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INLATE 1955 IN CONNECTICUT, the number of fatalities per 100,000 popu­
lation in motor vehicle accidents reached a record high for the 19508.
On December 23, 1955, Governor Abraham Ribicoff took unprecedented
action to reduce traffic fatalities. Ribicoff announced that persons con­
victed of speeding would have their licenses suspended for thirty days
at the first offense, for sixty days at the second offense, and for an
indefinite period (subject to a hearing after ninety days) at the third
offense. Data on traffic fatalities before and after the Connecticut crack­
down on speeding can be regarded as a time-series quasi-experiment­
with some significance for the social sciences. When supplemented with
traffic fatality data for the states of Massachusetts, Rhode Island, New
York, and New Jersey, the collection of observations can be viewed as
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debted to Donald T. Campbell of Northwestern University and H. Lau­
rence Ross of the University of Denver Law School who supplied the
data which are analyzed in this paper. See D. T. Campbell & H. L. Ross,
The Connecticut Crackdown on Speeding, 3 LAW & Soc. REV. 33-53
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a multiple-group time-series experiment.2 The multiple-group time-series
design can be diagrammed as follows:

TIME

Place ...nt -1 Dt ni + 1 nr + 2•••

Connecticut ................................. •.•0 0 T 0 0...
Massachusetts ........................... ••.0 0 0 0...
Rhode Island ........................... •..0 0 0 0...
New York .................................... •••0 0 0 0.•.
New Jersey ................................. •••0 0 0 0..•

The O's represent monthly observations of traffic fatalities for the nt
months prior to T, the treatment, and for the n2 observations following T.
The treatment, T, is the Governor's crackdown on speeding in the state
of Connecticut. No comparable alteration of administrative practice took
place in the four "control" states.

Evidence of the effectiveness of the Connecticut crackdown on speed­
ing can be gained by comparing the path of the post-T observations of
Connecticut with those of the four control states. A precipitous drop in
fatalities in Connecticut following T in the absence of similar drops in
the control states is compelling evidence of the effectiveness of the
crackdown on speeding.

The problem of measuring the abrupt change in level of a time­
series and making statistical inferential statements about it is the prob­
lem with which the remainder of this report is concerned.

ANALYSIS OF DATA

The Underlying Model

The statistical model upon which analysis of the Connecticut speed­
ing data is based was developed by Box and Tiao." Box and Tiao
presented an analytic technique for estimating and making inferences
about the change in level of a time-series. The model upon which the
analysis is based is a restrictive one; however, many sets of data can be
manipulated (by removing cycles, for example) or transformed into

2. u.
3. G. E. P. Box & G. C. Tiao, A. Change in Level oj a Non-stationary Time-Series,

52 BIOMETRIKA 181-92 (1965).
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special indices in such a way that the assumptions of the model will be 
largely met. The statistical model here employed is a special case of 
the integrated moving average process: 4 

t-1 
Zt=L + y I at-J + at, t= 1, ... , n1. (1) 

j=l 

L is a "location parameter" descriptive of the overall general level of 
the series, 

y is a parameter which depends upon the interdepedency of the 
observations in the time-series, and 

at is an observation of a random normal variable with mean O and 
variance CT2• 

Formula ( 1) describes the n1 observations taken prior to the intro­
duction of a treatment, e.g., the Connecticut crackdown on speeding. 
The n2 observations following the introduction of the treatment into the 
time-series differ from ( 1) only in that a treatment effect, o, is present. 

t-1 
Zt = L + y I at-j + at + o, t = n2, ... , n1 + n2 , (2) 

j = 1 

The parameter o is the increment or decrement in the level of the 
time-series due to the introduction of the treatment. The treatment is 
assumed to work an immediate and constant effect, o, upon the time­
series. 

The fundamental time-series model regards the system as being sub­
jected to periodic random shocks, the at (which have zero mean). 
Furthermore, a proportion, y, of each shock is assumed to remain in the 
system to influence the movement of the system through time. Hence, 
the effect of some extraneous, random influence on the system is not 
immediately dissipated but continues to work a lessened influence on 
subsequent observations. 

