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Abstract In this paper, we consider blowup of solutions to the Cauchy problem for the following
biharmonic nonlinear Schrödinger equation (NLS),

i ∂tu = ∆2u− µ∆u− |u|2σu in R× Rd,

where d ≥ 1, µ ∈ R and 0 < σ < ∞ if 1 ≤ d ≤ 4 and 0 < σ < 4/(d − 4) if d ≥ 5. In the mass critical
and supercritical cases, we establish the existence of blowup solutions to the problem for cylindrically
symmetric data. The result extends the known ones with respect to blowup of solutions to the problem
for radially symmetric data.
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1. Introduction

In this paper, we are concerned with blowup of cylindrically symmetric solutions to the
Cauchy problem for the following biharmonic nonlinear Schrödinger equation NLS,

i ∂tu = ∆2u− µ∆u− |u|2σu in R× Rd, (1.1)

where d ≥ 1, µ ∈ R and 0 < σ < ∞ if 1 ≤ d ≤ 4 and 0 < σ < 4/(d − 4) if d ≥ 5. The
first study of biharmonic NLS traces back to Karpman [14] and Karpman–Shagalov [15],
where the authors investigated the regularization and stabilization effect of the fourth-
order dispersion. Later, Fibich et al. [11] carried out a rigorous survey to biharmonic
NLS from mathematical point of views and proved global existence in time of solutions
to the Cauchy problem for (1.1). During recent years, there is a large number of literature
mainly devoted to the study of well-posedness and scattering of solutions to the Cauchy
problem for (1.1), see for example [9, 13, 17–21] and references therein. In [8], Boulenger
and Lenzmann rigorously and completely discussed the existence of blowup solutions
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to the Cauchy problem for (1.1) with radially symmetric initial data, which in turn
confirms a series of numerical studies conducted in [1–4]. We also refer to the readers
to the papers due to Bonheure et al. [6, 7] with respect to orbital instability of radially
symmetric standing waves to (1.1). Inspired by the aforementioned works, the aim of the
present paper is to investigate blowup of solutions to the Cauchy problem for (1.1) with
cylindrically symmetric initial data, i.e. initial data belong to Σd defined by

Σd :=
{
u ∈ H2(Rd) : u(y, xd) = u(|y|, xd), xdu ∈ L2(Rd)

}
,

where x = (y, xd) ∈ Rd and y = (x1, · · · , xd−1) ∈ Rd−1.
For further clarifications, we shall fix some notation. Let us define

sc :=
d

2
− 2

σ
.

We refer to the cases sc < 0, sc = 0 and sc > 0 as mass subcritical, critical and
supercritical, respectively. The end case sc = 2 is energy critical. Note that the cases
sc = 0 and sc = 2 correspond to the exponents σ = 4/d and σ = 4/(d− 4), respectively.
For 1 ≤ p <∞, we denote by Lq(Rd) the usual Lebesgue space with the norm

‖u‖p :=

(∫
Rd

|u|p dx
) 1

p

.

The Sobolev space H2(Rd) is equipped with the standard norm

‖u‖ := ‖∆u‖2 + ‖∇u‖2 + ‖u‖2.

In addition, we denote by Q ∈ H2(Rd) a ground state to the following nonlinear elliptic
equation,

∆2Q+Q− |Q|2σQ = 0 in Rd.

The main results of the present paper read as follows, which gives blowup criteria for
solutions to the Cauchy problem for (1.1) with cylindrically symmetric data.

Theorem 1.1. (Blowup for Mass-Supercritical Case) Let d ≥ 5, µ ∈ R and 0 < sc < 2
with 0 < σ ≤ 1. Suppose that u0 ∈ Σd satisfies one of the following conditions.

(i) If µ 6=0, we assume that

E[u0] <

{
0, for µ > 0,

− χµ2M [u0], for µ < 0,

with some constant χ = χ(d, σ) > 0.
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(ii) If µ=0, we assume that either E[u0] < 0 or if E[u0] ≥ 0, we suppose that

E[u0]
scM [u0]

2−sc < E[Q]scM [Q]2−sc

and

‖∆u0‖22‖u0‖
2−sc
2 > ‖∆Q‖22‖Q‖2−sc

2 .

