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Abstract

The brain monoamines serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) both play an integrative role in behavioural and

neuroendocrine responses to challenges, and comparative models suggest common mechanisms for dietary modulation of transmission

by these signal substances in vertebrates. Previous studies in teleosts demonstrate that 7 d of dietary administration with L-tryptophan

(Trp), the direct precursor of 5-HT, suppresses the endocrine stress response. The present study investigated how long the suppressive

effects of a Trp-enriched feed regimen, at doses corresponding to two, three or four times the Trp levels in commercial feed, last in juvenile

Atlantic cod (Gadus morhua) when the fish are reintroduced to a diet with standard amino acid composition. We also wanted to determine

whether Trp supplementation induced changes in brain monoaminergic neurochemistry in those forebrain structures innervated by DA-

and 5-HTergic neurons, by measuring regional activity of DA and 5-HT in the lateral pallial regions (Dl) of the telencephalon and nucleus

lateralis tuberis (NLT) of the hypothalamus. Dietary Trp resulted in a dose-dependent suppression in plasma cortisol among fish exposed to

confinement stress on the first day following experimental diet; however, such an effect was not observed at 2 or 6 d after Trp treatment.

Feeding the fish with moderate Trp doses also evoked a general increase in DA and 5-HT-ergic activity, suggesting that these neural circuits

within the NLT and Dl may be indirectly involved in regulating the acute stress response.

Key words: L-Tryptophan: Atlantic cod: Stress response: Nucleus lateralis tuberis: Lateral pallial telencephalon

The monoamines serotonin (5-hydroxytryptamine; 5-HT) and

dopamine (DA) are important neurotransmitters/modulators

involved in integration of the behavioural and neuroendocrine

responses to stress(1–4). Comparative models suggest common

mechanisms for dietary modulation of release and trans-

mission by these signal substances in vertebrates. For instance,

it has been demonstrated that dietary supplementation with

the essential amino acid L-tryptophan (Trp), the immediate

precursor of 5-HT, enhances brain serotonergic activity in

teleosts(5–8) and mammals, including man(9). In general, the

synthesis of central 5-HT depends largely on the plasma con-

centration ratio between Trp and other large neutral amino

acids (LNAA), since they all enter the brain through the same

carrier transporter located on the blood–brain barrier(10,11).

Once inside the neuron, Trp is transformed by tryptophan-

5-hydroxylase (EC 1.14.16.4) into 5-hydroxytryptophan, which

*Corresponding author: Dean Basic, email dean.basic@nvh.no

Abbreviations: 1xTrp, control feed containing 0·47 % L-tryptophan; 2xTrp, experimental feed containing 0·82 % L-tryptophan; 3xTrp, experimental

feed containing 1·14 % L-tryptophan; 4xTrp, experimental feed containing 1·65 % L-tryptophan; 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT,

5-hydroxytryptamine (serotonin); DA, dopamine; Dl, lateral pallial region of telencephalon; DOPAC, 3,4-dihydroxyphenylacetic acid; HPA, hypothalamic–

pituitary–adrenocortical; HPI, hypothalamic–pituitary–interrenal; LNAA, large neutral amino acid; NLT, nucleus lateralis tuberis; TDO, tryptophan 2,3

dioxygenase; Trp, L-tryptophan.

British Journal of Nutrition (2013), 109, 2166–2174 doi:10.1017/S0007114512004345
q The Authors 2012

B
ri
ti
sh

Jo
u
rn
al

o
f
N
u
tr
it
io
n

https://doi.org/10.1017/S0007114512004345  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114512004345


subsequently is decarboxylated to 5-HT by aromatic L-amino

acid decarboxylase (EC 4.1.1·28)(12,13). Furthermore, among

the LNAA competing with Trp for access into the brain is tyro-

sine. This amino acid is the precursor of the catecholamine

DA, and it has been suggested that Trp may influence central

DA activity through this mechanism(7).