The objective of a statistical analysis is to estimate the value of 8 in 
( 2) which is the effect of the introduction of the new law at time 
n1 + 1 and to determine whether this estimate indicates that the true 
value of o-which is unobservable with real, fallible data-is positive, 

4. G. E. P. Box & G. M. Jenkins, Some Statistical Aspects of Adaptive Optimization 
and Control, 24 J. ROYAL STATISTICAL Soc'y B, 297-343 (1962). 
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negative or zero, i.e., whether the introduction of the law increased, 
decreased or left unchanged the course of the behavioral index. 

Before any analyses of data may proceed, an effort must be made to 
check the appropriateness of the model in ( 1) and ( 2) for the data in 
hand. This can be done in large part by inspecting the graph of the 
time-series and of the correlograms5 of the data. Data which conform 
to the model in ( 1) and ( 2) will have the following properties: 

1. There will be an absence of cycles in the graph of the time-series 
of the data. In addition, the data will appear to fluctuate with 
only minor or momentary unsystematic drifts away from a general 
elevation. In other words, sustained "drifts" from a baseline in 
one direction probably indicate a violation of the model. 

2. The correlogram of the original data, the Zt, is free of cycles and 
shows a random fluctuation around a baseline. ( A correlogram 
is a set of "lag correlations" of the data. The lag 1 correlation 
for a time-series is the correlation calculated on pairs of observa­
tions formed by pairing each observation, Zt, with the observation, 
Zt+1, which follows it by one unit of time. The "lag 2" correla­
tion is the correlation calculated on the pairs of observations Zt 

and Zt+2 for t = 1, ... , n1 + n2 - 2. The "lag k" correlation is 
between the pairs Zt and Zt+k·) 

3. The correlogram of the differences between successive observa­
tions in the time-series, i.e., the correlogram for Zt - Zt-l (t = 2, 
... , n1 + n2 ) has a lag 1 correlation which is large in absolute 
value when y deviates from 1.0 and all higher lag correlations are 
near zero. In fact, the lag 1 correlation of the differences must be 

- (1 - y) 
1 + (1 - y) 2 

where y is an unknown parameter of the model in ( 1). For ex­
ample, if y = 1, all lag correlations of the differences between 
successive values are expected to be zero. Fortunately, approxi­
mate hypothesis tests are available for testing the significance of 
the lag correlations. 6 

5. Correlograms are sets of correlation coefficients obtained by pairing the observa­
tions in a time-series in different ways and calculating the correlation coefficients that 
result. 

6. M. S. Bartlett, On the Theoretical, Specification and Sampling Properties of 
Autocorrelated Time-Studies, 27 J. RoYAL STATISTICAL Soc'y B (1946). 
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Investigation of the Fit of the Model to the Data 

The basic data were traffic fatalities for the sixty months prior to the 
Connecticut speeding crackdown in January 1956 and for the subsequent 
forty months for Connecticut, Massachusetts, Rhode Island, New York, 
and New Jersey. As the first step in the investigation of the fit of the 
model in ( 1) to these data, each monthly fatalities count was divided 
by the number of miles driven in the state during that month. The 
transformed raw data thus became "monthly fatalities per 100,000,000 
miles driven" for all five states. Such a transformation would effectively 
eliminate any upward ( or downward) trend in the data ( no such trend 
is allowed to appear in the model in equation [l]) due to increases in 
population, number of drivers, number of cars, etc. 

Inspection of the plot of "monthly fatalities per 100,000,000 driver 
miles" showed marked yearly cycles, as one might expect. The "peaks" of 
the cycles coincided with the winter months (Dec.-Feb.); the "valleys" 
occurred during the summer. Such cycles are a clear violation of the 
assumptions of the model. (The correlogram for "fatalities/100,000,000 
miles" for Connecticut showed the "damped sine curve" with a period of 
twelve months which is characteristic of data possessing yearly cycles. 
The manner in which the cycles were removed from the data will be 
discussed later.) It will be instructive for the moment to observe the 
"monthly fatalities per 100,000,000 driver miles" with the cycles left in. 
These data for Connecticut appear in Figure 1. 

