, 1)
reduces moduld to (De, u,, u.) ® k[X] whereDe is the free module of rank 1
over D with a basis elemer, u, the Hermitian form orDe given byu.(xe, ye) =
xuo (y) andu.(N (e)) = n. In (2), we may further assume thAt0) # 0 in view
of the following

LEMMA5.1. For n € k* let (P, h, &), be the pull back of P, &, 1t) under the
automorphisnD[X, Y] N D[X,Y], givenbyX — X —n,Y — Y and¢,|D =
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identity. Then(P, i, 1), ®k[X],[Y]is extended fronaD, (u), u) where f, (X) =
(X —n).

Proof. We need only to check that the fibre@t, &, 1t), at(0, 0) is isomorphic
to (D, (u), ). In fact the fibre of(P, h, 1), at (0,0) is precisely the fibre of
(P, h, ) at(n, 0). Since(P, h, 1) is stably extended from, the fibre of(P, h),
at (n, 0) is isomorphic to the fibre of P, i, 1) at (0, 0), which is(D, (u), u). O

LEMMAS.2. LetJ = J(D, o, u, 1) be a Tits second construction Jordan division
algebra, whereD is a central simple algebra of degree 3 over a quadratic extension
K of k, with an involutiono of second kind ovek / k. Assume thaf is not a Tits
first construction. Then there exist central simple algel@®s, o1), (D?, 0?) of
degree 3 over a quadratic extensiéi k with involutions of second kind ovét/ k,
such that(DY)*, (D?)* are Jordan subalgebras of with (DY)* N (D?)* = k.
Proof.Let J = D™ @ D. ThenJ is the descent of (D, u) = D® D & D
over K under the descent maf, (x, y, z) = (o(x), o(2)u"?t, uo(y)) (cf. [M-1],
proof of Theorem 7). LeM; denote the subalgebra é{ D, 1) generated ovek
by (u, 0, 0) and(0, 1, 0). Sinceyr, (u, 0, 0) = (u, 0, 0) andy, (0, 1, 0) = (0, 0, u),
it is easily verified thaty, stabilizesM;. SinceJ is a Jordan division algebra,
u ¢ k* and M, is a nine-dimensional subalgebra bf SinceJ is not a Tits first
construction, by ([J], Lemma 2, p.420), descends to a subalgelvel = (DY)*
of J for a central division algebraD?, o) of degree 3 over a quadratic extension
F of k, with an involution of second kind ovef/k. Choose an element € D
with vuo (v) ¢ K(u), vo(v) = 1 andNrd(v) = 1. Thenqbv J — J given by
év(a, b) = (vav, v=1b), is an automorphism of . Let M2 = ¢,(M*). Since
M* and M? are isomorphic as Jordan algebras? = (D?)* for some degree 3
division algebra(D?, ) with an involution of second kind oveF/k. The map
$, ® 1: Jg — Js transports to the automorphisp: D& D& D — D& D & D
given by¢v (ao, a1, ax) = (v*laov, v’lal, av).
We haveM, = M? @, K = ¢,(M1). We prove thatM* N M? = k. For this,
it is sufficient to prove thab/i N M2 = E in Jr for some finite extensiot of
k. Let E = K(v/d), whered is the discriminant of the minimal polynomial af
over K. ThenE(u)/E is cyclic andM2, = ¢,(M+ ). The proof of (4.3) gives
M. N M2, = KE, noting thatv ™K E(u)v # KE(u). ThusM! N M? = k,
proving the lemma. 0

Let J be a Tits second construction Jordan algebra which is not a Tits’ first con-
struction. By the above lemma, we may write (cf. 2.5)
J = J(DYe1, ey, frey) = J(D%€3, ey, fhey)

with (DY)t N (D?)* = k.

By ([R], 4.9), there existP;, A, Ml) (P}, hb, Mz) rank 1, nontrivial Hermitian
spaces ove(D[X, Y], o%) and (D?[X, Y], 0%) respectively andf;, g; € k[X]
with the following properties:

https://doi.org/10.1023/A:1001507928187 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001507928187

TITS' CONSTRUCTIONS OF JORDAN ALGEBRAS ANDF, BUNDLES ON THE PLANE 35

(1) (P, hi, ;71) moduloY reduces taDles, u,,, ft.,), (Pi, hb, ;72) moduloY re-
duces t@zez, Ueys [ey)-

(2) (Py, h, p)® k[X];[Y]is isomorphic ta D ey, uey, 1rey)® k[X15,[Y ], (P3, b,
M"2)® k[X1g,[Y]is isomorphic to(D%es, Uey, o)) ® k[ X g, [YTWith (fi, fj) =
(8i,8)) =1,i #jand(f;,g;) = 1foralli, j.

