
JFP 14 (4): 379–427, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796803004945 Printed in the United Kingdom

379

Transformation techniques for context-sensitive
rewrite systems∗

JÜRGEN GIESL†
LuFG Informatik II, RWTH Aachen, Ahornstr. 55, 52074 Aachen, Germany

(e-mail: giesl@informatik.rwth-aachen.de)

AART MIDDELDORP‡
Institute of Information Sciences and Electronics, University of Tsukuba, Tsukuba 305-8573, Japan

(e-mail: ami@is.tsukuba.ac.jp)

Abstract

Context-sensitive rewriting is a computational restriction of term rewriting used to model

non-strict (lazy) evaluation in functional programming. The goal of this paper is the study

and development of techniques to analyze the termination behavior of context-sensitive

rewrite systems. For that purpose, several methods have been proposed in the literature

which transform context-sensitive rewrite systems into ordinary rewrite systems such that

termination of the transformed ordinary system implies termination of the original context-

sensitive system. In this way, the huge variety of existing techniques for termination analysis

of ordinary rewriting can be used for context-sensitive rewriting, too. We analyze the existing

transformation techniques for proving termination of context-sensitive rewriting and we

suggest two new transformations. Our first method is simple, sound, and more powerful

than the previously proposed transformations. However, it is not complete, i.e., there are

terminating context-sensitive rewrite systems that are transformed into non-terminating term

rewrite systems. The second method that we present in this paper is both sound and complete.

All these observations also hold for rewriting modulo associativity and commutativity.

Capsule Review

This paper presents two algorithms for translating an arbitrary Context-Sensitive Rewrite

System (CSRS) into a regular Term Rewrite System (TRS). The idea is to translate each

CSRS into a TRS so that one can reason about its termination property by looking at its

TRS counterpart. The first algorithm improves on previous work, in that it translates more

terminating CSRSes into terminating TRSes. The second algorithm is not only more powerful

but also “complete”, in that it translates every terminating CSRS into a terminating TRS;

but checking the termination behavior for the resulting TRS can be more easily automated

for the first algorithm.

∗ A preliminary version of this paper appeared in the Proceedings of the 10th International Conference
on Rewriting Techniques and Applications, Lecture Notes in Computer Science 1631, pp. 271–285, 1999.
† Supported by the DFG under grant GI 274/4-1.
‡ Currently at the Institute of Computer Science, University of Innsbruck (e-mail: aart.middeldorp@
uibk.ac.at).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


380 J. Giesl and A. Middeldorp

1 Introduction

In the presence of infinite reductions in term rewriting, the search for normal forms

is usually guided by adopting a suitable reduction strategy. Consider the following

term rewrite system:

nats → adx(zeros) adx(x : y) → incr(x : adx(y))

zeros → 0 : zeros hd(x : y) → x

incr(x : y) → s(x) : incr(y) tl(x : y) → y

The function symbol zeros is used to generate the infinite list of 0’s. The function

incr(x) increments all elements in the list x by one and adx applied to a list

[x1, x2, x3, . . . ] adds the index i to each element xi, i.e., it generates the list [x1 + 1,

x2+2, x3 +3, . . . ]. The name adx is therefore an abbreviation for “add index”. Hence,

nats reduces to the infinite list of positive integers.

A term like hd(tl(tl(nats))) admits a finite reduction to the normal form s3(0)

(the third positive integer) as well as infinite reductions. The infinite reductions

can for instance be avoided by always contracting the outermost redex. Context-

sensitive rewriting (Lucas, 1996, 1998) provides an alternative way of solving the non-

termination problem. Rather than specifying which redexes may be contracted, in

context-sensitive rewriting for every function symbol one indicates which arguments

may not be evaluated and a contraction of a redex is allowed only if it does not

take place in a forbidden argument of a function symbol somewhere above it. For

instance, by forbidding all contractions in the argument t of a term of the form

s : t, infinite reductions are no longer possible while normal forms can still be

computed. (See Lucas (2002b) for the relationship between normalization under

ordinary rewriting and under context-sensitive rewriting.)

Term rewriting is a basic computational paradigm with important applications

in the design, analysis, verification, and implementation of functional programs

(e.g., see Plasmeijer & van Eekelen (1993)). The above example illustrates that the

restriction of context-sensitive rewriting has strong connections with lazy evaluation

strategies used in functional programming languages, because it allows us to deal

with non-terminating programs and infinite data structures (cf. Lucas, 1998).

A central problem in the development of correct and reliable software is to

verify the termination of programs. Moreover, techniques for termination analysis

can also be helpful for program transformation, e.g. to guarantee termination

of partial evaluation (e.g., see Jones & Glenstrup, 2002). Of course, sometimes

algorithms may be formulated in primitive recursive form, thereby guaranteeing

their termination. But for many algorithms, the natural formulation is not primitive

recursive. Converting such an algorithm into primitive recursive form is not easy

and can hardly be done automatically in general.

In the area of term rewriting, methods for (automated) termination proofs have

been studied for decades (Knuth & Bendix, 1970; Lankford, 1979; Dershowitz, 1987;

Bellegarde & Lescanne, 1990; Dershowitz & Hoot, 1995; Steinbach, 1995; Zantema,

1995; Arts & Giesl, 2000; Borralleras et al., 2000). With these methods, termination of

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 381

many algorithms in different areas of computer science can easily be proved automat-

ically (e.g., Ackermann’s function, arithmetical algorithms like division or Euclid’s

greatest common divisor algorithm, sorting algorithms, graph algorithms, etc.).

In this paper, we are concerned with the problem of proving termination of

context-sensitive rewriting. More precisely, we consider transformations from

context-sensitive rewrite systems to ordinary term rewrite systems that are sound with

respect to termination: termination of the transformed term rewrite system implies

termination of the original context-sensitive rewrite system. The main advantage

of this transformational approach is that all termination techniques for ordinary

term rewriting including future developments can be used to infer termination of

context-sensitive systems.

Three sound transformations are reported in the literature, by Lucas (1996),

Zantema (1997), and by Ferreira & Ribeiro (1999). We add two more. Our first

transformation is simple, its soundness is easily established, and it improves upon

the transformations of Lucas (1996), Zantema (1997), and Ferreira & Ribeiro (1999).

To be precise, we prove that the class of terminating context-sensitive rewrite systems

for which our transformation succeeds is larger than that of Lucas’, Zantema’s, and

Ferreira & Ribeiro’s transformation. However, none of these four transformations

succeeds in transforming every terminating context-sensitive rewrite system into a

terminating term rewrite system. In other words, they all lack completeness. We

analyze the failure of completeness for our first transformation, resulting in a

second transformation which is both sound and complete. However, one should

remark that the development of our second transformation does not render our first

transformation superfluous, since in practical examples, termination of the system

resulting from the second transformation can be harder to prove than termination

of the one resulting from the first transformation. Similar statements hold for the

transformations of Lucas, Zantema, and Ferreira & Ribeiro.

The rest of the paper is organized as follows. In the next section we recall the

definition of context-sensitive rewriting and illustrate its connection with functional

programming. In particular, we show how our results on termination analysis

of context-sensitive rewriting can be used in order to investigate the termination

behavior of (lazy) functional programs. Section 3 recapitulates the transformations

of Lucas, Zantema, and Ferreira & Ribeiro. Moreover, we analyze the relationship

between these transformations. In Section 4 we present our first transformation and

prove that it is sound. Despite being incomplete, we prove that it can handle more

systems than the transformations of Lucas, Zantema, and Ferreira & Ribeiro. In

Section 5 we refine our first transformation into a sound and complete one. The bulk

of this section is devoted to the completeness proof. Section 6 shows that similar

to the transformation of Ferreira and Ribeiro, both our transformations easily

extend to rewriting modulo associativity and commutativity axioms. In Section 7 we

investigate how the transformed system changes when modifying the set of argument

positions where reductions are allowed. It turns out that in contrast to all previous

transformations, both our transformations have a very natural behavior. We make

some concluding remarks in Section 8. Those proof details which are not presented

in the main text are given in the appendix.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


382 J. Giesl and A. Middeldorp

2 Context-sensitive rewriting

Some familiarity with term rewriting (Baader & Nipkow, 1998) is assumed. We briefly

recall some basic definitions. A signature is a set F of function symbols equipped

with a mapping “arity: F → �”, where � is the set of natural numbers. We always

require that every signature contains at least one constant (i.e., a function symbol f

with arity(f) = 0). We assume the existence of a countably infinite set V of variables,

disjoint from F. The set of terms built from F and V is denoted by T(F,V).

The set of variables contained in a term t is denoted by Var(t). A linear term

does not contain multiple occurrences of the same variable and a ground term does

not contain any variables. To denote the set of ground terms, we often write T(F)

instead of T(F,�). A position is a sequence of positive integers identifying a subterm

occurrence in a term. The empty sequence is denoted by ε and called the root position.

The set Pos(t) of positions in a term t is inductively defined as follows: Pos(t) = {ε} if

t ∈ V and Pos(t) = {ε}∪{iπ | 1 � i � n, π ∈ Pos(ti)} if t = f(t1, . . . , tn). If π ∈ Pos(t)

then t|π denotes the subterm of t at position π and t(π) denotes the function symbol

or variable occurring at position π. We write root(t) for t(ε); this is called the

root symbol of t. Furthermore, t[u]π denotes the term that is obtained from t by

replacing the subterm at position π by the term u. The set Pos(t) is partitioned into

PosV(t) = {π ∈ Pos(t) | t|π ∈ V} and PosF(t) = Pos(t)\PosV(t). A substitution σ

is a mapping from V to T(F,V) such that its domain {x ∈ V | σ(x) �= x} is finite.

The result of applying σ to a term t is denoted by tσ.

A term rewrite system (TRS for short) R over a signature F is a set of rewrite

rules l → r with l, r ∈ T(F,V) such that l /∈ V and Var(r) ⊆ Var(l). A TRS

is left-linear if the left-hand sides of all rewrite rules are linear terms. The binary

relation →R on T(F,V) is defined as follows: s →R t if and only if there exist a

rewrite rule l → r ∈ R, a substitution σ, and a position π ∈ Pos(s) such that s|π = lσ

and t = s[rσ]π . We say that s reduces (in one step) to t by contracting the redex lσ

at position π. The root symbols of left-hand sides of rewrite rules are called defined,

whereas all other function symbols are constructors. For the signature F of a TRS

R we denote the set of defined symbols by FD and the constructors by FC.

Let → be a binary relation on terms. We say that → is closed under contexts if

s → t implies u[s]π → u[t]π for all terms u and positions π ∈ Pos(u). The relation

→ is closed under substitutions if s → t implies sσ → tσ for all substitutions σ. A

relation that is closed under contexts and substitutions is called a rewrite relation.

The transitive reflexive closure of → is denoted by →∗. If s →∗ t we say that s

reduces to t. A term s is a normal form if there is no term t with s → t. We write

s →! t if s →∗ t with t a normal form. Let s ↑ t denote the existence of a term u such

that u →∗ s and u →∗ t. We write s ↓ t if there exists a term u such that s →∗ u and

t →∗ u. A TRS R is terminating if there are no infinite reductions t1 →R t2 →R · · ·
and confluent if ↑R ⊆ ↓R. Every term t in a confluent and terminating TRS R
reduces to a unique normal form, denoted by t↓R.

The following definition introduces context-sensitive rewriting.

Definition 1

Let F be a signature. A function µ : F → P(�) is called a replacement map if

µ(f) is a subset of {1, . . . , arity(f)} for all f ∈ F. A context-sensitive rewrite system

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 383

(CSRS for short) is a TRS R over a signature F that is equipped with a replacement

map µ. The context-sensitive rewrite relation →R,µ is defined as the restriction of the

usual rewrite relation →R to contractions of redexes at active positions. A position π

in a term t is (µ-)active if π = ε or t = f(t1, . . . , tn), π = iπ′, i ∈ µ(f), and π′ is active

in ti. So s →R,µ t if and only if there exist a rewrite rule l → r in R, a substitution σ,

and an active position π in s such that s|π = lσ and t = s[rσ]π . In the following, we

often abbreviate →R,µ to →µ when R can be inferred from the context.

Consider the TRS of the introduction. By taking µ(:) = µ(s) = � and µ(incr) =

µ(adx) = µ(hd) = µ(tl) = {1}, we obtain a terminating CSRS. The term 0 : zeros,

which has an infinite reduction in the TRS, is a normal form of the CSRS because

the reduction step to 0 : (0 : zeros) is no longer possible as the contracted redex

occurs at an inactive position (2 /∈ µ(:)).

Context-sensitive rewriting subsumes ordinary rewriting (when µ(f) = {1, . . . , n}
for every n-ary function symbol f). Context-sensitive rewriting can also be used to

model non-strict evaluation in functional programming where one uses a leftmost-

outermost strategy. Here, a term s can be evaluated to a term t (s
ns→ t) if the

reduction takes place at the root position. Moreover, s may also be evaluated

below the root at a position π if this is necessary in order to find out whether a

rule l → r might be applicable for a root reduction. In particular, we must have

root(l) = root(s). This implies that terms with a constructor at their root position

cannot be evaluated further (they are in (weak) head normal form). In addition,

evaluating s|π must be necessary to check whether l matches with s and π is required

to be the minimal such position with respect to the lexicographic order on positions.

Here, a position π1 = m1 · · ·mk is smaller than a position π2 = n1 · · · nl if there is an

i ∈ {1, . . . ,min(k + 1, l)} such that mj = nj for all j < i, and mi < ni if i � k. Similar

to most functional programming languages, we restrict ourselves to left-linear rules

here. Then evaluating s|π is necessary to match l with s if and only if the function

symbols s(π) and l(π) are different. The formal definition of non-strict evaluation is

given below.

Definition 2

Let R be a left-linear TRS. A term s rewrites to a term t with non-strict evaluation

(s
ns→R t) if and only if there is a rule l → r ∈ R such that root(s) = root(l) and

either s = lσ and t = rσ for some substitution σ or s|π
ns→ t′ and t = s[t′]π for the

minimum position π ∈ PosF(l) ∩ Pos(s) with respect to the lexicographic order on

positions such that s(π) �= l(π).

Of course, non-strict evaluation is non-deterministic since there may be several

applicable rules l → r. In functional programming languages, this non-determinism

is usually solved by ordering the rules (or equations) from top to bottom and

by taking the first applicable rule. As an example regard the following rewrite

rules:

f(x) → g(f(x), b) (1)

g(s(x), s(y)) → 0 (2)

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


384 J. Giesl and A. Middeldorp

g(x, 0) → 0 (3)

b → 0 (4)

The term f(0) can be reduced at the root position to g(f(0), b). Now in non-strict

evaluation one may try to evaluate this term further with rule (2). The minimum

position where the subterm of the left-hand side g(s(x), s(y)) does not match the

corresponding subterm of g(f(0), b) is 1. Hence, the subterm f(0) is evaluated further

which leads to non-termination. Indeed, such a functional program would be non-

terminating. However, if one exchanges rules (2) and (3), then a functional program

would first try to reduce the term g(f(0), b) with rule (3) and hence, one would

have termination. This cannot be detected with
ns→, since here any of the applicable

rules may be selected. Note that if the order of the rules in the above example

would be unchanged, but the arguments of g would be exchanged in all rules,

then
ns→ terminates. Another difference is that non-strict evaluation does not capture

sharing whereas in many functional programming languages some common subterms

are shared for efficiency reasons (evaluation strategies resulting from non-strict

evaluation with sharing are called lazy evaluation).

