
AN AXIOMATIC LINE GEOMETRY 

STANTON TROTT 

In their classic treatment (5) Veblen and Young build ^-dimensional 
projective geometry from points and lines. Naturally, each line becomes 
identified with the set of points with which it is incident, and many treat­
ments build from points alone, postulating the existence of certain distin­
guished subsets of the set of points. From either point of view, some labour 
is required, even in the two-dimensional case, to establish duality; hence a 
considerable interest attaches to self-dual systems of axioms; cf. (2; 3). 

But all the self-dual axiom systems known to me build from all of the 
flats, i.e., from the points, lines, planes, . . . , and hyperplanes, postulating 
an imposing edifice of undefined objects right at the start. When the di­
mension of the geometry is odd, there are self-dual flats, and the others can 
be regarded as sets of these. To obtain a duality which is intrinsic we need 
only state the axioms in terms of a single undefined set and binary relations 
on that set, defining additional flats in an appropriate way. 

This paper carries out in detail, for three dimensions, the project just 
suggested. Ultimately, a point will be defined as the set of lines which our 
intuition perceives as going through it, and a plane will be the set of lines 
which lie in it. 

There is given a set L = {a, b, c, . . .} of undefined elements called ''lines" 
together with a reflexive and symmetric binary relation T over L. 

We write this relation in the form a T b, which we read as ua is trans­
verse to b" or "a and b are transverse". If a is not transverse to b, we say 
ua is skew to b" or "a and b are skew". Obviously, the pairs of skew lines 
form a relation S on L which is the complement of T in L X L. Thus any 
two lines a and b satisfy either a T b or a S b, but not both. 

The letters Q and R shall always denote subsets of L. 
If a T b for every a £ Q and every b £ R, we write QT R; in particular, 

a T Q means that a T b for all b £ Q. Then a is called a transversal of Q. The 
set of all transversals of Q is given a symbol in the following definition. 

Definition. TQ = {a: aT Q). 

We shall frequently speak of the set T2Q of lines which are transverse to 
every transversal of Q. Thus 

-PC = T(T<2) = {a: aT (TQ)}. 
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T h e notat ion R T 2 Q means R C T 2 Q. Then every line of R is t ransverse 
to every transversal of Q. 

For our geometry to have any s t ructure , i t is necessary t h a t L and T 
satisfy certain conditions, the axioms of our geometry. 

Axiom T l . (Reflexivity of T ) : For every line a, a T a. 

Axiom T2 . (Symmetry of T ) : aT b implies b T a. 

Axiom T 3 . L contains at least two lines. 

Axiom T4 . For every two lines a and b, T{a, b} contains at least two skew 

lines. 

Axiom T 5 . If a ?* b, cS cf, and {a, b] T {a, b, c, c'}, then T{a, b, c, cf] con­
tains a third line. 

Axiom T6 . If {a, b) T {a, b, c, c', c"\, a ^ 6, cS c', and c' S c", then c" T c. 

Axiom T 7 . Let aT b, b T c, c T d, a S c, and b S d\ then T{a, b, c, d] con­
tains exactly two lines and they are skew. 

T h e reader can easily verify intuit ionally t h a t the foregoing proposit ions 
are valid in real projective geometry of three dimensions. T h e y are, in fact, 
valid in general projective geometry of three dimensions. 

A long chain of definitions and theorems leads up to the definitions of 
points and planes. 

T h e following obvious proposition does no t involve the axioms; it s imply 
facilitates calculations with the operator T . 

PROPOSITION 1. Let Q and R be sets of lines; then Q C R implies TR C TQ 
and hence T2Q C T2i^. 

PROPOSITION 2. Let a S a' and bT {a, af}\ then T{a, a'} contains a line 
skew to b. 

Proof. Using Axiom T4 , let {c, cf} T {a, ar} and cS cf. If cSb or c' S b, 
there is nothing to prove. Otherwise, b T {a} c, a', d) and a T c, c T a', a' T c', 
aS a', cS c'. Hence, by Axiom T 7 , T{a, c, a\ c'\ contains exactly two lines, 
one of them b} the other skew to b. 

Definition. A skew quadrilateral is a set of four lines a, a', b, b! such t h a t 

(1) {a, a') T {M'}> aSa',bSbf. 

T h e symbol for the quadri lateral is {a, af \ b, b'}, and whenever this symbol 
appears , it is to be understood t h a t (1) holds. 

Definition. A tetrahedron 

(2) {a,a';b,b';c,c'\ 
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consists of three pairs {a, a'}, {b,b'}f {c, c'\ of skew lines such that any two 
of the pairs are transverse. Thus (2) is equivalent to, e.g., 

{a, a') T {b, b'\ c, c'}, a S a'. 

Remark. By Axiom T7, any skew quadrilateral can be completed to a tetra­
hedron in one and only one way. This is part of the following proposition. 