(3) The bundles P}, h}) and (P}, h}) are not extended frond! and D? respect-
ively.

We define two families/; andJ; of Jordan algebras oh? as follows
Ji=JPLRL ), JE = (P b, 1ih).

Let
7t (PR, 1) ;== (DY, ey, 1te)) ® KIX14[Y]

and
75: (P, g, 1), = (D%, ey, 1) ® K[X 1y, [Y]

be isometries such tha_t’]i = identity for j = 1, 2. Then these induce isomorph-
isms

J () I @ kX111 = J @ kIX14[Y],
J(h): T @ k[ Xy [Y] =~ J @ k[X],,[Y],
which reduce to identity moduls.

PROPOSITION 5.3The Jordan algebrag; and J; overk[X, Y] have the follow-

ing properties:

(1) J; and J} reduce moduld to J.

(2) J; ®k[X][Y]is extended frond @ k[ X][Y]andJ; ® k[ X1, [Y]is extended
from J ® k[X], [YTwith (f;, f;) = (g1, 8;) = 1,1 # j and(f;, g;) = Lfor
all 7, j. In particular, J; are mutually nonisomorphic and the same holds for
J5.

(3) Ji & F = J(P}, i) for j = 1,2, where the Jordan algebrag (P}, ii',)
are those constructed in Section 4 afdis as in (5.2). (Here we use the
identificationJ (P, h, u)®r S = J (P, ) mentioned in the remark after (2.3)).

Proof. Properties 1 and 2 follow from the corresponding propertieﬂgﬁrh;,
(). The fact that/; are mutually nonisomorphic follows from ([BCW]) provided

we show that/; is not extended frond. SinceJ; ® K ~ J(P}, ) is not exten-
ded fromJ (D'ey, ji,,), P} being nonfree (4.5), it follows thak is not extended.
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Proof of the assertions fok} is similar. The third property follows from the very
construction of these algebras. O

Let J' be the Jordan algebra ovdtX, Y] obtained by patching/;),, onk[X],,
[Y], (Jzi)fl. onk[X]y [Y]overk[X]y,, [Y], by the isomorphism

Vit Ji @ k[X 17, (Y12 J3 @ k[X] 7, [Y],

defined byy; = J(r5)~* J (r}). SinceJ reduce moduld” to J andy, = identity,
J' reduce moduld to J. Further, by the very construction,

J' @ k[X] g, [Y1 2 J @k[X] /4 [Y]

and the polynomials; = f;g; satisfy (s;,s;) = 1,i # j. Arguing as in the
proof of (4.6), one shows that' are mutually nonisomorphic. We record this in
the following

PROPOSITION 5.4.The Jordan algebrad’ over AZ have the following proper-
ties:

(1) Ji = J ® k[X] moduloY. .

(2) There existst’: J' ® k[X],[Y] =~ J ® k[X],,[Y] such thatr’ = identity, for
somes; € k[X] with (s;, s;) = 1fori # j.

(3) J are mutually nonisomorphic.

(4) J' ® F = J;, whereJ; are the algebras constructed in Section 4. O

6. F,Bundles with no Reduction of the Structure Group to any Proper
Connected Reductive Subgroup

Let J be an exceptional Jordan division algebra dvektet G = AutJ. ThenG
is an anisotropic group of typg, overk. If J arises from a Tits first construction,
thenG/ is anisotropic for any extensiah of degree coprime to 3. In fact, if =
J (D, w) with i € k* thenG is isotropic if and only ifJ is split and this is so if and
only if © € Nrd(D*) ([J], Theorem 20, p. 416). In particular, if ¢ Nrd(D*),
w ¢ Nrd(D7), if [L: k] is coprime to 3.