Now we show that non-strict evaluation can be simulated by context-sensitive

rewriting. To this end, we use the canonical replacement map µc which is the most

restrictive replacement map ensuring that non-variable subterms of left-hand sides

of rules are at active positions (Lucas, 1998). In other words, i ∈ µc(f) if and only

if there is a rule l → r ∈ R and a subterm f(t1, . . . , tn) of l such that ti /∈ V. Lucas

(2002b) recently proved that termination of (R, µc) implies top-termination of R, i.e.,

that there is no R-reduction with infinitely many root reductions. However, this

does not yet imply termination of non-strict evaluation as can be seen from the

top-terminating system consisting of the two rules f(x) → g(f(x)) and g(0) → 0 where

non-strict evaluation is not terminating. The following theorem shows the new result

that context-sensitive rewriting with the canonical replacement map can also simulate

non-strict evaluation. The reason is that µc only makes those positions inactive where

one would never reduce during non-strict evaluation, since evaluation on these

positions is not necessary in order to apply rules at higher positions in the term.

Theorem 3

Let R be a left-linear TRS. If (R, µc) is terminating then non-strict evaluation is

terminating.1

Proof

Let s
ns→R t. We show s →R,µc

t by structural induction on s. If the reduction s
ns→R t

takes place at the root position then we obviously have s →R,µc
t, too. Otherwise

there exists a rule l → r and a minimum position π ∈ PosF(l) ∩ Pos(s) with respect

1 Lucas (2002a) recently proved that under the same conditions as in Theorem 3, termination of context-
sensitive rewriting is equivalent to termination of lazy rewriting (Fokkink et al., 2000). However, since
the leftmost evaluation strategy is not imposed in lazy rewriting, this notion has less connections to
lazy functional programming than our notion of non-strict evaluation. In fact, the purpose of lazy
rewriting is not to model the evaluation strategy of lazy functional languages, but to extend eager
implementations in order to improve their termination behavior and efficiency.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 385

to the lexicographic order on positions such that s(π) �= l(π). According to the

definition of µc, π is an active position in l. By minimality of π, the function symbols

above π must be the same in l and in s. Thus, π is also an active position in s. We

have s|π
ns→ t′ such that t = s[t′]π . Since π �= ε we can apply the induction hypothesis

to conclude s|π →R,µc
t′. Since π is active in s, this implies s →R,µc

t, as desired. �

The reverse of the above theorem does not hold. In other words, termination of

(R, µc) is a sufficient but not a necessary criterion for the termination of non-strict

evaluation (and hence of the corresponding functional program). The reason is that

context-sensitive rewriting does not capture the fact that in non-strict evaluation

subterms of a rule are checked in leftmost order. Exchanging the arguments of

g in the rules (1)–(4) would affect termination of non-strict evaluation, but not

of context-sensitive rewriting. Because of the left-hand side g(s(y), s(x)), we have

µc(g) = {1, 2} and hence (R, µc) remains non-terminating.

Another problem is that the canonical replacement map makes argument positions

of constructors active if constructors occur nested in left-hand sides. However, this

problem can be avoided by transforming the rules into a form without nested

constructors in left-hand sides. Then one would have µc(c) = � for all constructors

c and thus, all terms with constructors on their root position would be in normal

form (in this way, (weak) head normal forms can be simulated by context-sensitive

rewriting).

To summarize, if one is interested in termination of (first-order) lazy functional

programs, analyzing the termination behavior of (R, µc) is much more accurate

than analyzing full termination of R. For example, in the nats-system from the

introduction the canonical replacement map makes the arguments of the constructors

s and “:” inactive, which results in a terminating CSRS. So developing methods for

termination proofs of context-sensitive rewriting is useful for termination analysis

of lazy functional programs. The advantage of such an approach is that in this way,

the whole variety of techniques developed for termination of term rewriting becomes

available for termination proofs of lazy functional languages.

Moreover, context-sensitive rewriting (with other replacement maps) can be

applied (Lucas, 2001a; Lucas, 2001b) to study the termination behavior of pro-

gramming languages like OBJ (Clavel et al., 1996; Diaconescu & Futatsugi, 1998;

Goguen et al., 2000) where the user can supply strategy annotations to control the

evaluation.

Apart from termination analysis, context-sensitive rewriting can also be used for

evaluation of functional programs. Here the interesting case is when R admits

infinite reductions and µ is defined in such a way that →R,µ is terminating but

still capable of computing all (R-)normal forms. For the latter aspect we refer to

Lucas (1998; 2002b); in the remainder of this paper we are only concerned with

termination of context-sensitive rewriting.

3 Transforming context-sensitive rewrite systems

In this section we review the existing transformations for termination analysis of

context-sensitive rewrite systems. Lucas (1996) presented a simple transformation

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


386 J. Giesl and A. Middeldorp

from CSRSs to TRSs which is sound with respect to termination. The idea of

his transformation is to remove the inactive arguments of every function symbol

appearing in the rewrite rules of the CSRS.

Definition 4

Let (R, µ) be a CSRS over a signature F. The TRS RL
µ over the signature FL = {fµ |

f ∈ F} where the arity of fµ is |µ(f)| consists of the rules l↓L → r↓L for all l → r ∈
R. Here L is the terminating and confluent TRS consisting of all rules of the form

f(x1, . . . , xn) → fµ(xi1 , . . . , xik ) such that µ(f) = {i1, . . . , ik} with i1 < · · · < ik . In the

following we denote Lucas’ transformation (R, µ) �→ RL
µ by ΘL and we abbreviate →RL

µ

to →L.

The idea is that instead of a context-sensitive reduction of a term t one now regards

the reduction of the term t↓L with respect to the TRS RL
µ. As an example, consider

the TRS R of the introduction where µ is again defined as µ(:) = µ(s) = � and

µ(incr) = µ(adx) = µ(hd) = µ(tl) = {1}. Then RL
µ consists of the following rewrite

rules:

natsµ → adxµ(zerosµ) adxµ(:µ) → incrµ(:µ)

zerosµ → :µ hdµ(:µ) → x

incrµ(:µ) → :µ tlµ(:µ) → y

Due to the extra variable2 in the right-hand sides of the rules for hdµ and tlµ, RL
µ is

not terminating:

tlµ(:µ) →L tlµ(:µ) →L · · ·

Zantema (1997) presented a more complicated transformation in which subterms

at inactive positions are marked rather than discarded. The transformed system RZ
µ

consists of two parts. The first part results from a translation of the rewrite rules

of R, as follows. Every function symbol f occurring in a left or right-hand side

is replaced by f (a fresh function symbol of the same arity as f) if it occurs in

an inactive argument of the function symbol directly above it. These new function

symbols are used to block further reductions at this position. In addition, if a variable

x occurs in an inactive position in the left-hand side l of a rewrite rule l → r then

all occurrences of x in r are replaced by a(x). Here a is a new unary function

symbol which is used to activate blocked function symbols again. The second part

of RZ
µ consists of rewrite rules that are needed for blocking and unblocking function

symbols.

Definition 5

Let (R, µ) be a CSRS over a signature F. The TRS RZ
µ over the signature FZ =

F ∪ {f | f ∈ F} ∪ {a} consists of two parts, i.e., RZ
µ = RZ1

µ ∪ RZ2
µ . The first part RZ1

µ

consists of the rules Z(l) → Z(r)σl for all l → r ∈ R. The mappings Z and Z′ from

2 Extra variables can be instantiated by arbitrary terms. So strictly speaking, RL
µ is not a TRS.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 387

T(F,V) to T(FZ,V) are defined inductively by

Z(x) = Z′(x) = x

Z(f(t1, . . . , tn)) = f(u1, . . . , un)

Z′(f(t1, . . . , tn)) = f(u1, . . . , un)

with ui = Z(ti) if i ∈ µ(f) and ui = Z′(ti) if i /∈ µ(f), for all 1 � i � n, and the

substitution σl is defined by

σl(x) =

{
a(x) if x appears in an inactive position in l

x otherwise

The second part RZ2
µ consists of a(x) → x together with

f(x1, . . . , xn) → f(x1, . . . , xn)

a(f(x1, . . . , xn)) → f(x1, . . . , xn)

for every n-ary f for which f appears in RZ1
µ . We denote Zantema’s transformation

(R, µ) �→ RZ
µ by ΘZ and we abbreviate →RZ

µ
to →Z. Moreover, FZ

µ denotes the sub-

signature of FZ which consists of the function symbols of RZ
µ .

In the approach of Zantema, the aim is to translate the context-sensitive reduction

of a term t into an RZ
µ-reduction of the term Z(t). The example CSRS (R, µ) is

transformed into

nats → adx(zeros) 0 → 0 a(0) → 0

zeros → 0 : zeros s(x) → s(x) a(s(x)) → s(x)

incr(x : y) → s(a(x)) : incr(a(y)) zeros → zeros a(zeros) → zeros

adx(x : y) → incr(a(x) : adx(a(y))) incr(x) → incr(x) a(incr(x)) → incr(x)

hd(x : y) → a(x) adx(x) → adx(x) a(adx(x)) → adx(x)

tl(x : y) → a(y) a(x) → x

Zantema’s transformation is sound but not complete as we have the infinite reduction

adx(zeros) →Z adx(0 : zeros) →Z incr(a(0) : adx(a(zeros))) →+
Z incr(0 : adx(zeros))

→Z s(a(0)) : incr(a(adx(zeros))) →+
Z s(0) : incr(adx(zeros)) →Z · · ·

Zantema’s method appears to be more powerful than Lucas’ transformation since

already the rule tl(x : y) → y is transformed into a non-terminating rule by ΘL

whereas it remains terminating under the transformation ΘZ. However, the two

methods are incomparable.

Example 6

Consider the CSRS (R, µ) consisting of the rules c → f(g(c)) and f(g(x)) → g(x)

with µ(f) = µ(g) = �. Lucas’ transformation yields the terminating TRS RL
µ =

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


388 J. Giesl and A. Middeldorp

{cµ → fµ, fµ → gµ} whereas RZ
µ

c → f(g(c)) f(x) → f(x) a(f(x)) → f(x)

f(g(x)) → g(a(x)) g(x) → g(x) a(g(x)) → g(x)

c → c a(c) → c

does not terminate: c →Z f(g(c)) →Z g(a(c)) →Z g(c) →Z · · ·

Ferreira & Ribeiro (1999) refined Zantema’s transformation further. The first part

of their transformed system RFR
µ results from the first part of RZ

µ by underlining

all function symbols (except a) which occur below an underlined symbol. So for

example, if 2 /∈ µ(:) then a term x : f(g(y)) in Zantema’s transformation would now

be replaced by x : f(g(y)). Thus, in Ferreira & Ribeiro’s transformation all function

symbols of terms occurring in inactive arguments are underlined (instead of just the

root symbols of such terms as in RZ
µ).

Definition 7

Let (R, µ) be a CSRS over a signature F. The TRS RFR
µ over the signature FZ consists

of two parts, i.e., RFR
µ = RFR1

µ ∪RFR2
µ . The first part RFR1

µ consists of the rules FR(l) →
FR(r)σl for all l → r ∈ R. The mappings FR and FR′ from T(F,V) to T(FZ,V)

are defined inductively by

FR(x) = FR′(x) = x

FR(f(t1, . . . , tn)) = f(u1, . . . , un)

FR′(f(t1, . . . , tn)) = f(FR′(t1), . . . , FR′(tn))

with ui = FR(ti) if i ∈ µ(f) and ui = FR′(ti) if i /∈ µ(f), for all 1 � i � n. The

substitution σl is defined as in Zantema’s transformation (Definition 5). The second

part RFR2
µ consists of a(x) → x together with

f(x1, . . . , xn) → f(x1, . . . , xn)

a(f(x1, . . . , xn)) → f
(
[[x1]]

f
1 , . . . , [[xn]]

f
n

)
for every n-ary f for which f appears in RFR1

µ , and

a(f(x1, . . . , xn)) → f
(
[[x1]]

f
1 , . . . , [[xn]]

f
n

)
for every n-ary f for which f does not appear in RFR1

µ . Here [[t]]fi = a(t) if i ∈ µ(f) and

[[t]]fi = t otherwise. We denote Ferreira & Ribeiro’s transformation (R, µ) �→ RFR
µ by

ΘFR and we abbreviate →RFR
µ

to →FR and →RFRi
µ

to →FRi
. We add a prime ( ′) for the

transformation which excludes the rules a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]

f
n). The

sub-signature of FZ which consists of the function symbols of RFR
µ is denoted by FFR

µ .

Similar to Zantema’s approach, here the context-sensitive reduction of a term

t is translated into an RFR
µ -reduction of the term FR(t). Note that we always

have FZ
µ ⊆ FFR

µ . In Theorem 22(b) we will show that the rules a(f(x1, . . . , xn)) →
f([[x1]]

f
1 , . . . , [[xn]]

f
n) are superfluous. In other words, Θ′

FR is already a sound trans-

formation.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 389

The example CSRS (R, µ) is transformed into

nats → adx(zeros) 0 → 0 a(0) → 0

zeros → 0 : zeros s(x) → s(x) a(s(x)) → s(x)

incr(x : y) → s(a(x)) : incr(a(y)) zeros → zeros a(zeros) → zeros

adx(x : y) → incr(a(x) : adx(a(y))) incr(x) → incr(x) a(incr(x)) → incr(a(x))

hd(x : y) → a(x) adx(x) → adx(x) a(adx(x)) → adx(a(x))

tl(x : y) → a(y) a(x) → x a(nats) → nats

a(x : y) → x : y

a(hd(x)) → hd(a(x))

a(tl(x)) → tl(a(x))

Again, this transformation technique is sound but not complete, because the

infinite reduction with RZ
µ sketched above is also possible with both RFR

µ and RFR′

µ

(where the reduction from s(0) : incr(a(adx(zeros))) to s(0) : incr(adx(zeros)) now

takes two steps instead of one). Moreover, Ferreira & Ribeiro’s method is still in-

comparable with Lucas’ transformation. This can be shown with the same example

used above to demonstrate the incomparability of the transformations of Zantema

and Lucas (Example 6).

Finally, let us compare Ferreira and Ribeiro’s technique with the one of Zantema.

As illustrated in (Ferreira & Ribeiro, 1999), there are examples where their technique

succeeds, whereas Zantema’s fails. For the one-rule TRS R

f(x) → g(h(f(x)))

from Zantema (1997) with µ(g) = � and µ(h) = µ(f) = {1}, RZ
µ is not terminating

since it contains the rule f(x) → g(h(f(x))). On the other hand, RFR
µ is terminating

since here one has the rule f(x) → g(h(f(x))) instead. (For example, the recursive

path order (Dershowitz, 1982) with precedence a 
 f 
 f 
 g 
 h 
 h applies.)

Ferreira & Ribeiro (1999) conjectured that their method is more powerful than

the one of Zantema. Below we prove this (non-trivial) conjecture. So Ferreira and

Ribeiro’s transformation proves termination of more CSRSs than Zantema’s.

In order to relate the two transformations, we have to show that every reduction

between two ground terms s and t in RFR
µ corresponds to a similar reduction between

related ground terms Φ(s) and Φ(t) in RZ
µ . Here, Φ is a mapping which removes all

occurrences of a and all additional underlining that is done in Ferreira & Ribeiro’s

transformation, but not in Zantema’s. In particular, Φ has to remove the underlining

from every function symbol f that appears in an active argument position of

the function symbol directly above it. So in the example above, we would have

Φ(g(h(f(x)))) = g(h(f(x))). Hence, when defining Φ(f(t1, . . . , tn)) or Φ(f(t1, . . . , tn)), if

i is an active argument of f, then any potential underlining of ti’s root symbol

should be removed. Here, the argument position of a is also considered active (e.g.,

Φ(g(a(h(x)))) = g(h(x))). Moreover, the underlining is also removed if f does not

belong to the signature FZ
µ . So in the above example, all occurrences of f would

be replaced by f . For the formal definition of Φ, we define an auxiliary mapping

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


390 J. Giesl and A. Middeldorp

Φ′ which is like Φ except that the underlining from an underlined root symbol is

always removed.