Dietary manipulations of the ratio between Trp and other

LNAA have been used to investigate the involvement of cen-

tral 5-HT in the regulation of appetite, aggressive behaviour,

and the neuroendocrine stress response in mammals, including

human subjects as well as in comparative vertebrate models,

such as fish(5,14,15). Studies in rainbow trout (Oncorhynchus

mykiss) have shown that dietary Trp enrichment suppresses

aggressive behaviour as well as the neuroendocrine stress

response(6,8). Furthermore, Lepage et al.(7) observed that the

attenuation in stress response appeared to be time-specific;

rainbow trout displayed lower plasma cortisol concentrations

after 7 d of treatment with Trp-enriched feed, effects which

were not evident when the experimental diet regimen lasted

for 3 or 28 d(6,7). Compensatory mechanisms, such as up-

regulation of Trp-catabolising enzymes, have been suggested

to prevent a long-term effect, when dietary treatment with

Trp is extended beyond 7 d(7). For instance, tryptophan 2,3

dioxygenase (EC 1.13.11.11; TDO) plays an important role

as a house-keeping enzyme in the regulation of circulating

levels of Trp(16). Still, it is currently unknown for how long

the stress-reducing effect of a 7 d regimen with Trp

supplementation lasts if the fish are reintroduced to a diet

with standard amino acid composition.

Generally, during stressful situations, there is a positive

correlation between brain 5-HT activity and circulating

glucocorticoids, the endproduct in the hypothalamic–pituitary–

adrenocortical (HPA; mammals) or hypothalamic–pituitary–

interrenal (HPI; teleosts) axis(1,17). Thus, the observation

that Trp supplementation stimulates 5-HT production and

simultaneously suppresses HPA or HPI axis responsiveness

may seem contradictory in this regard. However, as mentioned

above, the suppression in the stress-induced release of cortisol

became apparent only after 7 d of dietary Trp pre-treatment,

suggesting an indirect effect of increased 5-HT signalling(7).

Interestingly, repeated daily administration with selective

5-HT reuptake inhibitors have been reported to exert similar

effects as Trp supplementation on HPA or HPI axis reactivity

among rodents and fish, implying common mechanisms

such as changes in 5-HTergic receptor expression and/or sen-

sitivity for both treatments(18,19). Studies in rainbow trout have

also shown that Trp supplementation attenuates the stress-

induced elevation of plasma adrenocorticotropic hormone

levels, indicating that the stress-reducing effects of Trp may

be mediated by mechanisms upstream in the HPI axis(7). In

teleosts, the nucleus lateralis tuberis (NLT) in the hypothala-

mus is innervated by DA and 5-HT fibres, containing cortico-

trophin-releasing factor-, DA- and 5-HT-producing cells that

project down to the pituitary(20–22). However, the extent to

which the stress-reducing effects of Trp act on this level of

the HPI axis has still not been thoroughly described.

Moreover, in mammals the limbic system in the forebrain is

involved in the control of HPA axis activity (for more

information, see reviews by Feldman et al.(23) and Jacobson

& Sapolsky(24)). Although different developmental patterns

in the forebrain early in ontogeny restrict comparative studies

between teleosts and mammals, recent findings indicate that

the lateral pallial regions (Dl) of the telencephalon may corre-

spond to the mammalian hippocampus(25). Furthermore,

studies in rainbow trout suggest that these telencephalic

regions elicit an inhibitory action on the neuroendocrine

stress response(26). However, it remains to be determined

whether the stress-reducing effects of Trp are reflected in

changes in DA and 5-HT neurochemistry in these brain areas.

In view of the above, the aims of the present study were to:

(1) investigate if the stress-reducing effect, as measured by

plasma cortisol levels, of dietary Trp supplementation persists

after switching back to standard feed with normal amino acid

composition; and (2) evaluate whether DA and 5-HT activity

in the NLT and Dl are involved in mediating these endocrine

effects in juvenile Atlantic cod (Gadus morhua). A putative

dampening effect of dietary Trp on cortisol responses to

stress may potentially be put to practical use in fish-farming

conditions (for example, during transport, vaccination and

sorting).

