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1. Introduction. The stability of the solutions of an ordinary differential 
equation will be discussed here. The purpose of this note is to compare the 
stability results which are valid with respect to a compact set and the 
stability results valid with respect to an unbounded set. The stability of sets 
is a generalization of stability in the sense of Liapunov and has been discussed 
by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 
10). 

The following examples indicate the importance of considering the stability 
of a given set as opposed to the stability of the origin in the sense of Lia­
punov. Consider the system 

(a) x = (x — y)(l — x2 — y2), y = (x + y) (1 — x2 — y2), 

where the dot denotes the derivative with respect to t. The circle x2 + y2 = 1 
is not a limit cycle of the system (a) ; however, the phase curves do approach 
this circle asymptotically. (This example may be found in (1, p. 18).) I t is 
noted that in this example the asymptotic curve is compact. 

For an example in a non-compact case, consider the differential equation 

(b) y" + gi(t)y' + g2(t)y = h(t) (y' = dy/dl), 

where h(t) = btm + R(t) with b 9* 0, m > - 1 , and R(t) = o(im) as / -> 00. 
Furthermore, let gt(t) and h(t) be continuous and limt^œtPigi(t) = ct ^ 0 
with pi > 2 — i, i = 0, 1. Under these hypotheses y(t) has the asymptotic 
behaviour y{i){t)/tm+2~iai ^ 0, i = 0, 1; see (3). However, it is clear that 
y = a0 t

m+2 is not necessarily a solution of the differential equation (b). 
As indicated in the above examples, a family of solutions of a differential 

equation may approach asymptotically a curve which need not be a solution 
of the differential equation. This fact motivates the study of the stability of 
sets. 

LaSalle (5) has indicated that the classical theorems on the stability theory 
of equilibrium points may be easily extended to the study of the stability of 
compact sets; however, for an unbounded manifold this generalization is not 
immediate. Also, a physical problem in control theory is mentioned in (5), in 
which it is required to determine the stability of the solutions of a system of 
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differential equations with respect to a non-compact manifold. A more spe­
cialized problem of stability arises in the synthesis problem of control theory. 
(See, for example, (4, Chapter 10).) 

In § 2 of this paper we indicate the extension of the theorems of Liapunov 
and Cetaev to compact sets. Section 3 will be devoted to some companion 
theorems which are valid for arbitrary closed sets; in particular, we note that 
the case where the given set is unbounded is included. It should be observed 
that should the given set be an integral curve of the differential equation, then 
known stability theorems may be applied. 

The definitions which will be required in this note are given below. Consider 

(1) x = f(t, x) (x = dx/dt), 

where x is a vector defined in an open set ti Ç Rn, ^-dimensional Euclidean 
space. Suppose f(t, x) is a continuous function whose domain is 7 X Œ, 
I = [0, °° ). The distance between the point p and the set A will be denoted by 
p(p,A), i.e., p(p, A) = infa€A \\p — a\\; where | | - | | is the Euclidean norm. 
The set of points x in Rn such that p(x, A) < e will be called an e-neigh-
bourhood of the set A. A solution x(t) of (1) such that x(t0) = x0 will be 
denoted by x(t; /o» #o). 

Definition 1. Let T be a closed subset of 0. The differential equation (1) is 
stable with respect to Y if for any e > 0 and to in I, there exists a 8(t0, e) > 0 
such that if x0 G Œ and p(x0> T) < <5, then x(t; t0, x0) remains in Œ and 
p(x(t; t0y xo), T) < e for all t > t0. 

Definition 2. Differential equation (1) is unstable with respect to Y if (1) is 
not stable with respect to Y. 

Definition 3. Differential equation (1) is asymptotically stable with respect 
to Y if (1) is stable with respect to Y and l im^^ p(x(t\ t0l x0), Y) = 0 if x0 G Œ. 

2. The compact case. First, LaSalle's remark concerning the extension of 
known stability theorems to a compact set will be confirmed in the case of 
stability and in other cases the statements of the generalizations will be 
given. We shall consider here only the simple case where the Liapunov func­
tion depends upon x only. See (7) for related theorems valid in the con­
ventional case. 