Definition 8

Let (R, µ) be a CSRS over a signature F. We define two mappings Φ and Φ′ from

T(FFR
µ ) to T(FZ

µ) inductively as follows:

Φ(f(t1, . . . , tn)) = Φ′(f(t1, . . . , tn)) = Φ′(f(t1, . . . , tn)) = f
(
〈t1〉f1 , . . . , 〈tn〉fn

)
Φ(f(t1, . . . , tn)) =

{
f
(
〈t1〉f1 , . . . , 〈tn〉fn

)
if f ∈ FZ

µ

f
(
〈t1〉f1 , . . . , 〈tn〉fn

)
if f /∈ FZ

µ

Φ(a(t)) = Φ′(a(t)) = Φ′(t)

with 〈t〉fi = Φ′(t) if i ∈ µ(f) and 〈t〉fi = Φ(t) if i /∈ µ(f), for all 1 � i � n.

The next two lemmata show that every reduction step s →FR t corresponds

to a reduction from Φ(s) to Φ(t) in RZ
µ . More precisely, we have the following

correspondence.

Lemma 9

For all terms s, t ∈ T(FFR
µ ), if s →FR1

t then Φ(s) →+
Z Φ(t).

Lemma 10

For all terms s, t ∈ T(FFR
µ ), if s →FR2

t then Φ(s) →∗
Z Φ(t).

We refer to Appendix A for the proofs of these two lemmata. With these lemmata

we obtain the desired result on the transformations of Zantema and Ferreira &

Ribeiro.

Theorem 11

Let (R, µ) be a CSRS. If RZ
µ is terminating then RFR

µ is terminating.

Proof

Suppose that RFR
µ admits an infinite reduction. Then there also exists an infinite

reduction of ground terms:

t1 →FR t2 →FR t3 →FR t4 →FR · · ·

Since RFR2
µ is terminating, the reduction must contain infinitely many RFR1

µ -steps.

Hence, by applying Lemmata 9 and 10, we obtain an infinite RZ
µ-reduction starting

from Φ(t1). �

To summarize, we have reviewed three transformation techniques from the

literature which transform CSRSs into ordinary TRSs and we have investigated

the relationship between these three transformations. All three methods are sound,

i.e., if the transformed TRS terminates then the original CSRS is also terminating.

But none of these three methods is complete, e.g., they all transform the nats example

from the introduction into a non-terminating TRS, although the original CSRS is

terminating. This already indicates that there are many natural and interesting

systems where these techniques are not applicable.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 391

4 A sound transformation

In this section, we present our first transformation from CSRSs to TRSs. The

advantage of this transformation is that it is easy and more powerful than the

transformations of Lucas, Zantema, and Ferreira & Ribeiro. In the transformation

we extend the original signature F of the TRS by a unary function symbol mark

and a function symbol factive of arity n for every n-ary defined function symbol

f ∈ FD. Essentially, the idea for the transformation is to mark the active positions

in a term on the object level, because those positions are the only ones where

context-sensitive rewriting may take place. For this purpose we use the function

symbols factive. Thus, instead of a rule f(l1, . . . , ln) → r the transformed TRS should

contain a rule whose left-hand side is factive(l1, . . . , ln). Now an instance of a left-hand

side f(· · · ) can only be rewritten if it exposes the fact that it is at an active position

(it does that by being of the form factive(· · · )). Moreover, after rewriting an instance

of l to the corresponding instance of r, we have to mark the new active positions

in the resulting term. For that purpose we replace every occurrence of a defined

function symbol f at an active position in r by factive and every occurrence of a

variable x at an active position by mark(x). The symbol mark is used to ensure that

in instantiations of r, defined function symbols at active positions in the substitution

part are marked as well. This is achieved by the rules

mark(f(x1, . . . , xn)) → factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
if f ∈ FD

mark(f(x1, . . . , xn)) → f
(
[x1]

f
1 , . . . , [xn]

f
n

)
if f ∈ FC

where the form of the argument [xi]
f
i depends upon whether i is an active argument

of f: if i ∈ µ(f) then xi must also be marked active and thus [xi]
f
i = mark(xi),

otherwise the ith argument of f is not active and we define [xi]
f
i = xi. Let M denote

the set of all these mark-rules. Since M is confluent and terminating, every term t

has a unique normal form t↓M with respect to M. It is easy to see that transforming

the right-hand side r as described above yields the term mark(r)↓M. Finally, we also

need rules to deactivate terms. For example, consider the TRS consisting of the

following rewrite rules:

b → f(c) f(c) → b c → d

No matter how the replacement map µ is defined, the resulting CSRS is not

terminating. Suppose µ(f) = {1}. In the transformed system we would have the rules

bactive → factive(cactive) mark(b) → bactive

factive(c) → bactive mark(c) → cactive

cactive → d mark(d) → d

mark(f(x)) → factive(mark(x))

This TRS is terminating because bactive rewrites to factive(cactive), but if we cannot

deactivate the subterm cactive then the second rule is not applicable. Thus, we have

to add the rule cactive → c. To summarize, we obtain the following transformation.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


392 J. Giesl and A. Middeldorp

Definition 12

Let (R, µ) be a CSRS over a signature F. The TRS R1
µ over the signature F1 =

F ∪ {factive | f ∈ FD} ∪ {mark} consists of the following rewrite rules:

factive(l1, . . . , ln) → mark(r)↓M for all f(l1, . . . , ln) → r ∈ R

mark(f(x1, . . . , xn)) → factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FD

mark(f(x1, . . . , xn)) → f
(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FC

factive(x1, . . . , xn) → f(x1, . . . , xn) for all f ∈ FD

Here M is the (confluent and terminating) subset of R1
µ consisting of all mark-rules

and [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise. We denote the transformation

(R, µ) �→ R1
µ by Θ1 and we abbreviate →R1

µ
to →1.

Soundness of our transformation is an easy consequence of the following lemma

which shows how context-sensitive reduction steps are simulated in the transformed

system. The context-sensitive reduction of a term t is now translated into a reduction

of the term mark(t)↓M in the TRS R1
µ.

Lemma 13

Let (R, µ) be a CSRS over a signature F and let s, t ∈ T(F). If s →µ t then

mark(s)↓M →+
1 mark(t)↓M.

Proof

There is a rewrite rule l → r ∈ R, a substitution σ, and an active position π in

s such that s|π = lσ and t = s[rσ]π . We prove the lemma by induction on π. If

π = ε then s = lσ and t = rσ. An easy induction on the structure of s = f(s1, . . . , sn)

reveals that mark(s)↓M →∗
1 factive(s1, . . . , sn) (one just has to deactivate all inner

occurrences of activated function symbols). Since factive(s1, . . . , sn) → mark(r)↓Mσ

is an instance of a rule in R1
µ we obtain mark(s)↓M →∗

1 factive(s1, . . . , sn) →1

mark(r)↓Mσ →∗
1 mark(rσ)↓M = mark(t)↓M. If π = iπ′ then we have s = f(s1, . . . ,

si, . . . , sn) and t = f(s1, . . . , ti, . . . , sn) with si →µ ti. Note that i ∈ µ(f) due to

the definition of context-sensitive rewriting. For 1 � j � n we define s′
j =

mark(sj)↓M if j ∈ µ(f) and s′
j = sj if j /∈ µ(f). The induction hypothesis yields

s′
i = mark(si)↓M →+

1 mark(ti)↓M. Note that mark(s)↓M is factive(s
′
1, . . . , s

′
i, . . . , s

′
n) if

f ∈ FD and f(s′
1, . . . , s

′
i, . . . , s

′
n) if f ∈ FC. Similarly, mark(t)↓M is factive(s

′
1, . . . ,

mark(ti)↓M, . . . , s′
n) if f ∈ FD and f(s′

1, . . . ,mark(ti)↓M, . . . , s′
n) if f ∈ FC. Hence, the

result follows. �

Theorem 14

Let (R, µ) be a CSRS over a signature F. If R1
µ is terminating then (R, µ) is termin-

ating.

Proof

If (R, µ) is not terminating then there exists an infinite reduction of ground terms.

Any such sequence is transformed by the previous lemma into an infinite reduction

in R1
µ. �

The converse of the above theorem does not hold, i.e., the transformation is

incomplete.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 393

Example 15
As an example of a terminating CSRS that is transformed into a non-terminating TRS

by our transformation, consider the following variant R of a well-known example from

Toyama (1987):

f(b, c, x) → f(x, x, x) d → b d → c

If we define µ(f) = {3} then the resulting CSRS is terminating because the usual cyclic

reduction from f(b, c, d) to f(d, d, d) and further to f(b, c, d) can no longer be done, as

one would have to reduce the first and second argument of f . However, the transformed

TRS R1
µ

factive(b, c, x) → factive(x, x,mark(x)) dactive → b dactive → c

mark(f(x, y, z)) → factive(x, y,mark(z)) mark(b) → b factive(x, y, z) → f(x, y, z)

mark(d) → dactive mark(c) → c dactive → d

is not terminating:

factive(b, c, dactive) →1 factive(dactive, dactive,mark(dactive))

→+
1 factive(b, c,mark(d)) →1 factive(b, c, dactive)

Note that RL
µ

fµ(x) → fµ(x) dµ → bµ dµ → cµ

and RZ
µ

f(b, c, x) → f(x, x, x) d → c a(b) → b b → b

d → b a(c) → c a(x) → x c → c

also fail to terminate. For example, RZ
µ admits the cycle

f(b, c, d) →Z f(d, d, d) →+
Z f(b, c, d) →+

Z f(b, c, d)

Because RFR
µ = RZ

µ ∪ {a(f(x, y, z)) → f(x, y, a(z)), a(d) → d}, RFR
µ admits the same

cycle.

Nevertheless, compared to the transformations of Lucas, Zantema, and Ferreira &

Ribeiro, our easy transformation is very powerful. There are numerous CSRSs

where our transformation succeeds and which cannot be handled by the other three

transformations.

Example 16
As a simple example, consider the terminating CSRS R

g(x) → h(x) c → d h(d) → g(c)

with µ(g) = µ(h) = � from Zantema (1997). The TRS RL
µ

gµ → hµ cµ → dµ hµ → gµ

is non-terminating as it admits the cycle gµ →L hµ →L gµ. The TRS RZ
µ

g(x) → h(a(x)) h(d) → g(c) a(c) → c c → c

c → d a(x) → x a(d) → d d → d

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


394 J. Giesl and A. Middeldorp

is non-terminating as it admits the cycle

g(c) →Z h(a(c)) →Z h(c) →Z h(d) →Z h(d) →Z g(c)

Because RZ
µ ⊆ RFR

µ , RFR
µ is also non-terminating. In contrast, our transformation

generates the TRS R1
µ

gactive(x) → hactive(x) cactive → d hactive(d) → gactive(c)

mark(g(x)) → gactive(x) mark(c) → cactive gactive(x) → g(x) cactive → c

mark(h(x)) → hactive(x) mark(d) → d hactive(x) → h(x)

which is compatible with the recursive path order for the precedence

mark 
 cactive 
 d 
 gactive 
 hactive 
 g 
 h 
 c

and hence terminating.

Moreover, while the techniques of Lucas, Zantema, and Ferreira & Ribeiro fail

for the nats example from the introduction, our transformation generates a TRS

that is easily proved to be terminating.

Example 17

With our transformation one obtains the following TRS R1
µ

natsactive → adxactive(zerosactive) hdactive(x) → hd(x)

zerosactive → 0 : zeros tlactive(x) → tl(x)

incractive(x : y) → s(x) : incr(y) mark(nats) → natsactive

adxactive(x : y) → incractive(x : adx(y)) mark(zeros) → zerosactive

hdactive(x : y) → mark(x) mark(incr(x)) → incractive(mark(x))

tlactive(x : y) → mark(y) mark(adx(x)) → adxactive(mark(x))

natsactive → nats mark(hd(x)) → hdactive(mark(x))

zerosactive → zeros mark(tl(x)) → tlactive(mark(x))

incractive(x) → incr(x) mark(0) → 0

adxactive(x) → adx(x) mark(s(x)) → s(x)

mark(x : y) → x : y

Termination of R1
µ can be proved by the following polynomial interpretation:

[nats] = 0 [hd](x) = 5x + 8

[natsactive] = 6 [hdactive](x) = 5x + 9

[zeros] = 0 [tl](x) = 5x + 8

[zerosactive] = 1 [tlactive](x) = 5x + 9

[incr](x) = x + 1 [0] = 0

[incractive](x) = x + 2 [s](x) = x

[adx](x) = x + 1 [x : y] = x + y

[adxactive](x) = x + 4 [mark](x) = 5x + 7

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 395

Systems for the automated generation of polynomial orders can for instance be found

in (Ben Cherifa & Lescanne, 1987; Steinbach, 1994; Giesl, 1995; Contejean et al.,

2000). See Hong and Jakuš (1998) for a comparison of some of the underlying

methods. The above interpretation is computed by CiME (Contejean et al., 2000).

In fact, there does not exist any example where the methods of Lucas, Zantema, or

Ferreira and Ribeiro work but our method fails. In other words, our transformation

is more powerful than all other three approaches. One should remark that this also

provides an alternative proof of the soundness of these three approaches. We first

prove this for the transformation of Lucas.

Theorem 18

Let (R, µ) be a CSRS over a signature F. If RL
µ is terminating then R1

µ is terminating.

Proof

We prove termination of R1
µ using the dependency pair approach (Arts & Giesl,

2000; Giesl et al., 2002). The dependency pairs of R1
µ are

Factive(l1, . . . , ln) → Gactive(t1, . . . , tn) (1)

Factive(l1, . . . , ln) → MARK(x) (2)

for all rewrite rules f(l1, . . . , ln) → r ∈ R, active subterms g(t1, . . . , tn) of r with a

defined root symbol, and active variables x in r,

MARK(f(x1, . . . , xn)) → Factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
(3)

for all f ∈ FD, and

MARK(f(x1, . . . , xn)) → MARK(xi) (4)

for all f ∈ F and i ∈ µ(f). Every cycle of the dependency graph must contain a

dependency pair of type (1), (2), or (4). Thus, it is sufficient if dependency pairs of

type (1), (2), and (4) are strictly decreasing, whereas for dependency pairs of type

(3) it is enough if they are weakly decreasing. Moreover, all rules of R1
µ should be

weakly decreasing. Thus, we have to find a reduction pair (�, >) such that

factive(l1, . . . , ln) � mark(r)↓M

Factive(l1, . . . , ln) > Gactive(t1, . . . , tn)

Factive(l1, . . . , ln) > MARK(x)

for all rewrite rules f(l1, . . . , ln) → r ∈ R, active subterms g(t1, . . . , tn) of r with a

defined root symbol, and active variables x in r, and

mark(f(x1, . . . , xn)) � factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FD

mark(f(x1, . . . , xn)) � f
(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FC

factive(x1, . . . , xn) � f(x1, . . . , xn) for all f ∈ FD

MARK(f(x1, . . . , xn)) � Factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FD

MARK(f(x1, . . . , xn)) > MARK(xi) for all f ∈ F, i ∈ µ(f)

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


396 J. Giesl and A. Middeldorp

A suitable reduction pair (�, >) can be obtained from the reduction relation →L

provided the terms in the above inequalities are first transformed into terms over the

signature FL. To this end, we replace all mark- and MARK-terms by their arguments

and we replace all activated function symbols factive and the tuple symbols Factive

by the original symbols f. Then we proceed as in the transformation of Lucas by

eliminating all inactive arguments using the TRS L (Definition 4). Thus, let L′ be

the following terminating and confluent TRS:

L′ = L ∪ {mark(x) → x, MARK(x) → x}
∪ {factive(x1, . . . , xn) → f(x1, . . . , xn) | f ∈ FD}
∪ {Factive(x1, . . . , xn) → f(x1, . . . , xn) | f ∈ FD}

Now we define > by s > t if and only if s↓L′ (→L ∪ �)+ t↓L′ . Here � denotes the

proper subterm relation. Moreover, let � be the relation where s � t if and only if

s↓L′ →∗
L t↓L′ . One easily verifies that (�, >) is a reduction pair (> is well founded

by the termination of RL
µ), which satisfies the constraints above. Hence, due to the

soundness of the dependency pair approach, the termination of R1
µ is established.