Then the solution u ∈ C([0, T ),H2(Rd)) to the Cauchy problem for (1.1) with initial
datum u0 blows up in finite time, i.e. 0 < T < +∞ and limt→T− ‖∆u‖2 = +∞.

Remark 1.1. The extra restriction on σ comes from the use of the well-known radial
Sobolev inequality in Rd−1. Note that if 4/d < σ ≤ 1, then d ≥ 5. This is the reason that
we need to assume that d ≥ 5.

Theorem 1.2. (Blowup for Mass-Critical Case) Let d ≥ 4, µ ≥ 0 and sc = 0. Let
u0 ∈ Σd be such that E(u0) < 0. Then the solution u ∈ C([0, T ),H2(Rd)) to the Cauchy
problem for (1.1) satisfies the following.

(i) If µ> 0, then u(t) blows up in finite time.
(ii) If µ=0, then u(t) either blows up in finite time or u(t) blows up in infinite time.

To prove Theorems 1.1 and 1.2, the essential argument is to deduce the evolution
of the localized virial quantity MϕR

[u(t)] defined by (2.2) along time, see Lemma 2.2.
To this end, we shall make use of ideas from [8, 16]. It is worth mentioning [4, 5, 10,
12], where blowup of solutions to NLS for cylindrically symmetric data has been inves-
tigated. Comparing with the existing works, we deal with the evolution of the localized
virial quantity to biharmonic NLS for cylindrically symmetric data and extra treatments
are needed in the cylindrically symmetric context, because of the presence of the bihar-
monic term. For cylindrically symmetric solutions, the radial Sobolev inequality is only
applicable in Rd−1, which is different from the radially symmetric case handled in [8], we
shall take advantage of ingredients in [16] to estimate error terms due to the nonlinearity
in the process of discussion of the evolution of the localized virial quantity.

Remark 1.2. It seems possible to remove the condition that xdu0 ∈ L2(Rd) to study
blowup of solutions to (1.1) for cylindrically symmetric data in the spirit of work due to
Martel [16]. In this case, more restrictive conditions should be imposed on σ. This shall
be discussed in forthcoming publications.

2. Proofs of main results

In this section, we are going to prove Theorems 1.1 and 1.2. To do this, we first need
to introduce a localized virial quantity, which is inspired by [8] and [16]. For d ≥ 2, let
ψ : Rd−1 → R be a radially symmetric and smooth function such that |∇ψj | ∈ L∞(Rd−1)
for 1 ≤ j ≤ 6 and
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ψ(r) :=


r2

2
for r ≤ 1,

const. for r ≥ 10,

ψ′′(r) ≤ 1 for r ≥ 0.

For R> 0 given, we define a radial function ψR : Rd−1 → R by

ψR(r) := R2ϕ
( r
R

)
.

It follows from (3.3) in [8] that

1− ψ′′
R(r) ≥ 0, 1− ψ′

R(r)

r
≥ 0, d− 1−∆ψR(r) ≥ 0, r ≥ 0. (2.1)

Let

ϕR(x) := ψR(r) +
x2d
2
, x = (y, xd) ∈ Rd−1 × R, r = |y|.

Define

MϕR
[u] := 2Im

∫
Rd
u (∇ϕR · ∇u) dx. (2.2)

It is simple see that MϕR
[u] is well-defined for any u ∈ Σd. For later use, we shall give the

well-known radial Sobolev’s inequality in [22]. For every radial function f ∈ H1(Rd−1)
with d ≥ 3, then

|y|
d−2
2 |f(y)| ≤ 2‖f‖

1
2
2 ‖∇f‖

1
2
2 , y 6= 0. (2.3)

We also present the well-known Gagliardo–Nirenberg’s inequality in one dimension. For
any f ∈ H1(R) and p> 2, then

‖f‖p ≤ Cp‖f ′‖α2 ‖f‖1−α
2 , α =

p− 2

2p
. (2.4)

Let f : Rd−1 → C be a radial and smooth function, then

∂2klf =
(
δkl −

xkxl
r2

) ∂rf
r

+
xkxl
r2

∂2rf. (2.5)

Next we present the well-posedness of solutions to the Cauchy problem for (1.1) in
H2(Rd), which was established by Pausader [18].