Materials and methods

Experimental animals

The experimental animals used in the present study were

1-year-old juvenile farmed Atlantic cod. During spring 2007,

approximately 1200 cod were purchased from the commercial

aquaculture company Marine Harvest AS, and transported to

the aquarium facility at Solbergstrand Marine Research Station.

At the beginning of the experiment the fish weight varied

between 51 and 149 g (mean 91·8 (SEM 0·9) g; n 182). Before

the experiment, the fish were kept in two 1 m3 indoor holding

tanks at a density of approximately 45 kg/m3 for approxi-

mately 1 month. The tanks were continuously supplied

(30 litres/min) with ambient seawater obtained from a depth

of 60 m (Oslo fjord). The temperature varied between 7 and

12 8C (mean 8·6 (SEM 0·1) 8C), while the salinity varied between

33·6 and 35·3 ‰ (mean 34·3 (SEM 0·03) ‰) during the exper-

imental period, and the pH remained stable at about 8·0.

The light–dark (L:D) regimen was automatically controlled

and adjusted to conditions at latitude 598N (Oslo, Norway).

While the fish were in the holding tanks, they were manually

fed with commercial cod pellets (BioMar, 4 mm) at approxi-

mately 1 % of their body mass per d. The experiment was

conducted in accordance with the Norwegian animal welfare

act, and approved by the Norwegian experimental animals

committee (FDU).

Experimental conditions

The experimental environment used in the present study con-

sisted of thirty-six identical glass aquaria (40 litres), each

divided into two compartments, continuously supplied

(0·5 litres/min) with ambient sea water and equipped with

tightly fitted transparent lids. The lids were equipped with

L-Tryptophan and stress response in cod 2167
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small holes (0·5 cm in diameter) through which food could be

added to the aquaria. The water outlet was connected to pipes

running outside the aquaria, which allowed for regulation of

the water level (Fig. 1). A reduction in water level to 7 cm

served as an acute confinement stressor for the individual

fish. The L:D regimen was adjusted to the same conditions

as for the period preceding the experiments.

A total of four different experimental feeds were prepared

by the aquafeed company BioMar AS in Brande, Denmark,

which had different levels of Trp in relation to the total

amount of other LNAA. The four different feeds, specifically

developed for cod, were identical in energetic value and

differed only in Trp content: the control feed contained

0·47 % Trp (1xTrp) and the experimental feeds contained

0·82 % Trp (2xTrp), 1·14 % Trp (3xTrp) and 1·65 % Trp (4xTrp).

Experimental protocol

During July 2007, at the start of the experiment, fish

(of approximate equal size) were randomly selected, weighed

and quickly transferred to each of the seventy-two compart-

ments within the thirty-six aquaria to obtain social isolation.

In order to facilitate acclimatisation to their new environment,

all fish were fed control feed for a period of 7 d. Subsequently

fish were either fed 1xTrp, 2xTrp, 3xTrp or 4xTrp (n 4–19, see

Figs. 4–6 for specific details regarding sample size) feed for

7 d, after which the fish were then again fed control feed

(1xTrp) for 0, 1 or 5 d (see Fig. 1 for an overview of the

set-up). Individual food intake was quantified once per d by

counting the number of pellets consumed. For quantification

of food intake, individual fish were fed with one pellet at a

time until the fish rejected three pellets in a row. To avoid

possible bias induced by a insufficient treatment time with

Trp(7), fish that ate for less than 4 d during the 7 d period

with experimental diet were omitted from the dataset. The

fish were starved for 24 h during the phase comprising the

reintroduction of control feed before sampling was initiated.

Subsequently within this timeframe the fish were then

sampled either directly (undisturbed groups) or after 30 min

of confinement stress (lowering of water level; see Fig. 1)

on the morning following the last day of feeding (1, 2 or 6 d

post-experimental diet).