�

Now we show that our transformation is also more powerful than those of

Zantema and of Ferreira & Ribeiro. In fact, this already holds if one eliminates the

rules

a(f(x1, . . . , xn)) → f
(
[[x1]]

f
1 , . . . , [[xn]]

f
n

)
from RFR

µ . In other words, these rules are superfluous for a sound transformation

technique (this is shown in Theorem 22(b) below). Theorem 22(a) states that the

resulting transformation Θ′
FR is less powerful than our transformation. Theorem 22(c)

states that the same is true for Ferreira and Ribeiro’s original transformation ΘFR

and Theorem 22(d) states that this holds for Zantema’s transformation, too. The

proof of Theorem 22(a) has the same structure as the one of Theorem 11.

So in order to relate the two transformations, we have to show that every reduction

between two ground terms s and t in R1
µ corresponds to a similar reduction between

related ground terms Ψ(s) and Ψ(t) in RFR′

µ . Here, Ψ is a mapping which removes

all active subscripts and mark symbols. Moreover, Ψ underlines function symbols

f at an inactive position, provided that f ∈ FFR
µ .

In principle, all positions below an inactive position are also inactive. However,

in the mapping Ψ, every f with f /∈ FFR
µ , every factive, and the symbol mark make

their active argument positions “active” again. Thus, if µ(:) = �, then we obtain

Ψ(0 : adx(zeros)) = 0 : adx(zeros), but Ψ(0 : mark(adx(zeros))) = 0 : adx(zeros),

Ψ(0 : adxactive(zeros)) = 0 : adx(zeros), and Ψ(0 : tl(zeros)) = 0 : tl(zeros), since

tl /∈ FFR
µ . For the definition of Ψ we use another mapping Ψ′ which is like Ψ except

that in Ψ the root position is considered active and in Ψ′ it is considered inactive.

Definition 19

Let (R, µ) be a CSRS over a signature F. We define two mappings Ψ and Ψ′ from

T(F1) to T(FFR
µ ) inductively as follows:

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 397

Ψ(f(t1, . . . , tn))=Ψ(factive(t1, . . . , tn))=Ψ′(factive(t1, . . . , tn))=f
(
〈t1〉f1 , . . . , 〈tn〉fn

)
Ψ′(f(t1, . . . , tn))=

{
f(Ψ′(t1), . . . ,Ψ

′(tn)) if f ∈ FFR
µ

f
(
〈t1〉f1 , . . . , 〈tn〉fn

)
if f /∈ FFR

µ

Ψ(mark(t))=Ψ′(mark(t))=Ψ(t)

with 〈t〉fi = Ψ(t) if i ∈ µ(f) and 〈t〉fi = Ψ′(t) if i /∈ µ(f), for all 1 � i � n.

The aim is to show that every reduction step s →1 t corresponds to a reduction

from Ψ(s) to Ψ(t) in RFR′

µ . In the following, M2 denotes the subset of R1
µ consisting

of all rules in M together with all rules of the form factive(x1, . . . , xn) → f(x1, . . . , xn)

and M1 = R1
µ\M2. Then we have the following correspondence.

Lemma 20

For all terms s, t ∈ T(F1), if s →M1
t then Ψ(s) →+

FR′ Ψ(t).

Lemma 21

For all terms s, t ∈ T(F1), if s →M2
t then Ψ(s) →∗

FR′ Ψ(t).

The proofs can be found in Appendix B.

Theorem 22

Let (R, µ) be a CSRS over a signature F.

(a) If RFR′

µ is terminating then R1
µ is terminating.

(b) If RFR′

µ is terminating then (R, µ) is terminating.

(c) If RFR
µ is terminating then R1

µ is terminating.

(d) If RZ
µ is terminating then R1

µ is terminating.

Proof

Because M2 is terminating, every infinite R1
µ-reduction of ground terms in T(F1) is

transformed into an infinite RFR′

µ -reduction as a consequence of Lemmata 21 and 20.

This proves (a). Claim (b) is an immediate consequence of (a) and the soundness of

our transformation (Theorem 14). Claim (c) follows from (a) since RFR′

µ is a subset

of RFR
µ . Finally, Claim (d) is implied by (c) and Theorem 11. �

The relationship between the various transformations is illustrated in Figure 1.

Here, “Transformation 1 → Transformation 2” means that Transformation 2 is more

powerful than Transformation 1, i.e., if Transformation 1 yields a terminating TRS,

then so does Transformation 2, but not vice versa. We have proved that the relations

between the four transformations ΘL, ΘZ, ΘFR, and Θ1 depicted in Figure 1 really

hold and that these are all relations between these transformations (i.e., Lucas’

transformation is incomparable with the ones of Zantema and of Ferreira & Ribeiro).

Hence, our transformation Θ1 is the most powerful one up to now. Still, Θ1 is

incomplete (Example 15) and we will introduce a complete transformation Θ2 in

the next section.

One should note that while Θ1 is incomplete in general, there do exist some

restricted completeness results for Θ1. Lucas (2002b) recently observed that Θ1 is

complete for such CSRSs (R, µ) where µ is at least as restrictive as the canonical

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


398 J. Giesl and A. Middeldorp

Θ2

Θ1

��

ΘFR

�������

ΘZ

�������
ΘL

����������������

Fig. 1. Relationship between all transformations.

replacement map µc associated with R. Moreover, in Giesl & Middeldorp (2003),

we investigated the use of Θ1 for innermost termination. It turns out that although

termination of (R, µ) does not imply termination of R1
µ, it at least implies innermost

termination of R1
µ. An immediate consequence of this result is that Θ1 is complete

for innermost termination of those CSRSs which have the property that innermost

termination coincides with termination.3 The latter is known to be true for ortho-

gonal CSRSs (Giesl & Middeldorp, 2003) and for locally-confluent overlay systems

with the additionally property that variables that occur at an active position in a

left-hand side l of a rewrite rule l → r do not occur at inactive positions in l or r

(Gramlich & Lucas, 2002a).

5 A sound and complete transformation

In this section we present a transformation of context-sensitive rewrite systems which

is not only sound but also complete with respect to termination.

Let us first investigate why the transformation of Section 4 lacks complete-

ness. Consider again the CSRS (R, µ) of Example 15. The reason for the non-

termination of R1
µ is that terms may have occurrences of factive symbols at

inactive positions, even if we start with a “proper” term (like factive(b, c, dactive)).

The “forbidden” occurrences of dactive in the first two arguments of factive (in the

term factive(dactive, dactive,mark(dactive)))) lead to contractions which are impossible in

the underlying CSRS. Thus, the key to achieving a complete transformation is to

control the number of occurrences of factive symbols. We do this in a rather drastic

manner: We will work with a single occurrence of a symbol marked with active. Of

course, we cannot forbid the existence of terms with multiple occurrences of factive

symbols but we can make sure that no new factive symbols are introduced during

the contraction of an active redex.

3 These restricted completeness results were originally achieved for a slightly different presentation of
our transformation (see Definition 47). However, these results immediately carry over to the current
transformation Θ1.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 399

Instead of having a separate symbol factive for every function symbol f in the

signature of the CSRS, we use a new unary function symbol active. Working with

a single active occurrence entails that we have to shift it in a non-deterministic

fashion downwards to any active position. This is achieved by the rules

active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)

for every i ∈ µ(f). By this shifting of the symbol active, our TRS implements an

algorithm to search for redexes subject to the constraints of the replacement map µ.

Once we have shifted active to the position of the desired redex, we can apply one

of the rules

active(l) → mark(r)

The function symbol mark is used to mark the contractum of the selected redex.

In order to continue the reduction it has to be replaced by active again. Since the

next reduction step may of course take place at a position above the previously

contracted redex, we first have to shift mark upwards through the term, i.e., we use

rules of the form

f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xi, . . . , xn))

for every i ∈ µ(f). We want to replace mark by active if we have reached the top of

the term. Since it cannot be determined whether mark is on the root position of the

term, we introduce a new unary function symbol top to mark the position below

which reductions may take place. Thus, the reduction of a term s with respect to

a CSRS is modeled by the reduction of the term top(active(s)) in the transformed

TRS. If top(active(s)) is reduced to a term top(mark(t)), we are ready to replace

mark by active. This suggests adding the rule

top(mark(x)) → top(active(x))

However, as illustrated with the counterexample in Section 4 (Example 15), we have

to avoid making infinite reductions with terms which contain inner occurrences of

new symbols like active and mark. For that reason we want to make sure that this

rule is only applicable to terms that do not contain any other occurrences of the

new function symbols. Thus, before reducing top(mark(t)) to top(active(t)) we check

whether the term t is proper, i.e., whether it contains only function symbols from the

original signature F. This is easily achieved by new unary function symbols proper

and ok. For any ground term t ∈ T(F), proper(t) reduces to ok(t), but if t contains

one of the newly introduced function symbols then the reduction of proper(t) is

blocked. This is done by the rules

proper(c) → ok(c)

for every constant c ∈ F and

proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))

f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


400 J. Giesl and A. Middeldorp

for every function symbol f ∈ F of arity n > 0. Then, instead of the rewrite rule

top(mark(x)) → top(active(x)), we take the rules

top(mark(x)) → top(proper(x))

top(ok(x)) → top(active(x))

Now the context-sensitive reduction of a term t is translated into a reduction of

the term top(active(t)) with the transformed TRS. This concludes our informal

explanation of the new transformation, whose formal definition is summarized

below.

Definition 23

Let (R, µ) be a CSRS over a signature F. The TRS R2
µ over the signature F2 =

F ∪ {active,mark, top, proper, ok} consists of the following rewrite rules (for all l →
r ∈ R, f ∈ F of arity n > 0, i ∈ µ(f), and constants c ∈ F):

active(l) → mark(r)

active(f(x1, . . . , xi, . . . , xn)) → f(x1, . . . , active(xi), . . . , xn)

f(x1, . . . ,mark(xi), . . . , xn) → mark(f(x1, . . . , xi, . . . , xn))

proper(c) → ok(c)

proper(f(x1, . . . , xn)) → f(proper(x1), . . . , proper(xn))

f(ok(x1), . . . , ok(xn)) → ok(f(x1, . . . , xn))

top(mark(x)) → top(proper(x))

top(ok(x)) → top(active(x))

We denote the transformation (R, µ) �→ R2
µ by Θ2 and we abbreviate →R2

µ
to →2.

The following example shows that the rules for proper and ok are essential for

completeness.

Example 24

Consider the CSRS R

f(x, g(x), y) → f(y, y, y) g(b) → c b → c

with µ(f) = � and µ(g) = {1}. This CSRS is clearly terminating. The TRS

active(f(x, g(x), y)) → mark(f(y, y, y)) active(g(x)) → g(active(x))

active(g(b)) → mark(c) g(mark(x)) → mark(g(x))

active(b) → mark(c) top(mark(x)) → top(active(x))

that is obtained from R2
µ by merging the two rules top(mark(x)) → top(proper(x))

and top(ok(x)) → top(active(x)) into top(mark(x)) → top(active(x)) and removing

all rules for proper and ok is non-terminating because t = top(active(f(s, s, s))) with

s = active(g(b)) admits the following cycle:

t → top(active(f(mark(c), s, s))) → top(active(f(mark(c), g(active(b)), s)))

→ top(active(f(mark(c), g(mark(c)), s))) → top(mark(f(s, s, s))) → t

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 401

In the rest of this section we show that our second transformation is both sound

and complete. We start with a preliminary lemma, which states that proper has

indeed the desired effect.

Lemma 25

Let (R, µ) be a CSRS over a signature F and let s, t ∈ T(F2). We have proper(s) →+
2

ok(t) if and only if s = t and s ∈ T(F).

Proof

The “if” direction is an easy induction proof on the structure of s. The “only if”

direction is proved by induction on the length of the reduction. First assume that

the first reduction step takes place inside s, so proper(s) →2 proper(s′) →+
2 ok(t) for

some term s′ with s →2 s
′. The induction hypothesis yields s′ ∈ T(F). However, an

inspection of the rules of R2
µ shows that then s →2 s

′ is impossible, since terms from

T(F) can never be obtained by R2
µ-reductions. So the first reduction step takes

place at the root. If s is a constant c, then we obtain proper(c) →2 ok(c) and thus

s = c = t ∈ T(F). Otherwise, a root reduction is only possible if s has the form

f(s1, . . . , sn). Then we have proper(f(s1, . . . , sn)) →2 f(proper(s1), . . . , proper(sn)) →+
2

ok(t). In order to reduce a term f(· · · ) to ok(·), all arguments of f must reduce to

terms with root symbol ok. Hence, we must have proper(si) →+
2 ok(ti). The induction

hypothesis yields si = ti ∈ T(F) and hence t = f(t1, . . . , tn) = s, which proves the

lemma. �

The next lemma shows how context-sensitive reduction steps are simulated by the

second transformation. The “if” part is used in the completeness proof.

Lemma 26

Let (R, µ) be a CSRS over a signature F and let s ∈ T(F). We have s →µ t if and

only if active(s) →+
2 mark(t).

Proof

The “only if” direction is easily proved by induction on the depth of the position of

the redex contracted in s →µ t. We prove here the “if” direction by induction on s.

There are two possibilities for the rewrite rule of R2
µ that is applied in the first step

of the reduction from active(s) to mark(t). If a rule of the form active(l) → mark(r)

is used then s = lσ for some substitution σ. Since rσ contains only symbols from

F, mark(rσ) is in normal form and thus t = rσ. Clearly s →µ t. Otherwise, s must

have the form f(s1, . . . , si, . . . , sn) and in the first reduction step active(s) is reduced

to f(s1, . . . , active(si), . . . , sn) for some i ∈ µ(f). Note that all reductions of the latter

term to a term of the form mark(t) have the form

f(s1, . . . , active(si), . . . , sn) →+
2 f(s1, . . . ,mark(ti), . . . , sn)

→2 mark(f(s1, . . . , ti, . . . , sn))

Hence t = f(s1, . . . , ti, . . . , sn). The induction hypothesis yields si →µ ti and as i ∈ µ(f)

we also have s →µ t. �

Soundness of our second transformation is now easily shown.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


402 J. Giesl and A. Middeldorp

Theorem 27

Let (R, µ) be a CSRS over a signature F. If R2
µ is terminating then (R, µ) is termina-

ting.