PROPOSITION 3. Any two lines and a pair of skew transversals can be completed 
to a tetrahedron. 

Proof. Let a ^ b, {c} c'} T {a, &}, and cS d'. By the preceding remark, we 
may assume that a T b. Let a' T {c, c'}, a' S a (cf. Proposition 2); then 
{a, a'; c, c'\. If af T b, then bT {a, a' ; c, c'\y and, letting b' be the other 
transversal of {a, a'\c, c'}, we have {a, a'\ &, b' ; c, c'}. From now on let 
a ' S 6. 

By the above remark, we can construct {a, a' ; &', i " ; c, c'j. Axiom T6 and 
{6, 6', 6", a, c) T {a, c} imply ô T 6", say. The relation b T 6' would imply 
&T {&', 6";c, </}; b G {a, a7}. Hence 6 S V. We now have \b,b'\c,c'\ which 
can be completed to a tetrahedron by two skew lines, one of which is a. 
Denote the other by a". Then {a, a"; 6, 6'; c, c'}. 

Remark. When a T ô , the completion is not unique (cf. Theorem 8). 

PROPOSITION 4. T{a, a'; b, b'\ c, cf} = 0. 

Proa/. 

T{a, a'; 6, b''; c, c'} C T{a, a'; 6, 6'} P\ T{a, a'; c, c'} (cf. Proposition 1) 

= {c, c'} H {6, 6'} = 0 (cf. Axiom T7). 

We shall frequently mention sets of (linearly) dependent lines. 

Definition (1, p. 205). Given a set Q of one, two, or three lines, a line a is 
called dependent on Q if aT2 Q, i.e., if a is transverse to every transversal 
of Q. Thus, dependence on Q does not depend on any ordering of Q. 

THEOREM 5. T2a = a. 

Proof. Obviously, a T a and hence T2a C Ta. Let b 7e a, If i S a , then 
6 (? T2a. If 6 T a, use Axiom T4 and Proposition 3 to construct {a, af; 6, 6'; 
c, c'}. Then ft g T2a for all b 5* a. 

THEOREM 6. / / a S a', then T2{a, a') = [a, a'}. 

Proof. Use Axiom T4 and Proposition 3 to construct {a, a'\ b, V\ c, c'}. 
Then 

T2{a, a'} C T{&, V\ c, c'} = {a, a'} C T2{a, a'}. 

Theorem 6 disposes of the lines dependent on a pair of skew lines. The 
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lines dependent upon a pair of transverse lines form a configuration which 
is fundamental to our geometry. 

Definition. A pencil (of lines) is the set of lines dependent on a pair of trans­
verse lines. 

The following theorem is a characterization of a pencil. 

THEOREM 7. If aT b, a ^ b, then 

T2{a,b] = T{a, 6, c, c'} 

for every choice of c, c' such that {c, c'\ T {a, b}, c S c'. 

Proof. Proposition 1 and {a, b, c, c'} C T{a, b) imply 

T2{a, b) CT{a,b,c,cf). 

Conversely, let d T {a, 6, c, c'} and let d' T {a, 6}. We wish to prove d T d;, 
i.e., d T2 {a, 6}. 

Assume that d S d'. Neither d nor d' coincides with a, &, c, or £r. Use Propo­
sition 3 to complete {a,b,d,d'} to a tetrahedron {a, a'; b, b'; d, d'}. Since 
{a', c, c'} T {6, d} and cS c', Axiom T6 implies a' T c or a' T c'. Symmetric­
ally, {&', c, c'} T {a, rf} yields ô ' T c or V T c'. Finally, {d', c, c'} T {a, b] 
yields d' T c or d' T d'. Thus, one of the two lines c and c' must be a trans­
versal of at least two of the lines a', b', d'. Since {a, a!\ b, b'; d, d'\ is a tetra­
hedron and neither c nor c' belongs to {a, a!'; 6, 6', d, d'}, this is impossible. 

THEOREM 8. Every pencil has at least three lines. 

Proof. By Theorem 7, this theorem is simply a paraphrase of Axiom T5. 

PROPOSITION 9. If cT2 {a, b}, then T{a, b, c) = T{a, b}. 

Proof. Proposition 1 yields at once T{a,b,c} C T{a, b\. On the other 
hand, if dT{a,b}, then cT2 {a, b] implies cT d. Thus dT {a, b, c}, and 
T[a, b) C T { a , b, c\. 

COROLLARY. If cT2 {a, b], /Aew T2{a, 6, c] = T2{a, &}. 

PROPOSITION 10. If cT2 {a, b}, c ^ a, Jfeerc T{a, c} = T{a, b). 