Sampling procedure

At sampling, individual fish were quickly anaesthetised (ethyl-

m-aminobenzoate methanesulfonate (Benzocain); 500 mg/l)

and a blood sample (approximately 0·6 ml) was collected

from the caudal vessel using a syringe pre-treated with

EDTA. Blood samples collected were immediately centrifuged

(13 000 rpm; 4 8C; 2 min) and the plasma fractions were trans-

ferred to 1·5 ml Eppendorf tubes, and subsequently snap-

frozen on dry ice. In the sampling sessions conducted at 1 d

following the Trp treatment brains were also collected from

the fish sculls, and embedded in Tissue-Tec (O.C.T. Com-

pound, Sakura Finetek AS). Plasma samples and whole

brains were stored at 2708C for later analyses of cortisol

levels and monoaminergic activity.

End of experiment

Day 0: Transfer to social
isolation (feeding starts
on the following day)

Day 8: change to
experimental diet

Day 14: resumption
of control diet

Day 15

Day 16 Day 20

Acclimatisation
Supplementation with

dietary Trp

Exposure to
confinement stress
and sampling

Start of experiment

Lowest
water level

(confinement
stressor)

 

Tap

Water outlet

Highest
water level

Aquaria

Partition

Water runway

Water inlet

(a)

(b)

Fig. 1. (a) Overview of experiment design. Trp, L-tryptophan. (b) Illustration of the housing conditions; the water level indicates whether or not the fish is subjected

to confinement.
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Assays

The concentration of plasma cortisol in the samples was

measured using a commercial ELISA kit (product no. 402710;

Neogen Corp.). Plasma samples were diluted 1:100 in assay

buffer and the samples processed according to the kit

protocol. The enzyme reaction was terminated by adding

1 M-HCl, and subsequently theplateswere read in a conventional

plate reader at 450 nm (Vmax Microplate Reader; Molecular

Devices). The percentage bound for each standard solution

was used to generate a logarithmic curve. This curve was used

to calculate the concentrations of plasma cortisol.

Before brain monoamine analysis, the brains were sec-

tioned into 300 mm thick slices using a cryostat (PMV 450

MP; Palmstierna Mekaniska Verkstad) at 2218C. The slices

were mounted on glass plates, and sections containing the lat-

eral pallial parts of the telencephalon (Dl) as well as the NLT

were micro-dissected using the sharpened end of a level-cut

syringe (0·5 mm in inner diameter) (Fig. 2). These two tissues

were then each added to a 4 % perchloric acid solution (200

ml) containing 0·26 g/l EDTA and 19·4 ng/ml epinin (deoxyepi-

nin) as internal standard and mechanically homogenised using

an Eppendorf pestle. Subsequently, the samples were centri-

fuged for 2 min at 30 000 g and 48C. The supernatant fraction

(100 ml) was used immediately to quantify concentrations of

5-HT, DA, 5-hydroxyindoleacetic acid (5-HIAA) and 3,4-dihy-

droxyphenylacetic acid (DOPAC), a major DA metabolite, by

HPLC with electrochemical detection as described by Øverli

et al.(27). Samples were quantified by comparison with stan-

dard solutions of known concentrations and corrected for

recovery of the internal standard using HPLC software (CSW;

DataApex Ltd). Analysis of actual levels, expressed as catabo-

lite or monoamine content/total protein, was not possible

due to the samples containing remaining proteins after super-

natant fraction were lost. Instead, we used the ratio of the

catabolite to its parent monoamine as an estimation of central

monoaminergic activity. This is commonly used as an index of

monoaminergic activity especially when studying behaviour

and stress(28,29). Neurotransmitter ratios (5-HIAA:5-HTor DOPAC:DA)

were calculated from the concentrations in each sample and

presented as either serotonergic or dopaminergic activity.

Data treatment and statistics

All data were subjected to tabular and graphical examination

and analysis in Microsoft Excelw, before being transferred to

Stata SE/11 for Windows (StataCorp LP) for further statistical

evaluation. The large variation in the results and variances

between treatments made it difficult to find a suitable statistical

approach to evaluate all observations in one statistical analysis.