Proof

If (R, µ) is not terminating then there exists an infinite reduction of ground terms in

T(F). Note that s →µ t implies active(s) →+
2 mark(t) by Lemma 26. Hence it also

implies

top(active(s)) →+
2 top(mark(t)) →2 top(proper(t))

Moreover, by Lemma 25 we have proper(t) →+
2 ok(t) and thus

top(proper(t)) →+
2 top(ok(t)) →2 top(active(t))

Concatenating these two reductions shows that top(active(s)) →+
2 top(active(t))

whenever s →µ t. Hence any infinite reduction of ground terms in (R, µ) is

transformed into an infinite reduction in R2
µ. �

To prove that the converse of Theorem 27 holds as well, we define S2
µ as the

TRS R2
µ without the two rewrite rules for top. The following lemma states that we

do not have to worry about S2
µ.

Lemma 28

The TRS S2
µ is terminating for any CSRS (R, µ).

Proof

Let F be the signature of (R, µ). The rewrite rules of S2
µ are oriented from left

to right by the recursive path order induced by the following precedence on F2:

active 
 proper 
 f 
 ok 
 mark for every f ∈ F. It follows that S2
µ is termina-

ting. �

The following lemma implies that the two top-rules must be applied in alternating

order.

Lemma 29

Let (R, µ) be a CSRS over a signature F and let s ∈ T(F2).

(a) There is no t ∈ T(F2) such that proper(s) →+
2 mark(t).

(b) There is no t ∈ T(F2) such that active(s) →+
2 ok(t).

Proof

(a) We prove the claim by induction on the length of the reduction. If the

first reduction step takes place inside s then the claim immediately follows

from the induction hypothesis. Otherwise, the first step is a root reduction

step. If the first step is proper(c) →2 ok(c) with s = c = t, then the claim

is obvious, since the root symbol ok is a constructor which can never be

reduced. In the remaining case, we have s = f(s1, . . . , sn) and proper(s) →2

f(proper(s1), . . . , proper(sn)). In order to rewrite this term to a term with mark

as root symbol, one subterm proper(si) must be reduced to mark(ti) for some

term ti. However, this contradicts the induction hypothesis.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 403

(b) Again we use induction on the length of the reduction. If the reduction

starts inside s, the claim is obvious. If the reduction starts with active(s) →2

mark(·), then the claim is proved, since mark is a constructor which can

never be reduced. The remaining case is s = f(s1, . . . , sn) and active(s) →2

f(s1, . . . , active(si), . . . , sn). This term can only be reduced to a term with the

root symbol ok if all arguments of f rewrite to ok-terms. In particular, we must

have active(si) →+
2 ok(ti) for some term ti. This, however, is a contradiction to

the induction hypothesis.

�

Now we are ready to present the completeness theorem.

Theorem 30

Let (R, µ) be a CSRS over a signature F. If (R, µ) is terminating then R2
µ is termin-

ating.

Proof

First note that the precedence used in the proof of Lemma 28 cannot be extended

to deal with the whole of R2
µ as the rewrite rules for top require mark 
 proper and

ok 
 active. Since R2
µ lacks collapsing rules, it is sufficient to prove termination of

any typed version of R2
µ (Zantema, 1994; Middeldorp & Ohsaki, 2000). Thus, we

may assume that the function symbols of R2
µ come from a many-sorted signature,

where the only restriction is that the left and right-hand side of any rewrite rule are

well typed and of the same type. We use two sorts α and β, with top of type α → β

and all other symbols of type α × · · · × α → α. So if R2
µ allows an infinite reduction

then there exists an infinite reduction of well-typed terms. Since both types contain

a ground term, we may assume for a proof by contradiction that there exists an

infinite reduction starting from a well-typed ground term t. Terms of type α are

terminating by Lemma 28 since they cannot contain the symbol top and thus the

only applicable rules stem from S2
µ. So t is a ground term of type β, which implies

that t = top(t′) with t′ of type α. Since t′ is terminating, the infinite reduction starting

from t must contain a root reduction step. So t′ reduces to mark(t1) or ok(t0) for

some terms t1 or t0 (of type α).

We first consider the former possibility. The infinite reduction starts with

t →∗
2 top(mark(t1)) →2 top(proper(t1))

Since proper(t1) is of type α and thus terminating, after some further reduction steps

another step takes place at the root. According to Lemma 29(a), proper(t1) cannot

reduce to a mark-term. Thus, another root step is only possible if proper(t1) reduces

to ok(t′1) for some term t′1. According to Lemma 25 we must have t1 = t′1 ∈ T(F).

Hence the presupposed infinite reduction continues as follows:

top(proper(t1)) →+
2 top(ok(t1)) →2 top(active(t1))

Repeating this kind of reasoning reveals that the infinite reduction must be of

the following form, where all root reduction steps between top(proper(t1)) and

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


404 J. Giesl and A. Middeldorp

top(mark(t3)) are made explicit:

t →+
2 top(proper(t1)) →+

2 top(ok(t1)) →2 top(active(t1)) →+
2 top(mark(t2))

→2 top(proper(t2)) →+
2 top(ok(t2)) →2 top(active(t2)) →+

2 top(mark(t3))

→2 · · ·

Hence active(ti) →+
2 mark(ti+1) and ti ∈ T(F) for all i � 1. We obtain

t1 →µ t2 →µ t3 →µ · · ·

from Lemma 26, contradicting the termination of (R, µ).

Next suppose that t′ reduces to ok(t0) for some term t0. In this case the infinite

reduction starts with t →∗
2 top(ok(t0)) →2 top(active(t0)). Since active(t0) is also of

type α and hence terminating, there must be another root reduction step. So active(t0)

must reduce to mark(t1) for some term t1, since it cannot rewrite to an ok-term

by Lemma 29(b). Hence, we end up with t →∗
2 top(ok(t0)) →2 top(active(t0)) →+

2

top(mark(t1)) as in the first case. �

Example 31

To illustrate our new transformation, let us reconsider the CSRS (R, µ) in the counter-

example to the completeness of Θ1 (Example 15). Apart from the rules for proper,

ok, and top, R2
µ contains the following rules:

active(f(b, c, x)) → mark(f(x, x, x)) active(f(x, y, z)) → f(x, y, active(z))

active(d) → mark(b) f(x, y,mark(z)) → mark(f(x, y, z))

active(d) → mark(c)

The term factive(b, c, dactive) admitted an infinite R1
µ-reduction. In R2

µ, the correspond-

ing term t = top(active(f(b, c, active(d)))) rewrites to top(mark(f(active(d), active(d),

active(d)))), but in order to change mark back to active, all auxiliary symbols below

mark must be eliminated (this is checked by the rules for proper and ok). Since this

is impossible here, t is terminating. For instance,

t → top(mark(f(active(d), active(d), active(d))))

→ top(proper(f(active(d), active(d), active(d))))

→ top(f(proper(active(d)), proper(active(d)), proper(active(d))))

→+ top(f(proper(mark(b)), proper(mark(c)), proper(mark(b))))

6 Context-sensitive rewriting modulo AC

In this section we extend our results to context-sensitive rewriting modulo associ-

ativity and commutativity. Operators that are associative and commutative occur

frequently in practice. Since the commutativity axiom cannot be oriented into a

terminating rewrite rule, one has to work modulo associativity and commutativity

to have any hope for terminating computations. (Turning the associativity axiom

into a rewrite rule and working modulo commutativity causes non-termination.)

Context-sensitive rewriting modulo associativity and commutativity was first studied

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 405

by Ferreira & Ribeiro (1999). Throughout this section, let G ⊆ F be some subset

of binary function symbols and let AC(G) (or just AC if G can be inferred from the

context) consist of the rules

f(f(x, y), z) → f(x, f(y, z))

f(x, y) → f(y, x)

for all f ∈ G. As usual, we write ∼AC for ↔∗
AC. Then the context-sensitive rewrite

relation →µ/AC is defined as follows: s →µ/AC t if and only if there exist terms

s′ and t′ such that s ∼AC s′ →µ t′ ∼AC t. Note that a replacement map µ with

µ(f) = {1} or µ(f) = {2} for an AC-symbol f ∈ G does not make sense, since

otherwise associativity and commutativity can be used to bring terms from inactive

positions into active ones. Therefore, one demands that the replacement map µ

satisfies µ(f) = {1, 2} or µ(f) = � for all AC-symbols f ∈ G.4 In the sequel we

tacitly restrict ourselves to replacement maps satisfying this requirement.

Ferreira & Ribeiro (1999) proved that their transformation can also be used in the

presence of AC-symbols. More precisely, if G = G ∪ {f | f ∈ G and f ∈ FFR
µ } then

termination of RFR
µ modulo AC(G) implies termination of (R, µ) modulo AC(G).

Thus, by using any of the methods developed for proving AC-termination (Kapur

et al., 1995; Rubio & Nieuwenhuis, 1995; Kapur & Sivakumar, 1997; Marché &

Urbain, 1998; Kusakari & Toyama, 2001; Giesl & Kapur, 2001; Rubio, 2002), one

can now verify termination of context-sensitive rewriting modulo AC as well.

In this section we prove that analogous statements also hold for our two

transformations. Moreover, we show that in the presence of AC-symbols our first

transformation is still more powerful than the one of Ferreira & Ribeiro and our

second transformation is still complete.

When regarding our first transformation, it is clear that we have to perform

a small change in its presentation first. To see this, assume that f is an AC-

symbol with replacement map µ(f) = � and consider the TRS R with the rule

f(f(b, c), d) → f(b, f(c, d)). (Context-sensitive) rewriting modulo AC is obviously not

terminating. However, R1
µ would be terminating, since the present rule would be

replaced by factive(f(b, c), d) → mark(f(b, f(c, d)))↓M = factive(b, f(c, d)). In order to

simulate the non-terminating reduction in R1
µ one would need associativity not just

for f and factive, but also for a combination of these two symbols. Hence, in rules of R1
µ

of the form factive(l1, . . . , ln) → mark(r)↓M, the rules mark(g(· · · )) → gactive(· · · ) for

defined AC-symbols with µ(g) = � should not be used to normalize the right-hand

sides. This results in a slightly modified transformation Θ′
1.

Definition 32

Let (R, µ) be a CSRS over a signature F and let G ⊆ F. The TRS R1′
µ over the

signature F1 = F ∪ {factive | f ∈ FD} ∪ {mark} consists of the following rewrite

4 Ferreira & Ribeiro also regard a further restriction of context-sensitive rewriting where one uses
a second replacement map in order to restrict those positions where application of AC-axioms is
allowed. However, we do not see any motivation for this restriction in practice. Moreover, if one
wants to prove termination of the transformed system with existing methods, one can never benefit
from this restriction (i.e., one can only prove termination of →µ/AC where application of AC-axioms
is unrestricted).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


406 J. Giesl and A. Middeldorp

rules:

factive(l1, . . . , ln) → mark(r)↓M′ for all f(l1, . . . , ln) → r ∈ R

mark(f(x1, . . . , xn)) → factive

(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FD

mark(f(x1, . . . , xn)) → f
(
[x1]

f
1 , . . . , [xn]

f
n

)
for all f ∈ FC

factive(x1, . . . , xn) → f(x1, . . . , xn) for all f ∈ FD

Here M′ is the subset of R1′
µ consisting of all mark-rules except those where f ∈

G ∩ FD and µ(f) = �. Again, [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise. We

denote the transformation (R, µ) �→ R1′
µ by Θ′

1 and we abbreviate →R1′
µ

to →1′ .

So in the example above R1′
µ differs from R1

µ in that the rule factive(f(b, c), d) →
factive(b, f(c, d)) is replaced by factive(f(b, c), d) → mark(f(b, f(c, d))).

Before proving the soundness of the transformation Θ′
1 for termination of context-

sensitive rewriting modulo AC, let us first show that in the absence of AC-axioms,

R1′
µ is really just a slightly different presentation of R1

µ (i.e., they do not differ in

their termination behavior).

Theorem 33

Let (R, µ) be a CSRS over a signature F. The TRS R1
µ is terminating if and only if

R1′
µ is terminating.

Proof

The “if” direction is trivial, since →1 ⊆ →+
1′ . For the “only if” direction note

that non-termination of R1′
µ can only be due to the rules from R1′

µ \M. We show

that if s →1′ t by application of one of these rules, then we have s↓M →+
1 t↓M.

First regard the case where s|π = factive(l1, . . . , ln)σ and t = s[mark(r)↓M′σ]π for

some rule l → r ∈ R. Let σ′(x) = σ(x)↓M for all variables x. Then we obtain

s↓M = s↓M[factive(l1, . . . , ln)σ
′]π′ →1 s↓M[mark(r)↓Mσ′]π′ →∗

1 t↓M. Next let s|π =

factive(s1, . . . , sn) and t = s[ f(s1, . . . , sn)]π . Then we obtain s↓M = s↓M[ factive(s1↓M, . . . ,

sn↓M)]π′ →1 s↓M[ f(s1↓M, . . . , sn↓M)]π′ →∗
1 t↓M. �

Now we show that transformation Θ′
1 remains sound in the presence of AC-

axioms.

Theorem 34

Let (R, µ) be a CSRS over a signature F and let G′ = G ∪ {factive | f ∈ G ∩ FD}. If

R1′
µ is terminating modulo AC(G′) then (R, µ) is terminating modulo AC(G).

Proof

As in Lemma 13 and Theorem 14, it is enough to show that for all ground terms

s, t ∈ T(F), if s ∼AC(G) s
′ →µ t′ ∼AC(G) t then

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 407

mark(s)↓M′ ∼AC(G′) mark(s′)↓M′ →+
1′ mark(t′)↓M′ ∼AC(G′) mark(t)↓M′

Similar to the proof of Lemma 13 one shows that s′ →µ t′ implies mark(s′)↓M′ →+
1′

mark(t′)↓M′ . So it remains to show that s ∼AC(G) s′ implies mark(s)↓M′ ∼AC(G′)

mark(s′)↓M′ . Using induction on the number of AC-steps, it is sufficient to show that

s →AC(G) s
′ implies mark(s)↓M′ →AC(G′) mark(s′)↓M′ . Let us regard the case where

associativity is applied, i.e., s|π = f(f(s1, s2), s3) and s′ = s[ f(s1, f(s2, s3))]π for f ∈ G,

some position π, and some terms s1, s2, and s3. (The case where the commutativity

rule is applied is completely analogous.)

First, let π be an active position in s and let µ(f) = {1, 2} or f ∈ FC. Then

mark(s)↓M′ |π = f′(f′(s′
1, s

′
2), s

′
3) and mark(s′)↓M′ = mark(s)↓M′[ f′(s′

1, f
′(s′

2, s
′
3))]π for

some terms s′
1, s

′
2, and s′

3, where f′ = factive if f ∈ FD and f′ = f if f ∈ FC. If

π is active, µ(f) = �, and f ∈ FD then mark(s)↓M′ |π = mark(f(f(s1, s2), s3)) and

mark(s′)↓M′ = mark(s)↓M′[mark(f(s1, f(s2, s3)))]π . If π is an inactive position in s

then mark(s)↓M′ = mark(s)↓M′[f(f(s1, s2), s3)]π′ and mark(s′)↓M′ = mark(s)↓M′[f(s1,

f(s2, s3))]π′ for some position π′. In all cases we clearly have mark(s)↓M′ →AC(G′)

mark(s′)↓M′ . �

Finally, we compare our transformation Θ′
1 with the one of Ferreira & Ribeiro

(1999) when using it for context-sensitive rewriting modulo AC. First, note that

Ferreira and Ribeiro’s transformation can only be used if the replacement map

µ satisfies µ(f) = {1, 2} for all AC-symbols f. Otherwise, their transformation is

unsound. To illustrate this, consider the CSRS

f(c, c) → f(c, f(b, b)) f(f(c, b), b) → f(c, c)

with µ(f) = � and f an AC-symbol. Clearly, (R, µ) is not terminating modulo AC.