For the rest of the section we shall fix the following notationg ifs a simply
connected group ovét we say that a connected reductive graupverk is of type
g if the simply connected cover §&, G¢] is a product of groups each isomorphic
to . We say that a representationG — GL(V) is faithful if the kernel ofp is
finite. We call a representatiovi of G of typen if it is a direct sum of irreducible
representations each of which has dimension

PROPOSITION 6.1LetJ be an exceptional Jordan division algebra arising from

a Tits’ first construction. Then the only possible proper connected reductive sub-
groups ofG = Aut(J) overk are of typeAi, A, or Dy. Further, if a subgroupHd
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is of typeA, then the simply connected cover{ &f, H] is isomorphic toR; . H’,
whereL is a degree 3 extension bf H' an absolutely almost simple group of type
A1 defined ovel and R,/ denotes the Weil's restriction.

Proof. Let H be a proper connected reductive subgrougGofThen by Tits’
classification of simply connected groups okeit follows that the simply connec-
ted cover offH, H] is isomorphic to[ ['_, R;,,«H; for some finite extensions;
overk and absolutely almost simple groups over L;. Since the rank o5 is 4,
if H; is not of typeA,, A, or Dy, then[L;: k] < 2 and H; becomes isotropic in
an extension of degreé fr somel. SinceG remains anisotropic over any finite
extension of degree coprime to 3, it follows that edfhis of type A1, A, or Dy.
Further, if H; is of type A, for somei, then[L;: k] = 3 andr = 1. O

PROPOSITION 6.2LetJ be an exceptional Jordan division algebra arising from
a Tits’ first construction and’ the space of trace zero elements/ofThen the ac-
tion of any proper connected reductive subgrougof Aut(J) on V decomposes
asVi @ Vo, with1 < dim,V; < 8.

Proof. Let H be a proper connected reductive subgrougoReplacingH by
[H, H], we assume thall is semisimple. In view of ([PST], 7.5), under the action
of H, V decomposes ag, & Vo, with V; # 0,i = 1, 2. If either of Vy or V, is
reducible for the action ofi, then clearly there exists a nonzekb-stable sub-
space ofV of dimension< 8. We therefore assume thét andV, are irreducible
representations dff and dimV; > 9,i = 1, 2. Without loss of generality we may
assume that &« dim; V; < 13.

Suppose thaH is of type D4. SinceH C G and rank ofG is 4, H must be
simple. SinceG is anisotropic in any extension of degrée the simply connected
cover ofH is a trialitarianD,4 overk. The least dimension of a nontrivial irreducible
representation ovér of a trialitarian D4 being 24, we get a contradiction.

Suppose thaH is of type A,. Since the actions off on V; and V, are non-
trivial, there exist simple factor&; and H, (possibly H, = H,) of Hy such that
H, acts nontrivially onV; and H, acts non-trivially onVs. If the dimension of/;
is a prime, thenH; acts irreducibly onV. and similarly if the dimension o
is a prime, thenH, acts irreducibly onva.. Since H is of type A,, H, and H,
are of typeA,. It follows from the table of formulae for dimensions of irreducible
representations of simple groups over an algebraically closed field (JOV], p. 300—
305), that the dimension df; is not equal to 11, 13 or 17, far = 1, 2. Since
dim, V1 +dim; Vo = dim,V and 9< dim; V; < 13, it follows that dimV; = 10 or
12. Suppose that dilp = 10. Then dimV, = 16. SinceVs is irreducible,V, ® k
is isotypical of some type. Looking at the dimensions of irreducible representa-
tions of A,, we see that’, ® k must decompose as a sum of two 8-dimensional
irreducible representations &f. Since there is a unique irreducible representation
of dimension 8 which is rational (the adjoint representatidn)itself must have
a decompositiorV, = V,; @ V' with each of the summands of dimension 8 (cf.
[PST], 7.1), leading to a contradiction. Therefore gitn= 12 and dimV, = 14.
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Since there are no irreducible representations of dimension 2, 7 or 44 fover
k, V, can not be irreducible foH,, leading to a contradiction once again.
Suppose that the simply connected coverrbfis isomorphic toR,,H' for
some degree 3 extensidnoverk and a simple groug?’ over L. In this case, we
have H; = HiH»Hs, an almost direct product of simple groups of type We
note that any irreducible representation ifis of the formw,; ® W, ® W for
some irreducibleH;-representatioi;, 1 < i < 3. Since there are no absolutely
simple subgroups of; over k of type A;, we assume tha#l is simple overk.
Since the action o on V; is nontrivial, it is also faithful. Therefore the action
of Hy on Vy_is faithful. Suppose that dip¥; = 11 or 13. Then one of the three
simple factors should act trivially ov;, leading to a contradiction. If dipyV; =9
then dimV, = 17 and arguing as above with, we again get a contradiction.
Therefore dimV; = 10 or 12. Let us consider the case of dirp = 10. Then, as
above, the action af/; on Vy_ is not irreducible. Then, under the actionigf, V.
decomposes a#; & W, with dim;W; = 5,i = 1,2 or Ve =W1®--- & Ws
with dim;W; = 2, 1 < i < 5. In either case, by looking at the Galois action, one
concludes that 3 divides 2 or 5, which is absurd. Therefore theWdire= 12. In
this case dimV, = 14, which is also seen to impossible, arguing as above With
Now the proposition follows from (6.1). O