Proof. If a S 6, then cT2 {a, &}, c ^ a imply, by Theorem 6, c = è, and 
the theorem is trivial. 

li a = by then cT2{a, &} implies the contradiction, c = a. Hence, we may 
suppose that aT b, a ^ b, and b 5* c. First we show that 6 T 2 {a, c). Let 
b' T {a, c) and suppose, contrary to what we wish to prove, that b' S b. Use 
Proposition 3 to construct {a, a!\ b, b''; c, cf\. Then c' T {a, &}. Since c T 2 j a , ô ( , 
this would imply cTc', a. contradiction. Hence bTbf, and bT2 [a, c\. By 
Proposition 9, cT2 {a, b] and 6 T2 {a, c) imply 
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Tja, b) = Tja, b, c] = Tja, c}. 

COROLLARY. Suppose that a 9^ c. Then cT2{a,b\ if and only if 
T2{a,b] = T2{a,c}. 

THEOREM 11. A pencil is determined by any two of its lines. 

Proof. Let aT b, a 9^ b, {c, d} T2 {a, b], and c 9e d. Choose the notation 
so that a 7e c. Using Proposition 10 and its Corollary twice, we obtain 

T2ja, b) = T2ja, c] = T2{c, a} = T2{c, d}. 

COROLLARY. TWO distinct pencils have at most one line in common. 

PROPOSITION 12. For each pencil R there are pencils Q, Qf such that RC\Q 
is a line, RC\Q is void. 

Proof. Let R — T2ja, b} = Tja, b, c, c'} ; cf. Theorem 7. Use Proposition 3 
to construct {a, a'; b, V\ c, c'}, and let Q = T2{a, c}, Qf = T2{a'y b'}. Then 
a Ç RC\ Q while R 7^ Q. Furthermore, by Proposition 4, 

RC\Q' = T{a, 6, c, c'} C\T{a'\V', c, J} = T{a, ar; b, b'; c, c'} = 0. 

The next theorems deal with lines dependent on three lines which are 
independent in the following sense: no one depends on the other two. By 
Theorem 11, three mutually transverse lines are independent if and only if 
they do not all lie in one pencil. 

Definition. A bundle is the set of lines dependent on three independent and 
mutually transverse lines. 

Later on we shall be able to partition the bundles into two disjoint classes. 
The bundles of one class will be called point bundles or, simply, points, while 
the bundles of the other class will be called plane bundles or, simply, planes. 
The next theorem is a characterization of a bundle. 

THEOREM 13. If a, b, and c are independent and mutually transverse, then 

T2{a,b,c\ = T{a,b,c}. 

Proof. By hypothesis, {a, b, c} C Tja, b, c}, and therefore, by Proposition 1, 
T2{a, b, c] C Tja, b, c}. To prove the opposite inclusion, let {d, d'\ T {a, b, c] 
and suppose, contrary to what we wish to prove, that d S d'. Then by 
Theorem 7, Tja, b, d, d'\ = T2ja, b\, and, since c T {a, b, d, d'\, it follows 
that cT2 {a, b\ and a, b, c are not independent. Therefore d T d''. 

Because of Theorem 13, bundles may be designated by Tja, b, c} rather 
than by T2ja, b, c\. 

THEOREM 14. A bundle is determined by any three of its independent lines. 

Proof. Let a, b, and c be independent and mutually transverse. Let a7 Tja, b, c\, 
d i T2{b, c}. Since {d, b, c\ C Tja, b, c), Theorems 13 and 1 yield 
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T{a, b, c} = T2{a, b, c) C T{d, b, c) = T2{d, b, c] C T3{a, b, c] = T{a, b, c\. 

Hence T{d, b, c} = T{a, b, c). Now let d, e, and / be three independent lines 
of T{a, by c}. By Proposition 10, and its Corollary, T2{a, c] ^ T2{b, c}. Hence 
by Theorem 11 and its Corollary, T2{ay c] r\T2{b, c] = c; 

T2{a, c] r\ T2{b, c) r\ T2{a, b} = 0. 

Hence, without loss of generality, we may assume that d $ T2{b, c\. Then, as 
we proved above, T{a, b, c} — T{d, b, c\. Since e ^ d, the above argument 
shows that e (? T2{d, b) Pi T2{d, c], say, e (Z T2{d, c}y so that 

T{b, c, d] = T{e, d, c). 

Finally, T{c,d,e} = T{/, d, e}, since / g T2{d, e\. Combining these results 
yields T{a, b, c} = T{d, e,f}. 

PROPOSITION 15. Any two lines of a bundle determine a pencil contained in 
the bundle. 

Proof. Let a, b, and c be independent and mutually transverse. Let 
{d, e) T {a, &, c}, d ^ e. Then, since T{a, b, c} = T2{a, b, c\, we have d T e, 
and T2{d} e\ is a pencil. Furthermore, {d, e\ (ZT{a, b, c\ together with 
Theorems 1 and 13 yield T2{d, e] C T3{a, b, c] = T{a, b, c\. 