However, RFR
µ

f(c, c) → f(c, f(b, b)) a(f(x1, x2)) → f(x1, x2) f(x1, x2) → f(x1, x2)

f(f(c, b), b) → f(c, c) a(b) → b b → b

a(x) → x a(c) → c c → c

is terminating modulo AC({f , f}). The problem is that for the desired step from

f(c, f(b, b)) to f(f(c, b), b) we need the rule f(x, f(y, z)) → f(f(x, y), z), which is not an

associativity axiom.

Thus, Θ′
1 is more widely applicable since our transformation is sound for any

replacement map µ (where µ(f) = {1, 2} or µ(f) = � for AC-symbols f). Moreover,

even in the case where µ(f) = {1, 2} for all AC-symbols f, our transformation

Θ′
1 is still more powerful than the one of Ferreira & Ribeiro. This is shown in

the following theorem. Again, G is a subset of the binary function symbols in F,

G′ = G ∪ {factive | f ∈ G ∩ FD}, and G = G ∪ {f | f ∈ G and f ∈ FFR
µ }.

Theorem 35

Let (R, µ) be a CSRS over a signature F. Let µ(f) = {1, 2} for all f ∈ G. If RFR′

µ is

terminating modulo AC(G) then R1′
µ is terminating modulo AC(G′).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


408 J. Giesl and A. Middeldorp

Proof

Similar to the proof of Theorem 22(a), it suffices to show that for all terms from

T(F1), s ∼AC(G′) s
′ →1′ t′ ∼AC(G′) t implies

Ψ(s) ∼AC(G) Ψ(s′) →∗
FR′ Ψ(t′) ∼AC(G) Ψ(t)

where we have →+
FR′ instead of →∗

FR′ whenever a rule factive(l1, . . . , ln) → mark(r)↓M′

is applied to rewrite s′ to t′. Similar to Lemmata 20 and 21 one can show that s′ →1′ t′

implies Ψ(s′) →∗
FR′ Ψ(t′) and if a rule factive(l1, . . . , ln) → mark(r)↓M′ is applied in

the step from s′ to t′ then at least one rule of RFR′

µ is needed to reduce Ψ(s′) to

Ψ(t′). Hence, it remains to show that if s ∼AC(G′) s
′ then Ψ(s) ∼AC(G) Ψ(s′). Using

induction on the number of AC-steps, it is sufficient to show Ψ(s) →AC(G) Ψ(s′) for

s →AC(G′) s
′. We only regard the application of an associativity rule; the proof for

commutativity is completely analogous. We consider two cases:

(i) s|π = f(f(s1, s2), s3) and s′ = s[ f(s1, f(s2, s3))]π ,

(ii) s|π = factive(factive(s1, s2), s3) and s′ = s[ factive(s1, factive(s2, s3))]π with f ∈ FD

for some position π, terms s1, s2, s3, and f ∈ G.

(i) When computing Ψ(s) and Ψ(s′), either Ψ or Ψ′ is propagated to the subterms

s|π and s′|π . In the former case we have

Ψ(s) = Ψ(s)[Ψ(s|π)]π′

= Ψ(s)[Ψ(f(f(s1, s2), s3))]π′

= Ψ(s)[ f(f(Ψ(s1),Ψ(s2)),Ψ(s3))]π′

where the last equality follows from µ(f) = {1, 2}, and likewise

Ψ(s′) = Ψ(s)[ f(Ψ(s1), f(Ψ(s2),Ψ(s3)))]π′

for some position π′. Hence Ψ(s) →AC(G) Ψ(s′) by applying the associativity

rule for f. In the latter case, we need to distinguish whether or not f ∈ FFR
µ .

If f /∈ FFR
µ then we obtain Ψ(s) →AC(G) Ψ(s′) exactly as before. If f ∈ FFR

µ

then

Ψ(s) = Ψ(s)[Ψ′(s|π)]π′

= Ψ(s)[f(f(Ψ′(s1),Ψ
′(s2)),Ψ

′(s3))]π′

and Ψ(s′) = Ψ(s)[ f(Ψ′(s1), f(Ψ′(s2),Ψ
′(s3)))]π′ . Because f ∈ FFR

µ , AC(G) con-

tains the associativity rule for f and thus Ψ(s) →AC(G) Ψ(s′).

(ii) We have

Ψ(s) = Ψ(s[ factive(factive(s1, s2), s3)]π)

= Ψ(s)[ f(f(Ψ(s1),Ψ(s2)),Ψ(s3))]π′

and likewise Ψ(s′) = Ψ(s)[ f(Ψ(s1), f(Ψ(s2),Ψ(s3)))]π′ , for some position π′.

Using the associativity rule for f, we obtain Ψ(s) →AC(G) Ψ(s′), as desired.

�

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 409

Now we prove that soundness and completeness of our second transformation

also hold in the presence of AC-axioms.

Theorem 36

Let (R, µ) be a CSRS over a signature F. If R2
µ is terminating modulo AC(G) then

(R, µ) is terminating modulo AC(G).

Proof

We show that for ground terms s, t ∈ T(F), s →µ/AC t implies top(active(s)) →+
2/AC

top(active(t)). By definition, there exist s′ and t′ such that s ∼AC s′ →µ t′ ∼AC t. As

in the proof of Theorem 27, we obtain top(active(s′)) →+
2 top(active(t′)) from Lem-

mata 25 and 26. Clearly top(active(s)) ∼AC top(active(s′)) and top(active(t′)) ∼AC

top(active(t)), and hence the claim is proved. �

To prove completeness, we first extend Lemma 25 about the effect of proper to

the AC-case.

Lemma 37

Let (R, µ) be a CSRS over a signature F and let s, t∈ T(F2). We have proper(s)

→+
2/AC ok(t) if and only if s ∼AC t and s ∈ T(F).

Proof

The “if” direction follows from Lemma 25: s ∈ T(F) implies that proper(s) →+
2

ok(s) and since ok(s) ∼AC ok(t) we obtain proper(s) →+
2/AC ok(t). The proof of the

“only if” direction is completely analogous to the corresponding proof in Lemma 25

by using an induction on the length of the →2/AC-reduction. �

The next lemma shows that similar to Lemma 26, context-sensitive reduction steps

modulo AC can still be simulated by the second transformation.

Lemma 38

Let (R, µ) be a CSRS over a signature F and let s ∈ T(F). We have s →µ/AC t if

and only if active(s) →+
2/AC mark(t).

Proof

For the “if” direction we observe that the reduction active(s) →+
2/AC mark(t) can be

rearranged into active(s) ∼AC active(s′) →+
2 mark(t′) ∼AC mark(t). Since s′ ∈ T(F),

we can apply Lemma 26. This yields s′ →µ t′ and thus s →µ/AC t as desired. For

the “only if” direction we reason as follows. By definition, there exist terms s′ and

t′ such that s ∼AC s′ →µ t′ ∼AC t. Lemma 26 yields active(s′) →+
2 mark(t′). Clearly

active(s) ∼AC active(s′) and mark(t′) ∼AC mark(t), and therefore active(s) →+
2/AC

mark(t). �

Recall that S2
µ is the TRS R2

µ without the two rewrite rules for top.

Lemma 39

The TRS S2
µ is terminating modulo AC for any CSRS (R, µ).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


410 J. Giesl and A. Middeldorp

Proof

The rewrite rules of S2
µ are oriented from left to right for example by the AC-

extension of the recursive path order from (Kapur et al., 1995), where the precedence

is as in Lemma 28. Hence, S2
µ is terminating modulo AC. �

In the AC-case, the two top-rules must also be applied in alternating order.

Lemma 40

Let (R, µ) be a CSRS over a signature F and let s ∈ T(F2).

(a) There is no t ∈ T(F2) such that proper(s) →+
2/AC mark(t).

(b) There is no t ∈ T(F2) such that active(s) →+
2/AC ok(t).

Proof

The proof is analogous to the proof of Lemma 29, using induction on the length

of the →2/AC-reduction. The only difference is in part (b), when s = f(s1, . . . , sn)

and the reduction starts with active(s) →2/AC f(s1, . . . , active(si), . . . , sn). This term

can only be reduced to a term with the root symbol ok if f(s1, . . . , active(si), . . . , sn)

→∗
2/AC f(ok(t1), . . . , ok(tn)). Since f could be associative, this does not imply that

each argument of f must reduce to an ok-term. However, let T consist of all maximal

subterms of f(s1, . . . , active(si), . . . , sn) with a root symbol different from f. Then it

is easy to show that in order to reduce the whole term to an ok-term, all t ∈ T must

reduce to an ok-term. Since active(si) ∈ T , we must also have active(si) →+
2/AC ok(·)

which contradicts the induction hypothesis. �

Now we can finally prove the completeness of our second transformation for

context-sensitive rewriting modulo AC.

Theorem 41

Let (R, µ) be a CSRS over a signature F. If (R, µ) is terminating modulo AC then

R2
µ is terminating modulo AC.

Proof

The proof is very similar to the proof of Theorem 30. Since AC only contains

non-collapsing and variable preserving equations, it is again sufficient to prove that

a suitably typed version of R2
µ is terminating modulo AC (Middeldorp & Ohsaki,

2000). The typing is done as in Theorem 30, i.e., top is of type α → β and all other

symbols are of type α×· · ·×α → α. By Lemma 39, any term t that is non-terminating

modulo AC must be of type β, which implies that t = top(t′) with t′ of type α. Since

t′ is terminating modulo AC and top is not an AC-symbol, the infinite reduction

starting from t must contain a root reduction step. So t′ reduces to mark(t′1) or

ok(t0) for some terms t′1 or t0 (of type α).

We first consider the former possibility. The infinite reduction starts with

t →∗
2/AC top(mark(t′1)) →2/AC top(proper(t′′1))

where t′1 ∼AC t′′1. Since proper(t′′1) is of type α and thus terminating modulo AC,

after some further reduction steps another step takes place at the root. According

to Lemma 40(a) this is only possible if proper(t′′1) reduces modulo AC to ok(t′′′1 ) for

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 411

some term t′′′1 . According to Lemma 37 we must have t′′1 ∼AC t′′′1 ∈ T(F). Hence the

presupposed infinite reduction continues as follows:

top(proper(t′′1)) →+
2/AC top(ok(t′′′1 )) →2/AC top(active(t1))

where t1 ∼AC t′′′1 . Thus, by rearranging the AC-steps, we obtain

t →+
2/AC top(proper(t1)) →+

2 top(ok(t1)) →2 top(active(t1))

Repeating this kind of reasoning reveals that the infinite reduction can be re-

arranged into the following form, where all root reduction steps between the terms

top(proper(t1)) and top(mark(t3)) are made explicit:

t →+
2/AC top(proper(t1)) →+

2 top(ok(t1)) →2 top(active(t1)) →+
2/AC top(mark(t2))

→2 top(proper(t2)) →+
2 top(ok(t2)) →2 top(active(t2)) →+

2/AC top(mark(t3))

→2 · · ·

Hence active(ti) →+
2/AC mark(ti+1) and ti ∈ T(F) for all i � 1. We obtain

t1 →µ/AC t2 →µ/AC t3 →µ/AC · · ·

from Lemma 38, contradicting the termination of (R, µ) modulo AC.

Next suppose that t′ reduces to ok(t0) for some term t0. In this case the infinite

reduction starts with t →∗
2/AC top(ok(t0)) →2/AC top(active(t′0)) where t0 ∼AC t′0.

Since active(t′0) is also of type α and hence terminating modulo AC, there must be

another root reduction step. So by Lemma 40(b), active(t′0) must reduce modulo

AC to mark(t′1) for some term t′1. Hence, we end up with t →∗
2/AC top(ok(t0)) →2/AC

top(active(t′0)) →+
2/AC top(mark(t′1)) as in the first case. �

7 Incrementality

It is natural to expect that termination of a CSRS becomes easier to prove when

restricting the associated replacement map. In this section we investigate this issue

for the five transformations discussed in this paper.

Definition 42

We call a transformation Θ from CSRSs to TRSs incremental if Θ(R, ν) is terminating

for all those TRSs R and replacement maps µ, ν where Θ(R, µ) is terminating and

where ν is a restriction of µ, i.e., ν(f) ⊆ µ(f) for all function symbols f.

Lucas’ transformation is not incremental. Consider the TRS R

f(b, x) → f(c, x)

and replacement maps µ(f) = {1, 2} and ν(f) = {2}. One easily verifies that RL
µ is

terminating and that RL
ν lacks termination. (In particular, this example shows that

Lucas’ transformation lacks incrementality even in examples where the transformed

system is still a proper TRS, i.e., where all variables in right-hand sides of rules

occur in the corresponding left-hand sides as well.)

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


412 J. Giesl and A. Middeldorp

We do not know whether Zantema’s transformation is incremental. However,

restricting the replacement map may make the task of proving termination of

the transformed system more difficult. In particular, there are examples where

termination of RZ
µ can be proved by the recursive path order, but termination of RZ

ν

cannot be proved by any recursive path order. For example, consider the one-rule

TRS R

f(x) → g(f(x))

and replacement maps µ and ν defined by µ(g) = ν(g) = �, µ(f) = {1}, and ν(f) = �.

Termination of the TRS RZ
µ

f(x) → g(f(x)) f(x) → f(x)

a(f(x)) → f(x) a(x) → x

can be proved by the recursive path order with precedence a 
 f 
 g 
 f . The TRS

RZ
ν

f(x) → g(f(a(x))) f(x) → f(x)

a(f(x)) → f(x) a(x) → x

is terminating but this cannot be proved by any recursive path order since the rule

f(x) → g(f(a(x))) requires both f 
 f and f 
 a, whereas the rule a(f(x)) → f(x)

requires either f 
 f or a 
 f .

Concerning incrementality, the results for Ferreira and Ribeiro’s transformation

are analogous to the ones for Zantema’s transformation. Again, restricting the

replacement map can make the termination proof of the transformed system harder.

For the previous TRS R, RFR
µ only differs from RZ

µ in that a(f(x)) → f(x) is replaced

by the rules a(f(x)) → f(a(x)) and a(g(x)) → g(x). Its termination proof succeeds with

the same recursive path order used for RZ
µ . But again, since RZ

ν ⊆ RFR
ν , termination

of RFR
ν cannot be proved by any recursive path order.

In the rest of this section, we show that the two transformations introduced in this

paper are incremental. The following two lemmata are needed in the incrementality

proof of Θ1 to simulate reductions of R1
ν by R1

µ if the replacement map ν is a

restriction of the replacement map µ.

Lemma 43

Let (R, µ) be a CSRS over a signature F. For all terms t∈ T(F1) we have

mark(t) →+
1 t.

Proof

The lemma is proved by induction on the structure of t. We distinguish three cases.

First let t = mark(t′). We obtain

mark(t) = mark(mark(t′)) →+
1 mark(t′) = t

by the induction hypothesis. Next let t = factive(t1, . . . , tn). We obtain

mark(factive(t1, . . . , tn)) →1 mark(f(t1, . . . , tn)) →1 factive

(
[t1]

f
1 , . . . , [tn]

f
n

)

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 413

If i ∈ µ(f) then [ti]
f
i = mark(ti) →+

1 ti by the induction hypothesis. Otherwise,

i /∈ µ(f) and we directly obtain [ti]
f
i = ti. Hence the above reduction continues with

factive([t1]
f
1 , . . . , [tn]

f
n) →∗

1 factive(t1, . . . , tn) = t. Finally, if t = f(t1, . . . , tn) with f ∈ F
then mark(t) reduces to f(t1, . . . , tn) if f ∈ FC and to factive(t1, . . . , tn) if f ∈ FD
as in the previous case. Since factive(t1, . . . , tn) →1 f(t1, . . . , tn) = t, the claim is

proved. �

Lemma 44

Let (R, µ) be a CSRS over a signature F. For all terms t ∈ T(F,V) and substitutions

σ such that tσ ∈ T(F1) we have mark(t)↓Mσ →∗
1 tσ.