Remark 1 (A generalization of Liapunov's theorem). Let T be a compact 
point set contained in 12. Let there exist a function V(x) of class C1 in 12 such 
that 

(i) V(x) > 0 if x e 0; 
(ii) V(x) = 0 if and only if x G T ; 

(iii) along any trajectory x = x(t;t0jXo) of (1) 

dV(x(t;t0, x0)/dl < 0, x G Œ, / > tQ. 

Subject to the above hypotheses, (1) is stable with respect to Y. 
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Proof of Remark 1. Let e > 0 be given. Without loss of generality, we 
assume that Re, the e-neighbourhood of T, is contained in Œ. Since Y is com­
pact, Re, the closure of R€, is compact. I t is sufficient to prove that some 
level surface V(x) = c, c a non-zero constant, lies entirely in Re since ô may 
be taken to be any radius of a neighbourhood of Y contained in V(x) = c. 
Suppose that no such level surface exists; then, let {xk} denote the sequence 
of points which are situated on the intersection of the boundary dRe, of R(, 
with the level surfaces Vix) = 1/k, k = 1, 2, 3, . . . . Since dRe is compact, 
this sequence has a limit point, x, on dRe. By the continuity of V(x), we 
obtain 

V(x) = l i m ^ V(xk) = 0. 

However, this implies that x lies on T, which is not the case, and completes 
the proof of the theorem. 

Remark 2 (Asymptotic stability theorem). Let the conditions (i) and (ii) 
of Remark 1 be imposed. Furthermore, let 

(hi*) along any trajectory x = x{i\ to, x0) of (1) 

dV(x(t; t0, Xo))/dt < 0 if x 6 Û - I\ / > t0, 

be satisfied. Under these hypotheses, (1) is asymptotically stable with re­
spect to T. 

The proof follows the classical case (7, p. 38) and will be omitted. This 
pattern will continue throughout the next two remarks. 

Remark 3 (The first instability theorem of Liapunov). Let 

dV{x{t;to,Xo))/dt > 0 

along any trajectory x = x(t; to, x0) of (1), x G & — Y, t > t0. Suppose that 
V(x) assumes positive values in every sufficiently small neighbourhood of r . 
Then the differential equation (1) is unstable with respect to Y. 

Remark 4 (Cetaev instability theorem). Let T be a compact set contained 
in 11 Let there exist a function V(x), a region Y€ contained in Re, an e-neigh­
bourhood of T, with the following properties: 

(i) V(x) is of the class C1 in Te; 
(ii) V(x) and dV/dt are positive in Te; 

(iii) V(x) = 0 if x is on that part of the boundary of Ye which is contained 
in Re; 

(iv) r is contained in the boundary of Ye. 
Under these conditions, system (1) is unstable with respect to Y. 

We now present some general comments. First, note that our assumption 
regarding the Liapunov function V(x), i.e. V(x) > 0 if x g Y, V(x) = 0 if 
x Ç T, and dV/dt < 0, makes Y an invariant set for the differential equa­
tion (1). However, if Y contains no trajectory, then no trajectory may inter­
sect T either. Also, we observe that if V(x) > 0, there can be no trajectory 
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x = x(t;t0, Xo) such that dV(x(t; to, x0))/dt < c < 0 (c a constant) along 
the entire trajectory for / > to. This is an immediate consequence of the 
mean-value theorem. 

3. The unbounded case. The case where r is an unbounded set will now 
be considered. If T is an unbounded set, then the obvious generalizations of 
the classical stability theorems, as given in the preceding section, are incor­
rect. The following examples verify this statement. 