PROPOSITION 16. If A is a bundle and d is a line not in A, then Q = A C\Td 
is a pencil. 

Proof. Let A — T{a, b, c], where a, b, and c are independent and mutually 
transverse. Then Q = T{a, 6, c, d}. Because d d A, we may suppose that 
dS a. Let eT {a, d}. If e (? A, suppose (to be definite) that eSb; then d, e, a, 
and b satisfy the hypothesis of Axiom T7 and there are skew transversals/ and 
/ ' of {d, e, a,b}. Because {c,f,f} T \a, b}, Axiom T6 implies cTf, say. Thus 
/ T {a, b, c, d\. In other words, Q is never void. We next wish to construct 
a second line in Q. Since Q C A, we may assume, by renaming/, that c £ Q. 
If a S d, use Proposition 2 to construct {a, d; c, cf) and Proposition 3 to con­
struct {a, d; c, d; e, d). By Axiom T6, the relation {b, e, d\ T {a, c) implies 
b T e, say. Thus e T {a, b, c, d), i.e., e £ Q. 

Since e'T {a, c] with eS d, we have e (£ T2{a, c] although e T2 {a, b, c]. 
Hence, by Theorem 14, A = T{a, e, c}. Finally, Theorem 7 yields 

Q = A P (Td) = T{a, g, c, d} = T{e, c, a, d] = T2{e, c\. 

PROPOSITION 17. Two pencils in the same bundle have a line in common. 

Remark. Of course, by the corollary of Theorem 11, two pencils with more 
than one line in common coincide. 

Proof. Let T2{a, b) and T2{c, d] be pencils in the bundle A. We may assume 
that c G T2{a, b], in particular, A = T{a, b, c) ; cf. Theorems 13 and 14. By 
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Axiom T4, a and b have a pair of skew transversals, and, if both were trans­
verse to c, they would both be in T{a, b, c} and, hence not skew. Thus there 
exists a line c' transverse to {a, b\ but skew to c. Symmetrically, we may 
assume that b (? T2{c, d] and construct a line b' £ T{c, d] such that bS b'. 
Applying Axiom T7 to the four lines b', c} b, and c1', we see that T{b'', c, 6, c'} is 
a pair of skew lines e, e', say. By Axiom T6, we can choose the notation so 
that aT e. Thus eT {a, b, c, c'} = T2{a, b} ; cf. Theorem 7. Furthermore, 
because {d, e\ C A, we have d T e. Hence ^ T {c, J, 6, 6'} = T2{c, d} as well. 

PROPOSITION 18. If Q is a pencil and d is not a transversal of Q, then there 
is one and only one line in Q transverse to d. 

Proof. We first prove that Q P\ Td contains at most one line. Suppose that 
{a, b) C Q r\ Td, a ?£ b. Then Q = T2{a, b), by Theorem 11; and, by Pro­
position 1, dT {a, b] implies T2{a, b} C Td. That is, d T Q, contrary to 
hypothesis. To prove that Q Pi Td has at least one line, let 

Q = T2\a,b} = T{a,b,c,cf), cScf. 

Then A = T{a, b, c} is a bundle containing the pencils Q and {e: e G 4 , 
^ T J J ; cf. Proposition 16. Proposition 17 implies the existence of a line in 
QC\Td. 

PROPOSITION 19. Each pencil is contained in exactly two bundles. 

Proof. Let Q = T2{a, b] = T{a, b, c, c'\, where cS d'; cf. Theorem 7. Then 
c Q Q and c' S Ç, so that T{a, b, c} and T{a, &, c'} are both bundles. They are 
distinct, and both contain Q. Conversely, let T{a, b, d) denote a bundle 
containing Q. Then {c, c', d} T {a, &} ; by Axiom T6, c T J , say, and 

T{a, b, d) = T{a, b, c] ; 
cf. Theorem 14. 

PROPOSITION 20. If A and A' are distinct bundles each containing a pencil Q, 
then Q = A C\ A'. 

Proof. Let Q = T2{a,b}. Obviously, Q C A H A'. If A C\ A' were to 
contain a line c not in Q, then, by Theorem 14, A = T{a, ô, c} = ^4', con­
tradicting A ^ A'. 

We now interrupt the discussion of pencils and bundles to prove two 
theorems characterizing sets of lines dependent on three lines which are not 
mutually transverse. They will not be used in the sequel. 

THEOREM 21. If a, a', and a" are mutually skew, then they are independent, 
and any two lines of T{a, a', a"} or of T2{a, a', a"} are skew. 