It can be seen in Figure 1 that the fatalities per 100,000,000 driver 
miles reached the highest point in the period 1951-1955 in December 
1955. To the extent that this "emergency" prompted Ribicoff's decision 
to crack down on speeding in late December 1955, the decline imme­
diately following the crackdown can be partly interpreted as the natural 
tendency of observations chosen for their extremity to "regress" toward 
a central value. 

There is a marked decrease in fatalities per 100,000,000 driver miles 
from December 1955 to January 1956. However, there are also decreases 
in fatalities/100,000,000 miles in six of the eight possible comparisons of a 
December with the immediately following January for the data in Figure 
1. In fact, the drop in fatalities/ 100,000,000 miles from December 1957, 
to January 1958, is almost equal to the drop from December 1955, to 
January 1956. A natural drop from any December to the immediately 
following January in fatalities/100,000,000 miles is quite apparent in 
Figure 1. Such cycles are also obvious in the graphs of monthly fatalities 
per 100,000,000 miles in the four "control" states. 
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Figure 1. Fatalities/100,000,000 Driver Miles by Months 
for Connecticut (n1 = 60, n2 = 48) 

The following technique was employed to remove the cycles from 
the data. Since the cycle had a period of twelve months, the average 
fatalities/100,000,000 miles for each of nine Januaries (1951-1959) was 
subtracted from each January observation. Similarly, observations on 
each of the other eleven months were deviated around the average 
(over nine monthly values) fatalities/100,000,000 miles for that month. 
This was done for each of the five states. ( A constant, 2 or 3, was then 
added to these transformed scores to make them all positive for con­
venience in recording.) 

These transformed data showed neither apparent cycles nor upward 
or downward trends. The data for all five states appear in Figures 2-6. 
In this form, the data appear to satisfy the first condition of equation 
( 1). The next step in the examination of the fit of the model to the data 
involves the correlograms of the observations in Figures 2-6 and the 
correlograms of differences between adjacent observations in the series. 

Correlograms were calculated on the data in Figures 2-6 for pre­
J anuary 1956 (n1 = 60) and post-January 1956 (n2 = 48) data separ­
ately. ( A marked change in level of a time-series due to a treatment 
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effect would alter the autocorrelations from what they would be in the 
fundamental process which generates the observations in the time-series; 
hence, in judging the fit of a model to data from a time-series ex­
periment, correlograms must be calculated separately for pre- and post­
treatment observations.) To conserve space, these correlograms are not 
reproduced here. Each correlogram appeared to be no more than a 
random array of nonsignificant autocorrelations characteristic of the 
correlogram to be expected from data conforming to the model in equa­
tion (1). 

Figure 2. Connecticut Fatalities/] 00,000,000 Driver Miles 
Minus Monthly Average Plus 2 

Figure 3. Massachusetts Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 2 
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Figure 4. Rhode Island Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 3 
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Figure 5. New York Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 3 (n1 = 60, n2 = 48) 
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Figure 5 (continued). New York Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 3 (n1 = 60, n2 = 48) 

Figure 6. New Jersey Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 2 
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The next step in the investigation of the fit of the model in ( 1) to 
the data is to calculate the correlogram for the differences between 
adjacent observations, Zt - Zt-l· It is necessary to calculate these dif­
ferences separately for the pretreatment and posttreatment data. Only 
the correlograms for the sixty pretreatment observations for each state 
are examined here. As was pointed out earlier, if the model in ( 1) is 
satisfied, the lag 1 autocorrelation of the differences Zt - Zt-i will equal 
- ( 1 - 'Y) I [l + ( 1 - 'Y) 2 ], where 'Y is an unknown parameter in the 
model, and the lag 2 and greater autocorrelations of the same data will 
equal zero. Not knowing y, it is necessary to obtain an estimate of it. 
Later it will be seen how the most likely values of y can be found from 
the N observations, Zt, The most likely values of y for the time-series 
in each of the five states were found to be the following: 