Proof

We use induction on the structure of t. If t is a variable then mark(t)↓Mσ =

mark(tσ) →+
1 tσ by Lemma 43. If t = f(t1, . . . , tn) then

mark(f(t1, . . . , tn))↓Mσ = f(u1σ, . . . , unσ) if f ∈ FC

mark(f(t1, . . . , tn))↓Mσ = factive(u1σ, . . . , unσ) →1 f(u1σ, . . . , unσ) if f ∈ FD

Here, ui = mark(ti)↓M if i ∈ µ(f) and ui = ti if i /∈ µ(f). If i ∈ µ(f) then we obtain

uiσ →∗
1 tiσ from the induction hypothesis. Hence f(u1σ, . . . , unσ) →∗

1 tσ. �

Now we are in a position to prove the incrementality of our first transformation.

Theorem 45

The transformation Θ1 is incremental.

Proof

Let R be a TRS over a signature F with replacement maps µ and ν such that R1
µ is

terminating and ν is a restriction of µ. It suffices to show that s →1ν t implies s →+
1µ

t

for all ground terms s and t. Without loss of generality we assume that µ �= ν and

that the difference between them is minimal, i.e., µ(f)\ν(f) = {i} for some function

symbol f and 1 � i � arity(f), and µ(g) = ν(g) for all other function symbols g. The

difference between R1
µ and R1

ν is twofold. First of all, in R1
µ we have

mark(f(x1, . . . , xn)) → f′([x1]
f,µ
1 , . . . , [xn]

f,µ
n

)
with [xi]

f,µ
i = mark(xi) and in R1

ν we have

mark(f(x1, . . . , xn)) → f′([x1]
f,ν
1 , . . . , [xn]

f,ν
n

)
with [xi]

f,ν
i = xi and [xj]

f,ν
j = [xj]

f,µ
j for all other argument positions j. Here,

f′ = factive if f ∈ FD and f′ = f if f ∈ FC. If the reduction s →1ν t was performed

with this last rule then there is a position π in s such that s|π = mark(f(t1, . . . , tn)) and

t = s[ f′([t1]
f,ν
1 , . . . , ti, . . . , [tn]

f,ν
n )]π . Note that [ti]

f,µ
i = mark(ti) →+

1µ
ti by Lemma 43.

Hence

s →1µ s
[
f′([t1]f,µ1 , . . . ,mark(ti), . . . , [tn]

f,µ
n

)]
π

→+
1µ

s
[
f′([t1]f,ν1 , . . . , ti, . . . , [tn]

f,ν
n

)]
π

= t

The second difference between R1
µ and R1

ν is in the translation of the rules of R:

gactive(l1, . . . , ln) → mark(r)↓Mµ
= rµ

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


414 J. Giesl and A. Middeldorp

in R1
µ and

gactive(l1, . . . , ln) → mark(r)↓Mν
= rν

in R1
ν . Suppose the reduction s →1ν t was performed using one of the latter rules.

So s|π = gactive(l1, . . . , ln)σ and t = s[rνσ]π for some position π in s. We have

s →1µ s[rµσ]π , so it suffices to show that rµσ →∗
1µ

rνσ. We do this by induction on

r. If r is a variable then rµσ = rνσ. For the induction step we consider two cases.

If r = h(r1, . . . , rm) with f �= h then rµσ = h′(s1, . . . , sm) and rνσ = h′(t1, . . . , tm) with

sj = rjσ = tj if j /∈ µ(h) and sj = mark(rj)↓Mµ
σ and tj = mark(rj)↓Mν

σ if j ∈ µ(h).

Moreover h′ = hactive if h ∈ FD and h′ = h if h ∈ FC. The induction hypothesis

yields sj →∗
1µ

tj for j ∈ µ(h) and thus rµσ →∗
1µ

rνσ. Finally, if r = f(r1, . . . , rn)

then rµσ = f′(s1, . . . , sn) and rνσ = f′(t1, . . . , tn) with sj = rjσ = tj if j /∈ µ(f),

sj = mark(rj)↓Mµ
σ and tj = mark(rj)↓Mν

σ if j ∈ µ(f)\{i}, and si = mark(ri)↓Mµ
σ

and ti = riσ. The induction hypothesis yields sj →∗
1µ

tj for j ∈ µ(f)\{i} and Lemma 44

yields si →∗
1µ

ti. Hence also in this case we obtain the desired rµσ →∗
1µ

rνσ. �

Incrementality of Θ2 is an immediate consequence of the following, more general,

result.

Theorem 46

Any sound and complete transformation from CSRSs to TRSs is incremental.

Proof

Let Θ be a sound and complete transformation from CSRSs to TRSs. Let R be

a TRS over a signature F with replacement maps µ and ν such that Θ(R, µ)

is terminating and ν is a restriction of µ. Soundness of Θ implies that (R, µ) is

a terminating CSRS. Since →ν is a restriction of →µ, the CSRS (R, ν) inherits

termination from (R, µ). Completeness of Θ yields the termination of Θ(R, ν). �

The results presented in this section also extend to termination modulo AC,

i.e., both Θ′
1 and Θ2 are incremental modulo AC. For Θ2, the reason is that

Theorem 46 carries over to context-sensitive rewriting modulo AC. For Θ′
1, the

proof of Theorem 45 cannot be re-used directly. The problem is that we might have

a restriction ν of the replacement map µ where ν(f) = � and µ(f) = {1, 2} for a

defined AC-symbol f . Recall that in the transformation Θ′
1 not all mark-rules are

used to normalize right-hand sides (one may not use mark(g(· · · ))-rules for defined

AC-symbols g with inactive arguments). For example, if we have a rule a → f(a, a)

in R, then R1
ν would contain the rule aactive → mark(f(a, a))↓M′

ν
= mark(f(a, a)) and

R1
µ would contain aactive → mark(f(a, a))↓M′

µ
= factive(aactive, aactive). Thus, s →1′

ν
t

does not imply s →+
1′
µ
t. Instead it can be shown5 that s →1′

ν
t implies s↓M′

µ
→+

1′
µ
t↓M′

µ

for all ground terms s and t.

A natural question is whether termination of Θ(R, µ) is equivalent to termination

of R for the replacement map µ with µ(f) = {1, . . . , n} for all n-ary function symbols

f. For the five transformations studied in this paper this is indeed the case. Because

of Figure 1 we only need to show this for ΘL and ΘZ. For Lucas’ transformation

5 The proof can be found in Giesl & Middeldorp (2002).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 415

this is trivial as ΘL(R, µ) = R. We have ΘZ(R, µ) = R ∪ {a(x) → x}. Since a does

not appear in R, ΘZ(R, µ) inherits termination from R. For instance, Theorem 6 in

(Middeldorp et al., 1996) applies.

8 Conclusion

In this paper, we presented two new transformations from CSRSs to TRSs whose

purpose is to reduce the problem of proving termination of CSRSs to the problem of

proving termination of TRSs. So in particular, techniques for termination proofs of

TRSs can now also be used to analyze the termination behavior of lazy functional

programs which may be modeled by CSRSs. Our first transformation Θ1 is simple,

sound, and more powerful than all other transformations suggested in the literature.

Our second transformation Θ2 is not only sound but also complete, so it transforms

every terminating CSRS into a terminating TRS.

Nevertheless, Θ2 does not render the other (incomplete) transformations useless,

since termination of R2
µ is often more difficult to prove than termination of the

TRSs resulting from the other transformations. For instance, while Θ1 transforms

the CSRS in Example 16 into a TRS whose termination can easily be proved by

the recursive path order, no recursive path order can prove termination of the TRS

resulting from this CSRS by transformation Θ2.

While we already introduced related transformations in a preliminary version of

this paper (Giesl & Middeldorp, 1999), our second (complete) transformation has

been simplified compared to its earlier definition and our first transformation has

been modified to ease the termination proofs of the resulting transformed TRSs.

In Giesl & Middeldorp (1999), instead of Θ1 the following transformation was

proposed.

Definition 47

Let (R, µ) be a CSRS over a signature F. The TRS R1′′
µ over the signature F1′′ =

F ∪ {active,mark} consists of the following rewrite rules:

active(l) → mark(r) for all l → r ∈ R

mark(f(x1, . . . , xn)) → active
(
f
(
[x1]

f
1 , . . . , [xn]

f
n

))
for all f ∈ F

active(x) → x

Here [t]fi = mark(t) if i ∈ µ(f) and [t]fi = t otherwise.

The following theorem states that the TRSs resulting from Θ1 and Θ′′
1 have the

same termination behavior. The equivalence proof is given in Appendix C.

Theorem 48

Let (R, µ) be a CSRS. The TRS R1
µ is terminating if and only if R1′′

µ is terminating.

However, while Θ1 is just a different presentation of Θ′′
1, termination of R1

µ is often

significantly easier to prove than termination of R1′′
µ . For example, termination of

the CSRSs in Examples 16 and 17 can easily be verified automatically by traditional

simplification orders if Θ1 is used, whereas Θ′′
1 can only rarely be used in combination

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


416 J. Giesl and A. Middeldorp

with such orders (as shown in Borralleras et al. 2002), confirming a claim of Giesl

& Middeldorp (1999).6

Apart from the transformational approach, very recently some standard ter-

mination methods for term rewriting have been extended to apply directly to

context-sensitive rewriting (Borralleras et al., 2002; Gramlich & Lucas, 2002b).

Direct approaches and transformational approaches both have their advantages.

Techniques for proving termination of ordinary term rewriting have been extensively

studied and with the transformational approach all termination techniques for

ordinary term rewriting (including future developments) become available for

context-sensitive rewriting as well. In particular, as long as the available techniques

for direct termination analysis of context-sensitive rewriting are incomplete or

semi-automatic, (complete) transformation methods are also useful since they offer

additional possibilities for performing termination proofs. For instance, the method

of Borralleras et al. (2002) cannot prove termination of the following example,

whereas with our first transformation termination is easily proved (automatically).

Example 49

Consider the TRS R

0 − y → 0 0 ÷ s(y) → 0

s(x) − s(y) → x − y s(x) ÷ s(y) → if(x � y, s((x − y) ÷ s(y)), 0)

x � 0 → true if(true, x, y) → x

0 � s(y) → false if(false, x, y) → y

s(x) � s(y) → x � y

This example shows that context-sensitive rewriting can also be used to simulate the

usual evaluation strategy for “ if”. To this end, we define µ(if) = {1}. This ensures

that in an if-term, the condition is evaluated first and depending on the result of the

evaluation either the second or the third argument is evaluated afterwards. Moreover,

we define µ(s) = µ(÷) = {1} and µ(f) = � for all other function symbols f. So µ is

the most restrictive replacement map ensuring that defined symbols on right-hand sides

would be on active positions if all arguments of “ if” were active. This replacement

map permits all evaluations which are performed in an eager functional language when

starting with a term f(t1, . . . , tn) where f is applied to “data objects” (i.e., the terms

ti are constructor ground terms). In such languages, a term f(· · · ) with f �= if may

only be reduced at root position if all its arguments are constructor ground terms. The

termination of R1
µ is easily proved (see Appendix D).

In addition to the modifications of the transformations, the present article extends

(Giesl & Middeldorp, 1999) by numerous significant new results. While in Giesl &

Middeldorp (1999) it remained open whether our first transformation is really more

6 The main traditional techniques for automated termination proofs of TRSs are simplification orders
like the recursive path order, the Knuth-Bendix order, and (most) polynomial orders. For instance,
when using Θ′′

1 in Example 16, termination cannot be proved by these techniques and in Example 17,
termination cannot even be proved by any simplification order. The reason is that active(zeros) can
be reduced to the term active(0 : zeros) in which it is embedded.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 417

powerful than the one of Zantema (1997), we now gave a proof for this claim. We

also included a comparison with the technique of Ferreira & Ribeiro (1999), which

was developed independently and in parallel to Giesl & Middeldorp (1999). To this

end, we showed that already our first transformation is more powerful than the one

of Ferreira & Ribeiro (1999). In addition, we proved that Ferreira and Ribeiro’s

transformation is more powerful than Zantema’s transformation. In this way, now

the relationship between all existing transformation techniques for context-sensitive

rewriting has been clarified. Finally, all observations presented in Sections 6 and 7

are new. In Section 6 we showed that our results also hold for termination of

context-sensitive rewriting modulo AC and in Section 7 we prove that in contrast

to all other transformation techniques, our transformations behave naturally when

restricting the replacement map of context-sensitive rewriting.

As a final remark we mention that, inspired by work of Fokkink et al. (2000),

recently Lucas (2001a) introduced an extension of context-sensitive rewriting called

on-demand rewriting which is characterized by two replacement maps. He showed

that the two transformations of the preliminary version of this paper (Giesl &

Middeldorp, 1999) can also be extended to on-demand rewriting.

Acknowledgements

We thank Salvador Lucas, Hans Zantema, and the anonymous referees for many

helpful remarks.

A Proofs for Section 3

Before giving the proofs of Lemmata 9 and 10 we present two useful properties of

the mappings Φ and Φ′.

Lemma 50

For all terms t ∈ T(FFR
µ ) we have Φ′(t) →∗

Z Φ(t).

Proof

We distinguish three cases. If t = f(t1, . . . , tn) with f ∈ F or t = f(t1, . . . , tn) with

f ∈ FFR
µ \FZ

µ then Φ′(t) = f(〈t1〉f1 , . . . , 〈tn〉fn) = Φ(t). If t = f(t1, . . . , tn) with f ∈ FZ
µ

then Φ′(t) = f(〈t1〉f1 , . . . , 〈tn〉fn) and Φ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn). In this case we obtain

Φ′(t) →Z Φ(t) because RZ
µ contains the rewrite rule f(x1, . . . , xn) → f(x1, . . . , xn) as

f ∈ FZ
µ . Finally, if t = a(t′) then Φ′(t) = Φ′(t′) = Φ(t). �

Lemma 51

For all terms t ∈ T(FFR
µ ) we have a(Φ(t)) →Z Φ′(t).

Proof

Again we distinguish three cases. If t = f(t1, . . . , tn) with f ∈ F or t = f(t1, . . . , tn)

with f ∈ FFR
µ \FZ

µ then Φ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn) = Φ′(t) and thus a(Φ(t)) →Z Φ′(t) by

applying the rule a(x) → x. If t = f(t1, . . . , tn) with f ∈ FZ
µ then Φ(t) = f(〈t1〉f1 , . . . ,

〈tn〉fn) and Φ′(t) = f(〈t1〉f1 , . . . , 〈tn〉fn). Because f ∈ FZ
µ , RZ

µ contains the rule a(f(x1, . . . ,

xn)) → f(x1, . . . , xn). Hence a(Φ(t)) →Z Φ′(t). Finally, if t = a(t′) then a(Φ(t)) =

a(Φ′(t′)) →Z Φ′(t′) = Φ′(a(t′)) = Φ′(t) by applying the rule a(x) → x. �

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


418 J. Giesl and A. Middeldorp

Lemma 9

For all terms s, t ∈ T(FFR
µ ), if s →FR1

t then Φ(s) →+
Z Φ(t).

Proof

Let s = C[lσ] →FR1
C[rσ] = t with l → r ∈ RFR1

µ . We have Φ(s) = C ′[Φ(lσ)] or Φ(s) =

C ′[Φ′(lσ)] for some context C ′. Likewise, Φ(t) = C ′[Φ(rσ)] or Φ(t) = C ′[Φ′(rσ)].