Proof. The independence follows from Theorem 6. Also, by Axiom T6, no 
two lines of T{a, a', a") can be transverse. If we can show that T{a, a', a"\ 
contains at least three lines, Axiom T6 also implies that no two lines of 
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T2{a, a', a"} are transverse. Let dT {a, a'\. By Proposition 19 there is a 
bundle A' containing T2{a', d}, and, since a S a\ we have a $ Af. By Pro­
position 16, {g: g G A', gT a) is a pencil Q. Theorem 8 assures that Q has 
three distinct lines d\, d2, and d3, say. By Theorem 11, 

Q = T 2{d„d,}, l ^ i < j ^ 3 . 

Since a ' T Ç , a T2 Ç would imply aT a'. Therefore a is independent of Q; 
in particular, if i ?± j , then a, du djf are independent. Since, e.g., d3 T {a, di, d2\, 
Theorem 14 shows that the three bundles T{a, du df\ are identical. Let 
A = T{a, du dj\. For k = 1, 2, 3, let 5^ 3̂  ̂ 4 be the other bundle con­
taining T2{a, dk}\ cf. Proposition 19. If, for k 9^ i, dt G i^ , Theorem 14 
would imply that Bk = T\a, di} dk} = A. Hence dt G Bk if and only if i = &; 
and the Bk are distinct. 

By Proposition 17, the pencils 

Bk H Ta' and £* n T a " 

have a line bk in common. Thus 6̂  T {a, a', a"}. I t remains to show that 
the bk are distinct. Suppose, for example, that b\ = b2. Then b\ G 5 i Pi ,82, 
and this would imply that b\ T {a, a\, d2}, i.e., èi G -4. Hence, 

T2{a, bx] <ZAr\B1r\B2. 

Then 4̂ ^ 5 i , 4̂ ^ 5 2 would, by Theorem 19, imply the contradiction 
B\ = ^ 2 . Hence {a, a', a"} has three distinct transversals b\, 62, and 63. 

COROLLARY. The two sets T{a, a', a"} and T2{a, af', a") are disjoint. 

Proof. By Theorem 21, any two lines of T{a, a', an\ are skew. Hence no 
line of Tja, a', a") can belong to T2{a, a', a"). 

Remark. The set T{a, a', a") is called a regulus and its elements, generators. 
The elements of T2{a, a', a"} are called directrices of T{a, a', a"\. By Pro­
position 1, {a, a', a"} T {6, &', &"} implies T2{6, i ' , 6"} C T{a, a7, a"}, i.e., 
the directrices of T{bf bf, b"} are contained in another regulus of which 
{b, b't b

,f} are generators. If every line of T{a, a\ a"} is transverse to every 
line of T{b, b', b"}, then we also have T{a, a', a"\ C T2{b, b', b"}, so that 
T{a, a', a"\ = T2{b, bf, b"\ and the regulus T{a, a', an\ is uniquely deter­
mined by any three of its generators. For a counterexample, see (4, p. 319). 

THEOREM 22. Let aT b, a ^ b, af S a. Then 

T2{a, b, a'} = T2{a,b} WT2{a' , c], 

where c is the line in T2{a, b] which is transverse to a'\ cf. Proposition 18. 

Proof. We first show that T2{a, b, a'} is unaltered if b is replaced by any 
line of T2{a, b] other than a. Let dT2 {a, b}, d ^ a. 

Let eT {a, b, a'} ; e could be, e.g., the line of Proposition 18. Then e T {a, b] 
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and dT2 {a, b) imply dT e. Thus eT {a, d, a'}, and T{a, 6, a'} C T{a, d, a'} ; 
hence T2{a, d, a'} C T2{a, 6, a'}. But we also have b G T2{a, d}, 6 ^ a, and, 
hence, symmetrically, T2{a, b, a'} C T2{a, J, a'}. 

From now on we may suppose that bT af, and we have to prove that 

T2{a, b, a'} = T2{a, b} W T2{a', 6}. 

The relations {a, b} C {#, 6, a'} and {a', &} C {#> &, &'} imply that 

T2{a, 6} U T V , è ) C T ^ ^ ' ) . 

Conversely, suppose that d T2 {a, 6, a'}. We have to show that 

d G T2{a, b} UT 2 {a ' , 6}. 

Let C and C be the bundles containing T2{a, b) ; cf. Proposition 19. By Pro­
position 16 there are lines e G C and #' G C such that eT a', e 9^ b, and 
e 'T a', e' 7^ b. Then eT 2 [a, b) would imply a T2 {e, &}, and, in particular, 
aT ar\ hence C = T{a, b, e). Similarly, C = T{a, ô, e'}, and C 9* C implies 
e S e'. By Theorem 7, 

T2{a, 6} = T{a, b, e, e'\ and T2{a', 6} = T{a', b, e, e'\. 

We have {d, a, ar) T {b, e], bT e, a S a', so that, by Axiom T6, dT a, say. 
Hence d G T{a, b, e, e'\ = T2{a, b\. 