Most Likely 
Value 

of 
State y 

Connecticut ....................................... .01 

Massachusetts ................................. .01 

Rhode Island ................................. .01 

New York ............. _......................... .16 

New Jersey .................................... .11 

Corresponding Expected 
Lag 1 Correlation of 
zt - zt-1 if Model 

in (1) Holds 

-.50 

-.50 

-.50 

-.49 

-.49 

Obtained 
Lag 1 

Correlation of 
Zt - Zt-1 

-.555 

-.500 

-.395 

-.551 

-.612 

In light of the above data, the correlograms for the fifty-nine obser­
vations of Zt - Zt-1 for each state should present a lag 1 correlation 
of approximately - .5 and lag 2 and greater correlations which differ 
insignificantly from zero. The first such correlogram-for the Connec­
ticut data-appears as Figure 7. The jagged line in Figure 7 is the plot 
of the lag 1 through lag 30 autocorrelations for the 59 pretreatment 
observations Zt - Zt-l for Connecticut. The lag 1 autocorrelation of 
- .555 agrees quite closely with the expected value of - .50. Super­
imposed upon the graph of the correlogram are two curved lines indi­
cating those points which lie two standard deviations from the mean, 
zero, in the distribution of the lag k autocorrelation coefficient for 
samples of size 59 from a population in which the coefficient is zero.7 
Only the lag 1 autocorrelation coefficient is significantly different from 
zero in Figure 7; hence, the conditions of the model-as reflected in the 
correlogram of Zt - Zt-1-appear to be met by the Connecticut data. 

7. Id. 
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Figure 7. Correlogram of Differences for Pre-Treatment (n1 = 60) 
Monthly Fatalities/] 00,000,000 Driver Miles Minus Monthly Average 

Plus 2 for Connecticut 
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The correlograms ( lag 1 through lag 20) for Rhode Island, Massa­
chusetts, New York, and New Jersey for the Rftysnine pretreatment 
observations Zt - Zt-i appear in Figure 8. None of the lag 1 auto­
correlation coefficients differs appreciably from the expected values of 
-.50 and -.49. The lag 2 and greater autocorrelations are distributed 
around. zero with only three coefficients ( viz., lags 18 and 19 for Massa­
chusetts and lag 4 for New Jersey) lying further than two standard 
errors from zero. ( The curved lines marking off two standard errors in 
the distribution of the autocorrelation coefficients which appear in Fig­
ure 7 can be applied to the data in Figure 8 as well.) The import of 
the data in both Figures 7 and 8 is that the conditions of the model 
in equation (1) which are reflected in the correlograms as Zt - Zt-l 

are reasonably satisRed by the data for the Rve states. 
After transformation of the data and removal of cycles, the data on 

fatalities for the Rve states give no evidence of not satisfying the con­
ditions of the model in equation ( 1). We shall proceed with the anal­
yses assuming the data are adequately described by such a model. 

Analysis for Change in Level of the Five Time-Series 

First, we shall consider in turn the individual analyses for changes in 
level between the 60th and 6lst months of the five time-series in Figures 
2-6. The analysis of the Connecticut data ( Figure 2) will be considered 
in detail. Summaries of the analyses will be presented for the other 
four states. After consideration of the individual analyses, the Rve sources 
of data will be combined into a single analysis comparing Connecticut 
with the "control states." The objective of the statistical analysis is to 
estimate the size of 8, the effect ( increment or decrement) of the 
introduction of the law at time n1 on the time-series, and to decide 
whether the true value of 8 is positive, negative, or zero. In effect, then, 
the statistical analysis answers the question whether the observations 
following the enactment of the law are simply a continuation of the 
time-series of the preenactment observations or whether they have 
shifted up or down from the general level of the preenactment time­
series. It can be shown that ( when one has as many as ten observations 
in time prior to enactment of the law and ten after) the estimate of the 
effect ( increase or decrease) of the law on the quantitative index being 
observed. is given approximately by the difference between exponentially 
weighted averages of the observations closely following the enactment 
of the law and the observations closely preceding the enactment. For 
example, consider a time-series experiment in which there are n1 = 50 
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Figure 8. Correlograms (Lag 1 - Lag 20 auto correlations) of Differences, 

Zt - Zt- 1, for Pre-Treatment Data (n1 = 60) for Mass., R. I., N. J., N. Y. 