To overcome these problems, the analyses were therefore per-

formed on data within each sampling time (i.e. days after Trp

treatment), and for cortisol within unstressed and stressed

fish. Due to lack of normality, the tests were run on log-trans-

formed data for the cortisol results. For the monoamine data,

log-transformation was not sufficient to achieve normal distri-

bution, thus non-parametric methods were used to analyse

these results. Effects on plasma cortisol were investigated

using one-way ANOVA, whereas brain monoaminergic ratios

were evaluated employing Kruskal–Wallis tests and quantile

regression. A Spearman rank correlation test was used to

assess correlations between the ratios of 5-HIAA:5-HT and

DOPAC:DA, for each brain region. Results regarding plasma

cortisol levels and monoamine ratios are presented as mean

values with their standard errors and medians, respectively.

Results

Appetite

Feed intake increased steadily in all groups during the 7 d

acclimatisation period preceding treatment with elevated

TelencephalonOlfactory nerve
Brain stem

CerebellumPineal gland

Optic nerve

Pituitary
Optic chiasma

Hypothalamus

Dl

(a)

(b) (c)

NLT

Optic lobe

Fig. 2. Lateral view of the teleost brain (a) and cross-sections of regions analysed for monoaminergic activity: lateral pallial parts of telencephalon (Dl) (b) and

nucleus lateralis tuberis (NLT) (c), highlighted in grey.
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dietary Trp. On average the feed intake increased from 0·07 %

to 0·37 % of their body weight during this period. After the

acclimatisation period, feed intake continued to increase in

all groups during both the experimental and post-experi-

mental diet periods. Fish receiving the Trp-supplemented

diets did not appear to differ in feed intake during the treat-

ment period or after the reintroduction of commercial feed

when compared with the control group (Fig. 3).

Stress response

As shown in Fig. 4, a dose-dependent decline in plasma

cortisol levels was observed among stressed fish on day 1

after dietary Trp treatment was terminated (ANOVA;

P,0·056). The effect was no longer evident on day 2

(P,0·84) and day 6 (P,0·11). Unstressed fish showed low

cortisol levels at all three sampling times and did not seem

to be affected by Trp supplementation on day 1 (P,0·80) or

day 2 (P,0·19), but some changes were observed on day

6 (P,0·007) during which fish fed 4xTrp displayed a somewhat

higher cortisol response than the group on the control diet.

Brain monoamine activity in nucleus lateralis tuberis and
lateral pallial region of telencephalon

Initial graphical examination of regional brain monoamine

activity, as indicated by the metabolite:neurotransmitter ratio,

showed no visible effect of stress in either the NLT or Dl on

day 1 after termination of Trp treatment. Thus, stressed and

undisturbed fish were pooled before subsequent statistical

analysis was performed. The results are shown in Figs. 5

and 6 and reveal a curvilinear relationship on both mono-

amine ratios. Supplementation with Trp revealed an effect

on the 5-HIAA:5-HT ratio in the Dl (Kruskal–Wallis test:

P,0·015) and further analysis showed that this monoamine

ratio was higher at moderate doses of dietary Trp supplemen-

tation (quantile regression: 2xTrp: P,0·032; 3xTrp: P,0·047;

4xTrp: P,0·132) when compared against control feed. A simi-

lar pattern for the 5-HIAA:5-HT ratio was also observed in the

NLT (Kruskal–Wallis test: P,0·01) in which the effects

seemed most pronounced at 3xTrp (quantile regression:

2xTrp: P,0·08; 3xTrp: P,0·05; 4xTrp: P,0·31). While no

clear effects of Trp supplementation were found on the
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Fig. 3. Daily feed intake in juvenile cod (Gadus morhua) over the course of the experiment: control feed containing 0·47 % L-tryptophan (Trp) (1xTrp; ); exper-

imental feed containing 0·82 % Trp (2xTrp; ); experimental feed containing 1·14 % Trp (3xTrp; ); experimental feed containing 1·65 % Trp (4xTrp; ).