We now resume the investigation of bundles and pencils. 

PROPOSITION 23. The intersection of a bundle and a pencil is either void or 
a line or the pencil. 

Proof. When the intersection contains more than one line, Proposition 15 
implies that the entire pencil is contained in the bundle. 

PROPOSITION 24. For each pencil Q there are bundles A, A', and A" such 
that A P Q = Q, A' P Q is a line, A" P Q is void. 

Proof. Let Q = T{a, b, c, c'} and use Proposition 3 to construct {a, a''; 
bJb

f;c,cf}. Let T{a, b, c} = A, T{af, b, c\ =A'; T{a', V, c} = A". Then 
a, b G A P Q, so that, by Proposition 23, A P Q = Q. If d G A' P Q, then 
d T {a, a', c,d). By Axiom T7, d G {&,&'}; and ft S 6' and d T ft imply d = 6. 
Finally, by Proposition 4, 4 " Pi Ç C T{a, a' ; 6, V ; c, c'} = 0 . 

PROPOSITION 25. For eac/̂  bundle A there are pencils Q, Q', and Q" such 
that Q C A, Qf C\A is a line, Q" P A is void. 

Proof. Let A = T{a, b, c], {c, c'} T {a, b], c S c ' ; cf. Proposition 19. Use 
Proposition 3 to construct {a, a''; b, b'; c, c'}. Let Q = T2{a, &}, Q' = T2{a', b}} 

Qii _ T2{a', 5'}, and compare the proof of Proposition 24. 

PROPOSITION 26. The intersection of two distinct bundles is either a pencil, 
a line, or void. 
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Proof. If the bundles C and C have two distinct lines a and b in common, 
Proposition 15 shows that they contain the pencil T2{a, b}. If c G CPi C, 
c G T2{a, b), then by Theorem 14, C = T{a, b, c} = C. 

PROPOSITION 27. For mcÂ bundle A, there are other bundles B, B', and B" 
such that A P B is a pencil, A C\ B' is a line, and A P B" is void. 

Proof. Let A = T{a, b, c}, {c, c'} T {a, b}, cS d. Use Proposition 3 to con­
struct {a, a'; b, V ; c, c'}.LetB = T{a', b, c),Bf = T{af, V, c),B" = T{a', V, c'\. 
Then T2\b, c) C A P B, and, by Proposition 26, A P B = T2{b, c}. Further­
more, A P W C T{a, a'\ b, V) = {c, c'}. Since c € A r\ B' and cSc', we 
have c' G A P B'. Thus A P Bf = c. 

Finally, by Proposition 4, A P B" = T{a, a'; b, bf ; c, c'} is void. 

LEMMA 28. If A, B, and C are distinct bundles, and if A C\B and A P C 
are lines, then B P C is a line. 

Proof. Case (i). b = A C\ B ^ c = A P C. Thus b G C, c G B; hence 
lines V G C and c' G B exist such that b S V and cS c'. Since b, c G A, we 
have b T c. Then V, c, b, c' satisfy the hypothesis of Axiom T7. Let 

{a, a'} T [b\ c, b, cr\, a S a'. 

Then T{a, b, c], T{a',b,c] are distinct bundles containing T2{b, c}. Let 
A = T{a, b, c)\ cf. Proposition 19. Since a 7^ b, a G B, and we obtain, by 
the same proposition, B = T{af, b, cr] ; similarly, C = T{af, V, c). Then 
a' G B r\C. Br\C = T{a', b, b', c, c'] C T{b, V ; c, c'\ = {a, a') by Axiom 
T7. Since a S af, we obtain B C\ C = a!. 

Case (ii). AC\B = AC\C = a, say. Then a = , 4 P £ P C G £ P C . 
Suppose that B P C ^ a; then Proposition 26 implies that Q = B P C is a 
pencil. By Theorem 11, there exists a b such that Q = T2{a, 6}. By Propo­
sition 16, the lines in A transverse to b form a pencil R. Let c ^ R, c 9e a; 
thus c £ i . But, by hypothesis, c d B, c d C, and therefore 

c d B r\C = T2{a, b}. 

Therefore, a, b, and c are independent, and T2{a, b} C B C\ CC\T{a, b, c}. 
Since B 9^ C, Proposition 19 would yield T{a, b, c} is either B or C. But c 
is in neither B nor C. 

LEMMA 29. If A, B, and C are distinct bundles, and if A C\ B and A P C 
are pencils, then B C\ C is a line. 