(See Figures 3-6 for the data which are "differenced" and correl(lted) 
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points in time prece.ding the enactment of the new law and n2 = 50 
points following. In some instances ( namely when y = .50) the estimate 
of the effect of the law on the index being observed would be given by 

A 

8 = ... + .Ol6z55 + .125Z54 + .25z5:{ + .5z5~ + Z51 - Z50 - .5Z4n -
.25z48 - .125zfi - .Ol6z46 ..•• 

Thus the estimate of the effect of the treatment is the sum of weighted 
posttreatment observations minus the sum of weighted pretreatment ob­
servations where the weights diminish as the observations are further 
removed from the point at which the treatment is introduced. Notice 
that the weight given to the two observations closest to the treatment 
is 1 which equals ( .5) 0 • The weights diminish by a factor of .5 for every 
step taken away from the point at which the treatment was introduced, 
e.g., four steps away from the treatment the observations are weighted 
by ( .5) 3 = 0.125. Observations more than six steps away from the 
treatment receive virtually no weight in determining 8 in this instance. 
This indicates that the further observations are removed from the treat­
ment, the more their course comes under the influence of random influ­
ences irrelevant to the effect of the treatment. 

The analysis is complicated by the fact that one of the parameters, 
y, of the model in equation ( 1) is unknown and must be estimated 
from the data in hand. This parameter is crucial to the determination 
of which variation of the model adequately describes the data and what 
postenactment behavior of the time-series should be expected. It is 
possible to inspect the data in hand ( such as that in Figure 2) and 
determine a distribution of probabilities that the unknown parameter, 
y, takes on any particular value between O and 2, its possible limits. 
This "likelihood distribution" is denoted by h( y/z) and can be inspected 
to determine either the most likely value ( the peak of the h[ ylz] curve) 
of y, called the "maximum likelihod estimate of y," or a range of likely 
values of y. For example, the maximum likelihood estimate of y for 
the data in Figure 2 is O; note that the curve h( y/z) peaks at a value 
of O in Figure 9, which reports the analysis of the data in Figure 2. 
Thus it appears likely that the model underlying the pretreatment ob­
servations in Figure 2 is 

t-1 
Zt = L + (0) I at-i + at= L + at .8 

i = 1 

8. In this instance, i.e., 'Y = 0, the model is equivalent to the model for the "t-test" 
employed in elementary statistics, and the analysis is equivalent to a Hest on pre­
treatment v. Posttreatment observations . 
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A complete analysis involves analyzing the data for every possible 
value of y, these being all numbers between O and 2; and, for each 
value of y between O and 2, observing the value of h( yjz)-the like­
lihood that a certain value· of '}' is the true one-and of the "t-statistic" -
which tells how likely it is that 8 is zero. Such an analysis is illustrated 
in Figure 9, in which is reported the analysis of the data in Figure 2. 
The curve for the likelihood of '}', h( yjz) and the curve of the t-statistic 
appear there. The t-statistic is used to measure the probability that 8, 
the effect of the crackdown on speeding, is zero. ( The value of t is 
equal to the estimated value of 8 from the data-which is denoted by 8 
-minus an hypothesized value of 8 of zero divided by the estimated 
standard deviation of 8.) When the value of the t-statistic deviates 
from zero by two units, i.e., falls below - 2 or above + 2, the evidence 
in favor of a nonzero 8 is great. In most instances, a t-statistic above 
+ 2 or below - 2 has only about 1 chance in 20 of occurring if there 
is no effect, 8, of the enactment of the legislation. Even though a 
t-statistic above + 2 or below - 2 may arise when 8 is zero, there is 
only about 1 chance in 20 that it will. The primary reason why "large" 
( lying more than two units from zero) values of t occur is that 8 
is not zero, i.e., that the introduction of the law at time n1 abruptly 
shifted the level of the time-series either up or down. 

Since calculating the estimated treatment effect, 8, involves the un­
known parameter y ( which has possible values O to 2), 8 and the 
resulting t-statistic are calculated for every value of y from O to 2. 
Independently, the values which '}' is likely to be are found by inspecting 
h(yjz). Putting the two together, one observes whether the values of 
t associated with the likely values of y deviate more than two units 
from zero ( in which case 8 is thought to be not equal to zero) or 
whether they lie close to zero ( which would support the conclusion 
that 8 is zero). This method of analysis is facilitated by graphing 
h( yJz) and t against '}' on the same graph, as is done in the sections 
to follow. 