Lemma 2.1. [18, Proposition 4.1] Let d ≥ 1, µ ∈ R and sc < 2. Then, for any
u0 ∈ H2(Rd), there exist a constant T> 0 and a unique solution u ∈ C([0, T ),H2(Rd))
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to the Cauchy problem for (1.1) with initial datum u0. The solution has conserved mass
and energy in the sense that

M [u(t)] =M [u0], E[u(t)] = E[u0], t ∈ [0, T ),

where

M [u] :=

∫
Rd

|u|2 dx

and

E[u] =
1

2

∫
Rd

|∆u|2 dx+
µ

2

∫
Rd

|∇u|2 dx− 1

2σ + 2

∫
Rd

|u|2σ+2 dx.

Moreover, blowup alternative holds, i.e. either T = +∞ or ‖u(t)‖H2 = +∞ as t → T−.
The solution map

u0 ∈ H2(Rd) 7→ u ∈ C([0, T ),H2(Rd))

is continuous.

In the following, we give the evolution ofM[u(t)] along time, which is the key argument
to prove Theorems 1.1 and 1.2.

Lemma 2.2. Let d ≥ 3, R> 0 and 0 < σ ≤ 1. Suppose that u ∈ C([0, T );H2(Rd)) is
the solution to the Cauchy problem for (1.1) with initial datum u0 ∈ Σd. Then, for any
t ∈ [0, T ), there holds that

d

dt
MR[u(t)] ≤ 8

∫
Rd

|∆u|2 dx+ 4µ

∫
Rd

|∇u|2 dx− 2σd

σ + 1

∫
Rd

|u|2σ+2 dx+Xµ[u]

+O
(
R−4 +R−2‖∇u‖22 +R−σ(d−2)‖∇u‖2σ2 + |µ|R−2

)
= 4dσE(u0)− (2dσ − 8)‖∆u‖22 − µ(2dσ − 4)‖∇u‖22 +Xµ[u]

+O
(
R−4 +R−2‖∇u‖22 +R−σ(d−2)‖∇u‖2σ2 + |µ|R−2

)
,

where

Xµ[u] .

{
0, for µ ≥ 0,

|µ|‖∇u‖22, for µ < 0.

Proof. To achieve this, we shall adapt some elements from [8] and [16]. In view of
Step 1 of the proof of [8, Lemma 3.1], we first have that
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d

dt
MR[u(t)] = 8

d∑
k,l,m=1

〈
u, ∂2kl

(
∂2lmϕR

)
∂2mku

〉
+ 4

d∑
k,l=1

〈u, ∂k (∂kl∆ϕR) ∂lu〉

+ 2
d∑

k=1

〈
u, ∂k

(
∆2ϕR

)
∂lu

〉
+
〈
u,

(
∆3ϕR

)
u
〉

− 4µ
d∑

k,l=1

〈
u, ∂k

(
∂2klϕR

)
∂lu

〉
− µ

〈
u,

(
∆2ϕR

)
u
〉
−

〈
u, [|u|2σ,∇ϕR · ∇+∇ · ∇ϕR]u

〉
,

=: A(1)
R [u] +A(2)

R [u] + BR[u].

In what follows, we are going to estimate the terms A(1)
R [u], A(2)

R [u] and BR[u]. The esti-

mates of dispersive terms A(1)
R [u] and A(2)

R [u] are inspired by the proof of [8, Lemma 3.1].

Let us begin with treating the term A(1)
R [u]. Using integration by parts and the definition

of ϕR, we are able to derive that

d∑
k,l,m=1

〈
u, ∂2kl

(
∂2lmϕR

)
∂2mku

〉
=

d∑
k,l,m=1

∫
Rd

(
∂2klu

) (
∂2lmϕR

) (
∂2mku

)
dx

=
d−1∑

k,l,m=1

∫
Rd

(
∂2klu

) (
∂2lmψR

) (
∂2mku

)
dx

+
d−1∑

l,m=1

∫
Rd

(
∂2dlu

) (
∂2lmψR

) (
∂2mdu

)
dx

+
d−1∑
k=1

∫
Rd

(
∂2kdu

) (
∂2dku

)
dx+

∫
Rd

∣∣∂2ddu∣∣2 dx.