Data are means, with standard errors represented by vertical bars. The arrows on days 15, 16 and 20 highlight when the confinement stressor was introduced.
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Fig. 4. Plasma cortisol levels in juvenile cod (Gadus morhua) following the reintroduction of control diet after 7 d on L-tryptophan (Trp) supplementation: control

feed containing 0·47 % Trp (1xTrp; ); experimental feed containing 0·82 % Trp (2xTrp; ); experimental feed containing 1·14 % Trp (3xTrp; ); experimental

feed containing 1·65 % Trp (4xTrp; ). Data are means, with standard errors represented by vertical bars. The values above the bars indicate the number

of individual fish. ANOVA on stressed fish: day 1, P,0·056; day 2, P,0·84; day 6, P,0·11. ANOVA on undisturbed fish: day 1, P,0·80; day 2, P,0·19;

day 6, P,0·007.
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DOPAC:DA ratio in the Dl (Kruskal–Wallis test: P,0·21;

quantile regression: 2xTrp: P,0·08; 3xTrp: P,0·48; 4xTrp:

P,0·28), there was a significant elevation of this monoamine

ratio in the NLT (Kruskal–Wallis test: P,0·04). Further anal-

ysis revealed that supplementation with 2xTrp resulted in an

increased DOPAC:DA ratio, an effect which was no longer

apparent at higher doses of the amino acid (quantile

regression: 2xTrp: P,0·02; 3xTrp: P,0·17; 4xTrp: P,0·27).

A significant moderate correlation (R 2
s 0·33; P,0·015)

was found between the 5-HIAA:5-HT and DOPAC:DA

ratios in the NLT, while there was only a trend (R 2
s 0·22;

P,0·099) in the Dl.

Discussion

The present study showed a clear dose-dependent relation-

ship between plasma cortisol and dietary levels of Trp at 1 d

after termination of the experimental feed regimen, amongst

fish subjected to confinement stress. However, the suppres-

sion in stress-induced cortisol response was no longer appar-

ent on days 2 and 6 after the dietary treatment period,

indicating that the effects of Trp supplementation are rather

temporary. The observation that Trp treatment for 7 d resulted

in decreased plasma cortisol levels suggests that this amino

acid acts on the HPI axis stress reactivity in a similar way in

0
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Fig. 5. Dopaminergic activity assessed by 3,4-dihydroxyphenylacetic acid:dopamine (DOPAC:DA) ratio in the lateral pallial telencephalon (Dl) and nucleus lateralis

tuberis (NLT) in juvenile cod (Gadus morhua) on day 1 after dietary L-tryptophan (Trp) supplementation was terminated: control feed containing 0·47 % Trp

(1xTrp; ); experimental feed containing 0·82 % Trp (2xTrp; ); experimental feed containing 1·14 % Trp (3xTrp; ); experimental feed containing 1·65 % Trp

(4xTrp; ). Results are presented as boxplots by pooling stressed and undisturbed fish. The values above the bars indicate the number of individual fish.

Kruskal–Wallis test for Dl: P,0·21, quantile regression with comparison against 1xTrp; 2xTrp, P,0·08; 3xTrp, P,0·48; 4xTrp, P,0·28. Kruskal–Wallis test for

NLT: P,0·04, quantile regression with comparison against 1xTrp; 2xTrp, P,0·02; 3xTrp, P,0·17; 4xTrp, P,0·27.
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Fig. 6. Serotonergic activity assessed by 5-hydroxyindoleacetic acid:5-hydroxytryptamine (5-HIAA:5-HT) ratio in the lateral pallial telencephalon (Dl) and nucleus

lateralis tuberis (NLT) in juvenile cod (Gadus morhua) on day 1 after dietary L-tryptophan (Trp) supplementation was terminated: control feed containing 0·47 %

Trp (1xTrp; ); experimental feed containing 0·82 % Trp (2xTrp; ); experimental feed containing 1·14 % Trp (3xTrp; ); experimental feed containing 1·65 % Trp

(4xTrp; ). Results are presented as boxplots by pooling stressed and undisturbed fish. The values above the bars indicate the number of individual fish.