Analysis for Change in Level of the Connecticut Data (Figure 2) 

The n1 = 60 observations preceding the crackdown on speeding 
in Connecticut and the n2 = 48 post-crackdown observations were sub­
jected to the analysis outlined in Box and Tiao ( 1965) for unknown y. 
The likelihood distribution of y given the 108 observations is denoted 
by h(yJz) in Figure 9. The area under the curve h(yJz) is one unit. 
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The maximum likelihod estimate of y is seen to be 0. The curve denoted 
by t in Figure 9 is the value of 8/a-( 8)-read off the right ordinate in 
the figure-for each value of y from O to 2. 
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Figure 9. h(yjz) and t for Connecticut Fatalities/100,000,000 Driver Miles 
Minus Monthly Average Plus 2 (n1 = 60, n2 = 48) 

As can be seen by inspection of the two curves in Figure 9 almost 
all the mass of the likelihood distribution of y lies between O and 0.25, 
the former being the maximum likelihood estimate and the latter being 
quite unlikely; over this range ( 0 to 0.25) the value of the t-statistic for 
testing the hypothesis that o = 0 ranges from -0.86 to -2.05 (from 
about 1 chance in 3 that o is zero to 1 chance in 20 that o is zero). 
If y is set equal to its maximum likelihood estimate, namely 0, the 
corresponding t of -0.86 indicates that o is zero.9 

The analysis reported in Figure 9 will support neither a confident 
acceptance nor rejection of the hypothesis that o is zero, i.e., that the 
crackdown on speeding had no effect on the fatality rate. The analysis 
proved sensitive to the unknown value of y. 

9. Inspection of the graphs is facilitated by the dotted lines which mark off the 
values of t I df = 106) required for significance at the .01, .05, .10 and .15 levels for a 
one-tailed test of the hypothesis that o = 0. For the four control states the alternative 
hypothesis is that o > 0. 

· 70 · 

https://doi.org/10.2307/3052795 Published online by Cambridge University Press

https://doi.org/10.2307/3052795


ANALYSIS OF DATA ON THE CONNECTICUT SPEEDING CRACKDOWN 

Analysis for Change in Level of the Massachusetts, Rhode Island, 
New York, and New Jersey Data 

In Figure 10, the likelihood distributions and t-statistics for testing 
whether 8 can be considered zero are presented for the four "control" 
states. In all analyses, the likely values of the unkown parameter y fall 
below .30. The maximum likelihood estimates of y are .01 for both 
Massachusetts and Rhode Island. For New York and New Jersey, the 
maximum likelihood estimates of y are .16 and .11, respectively. 
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Figure 10. h(yjz) and t for Fatalities/] 00,000,000 Driver Miles 
Minus Monthly Average Plus a Constant for Mass., R. I., N. Y., and N. J. 

Considering only the value of t for the maximum likelihood estimates 
A 

of y, the Massachusetts data yield the only value of 8 which differs 
significantly from zero. In fact, if 8 were zero for Massachusetts a 
t-statistic as large or larger than that obtained for the Massachusetts 
data would occur less than one time in 100. The t-statistics for Rhode 
Island, New York, and New Jersey do not attain statistical significance. 

Considering the value of t over the ranges of likely values of y, 
neither the Rhode Island, New York, nor New Jersey data present any 
evidence for a value of 8 significantly different from zero. The results 
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for the Massachusetts data are equivocal. At the maximum likelihood 
estimate of '}', t is between 2.3 and 1.6. The value of t drops below + 1 
above the point on the y-scale above which lies approximately 25 per 
cent of the area under h( y/z). 

None of the analyses of the four control states yields compelling 
evidence of any abrupt change in fatality rate associated with the events 
in that state immediately prior to January 1956. The evidence ranges 
from definitely not supporting the presence of abrupt change in the 
case of Rhode Island to slightly equivocal as evidence for an abrupt 
change in the case of Massachusetts. 