Example 1. Consider the system 

(c) x = x, y = y, 

where the dot denotes the derivative with respect to t (t > 0). Let 

0 = {(oc,y):y > 1} 

and let T be the y axis. Consider as the Liapunov function 

V(x,y)= ix/y) + | Qj x = 0> 

where c is a non-negative constant. Along any trajectory on which x ^ 0, 
V{x,y) is non-positive, and on T, V(x,y) = 0. We observe that when c = 0 
the Liapunov function is V(x, y) = {x/y)2; in this case, V= 0. The Liapunov 
function satisfies the hypotheses of Remark 1; however, the solutions of (c), 

x = Cie\ y = c2e
t 

are not stable with respect to I\ Thus, if T is an unbounded set, then the 
Liapunov stability theorem is not necessarily true. 

Example 2. In this example the system 

(d) x = —x, y = —y 

will be considered. Let 12 = {(x, y)\ x > 0, y > x] U {(x, y)\ x < 0, y > —x) 
and F be the y axis; and select as the Liapunov function 

V<?.y) = {x,y?+ {'-£> 1*1 

With V chosen as above, the hypotheses of Remark 3 are satisfied ; however, 
system (d) is stable with respect to T. This example also serves as a counter­
example to a "generalization" of the Cetaev instability theorem as given in 
Remark 4 above. To observe this fact, choose as the set r e of that remark 
the set x < 0 in 0. 

Some theorems which will be valid for unbounded sets will now be given. 
The additional hypotheses required involve the control of the growth of the 
Liapunov function by suitable functions of the distance. The given closed 
set will be denoted by T as usual, and we require that r C Œ. Related theorems 
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in the traditional case may be found in Halanay (2). I t will also be necessary 
to assume that all solutions of (1) exist in the future. 

THEOREM 1. Let there exist a function V(t, x) of class C1 in 12 satisfying 
the following conditions: 

(i) V(t,x) = 0 if x 6 T, t > 0; 
(h) VU, x) > a(r(x)), where r(x) = p(x, T) and a{r) is a continuous mono­

tone increasing function of r such that a(0) = 0; 
(iii) along any trajectory x = x(t; t0, x0) of (1) where x 0 G O 

dV(t,x(t;t0lx0))/dt < 0. 

Subject to these hypotheses, system (1) is stable with respect to the set T. 

Proof. Let e > 0 be given where e is sufficiently small so that the e-neigh-
bourhood of V is contained in 12. Since V(t, x) is continuous, a point x0

f G 12 
may be selected such that V(t0, x0') < a(e). The set of all x such that 
r(x) < r(xo') constitutes a neighbourhood, Tg, of I\ Suppose x0 is a point 
of T5 H 12, x0 (t T. Then, along the trajectory x = x(t;t0, x0), V(l, x(t; t0, xQ)) 
is a non-increasing function. Therefore 

a(r(x(t; t0, x0))) < V(t, x(t; t0, x0)) < a(e), t > /0. 

Since a(r) is a monotone increasing function of r, we have r(x(t; t0, x0)) < e 
for every t > t0. Thus, system (1) is stable with respect to T. 

Remark 5. The structure of the set T together with the existence of a 
Liapunov function satisfying conditions (i), (ii), and (iii) of Theorem 1 can 
determine the existence of the solutions in the future; and, therefore, in some 
circumstances this hypothesis can be removed. For example, if T is compact, 
the existence of such a Liapunov function implies that all solutions of (1) 
exist in the future. If T is not bounded and there exists a Liapunov function 
having the above properties, then the solutions need not exist in the future. 
An example which illustrates this fact is the following. 

Example 3. The differential equation is 

\— x , x < 0. 

Let T be the set x < 0; and consider the Liapunov function 

"«-{£ *<a 
This Liapunov function satisfies conditions (i), (ii), and (iii), but the solu­
tions of (e) do not exist in the future. The authors would like to thank Pro­
fessor Taro Yoshizawa for this example. 

If some solution x(t; t0, x0) of equation (1) does not exist in the future, 
say x(l\ to, XQ) exists on the interval [lQ, T), then 

lim s u p ^ r - p(x(t; t0, x0), V) < oo . 
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Suppose that this limit is infinite; then there exists a t — h close to T, h < T, 
such that 

V(t0,xQ) < a(r(x(h)t0, Xo))) < V(h, x(h; i0, x0)). 