Proof. Let A P B = R, A P C = Q. Since A, B, and C are distinct, 
Proposition 19 excludes the possibility that A P B P C = R. Thus R 9^ Q. 
As R C A, Q C A, it follows from Proposition 17 that R P Q is a line a, say. 
Let R = T2{#, b], Q = T2{a, c}. Then a, 6, and c are independent in A so 
that A = T{a, b, c}. Suppose that d G B P C; then d T {a, b, c}. Therefore 

deAr\Br\c=(Ar\B)r\(Anc)=Rr\Q = a. 
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LEMMA 30. If A, B, and C are bundles with B ^ Q, and if A C\B and 
A C\ C are void, then B C\ C is a line. 

Proof. Let A = T{a, b, c}. Then b, c Q B, and by Propositions 16 and 17, 
(Bf\Tb)r\ (Br\Tc) is a line a', say. Then afT{b,c}, a! $ A\ hence 
a! S a. Let A' = T{af, b, c}. Then a' G A' n B. Since 

A r\A' = T2{b,c} 9* 0, 

we have A' ^ B. Also, since yl C\ A' is a pencil while A C\ B is void, Lemma 
29 shows that A' C\ B cannot be a pencil; hence A' C\B — a' ; cf. Theorem 
26. Symmetrically, A' C\ C is a line. Therefore, by Lemma 28, B Pi C is a 
line. 

THEOREM 31. Given three distinct bundles, the pairwise intersections are either: 

(a) void, void, line; or 
(b) line, line, line; or 
(c) pencil, pencil, line; or 
(d) void, pencil, line. 

Proof. If two of the intersections are both void, both lines, or both pencils, 
then Lemmas 30, 28, 29, respectively, lead to (a), (b), or (c). But if no two 
of the intersections are of the same type, then only (d) is possible. 

We now divide the set of all bundles into two disjoint classes. 

Definition. Two bundles A and B are said to be equivalent, A ^ B, if they 
coincide or have just one line in common. 

PROPOSITION 32. Equivalence is reflexive, symmetric, and transitive. 

Proof. I t is obvious that equivalence is symmetric and reflexive. Its tran­
sitivity follows from Lemma 28. 

THEOREM 33. There are exactly two equivalence classes. 

Proof. Let A, B, and C be bundles, A ^ B, A ^ C. Thus A C\ B is either 
void or a pencil, and so is A C\ C. Hence, by Theorem 31, either B = C or 
B C\ C is a line, i.e., B ~ C. 

We now name the bundles of one of the equivalence classes "points", 
those of the other, * "planes". We note that our axioms do not enable us to 
distinguish between the two classes. Thus, our designations are arbitrary, 
and our line geometry naturally allows dualities. Hereafter, points will be 
denoted by capital italics, and planes, by lower case Greek letters. Lines 
shall continue to be denoted by a, b, . . . , g. The set of all points shall be 
denoted by P. The letters x, y, and z shall have a meaning to be given later. 

PROPOSITION 34. 7/ the intersection of two bundles is a pencil, then one of 
them is a point and the other is a plane. 
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Proof. By definition, the two bundles are no t equivalent . 

In conclusion, we prove t h a t line geometry is projective. Le t us s ta te ex­
plicitly wha t we mean by a three-dimensional projective geometry. 

There is given an abs t rac t set P = {A, B, C, . . .} of points and a class 
{a, b, c, d, . . .} of subsets of P called lines. A flat is a subset of P which con­
tains with every two of its points every line containing them. T h e points, 
lines, and flats satisfy the following axioms. 

Axiom P I . Two distinct points are contained in exactly one line. 

Axiom P2 . If A 9* B; C ^ D; A,B £ a; C, D £ b; A, C £ c\ B, D G d; 
and a Pi b = 0, then c H d = 0. 

Axiom P 3 . Every line contains at least three points. 

Axiom P4. There is a set of four points but no set of less than four points 
such that any flat containing that set contains all the points. 

T h e fundamental relation in projective geometry is incidence of a point 
with a line. This notion is introduced into line geometry by the following 
definition. 

Definition. If a £ A, we say the point A is (or lies) on the line a. 

T H E O R E M 35. (Cf. Axiom P I . ) Two distinct points are on exactly one line. 

Proof. T w o dist inct points are equivalent . 

T H E O R E M 36. (Cf. Axiom P2.) If A ^ B and C ^ D, then, 

{A C\B)S (Cr\ D) implies (A C\ C) S (B H D). 

Proof. A = C would imply (A H B) T ( C H D ) . Similarly, B ^ D. Let 
AC\B = a, CC\D = af, A C\ C = b, B C\ D = c. Then aT c, cTa', 
a' T b, b T a, and a S a'. Suppose, cont ra ry to wha t we wish to prove, t h a t 
bT c. Then b and c have the skew transversals a and a', so t h a t a, b, and c 
are independent and mutua l ly t ransverse. Since c $ A, we have A ^ T{a, b, c), 
b u t both contain the pencil T2{a, b}. Hence, by Proposit ion 34, T{a, 6, c) is 
a plane a, say. Similarly, T{a ' , b, c) is a plane a, say, and aSa' implies 
a T6- a . By equivalence of planes, a H a ' is a line; b u t a C\ a contains T2{b, c\. 