(2.6)

We now compute each term in the right hand side of (2.6). Utilizing (2.5), we can derive
that

d−1∑
k,l,m=1

∫
Rd

(
∂2klu

) (
∂2lmψR

) (
∂2mku

)
dx

=
d−1∑

k,l,m=1

∫
R

∫
Rd−1

(
∂2klu

) (
∂2lmψR

) (
∂2mku

)
dydxd

=

∫
R

∫
Rd−1

(
∂2rψR|∂2ru|2 +

d− 2

r2
∂rψR

r
|∂ru|2

)
dydxd

=

∫
Rd

|∆yu|2 −
(
1− ∂2rψR

)
|∂2ru|2 −

(
1− ∂rψR

r

)
d− 2

r2
|∂ru|2 dx

(2.7)
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and

d−1∑
l,m=1

∫
Rd

(
∂2dlu

) (
∂2lmψR

) (
∂2mdu

)
dx =

d−1∑
k=1

∫
Rd

(
∂2rψR

) ∣∣∂2kdu∣∣2 dx

=
d−1∑
k=1

∫
Rd

∣∣∂2kdu∣∣2 − (
1− ∂2rψR

) ∣∣∂2kdu∣∣2 dx

=
d−1∑
k=1

∫
Rd

(
∂2kdu

) (
∂2dku

)
−
(
1− ∂2rψR

) ∣∣∂2kdu∣∣2 dx.

(2.8)

In addition, applying integration by parts, we have that∫
Rd

(
∂2kdu

) (
∂2dku

)
dx =

∫
Rd

(
∂2kku

) (
∂2ddu

)
dx. (2.9)

As a consequence, coming back to (2.6) and using (2.1), (2.6), (2.7), (2.8) and (2.9), we
now conclude that

d∑
k,l,m=1

〈
u, ∂2kl

(
∂2lmϕR

)
∂2mku

〉
≤

∫
Rd

|∆u|2 dx. (2.10)

Furthermore, by the definitions of ϕR and ψR, there holds that

d∑
k,l=1

|〈u, ∂k (∂kl∆ϕR) ∂lu〉| =
d−1∑
k,l=1

|〈u, ∂k (∂kl∆ψR) ∂lu〉| . R−2‖∇u‖22,

d∑
k,l=1

∣∣〈u, ∂k (∆2ϕR

)
∂lu

〉∣∣ = d−1∑
k,l=1

∣∣〈u, ∂k (∆2ψR

)
∂lu

〉∣∣ . R−2‖∇u‖22,

and ∣∣〈u, (∆3ϕR

)
u
〉∣∣ = ∣∣〈u, (∆3ψR

)
u
〉∣∣ . R−4‖u‖22.

This along with (2.10) and the conservation of mass implies that

A(1)
R [u] ≤ 8

∫
Rd

|∆u|2 dx+O
(
R−4 +R−2‖∇u‖22

)
.

We next deal with the term A(2)
R [u]. In virtue of integration by parts, the definition of

ϕR and (2.5), we can show that

A(2)
R [u(t)] = 4µ

d∑
k,l=1

∫
Rd

(∂ku)
(
∂2klϕR

)
(∂lu) dx− µ

∫
Rd

(
∆2ϕR

)
|u|2 dx
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= 4µ
d−1∑
k,l=1

∫
R

∫
Rd−1

(∂ku)
(
∂2klψR

)
(∂lu) dydxd + 4µ

∫
Rd

|∂du|2 dx

− µ

∫
Rd

(
∆2ψR

)
|u|2 dx

= 4µ

∫
R

∫
Rd−1

(
∂2rψR

)
|∂ru|2 dydxd + 4µ

∫
Rd

|∂du|2 dx− µ

∫
Rd

(
∆2ψR

)
|u|2 dx

= 4µ

∫
Rd

|∇yu|2 dx+Xµ[u] + 4µ

∫
Rd

|∂du|2 dx− µ

∫
Rd

(
∆2ψR

)
|u|2 dx

= 4µ

∫
Rd

|∇u|2 dx+Xµ[u]− µ

∫
Rd

(
∆2ψR

)
|u|2 dx

where

Xµ[u] := −4µ

∫
Rd

(
1− ∂2rψR

)
|∂ru|2 dx.

Due to ‖∆2ψR‖∞ . R−2, then

A(2)
R [u(t)] = 4µ

∫
Rd

|∇u|2 dx+Xµ[u] +O(|µ|R−2).