THEOREM 6.3. Let J; be the Jordan algebras oA? constructed in Section 4.
Then the corresponding princip&t-bundle P, admits no reduction of the struc-
ture group to any proper connected reductive subgrou@ of

Proof. By an abuse of notation, we say that a Jordan algebra bundle admits a
reduction of the structure group if the corresponding princi@abundle admits
such a reduction. Suppose thatadmits a reduction of the structure group to a
proper connected reductive subgroHpof G. By (6.2), the action ofH on the
space of trace zero elements.bflecomposes ag, @ V, with 1 < dim,V; < 8.
ThenH — (GL(V1) xGL(V2)) N G. The restriction of/; to k[X],,[Y] also has a
reduction of the structure group é. SinceJ; ® k [X],[Y] ~ Jl.l ® k [X]g[Y],
the bundIeJl.1 overk[X, Y] has the property tha)tl.1 ® k[X]1,,[Y] has a reduction
of the structure group tdd. Further, Jl.1 ® k[X1g [Y] =~ J ® k[X][Y] with
(fi» &) = 1. Hence by ([PST], 4.7)J} overk[X, Y] admits a reduction of the
structure group taH. Let J! denote the extension of! to PZ as aH-bundle.
Then by the uniqueness of extension@bundles fromAf to P} ([PST], 4.6),

J1is an extension of the Jordan algebtaon k[ X, Y] and hence the underlying
vector bundle onl has a decomposition (4.4P1 ® Op2) ® }:} ® Fl"(*) with 171"
indecomposable (3.1). Furthé}z(*) = HolewPZ(;{, D1 ® Op2) is an extension
of Pl"(*) = Hole[X,Y]/(fi', Di[X, Y]) to P2, Orklce again, by the uniqueness of

.~ )
the extensionp; =~ Pll( Vis indecomposable by (3.1). Thus the trace zero sub-
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~ ~ o~ .
bundle(]il)o decomposes aP; ® (919,]3)0 S P DP * with (D1 ® (911»]3)0 = trace

zero sub-bundle ab; ® Oz, which is trivial as a vector bundie; and Pl"(*) being

indecomposable as vector bundles. Howe(/.é},)o, being a GI(V;) x GL(Vy)-
bundle, decomposgs agl)o = & @ & with & a GL(V;)-bundle,i = 1, 2. Any
direct summand 0@1)0 of rank < 8 must necessarily be contained D, ® Ox)o.
Since the fibre ofJ1), at (0, 0) decomposes ag; @ V,, specializing at0, 0),
we conclude tha¥, — (D1)g = trace zero elements if;. Arguing in a sim-
ilar way, by restrictingJ; to k[X][Y], we conclude that; — (D3)o so that
Vi < (D1)o N (D2)o < J. Since(D1) N (D2)1 =k, (D1)oN (D2)o =01in J,
leading to a contradiction. This proves the theorem. O

THEOREM 6.4. Let J' denote the Jordan algebra bundle @i constructed in
Section 5. Then the principa¥-bundle P;; admits no reduction of the structure
group to any proper connected reductive subgroug of

Proof.By (6.3), /' ®; F = J; admits no reduction of the structure group to any
proper connected reductive subgrouptafwhereF is as in (5.2). Hencd' itself
admits no such reduction. O
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