T H E O R E M 37. (Cf. Axiom P3.) For each line a, there are distinct points, 
B, C, and D such that B C\ C C\ D = a. 

Proof. Using Axioms T 3 and T 4 and Proposit ions 2 and 3, const ruct 
{a, a''; b, V\ c, c'}, choosing nota t ion so t h a t T{a, b, c] is a plane a, say; cf. 
Proposit ion 34. By Theorem 8, the pencil T2{b, c] = T{b, c, a, af) has a 
third line d, say. If V T d, then V G T2{d, c] = T2{b, c}, and V T 5. Hence 
ô' S d, and, symmetrical ly, cr S d. Next , observe t h a t 

https://doi.org/10.4153/CJM-1968-091-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-091-3


LINE GEOMETRY 951 

a — T{a, b, c] = T{a, d, c) = T{a, &, d] 

and that a contains the pencils 

T2{a,b}, T > , c}, T2{a,d}. 

Let J5, C, and JD be the points containing T2{a, 6}, T2{a, c}, and T2{a, d}, 
respectively. The relations V Sb, bf S d, c' S d imply that B, C, and D are 
distinct. Finally, a£BC\Cr\DCBr\C = a, since J3 ~ C. 

We have now established in line geometry the validity of all theorems 
which do not depend upon the finite dimension axiom, P4. We express the 
definition of a flat in the language of line geometry. 

Definition. A flat is a set x of points such that A, B G x, ^ 4 ^ 5 , 
.4 P B P G 7* 0 imply G G x. 

Definition. A "line of points" is the set â = {G: a G C} determined by a 
given line a. 

Definition. A "plane of points" is the set â = {C: C C\a ^ 0} determined 
by a given plane a. 

PROPOSITION 38. A point set is a flat if and only if it is one of the following: 
(i) the void set 0, 

(ii) a point, 
(iii) a line of points, 
(iv) a plane of points, 
(v) the set P of all points. 

Proof. Obviously, (i), (ii), and (v) are flats. Furthermore, if â is a line of 
points, then G G â if and only if a G G. Let A, B G â, A ^ B, AC\BC\G ^ 0. 
Then A C\ B = a\ therefore, 4̂ P J3 P G = a; a G G. Hence G Ç â, and â 
is a flat. Also, if â is a plane of points, then G G â if and only if a P G 9^ 0. 
Let A, B G â, 4 5* S and A P 5 H G 5* 0; then a H 4 , a H S, being not 
void, are pencils. By Proposition 17, ô = (a P ^4) Pi (a P B) is a line, and 
hence b = A C\ B £ a. Since 4 P B P G ^ 0, we have A P 5 P G - 6; 
b £ G; a HLG Z) b ^ 0, and G G â. Conversely, let x be a flat. If x ^ 0, it 
contains a point ^4, say. If x 9e A, then x contains another point B, say. 
Putting c = A r\ B, we have that 

c = {G: c G G} C x. 

If c is a proper subset of x, then x contains a point C which does not contain 
c. Let B P C = a, C P ^ 4 = f r . Then a, 6, and c are mutually transverse 
and, since c Q C, independent. If a = T{a, b, c], then a P C = T2{a, b}, and, 
by Theorem 34, a is a plane. Let G G â. Thus a C\ G and « P C are pencils 
in the same bundle, and, by Proposition 17, a P C P G is or contains a 
line d; d £ C C\G. Furthermore, dT c. Let E be the point containing T2{c, d}. 
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Then c £ E implies E £ c C oc, while C £ x, C (£ c; hence C ^ E. Further­
more, Cr\Er\GZ)dr\E = d ^ 0. Therefore, G £ x and â C #• Finally, 
let â be a proper subset of x. Thus there is a point D f x such that D C\a = 0. 
Let G be any point in space and let D C\ G = e. By Proposition 16, R = a Pi Te 
is a pencil. Let E denote the point containing R. Then E r\ a 9e 0 and 
D C\ a = 0 imply that D j* E, while D r\Er\G = e ^ 0; hence G Ç x. 
Thus x = P. 

The following proposition is well known to be equivalent to Axiom P4. 

THEOREM 39. There is a linearly ordered set of five distinct flats, and no 
linearly ordered set of flats has more than five elements. 

Our demonstration that the geometry of the points of a line geometry 
defined by Axioms T1-T7 is projective is now complete. I t may be men­
tioned that, by modifying their definitions, the flats of our geometry may 
also be interpreted as sets of lines. 

My thanks are due to Professor Peter Scherk for his helpful advice in the 
preparation of this paper. 
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