Kruskal–Wallis test for Dl: P,0·015, quantile regression with comparison against 1xTrp; 2xTrp, P,0·032; 3xTrp, P,0·047; 4xTrp, P,0·13. Kruskal–Wallis test

for NLT: P,0·01, quantile regression with comparison against 1xTrp; 2xTrp, P,0·08; 3xTrp, P,0·05; 4xTrp, P,0·31.
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Atlantic cod as previously reported in rainbow trout(6). In that

study, undisturbed trout also responded to Trp-enriched feed

by a slight increase in basal plasma cortisol levels. In the pre-

sent study, a similar effect was only seen at 6 d following ter-

mination of Trp supplementation, although the significance of

this finding is difficult to explain and further studies are

needed to verify whether it is an artifact or not.

The absence of changes in monoamine activity, estimated

by the 5-HIAA:5-HT and DOPAC:DA ratios, stemming from

confinement stress alone in the present results seems some-

what contradictory to the general consensus that an increase

in central 5-HT activity is related to an activation of the neuro-

endocrine stress response(6,17,27,30,31). However, the 5-HTergic

response to stress has been shown to differ both temporally

and regionally in a comparative animal model, the lizard

Anolis carolinensis (32). This has also been demonstrated in

rainbow trout where social stress induced different patterns

in 5-HTergic activity between the Dl and dorsomedial parts

of the telencephalon(26). In the latter study, the authors

suggested that the Dl, which is functionally similar to the

mammalian hippocampus, exerts an inhibitory effect on the

cortisol stress response. However, the role of 5-HT in this

brain region is relatively unknown in teleosts, and it is poss-

ible that the findings by Øverli et al.(26) specifically reflect

social interaction (with regards to 5-HT activity in the Dl)

rather than just a general stress response.

In teleosts it has been shown that brain monoamines inner-

vate the NLT(20–22) and that there are corticotrophin-releasing

factor-producing neurons within this nucleus that project

down into the pituitary. Still, the actual function of these

serotonergic fibres within this hypothalamic region has not

been well described(33). Both the NLT and the pre-optic area

have been suggested to be involved in the regulation of

adrenocorticotropic hormone(34). Furthermore, exposure to

chronic stress has been shown to affect the corticotrophin-

releasing factor cells in the NLT(21), but it is possible that the

endocrine response to acute stressors, such as confinement,

is controlled by alternate pathways in other brain regions.