We now turn to handle the term BR[u]. Here we need some special treatments. Applying
integration by parts and the definition of ϕR, we first derive that

BR[u] = 2

∫
Rd

|u|2∇ϕR · ∇
(
|u|2σ

)
= − 2σ

σ + 1

∫
Rd

(∆ϕR) |u|2σ+2 dx

= − 2σ

σ + 1

∫
Rd

(∆ψR) |u|2σ+2 dx

− 2σ

σ + 1

∫
Rd

|u|2σ+2 dx

= − 2σd

σ + 1

∫
Rd

|u|2σ+2 dx

− 2σ

σ + 1

∫
Rd

(∆ψR − d+ 1) |u|2σ+2 dx.

In virtue of the definition of ψR and (2.5), then there holds that ∆ψR(r)− d+ 1 = 0 for
0 ≤ r ≤ R. This further implies that

BR[u] = − 2σd

σ + 1

∫
Rd

|u|2σ+2 dx− 2σ

σ + 1

∫
R

∫
|y|≥R

(∆ψR − d+ 1) |u|2σ+2 dydxd. (2.11)
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In the following, we shall estimate the second term in the right hand side of (2.11).
Observe first that∫

R

∫
|y|≥R

|u|2σ+2 dydxd ≤
∫
R
‖u‖2σL∞(|y|≥R)‖u‖

2
L2
y
dxd. (2.12)

To proceed the proof, we first consider the case that σ=1. In this case, by (2.3), Hölder’s
inequality and the conservation of mass, then∫

R
‖u‖2L∞(|y|≥R) dxd . R−(d−2)

∫
R
‖u‖L2

y
‖∇yu‖L2

y
dxd

≤ R−(d−2)‖u‖2‖∇yu‖2 . R−(d−2)‖∇yu‖2.
(2.13)

On the other hand, by Hölder’s inequality and the conservation of mass, we know that

‖u‖2
L∞(R,L2

y(Rd−1))
= sup

xd∈R

∫
Rd−1

|u|2 dy = sup
xd∈R

∫
Rd−1

∫ xd

−∞
∂d

(
|u|2

)
dydxd

= 2Re sup
xd∈R

∫
Rd−1

∫ xd

−∞
u (∂du) dydxd ≤ 2‖u‖2‖∂du‖2 . ‖∂du‖2.

(2.14)

Consequently, going back to (2.12) and using (2.13) and (2.14), we derive that∫
R

∫
|y|≥R

|u|4 dydxd . R−(d−2)‖∇yu‖2‖∂du‖2 . R−(d−2)‖∇u‖22. (2.15)

We next consider the case that 0 < σ < 1. In this case, from (2.12) and Hölder’s inequality,
it follows that∫

R

∫
|y|≥R

|u|2σ+2 dx ≤
(∫

R
‖u‖2L∞(|y|≥R) dxd

)σ (∫
R
‖u‖

2
1−σ

L2
y

dxd

)1−σ

. (2.16)

In view of (2.4) and the conservation of mass, we get that

∫
R
‖u‖

2
1−σ

L2
y

dxd ≤
(∫

R

∣∣∣∂d (‖u‖L2
y

)∣∣∣2 dxd

) σ
2(1−σ)

(∫
R
‖u‖2

L2
y
dx

) 2−σ
2(1−σ)

.

(∫
R

∣∣∣∂d (‖u‖L2
y

)∣∣∣2 dxd

) σ
2(1−σ)

.

(2.17)

Furthermore, notice that

∣∣∣∂d (‖u‖L2
y

)∣∣∣ ‖u‖L2
y
=

1

2

∣∣∣∣∂d (‖u‖2L2
y

)∣∣∣∣ = 1

2

∣∣∣∣Re ∫
Rd−1

u (∂du) dy

∣∣∣∣ ≤ 1

2
‖∂du‖L2

y
‖u‖L2

y
.
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This means that ∣∣∣∂d (‖u‖L2
y

)∣∣∣ ≤ 1

2
‖∂du‖L2

y
. (2.18)

As a result, via (2.17), we obtain that

∫
R
‖u‖

2
1−σ

L2
y

dxd .

(∫
R
‖∂du‖2L2

y
dxd

) σ
2(1−σ)

= ‖∂du‖
σ

1−σ
2 . (2.19)

Using (2.13) and (2.19), we then obtain from (2.16) that∫
R

∫
|y|≥R

|u|2σ+2 dx . R−σ(d−2)‖∇yu‖σ2‖∂du‖σ2 . R−σ(d−2)‖∇u‖2σ2 . (2.20)

To sum up, it then follows from (2.11), (2.15) and (2.20) that

BR[u] . − 2σd

σ + 1

∫
Rd

|u|2σ+2 dx+R−σ(d−2)‖∇u‖2σ2 .