However, since V satisfies (iii), then 

V(t0, Xo) > Vit, x(t; t0, Xo)) 

for all / such that x(t; t0, x0) exists, and we are led to a contradiction. 

THEOREM 2. The system (1) is unstable with respect to r C Q i f there exists 
a function Vit, x) defined in [0, oo ) X & with the following properties: 

(i) V(t,x) Kb(r(x)), where r(x) = p(x, T) and b(r) is a continuous 
monotone increasing function of the distance r(x) ; 

(ii) for every 8 > 0 and every t0 > 0 there exists an Xo G & such that 
p(xo, r ) < ô and V(t0, x0) > 0; 

(iii) V(t, x(l; to, x0) > c(r(x)), where c(r) is a continuous monotone increas­
ing function of r(x) with c(0) = 0. 

Proof. Suppose that system (1) is stable with respect to T. Then, for every 
e > 0 and t0 > 0 there exists a <5(e, to) > 0 such that p(x0, V) < ô implies 
that p(x(t; t0, x0), T) < e for t > t0. Choose x0 such that p(x0, T) < ô and 
V(to, Xo) > 0; the existence of such a choice is guaranteed by hypothesis (ii). 

For / > t0, we have 

(2) V(t, x(t; to, Xo)) < b(r(x(t; t0, x0))) < 6(e). 

From the fact that V(t{x(t; to, x0)) is monotone increasing, we obtain 

b(r(x{t)to,x0))) > V(t0, Xo). 
Hence, 

(3) r(x(t; to, xo)) > b'^Vito, x0)]. 

Integration of the inequality in (iii) along the trajectory x(t; t0, x0) and 
(3) above lead to 

Vit, x(t;t0, x0)) > V(t0, Xo) + I c[r(x(s;to,x0))]ds 
*) to 

> V{h, xo) + c[b~\Vito, x0))](t - to). 

Using the above inequality, it is clear that if t is sufficiently large, 

Vit, x(t; to, Xo)) > b(e), 

contradicting (2). This completes the proof of the theorem. 

THEOREM 3. Let there exist a continuous function V(t, x) defined for t > 0, 
x 6 12 with the following properties: 

(i) V{t, x) = 0 if x e T; 
(ii) V(t, x) > airix)), where air) is a continuous monotone increasing 

function of r, with r = pix, V) and a(0) = 0 ; 
(iii) Vit, x(t; to, x0)) < —C[V(t; xit; to, x0)] along any trajectory xit; to, x0) 
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of (1), where C(V) is a continuous monotone increasing function of V with 
C(0) = 0. 

Subject to the above hypotheses, system (1) is asymptotically stable with respect 
to T. 

Proof. System (1) is stable with respect to T by virtue of Theorem 1. Along 
any trajectory x(t\ to, x0) of (1) V(t, x(l\ to, XQ) is a decreasing function; hence 
the limit 

lim^ V(t,x(t; t0, x0)) = V0 

exists. If Vo ^ 0, then C(V0) 9e 0 and we have 

(4) -C[V(t,x(t;to,x0))] < -C(Vo). 

Therefore, from (iii) and (4) we obtain 
(5) V(t,x(t]t0jx0)) - V(t0,x0) < -C(V0)(t - t0). 
Letting / approach infinity in (5) leads to l im^^ V(t, x(t\ to, x0)) = —°°, 
which contradicts (ii). 

Thus, the assumption that Vo 9e 0 was incorrect and 
l im^ œ V(t, x(t\ to, Xo)) = 0. 

However, this implies that lim<_>00 a(r(x(t; t0, x0))) = 0; and since a(r) is 
continuous, we obtain l im^ œ r (x( /; to, Xo)) = 0. This shows that system (1) 
is asymptotically stable with respect to T and completes the proof of the 
theorem. 

The above theorems have counterparts where the signs of the functions 
involved are reversed, as is the case in the traditional stability theorems. 

It should be mentioned that information regarding the converse of the 
above theorems may be found in (10). 
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