The Analysis of a Planned Comparison of Connecticut 
With the Control States 

An inspection of the analyses of the control states' data showed that 
the estimated treatment effects, o, are all positive,'" though statistically 
insignificant. The estimated effect of the tightening of the law in Con­
necticut was negative, indicating a slight decrement in the fatalities rate. 
This state of affairs suggests that the slight decrement in the fatalities 
time-series for Connecticut after the 60th month should be viewed in 
light of the slight tendency of the fatalities rate to rise in the four 
control states. Essentially, we wish now to compare o for Connecticut 
with the average o for the four control states. 

If the time-series for each state can be regarded as independent of 
the others, well-known inferential statistical techniques can be employed 
in making comparisons between Connecticut and the four control states. 
Accordingly evidence was sought concerning the degree of dependence 
among the time-series for the different states. 

Given the normality assumption of the model in ( 1) and ( 2), the 
independence of the various time-series can be demonstrated if the 
series show no intercorrelation. To reduce the burden of data analysis 
without a serious reduction in the sensitivity of the test of the hypothesis 
of no intercorrelation, data for the first fifty months for Connecticut, 
Massachusetts, and New York were used. Using "months" as the unit 
across which correlations were computed, the three intercorrelations of 
these states were computed for the variable "fatalities/ 100,000,000 miles 
minus monthly average." The intercorrelation matrix was as follows: 

10. Bear in mind that no "treatment" was actually applied in these states. 
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Connecticut ....................... . 
New York ............................. . 
Massachusetts .................... . 

Connecticut 
1 

--.105 
-.061 

New York 
-.105 

1 

-.207 

Massachusetts 
-.061 
-.207 

1 

A test was made of the hypothesis that the fifty triplets of observa­
tions were a random sample from a tri-variate normal distribution in 
which all intercorrelations are zero; 11 the test supported the plausibility 
of the hypothesis of zero correlations. 

A single planned comparison will serve to evaluate the significance 
of the change in level of the time-series for Connecticut as compared to _ 
the changes or lack thereof in the four control states. This comparison 
has the following form: 

1/1 = 8c - ( a~I + 8m + 8xy + 8xJ) I 4 

The value of lfl is estimated by replacing the parameters with their 
least-squares estimates; the variance of the comparison is estimated 
from the common residual variance for the five states multiplied by 
[l2 + 4( l/4r]. The estimated value of lfl divided by an estimate of its 
standard deviation is a t-statistic. 1 " However, since the estimated change 
of level effects and residual variances differ for different values of 'Y, 
we shall estimate and test the significance of the comparison for the 
maximum likelihood estimates of ')' for each state and for reasonable 
upper and lower limits to the value of 'Y for each state. 

The hypothesis to be tested is that t/1 = 0, i.e., that the "shift" in level 
of the Connecticut time-series is equal to the average "shift" in the 
four control states, against the alternative hypothesis that lfl < 0, i.e., 
that the shift in the fatality rate in Connecticut at January 1956 is less 
than the average shift of the four control states. 

Because the y's are unknown, we shall specify a range between 
which each 'Y probably lies as well as the maximum likelihood estimate 
of each 'Y· The lower limit to the range for each state will be that value 
of y below which approximately 25 per cent of the area under the like­
lihood distribution of')' lies; the upper limit will mark off approximately 
the upper 25 per cent of the likelihood distribution. The data for 
estimating and testing the comparisons appear in Table 1. 

Note in Table 1 that for the maximum likelihood estimate of y, it is 
estimated that the fatalities/ 100,000,000 miles rate showed a downward 

11. M. S. Bartlett, Tests of Significance in Factor Analysis, 3 BRIT. J. PSYCHOLOGY, 
statistical section, 77-85 (1950). 

12. w. L. Hays, STATISTICS FOR PSYCHOLOGISTS, ch. 14 (1963). 
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shift of .152 fatalities/ 100,000,000 miles coincident with the crackdown 
on speeding. 