Independent of confinement stress, dietary supplemen-

tation of Trp affected 5-HT activity in both the Dl and NLT

in the present study. This seems to be in agreement with the

findings of Höglund et al.(5), who reported a general increase

in brain 5-HT activity after 7 d of Trp treatment in cod. Accord-

ing to the present data, the largest changes in 5-HT activity

were attributed to moderate doses of Trp, in which

5-HIAA:5-HT ratios were elevated compared with fish fed

standard feed continuously. However, 5-HT activity appeared

to regress towards control levels in both brain regions in those

fish receiving the highest dose of dietary Trp (corresponding

to four times the Trp content of the standard feed). Interest-

ingly, the present results showed that DA activity in the NLT

also appeared to be stimulated by Trp administration, albeit

to a lesser extent than 5-HT activity, as judged by the trend

in increased DOPAC:DA ratio. Although the general consensus

is that Trp increases 5-HT activity, supplementation with this

LNAA has previously been found to have no clear effects on

either the 5-HIAA:5-HT or DOPAC:DA ratios, and only elev-

ated 5-HIAA levels in the hypothalamus and optic tectum

after 7 d on experimental diet in rainbow trout(6,7). In contrast,

Winberg et al.(8) reported increased levels of 5-HIAA as well as

5-HIAA:5-HT ratios in both the hypothalamus and brainstem,

but not in the telencephalon in an experiment examining

the effects on aggressive behaviour in rainbow trout receiving

the same dietary Trp treatment. A possible explanation for the

conflicting data between these two studies could be that the

observed effects of Trp enrichment on brain 5-HT signalling

are more pronounced when combined with other treatments,

such as exposure to an acute stressor(6,7) or social inter-

actions(8). Such differences in context may activate alternate

neural pathways contributing to the inconsistencies in 5-HT

signalling between the studies mentioned above. Nonetheless,

our data indicate that 5-HTergic activity regresses towards con-

trol levels in fish receiving the highest dose of dietary Trp sup-

plementation. Similar dietary levels of this amino acid have

previously been shown to induce an inhibition of behavioural

responses to social challenges, such as aggression towards an

intruder(8) and attenuation of the anorectic response to

novelty(15) in salmonid fish. The observation that 5-HT activity

approached control levels in both the Dl and NLT in fish

receiving the highest Trp dose makes it tempting to interpret

that this reflects such suppressive effects on responses to

acute challenges. However, the functional roles of these

brain regions, with regards to monoaminergic activity, in reg-

ulating behavioural and endocrine responses to acute chal-

lenges still remain largely unknown in teleosts. It should

also be noted that in the present study we were only able to

quantify monoaminergic activity as the catabolite:parent

monoamine ratio, and it is possible that actual levels of mono-

amines and their catabolites could have revealed other effects

on monoaminergic signalling within the same context.

In humans, reducing the synthesis of central 5-HT (by

depriving the brain of Trp) can induce depression and

anxiety-related disorders(35,36). Despite this, the potency

of Trp supplementation as an antidepressant has a rather

narrow therapeutic window (for a review, see Shaw et al.(37)).

It is well known that the endogenous amount of Trp, available

for 5-HT synthesis, is regulated by Trp-catabolising enzymes

such as TDO. This enzyme is activated not only by its substrate

Trp, but can also be triggered by glucocorticoids(38,39). Provid-

ing excess exogenous Trp stimulates the activity of TDO,

enhancing conversion of this amino acid into kynurenin;

thus leaving less Trp available for 5-HT synthesis and sub-

sequent neurotransmission. While extensively studied in

mammals, there is less information in the literature when it

comes to TDO regulation of Trp in teleost fish. It is possible

that the lack of effects on the endocrine stress response in

the present study (i.e. at days 2 and 6 after dietary Trp sup-

plementation) may somehow be reflected by changes in the

catabolic activity of TDO. However, Walton et al.(40) observed

no alterations in the activity of this enzyme in rainbow trout

when given different levels of dietary Trp. A similar lack in

effect has also been reported in channel catfish (Ictalurus

punctatus), in which repeated doses of either dietary Trp or

adrenocorticotropic hormone or three doses of glucocorti-

coids failed to induce hepatic TDO(41). Clearly, this topic

needs to be addressed in future studies, taking into account
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other Trp-catabolising enzymes involved in the kynurenin

pathway as well.

In conclusion, pretreatment with Trp-enriched feed for

7 d resulted in a dose-dependent reduction on post-stress

plasma cortisol levels, confirming the observation that dietary

Trp supplementation can suppress the endocrine response in

Atlantic cod, as previously documented in rainbow trout(6,7).

The attenuation in stress response was no longer evident at

2 or 6 d following the termination of Trp administration, indi-

cating a rather short time window for the stress-reducing effect

of this amino acid. Concomitant with the temporary decrease

in endocrine response, moderate dietary doses of Trp, con-

taining two to three times the levels of commercial feed,

acted stimulatory in general on both brain serotonergic and

dopaminergic (to lesser extent) activity. However, this effect

appeared to return towards control levels, as determined

from monoamine ratios, at a dietary Trp dose corresponding

to four times the content in commercial feed. In light of a

previous study which reported a suppression in aggressive

behaviour in rainbow trout at similar Trp doses(8), the present

data may indicate that the brain regions NLT and Dl potentially

elicit an inhibitory effect on the behavioural responses to

social challenges. However, the finding that monoaminergic

activity was unaffected by acute stress might also reflect

alternative roles for these two brain regions, such as partial

participation in suppression on the endocrine stress response.

On an applied level, further studies are required to assess

whether dietary Trp can be used as a potential nutritional

strategy in aquaculture conditions.
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