Accordingly, applying the estimates to A(1)
R [u], A(2)

R [u] and BR[u] and the conservation
of energy, we finally derive that

d

dt
MR[u(t)] ≤ 8

∫
Rd

|∆u|2 dx+ 4µ

∫
Rd

|∇u|2 dx− 2σd

σ + 1

∫
Rd

|u|2σ+2 dx+Xµ[u]

+O
(
R−4 +R−2‖∇u‖22 +R−σ(d−2)‖∇u‖2σ2 + |µ|R−2

)
= 4dσE(u0)− (2dσ − 8)‖∆u‖22 − µ(2dσ − 4)‖∇u‖22 +Xµ[u]

+O
(
R−4 +R−2‖∇u‖22 +R−σ(d−2)‖∇u‖2σ2 + |µ|R−2

)
.

This completes the proof. �

Proof of Theorem 1.1. Noting that 0 < σ ≤ 1 and applying Lemma 2.2, then the
proof can be completed by closely following the one of [8, Theorem 1]. �

Proof of Theorem 1.2. If µ> 0, using Lemma 2.2 and arguing as the proof of
[8, Theorem 3], we can get the desired result. To complete the proof, we only need
to consider the case that µ=0. In this case, we need to conduct a more refined analysis
to the evolution of M[u(t)] along time. From the proof of Lemma 2.2, (2.1) and (2.5),
we first have that

d

dt
MR[u(t)] ≤ 16E(u0)− 8

∫
Rd

(
1− ∂2rψR

)
|∂2ru|2 dx+

∫
Rd

(
∆3ψR

)
|u|2 dx

−
∫
Rd
AR|∂ru|2 dx+

∫
RN

BR|u|2+
8
d dx,

(2.21)
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where

AR := 4∂2r∆ψR + 2∆2ψR(r), BR :=
8

d+ 4
(d− 1−∆ψR) .

Thereinafter, we shall estimate the last two terms in the right hand side of (2.21). Using
(7.7) in [8] and the conservation of mass, we can derive that∣∣∣∣∫

Rd
AR|∂ru|2 dx

∣∣∣∣ = ∣∣∣∣∫
R

∫
Rd−1

AR|∂ru|2 dydxd
∣∣∣∣ . 8ηR4

∫
R
‖AR∂

2
ru‖2L2

y
dxd

+ η−1R−4

∫
R
‖u‖2

L2
y
dxd

= 8ηR4‖AR∂
2
ru‖22 + η−1R−4,

where η > 0 is an arbitrary constant. We now treat the other term. To do this, we first
consider the case that d =4. In this case, we have that∣∣∣∣∫

Rd
BR|u|4 dx

∣∣∣∣ =
∣∣∣∣∣
∫
R

∫
|y|≥R

BR|u|4 dydxd

∣∣∣∣∣ ≤
∫
R
‖u‖2

L2
y
‖B

1
2
Ru‖

2
L∞(|y|≥R) dxd

≤ ‖u‖2
L∞(R,L2

y(RN−1))∫
R
‖B

1
2
Ru‖

2
L∞(|y|≥R) dxd, (2.22)

because of BR = 0 for 0 ≤ r ≤ R. In view of (2.3) with d =4 and the definition of BR,
we are able to infer that∫

R
‖B

1
2
Ru‖

2
L∞(|y|≥R) dxd . R−2

∫
R
‖B

1
2
Ru‖L2

y
‖∇y(B

1
2
Ru)‖L2

y
dxd

. R−2

∫
R
‖u‖L2

y
‖∇y(B

1
2
Ru)‖L2

y
dxd.

(2.23)

It follows from (7.9) with d =4 in [8] that

‖∇y(B
1
2
Ru)‖

2
L2
y
.

(
η−

1
4 +R−2

)
‖u‖2

L2
y
+ 8η

1
4 ‖BR∂

2
ru‖2L2

y
.