TABLE 1 

"' " " VALUES OF /5 AND 0- (o) FOR THE MAXIMUM LIKELIHOOD ESTIMATE AND REASONABLE 

UPPER AND LOWER LIMITS OF 'Y FOR ALL FIVE STATES 

Maximum Reasonable Reasonable 
Likelihood Upper Lower 

State Estimate of y Limit for y Limit for y 

I ~ 
.01 .10 .01 

-.152 -.594 -.152 
o-(8) .176 .391 .176 

1. Connecticut 

~ .01 .15 .01 

8 .472 .259 .472 
&(8) .126 .341 .126 

2. Massachusetts 

~ .01 .10 .01 

8 ,.. .079 .326 .079 
a-<8) .276 .617 .276 

3. Rhode Island 

K' 
.16 .25 .10 
.275 .247 .337 

&(i) .289 .375 .233 
4. New York 

I .11 .20 .Q7 

.198 .093 .331 
a-(8) .292 .391 .236 

5. New Jersey 

TABLE 2 
~ ~ 

RESULTS OF PLANNED COMPARISONS OF i) FOR CONNECTICUT WITH THE AVERAGE l) 
FOR MASSACHUSETTS, RHODE ISLAND, NEW YORK, ANIJ NEW JERSEY 

Maximum Reasonable Reasonable 
Likelihood Upper Lower 

Estimate of y Limit for y Limit for y 

t ; .. :::::::::::::::::::::::::::::::::::::::::::::::~::::::::::::::::::::::::::::: -.408 -.825 -.457 
.269 .484 .241 

t = $/Ir ..................................................... . 
i 

-1.517 -1.705 -1.896 

Prob [t530 < t] ........................................ .. .065 .045 .030 
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For a given set of five values of y ( one for each state, tfJ is estimated 
A 

by subtracting the average 8 for Massachusetts, Rhode Island, New 
A 

York, and New Jersey from the value of 8 for Connecticut. The residual 
variance, assumed to be equal for all five states, is estimated from the 

average of the residual variances for all states. The values of i, & 
i 

and t which correspond to the maximum likelihood estimates of and 

reasonable upper and lower limits to y are reported in Table 2. The 

bottom row of Table 2 is the probability of a Student t-variable falling 
below the value of $; ti . The probabilities in the last row of Table 2 

$ 
can be interpreted as the probabilities of obtaining a value of i as small 
as or smaller than the one obtained when 1/J, the true difference between 
8c and ( 8M + 8m + 8NY + 8:-.J) I 4, is zero. When the maximum like­
lihood estimates are used for each state, it is estimated that the shift 
of the Connecticut time-series is .408 units ( fatalities/ 100,000,000 driver 
miles) greater in a negative direction than the estimated average shift 
for the four control states. A differential this large or larger would 
occur only 65 times in 1,000 ( p = .065) if t/J were truly zero. Hence, 
there appears to be statistically reliable evidence of an abrupt diminu­
tion of the traffic fatality rate in Connecticut in January 1956. 

CONCLUSION 

It can be seen in Table 2 that one may conclude that there is a sta­
tistically significant reduction as of January 1956 in fatalities/ 100,000,000 
driver miles for Connecticut as compared with the four control states. 

The above conclusion must not be accepted without due consider­
ation of a source of potential invalidity in the experiment. As Campbell 
and Ross have quite correctly pointed out, the fact that Governor Ribi­
coff was prompted to take action in late 1955 by the alarmingly high fa­
tality rate for that period introduces the possibility of a regression effect 
from the observations immediately preceding his actions to the observa­
tions immediately following. If one observes a time-series for a period of 
time and selects that observation which appears quite extreme, subse­
quent observations are likely to be relatively less extreme. None of the 
analyses performed here "corrected" in any way for the possibility of this 
regression effect. It is not clear to the author how one might inten­
tionally do so. The inferential techniques applied in this paper are 
designed to assess the statistical stability of an alteration in the course 
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of a time-series; they are indeed quite blind to the underlying causes of 
such alterations. Subjecting the data to inferential statistical analyses 
is a properly cautious procedure when dealing with the unstable, fallible 
( showing random variation) data which the "real world" yields. But 
even after the stability or reliability of a statistical result is established, 
the cautions which Campbell and Ross have raised about the interpre­
tation of such a result ( e.g., is it merely an instance of the regression 
effect) are themselves fully proper. 
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