By means of (2.23), the conservation of mass and Hölder’s inequality, we then get that∫
R
‖B

1
2
Ru‖

2
L∞(|y|≥R) dxd . R−2

(
η−

1
4 +R−2

)
+ 8R−2η

1
4

∫
Rd

‖u‖L2
y
‖BR∂

2
ru‖L2

y
dxd

. R−2
(
η−

1
4 +R−2

)
+ 8R−2η

1
4 ‖BR∂

2
ru‖2. (2.24)

Going back to (2.22) and using (2.14) and (2.24), we then get that∣∣∣∣∫
RN

BR|u|4 dx
∣∣∣∣ . R−2

(
η−

1
4 +R−2

)
‖∂du‖2 + 8R−2η

1
4 ‖BR∂

2
ru‖2‖∂du‖2
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≤ R−2
(
η−

1
4 +R−2

)
‖∂du‖2 +R−4η−

1
2 ‖∂du‖22 + 8η‖BR∂

2
ru‖22.

Taking into account (2.21) and noting that ‖∆2ϕR‖∞ . R−2, we then obtain that

d

dt
MR[u(t)] ≤ 16E(u0)− 8

∫
Rd

(
1− ∂2rψR − η

(
R4A2

R +B2
R

))
|∂2ru|2 dx

+R−2
(
η−

1
4 +R−2

)
‖∂du‖2 +R−4η−

1
2 ‖∂du‖22 + η−1R−4 +R−2.

(2.25)

Next we consider the case that d ≥ 5. In this case, by Hölder’s inequality and the
definition of BR, we can obtain that

∣∣∣∣∫
RN

BR|u|2+
8
d dx

∣∣∣∣ =
∣∣∣∣∣
∫
R

∫
|y|≥R

BR|u|2+
8
d dydxd

∣∣∣∣∣ ≤
∫
R
‖B

1
2
Ru‖

8
d
L∞
y (|y|≥R)

‖B
1
2−

2
d

R u‖2
L2
y
dxd

≤
(∫

R
‖B

1
2
Ru‖

2
L∞
y (|y|≥R) dxd

) 4
d
(∫

R
‖u‖

2d
d−4

L2
y

dxd

)d−4
d

.

(2.26)

As an application of (2.4) leads to

∫
R
‖u‖

2d
d−4

L2
y

dxd .

(∫
Rd

∣∣∣∂d (‖u‖L2
y

)∣∣∣2 dxd

) 2
d−4

(∫
R
‖u‖2

L2
y
dxd

)d−2
d−4

. (2.27)

It then follows from (2.18), (2.27) and the conservation of mass that

∫
R
‖u‖

2d
d−4

L2
y

dxd .

(∫
Rd

‖∂du‖2L2
y
dxd

) 2
d−4

= ‖∂du‖
4

d−4
2 . (2.28)

Therefore, coming back to (2.26) and using (2.24) and (2.28), we derive that

∣∣∣∣∫
RN

BR|u|2+
8
d dx

∣∣∣∣ . (∫
R
‖B

1
2
Ru‖

2
L∞
y (|y|≥R) dxd

) 4
d
‖∂du‖

4
d
2

. R

∫
R
‖B

1
2
Ru‖

2
L∞
y (|y|≥R) dxd +R

− 4
d−4 ‖∂du‖

4
d−4
2

≤ R−1
(
η−

1
4 +R−2

)
‖∂du‖2 + 8R−1η

1
4 ‖BR∂

2
ru‖2

+R
− 4

d−4 ‖∂du‖
4

d−4
2

. R−1
(
η−

1
4 +R−2

)
‖∂du‖2 + 8η‖BR∂

2
ru‖22+

R
− 4

d−4 ‖∂du‖
4

d−4
2 +R−2η−

1
2 .
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As a consequence, invoking (2.21), we finally derive that

d

dt
MR[u(t)] ≤ 16E(u0)− 8

∫
Rd

(
1− ∂2rψR − η

(
R4A2

R +B2
R

))
|∂2ru|2 dx

+R−1
(
η−

1
4 +R−2

)
‖∂du‖2 +R−4η−

1
2 ‖∂du‖22

+R
− 4

d−4 ‖∂du‖
4

d−4
2 +R−2η−

1
2 + η−1R−4 +R−2.

(2.29)

At this point, using (2.25) and (2.29) and reasoning as the proof of [8, Theorem 3], we
are able to finish the proof. This completes the proof. �
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