Since Φ′(lσ) →∗
Z Φ(lσ) and Φ′(rσ) →∗

Z Φ(rσ) by Lemma 50, it is sufficient to prove

Φ(lσ) →+
Z Φ′(rσ). Let lZ → rZ be the rewrite rule in RZ

µ corresponding to l → r ∈
RFR1

µ . Define the substitution σΦ as follows:

σΦ(x) =

{
Φ(σ(x)) if x (also) occurs at an inactive position in l,

Φ′(σ(x)) otherwise.

One might expect that Φ(lσ) = lZσΦ holds, but if a variable x occurs both at an

active and an inactive position in l then in Φ(lσ) the two occurrences of σ(x) are

replaced by Φ′(σ(x)) and Φ(σ(x)), respectively, so Φ(lσ) need not be an instance of

lZ. However, because Φ′(σ(x)) →∗
Z Φ(σ(x)) by Lemma 50 and because σΦ instantiates

all occurrences of such variables x in lZ by Φ(σ(x)), it follows that

Φ(lσ) →∗
Z lZσΦ.

This can be formally proved as follows. Let us extend Φ and Φ′ to terms with variables

by defining Φ(x) = Φ′(x) = x for every variable x. Note that lZ = Φ(l) = Φ′(l). Hence

it suffices to show Φ(lσ) →∗
Z Φ(l)σΦ. This follows from the first part of the following

statement, which we prove by induction on the structure of t ∈ T(FFR
µ ,V):

• Φ(tσ) →∗
Z Φ(t)σΦ for all non-variable subterms t of l, and

• Φ′(tσ) →∗
Z Φ′(t)σΦ for all subterms t of l.

If t ∈ V then Φ′(t)σΦ = σΦ(t). If σΦ(t) = Φ(tσ) then we obtain Φ′(tσ) →∗
Z

Φ′(t)σΦ from Lemma 50 and if σΦ(t) = Φ′(tσ) then Φ′(tσ) = Φ′(t)σΦ. Suppose

t = f(t1, . . . , tn) or t = f(t1, . . . , tn). We have Φ′(tσ) = f(〈t1σ〉f1 , . . . , 〈tnσ〉fn), Φ′(t) =

f(〈t1〉f1 , . . . , 〈tn〉fn), and either Φ(tσ) = Φ′(tσ) and Φ(t) = Φ′(t) or Φ(tσ) = f(〈t1σ〉f1 , . . . ,
〈tnσ〉fn) and Φ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn). So it suffices to show that 〈tiσ〉fi →∗

Z 〈ti〉fi σΦ.

We distinguish two cases. If i ∈ µ(f) then 〈tiσ〉fi = Φ′(tiσ) and 〈ti〉fi = Φ′(ti). Hence

〈tiσ〉fi →∗
Z 〈ti〉fi σΦ follows from the second part of the induction hypothesis. If i /∈ µ(f)

then 〈tiσ〉fi = Φ(tiσ) and 〈ti〉fi = Φ(ti). If ti /∈ V then we obtain 〈tiσ〉fi →∗
Z 〈ti〉fi σΦ

from the first part of the induction hypothesis. If ti ∈ V then ti occurs at an inactive

position in l since t is a subterm of l and i /∈ µ(f), and thus 〈ti〉fi σΦ = σΦ(ti) = Φ(tiσ).

Combining Φ(lσ) →∗
Z lZσΦ with lZσΦ →Z rZσΦ yields Φ(lσ) →+

Z rZσΦ. To conclude

the proof it remains to show that rZσΦ →∗
Z Φ′(rσ). Let us define r′

Z as the term

obtained from rZ by replacing every subterm a(t) by t. Note that Φ(r) = Φ′(r) = r′
Z.

We may write r′
Z = D[x1, . . . , xn] with all occurrences of variables displayed and rZ =

D[x′
1, . . . , x

′
n] with x′

i = a(xi) if xi occurs at an inactive position in l and x′
i = xi if xi

occurs only at active positions in l. We have rZσΦ = D[t1, . . . , tn] with ti = a(Φ(σ(xi)))

if xi occurs at an inactive position in l and ti = Φ′(σ(xi)) if xi occurs only at active

positions in l. Moreover, Φ′(rσ) = D[u1, . . . , un] with ui ∈ {Φ′(σ(xi)),Φ(σ(xi))}. We

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 419

have a(Φ(σ(xi))) →Z Φ′(σ(xi)) →∗
Z Φ(σ(xi)) by Lemmata 50 and 51, and thus ti →∗

Z ui.

Hence rZσΦ →∗
Z Φ′(rσ) as desired. �

Lemma 10

For all terms s, t ∈ T(FFR
µ ), if s →FR2

t then Φ(s) →∗
Z Φ(t).

Proof

Let s = C[lσ] →FR2
C[rσ] = t with l → r ∈ RFR2

µ . As in the proof of Lemma 9, Φ(s)

is C ′[Φ(lσ)] or C ′[Φ′(lσ)] and Φ(t) is C ′[Φ(rσ)] or C ′[Φ′(rσ)] for some context C ′.

Since Φ′(lσ) →∗
Z Φ(lσ) and Φ′(rσ) →∗

Z Φ(rσ) by Lemma 50, it is sufficient to prove

Φ(lσ) = Φ′(rσ). We distinguish four cases corresponding to the four different types

of rules in RFR2
µ .

(i) If l → r = a(x) → x then Φ(lσ) = Φ′(σ(x)) = Φ′(rσ).

(ii) If l → r = f(x1, . . . , xn) → f(x1, . . . , xn) then

Φ(lσ) = f
(
〈σ(x1)〉f1 , . . . , 〈σ(xn)〉fn

)
= Φ′(rσ).

(iii) If l → r = a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]

f
n) then

Φ(lσ) = f
(
〈σ(x1)〉f1 , . . . , 〈σ(xn)〉fn

)
and

Φ′(rσ) = f
(
〈[[σ(x1)]]

f
1〉f1 , . . . , 〈[[σ(xn)]]

f
n〉fn

)
.

Note that if i ∈ µ(f) then 〈[[σ(xi)]]
f
i 〉fi = Φ′(a(σ(xi))) = Φ′(σ(xi)) = 〈σ(xi)〉fi

and if i /∈ µ(f) then 〈[[σ(xi)]]
f
i 〉fi = Φ(σ(xi)) = 〈σ(xi)〉fi , so Φ(lσ) = Φ′(rσ).

(iv) If l → r = a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]

f
n) then we obtain Φ(lσ) =

Φ′(rσ) exactly as in the previous case.

�

B Proofs for Section 4

Next we turn our attention to Lemmata 20 and 21. We start by proving two useful

properties of the mappings Ψ and Ψ′.

Lemma 52

For all terms t ∈ T(F1) we have Ψ(t) →∗
FR′ Ψ′(t).

Proof

We distinguish three cases. If t = f(t1, . . . , tn) with f /∈ FFR
µ or t = factive(t1, . . . , tn)

then Ψ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn) = Ψ′(t). If t = f(t1, . . . , tn) with f ∈ FFR
µ then Ψ(t) =

f(〈t1〉f1 , . . . , 〈tn〉fn) and Ψ′(t) = f(Ψ′(t1), . . . ,Ψ
′(tn)). Because f ∈ FFR

µ , f(x1, . . . , xn) →
f(x1, . . . , xn) ∈ RFR′

µ and thus Ψ(t) →FR′ f(〈t1〉f1 , . . . , 〈tn〉fn). Let i ∈ {1, . . . , n}. If

i ∈ µ(f) then 〈ti〉fi = Ψ(ti) →∗
FR′ Ψ′(ti) by the induction hypothesis. If i /∈ µ(f) then

〈ti〉fi = Ψ′(ti). Hence Ψ(t) →∗
FR′ Ψ′(t) as desired. Finally, if t = mark(t′) then Ψ(t) =

Ψ(t′) = Ψ′(t). �

Lemma 53

For all terms t ∈ T(F1) we have a(Ψ′(t)) →+
FR′ Ψ(t).

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


420 J. Giesl and A. Middeldorp

Proof

Again we distinguish three cases. If t = f(t1, . . . , tn) with f /∈ FFR
µ or if t =

factive(t1, . . . , tn) then Ψ′(t) = f(〈t1〉f1 , . . . , 〈tn〉fn) = Ψ(t). We have a(Ψ′(t)) →FR′

Ψ(t) by applying the rule a(x) → x. If t = f(t1, . . . , tn) with f ∈ FFR
µ then

a(Ψ′(t)) = a(f(Ψ′(t1), . . . ,Ψ
′(tn))) and Ψ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn). Because f ∈ FFR

µ ,

RFR′

µ contains the rule a(f(x1, . . . , xn)) → f([[x1]]
f
1 , . . . , [[xn]]

f
n). Hence a(Ψ′(t)) →FR′

f([[Ψ′(t1)]]
f
1 , . . . , [[Ψ

′(tn)]]
f
n). So it suffices to show that [[Ψ′(ti)]]

f
i →∗

FR′ 〈ti〉fi for all i.

If i ∈ µ(f) then [[Ψ′(ti)]]
f
i = a(Ψ′(ti)) →+

FR′ Ψ(ti) = 〈ti〉fi by the induction hypothesis

and if i /∈ µ(f) then [[Ψ′(ti)]]
f
i = Ψ′(ti) = 〈ti〉fi . Finally, if t = mark(t′) then again,

Ψ′(t) = Ψ(t) and thus, a(Ψ′(t)) →FR′ Ψ(t) by applying the rule a(x) → x. �

Lemma 20

For all terms s, t ∈ T(F1), if s →M1
t then Ψ(s) →+

FR′ Ψ(t).

Proof

Let s = C[lσ] → C[rσ] = t with l → r ∈ M1. We have Ψ(s) = C ′[Ψ(lσ)] or Ψ(s) =

C ′[Ψ′(lσ)] for some context C ′. Likewise, Ψ(t) = C ′[Ψ(rσ)] or Ψ(t) = C ′[Ψ′(rσ)]. Let

l = factive(l1, . . . , ln) → mark(r′)↓M = r and let lFR → rFR be the corresponding rewrite

rule in RFR′

µ . We clearly have Ψ(lσ) = Ψ′(lσ). Lemma 52 yields Ψ(rσ) →∗
FR′ Ψ′(rσ).

Hence, it is sufficient to prove Ψ(lσ) →+
FR′ Ψ(rσ). We prove that Ψ(rσ) = Ψ(r′σ) by

induction on r′. If r′ is a variable then rσ = mark(r′σ) and thus Ψ(rσ) = Ψ(r′σ).

If r′ = g(r1, . . . , rm) then Ψ(rσ) = Ψ(g′(u1, . . . , um)) = g(〈u1〉g1 , . . . , 〈um〉gm), where g′ =

gactive if g ∈ FD and g′ = g if g ∈ FC. Here, ui = mark(ri)↓Mσ if i ∈ µ(g) and

ui = riσ if i /∈ µ(g). Moreover Ψ(r′σ) = g(〈r1σ〉g1 , . . . , 〈rmσ〉gm). The induction

hypothesis yields 〈ui〉gi = Ψ(mark(ri)↓Mσ) = Ψ(riσ) = 〈riσ〉gi for i ∈ µ(g). If i /∈ µ(g)

then 〈ui〉gi = Ψ′(riσ) = 〈riσ〉gi . It follows that Ψ(rσ) = Ψ(r′σ). We will now show that

Ψ(lσ) →+
FR′ Ψ(r′σ). Define the substitution σΨ as follows:

σΨ(x) =

{
Ψ′(σ(x)) if x (also) occurs at an inactive position in l,

Ψ(σ(x)) otherwise.

Here, we extend µ by defining µ(factive) = µ(f). One might expect that Ψ(lσ) = lFRσΨ

holds, but if a variable x occurs both at an active and an inactive position in l

then in Ψ(lσ) the two occurrences of σ(x) are replaced by Ψ(σ(x)) and Ψ′(σ(x)),

respectively, so Ψ(lσ) need not be an instance of lFR. (Note that the second case in the

definition of Ψ′(f(t1, . . . , tn)) is never applicable when applied to subterms f(t1, . . . , tn)

of l during the computation of Ψ(l).) However, because Ψ(σ(x)) →∗
FR′ Ψ′(σ(x)) by

Lemma 52 and because σΨ instantiates all occurrences of such variables x in lFR by

Ψ′(σ(x)), it follows that

Ψ(lσ) →∗
FR′ lFRσΨ.

This can be formally proved as follows. Let us extend Ψ and Ψ′ to terms with

variables by defining Ψ(x) = Ψ′(x) = x for every variable x. Note that lFR = Ψ(l).

Hence it suffices to show Ψ(lσ) →∗
FR′ Ψ(l)σΨ. This follows from the first part of the

following statement, which we prove by induction on the structure of t ∈ T(F1,V):

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 421

• Ψ(tσ) →∗
FR′ Ψ(t)σΨ for all subterms t of l, and

• Ψ′(tσ) →∗
FR′ Ψ′(t)σΨ for all subterms t at inactive positions in l.

If t ∈ V then Ψ(t)σΨ = σΨ(t). If σΨ(t) �= Ψ(tσ) then σΨ(t) = Ψ′(tσ) and thus we

obtain Ψ(tσ) →∗
FR′ Ψ(t)σΨ from Lemma 52. For the second statement we assume

that t appears at an inactive position in l. So Ψ′(t)σΨ = σΨ(t) = Ψ′(tσ). Note that no

subterm t of l contains mark. So in the remaining case we have t = f(t1, . . . , tn) or t =

factive(t1, . . . , tn). We obtain Ψ(tσ) = f(〈t1σ〉f1 , . . . , 〈tnσ〉fn) and Ψ(t) = f(〈t1〉f1 , . . . , 〈tn〉fn),
so to conclude the first statement it suffices to show that 〈tiσ〉fi →∗

FR′ 〈ti〉fi σΨ. We

distinguish two cases. If i ∈ µ(f) then 〈tiσ〉fi = Ψ(tiσ) and 〈ti〉fi = Ψ(ti). Hence

〈tiσ〉fi →∗
FR′ 〈ti〉fi σΨ follows from the first part of the induction hypothesis. If i /∈ µ(f)

then 〈tiσ〉fi = Ψ′(tiσ) and 〈ti〉fi = Ψ′(ti). Note that ti occurs at an inactive position

in l since t is a subterm of l and i /∈ µ(f). Thus, we obtain 〈tiσ〉fi →∗
FR′ 〈ti〉fi σΨ

from the second part of the induction hypothesis. For the second statement we

reason as follows. Since t appears at an inactive position in l, we have f ∈ FFR
µ and

hence Ψ′(tσ) = f(Ψ′(t1σ), . . . ,Ψ′(tnσ)) and Ψ′(t) = f(Ψ′(t1), . . . ,Ψ
′(tn)). All subterms

of t occur at inactive positions in l and thus Ψ′(tiσ) →∗
FR′ Ψ′(ti)σΨ for all i by the

induction hypothesis. Consequently, Ψ′(tσ) →∗
FR′ Ψ′(t)σΨ as desired.

Combining Ψ(lσ) →∗
FR′ lFRσΨ with lFRσΨ →FR′ rFRσΨ yields Ψ(lσ) →+

FR′ rFRσΨ. To

conclude the proof of the lemma it remains to show that rFRσΨ →∗
FR′ Ψ(r′σ). Let us

define r′
FR as the term obtained from rFR by replacing every subterm a(t) by t. Note

that r′
FR = Ψ(r′). We may write r′

FR = D[x1, . . . , xn] with all occurrences of variables

displayed and rFR = D[x′
1, . . . , x

′
n] with x′

i = a(xi) if xi occurs at an inactive position in

l and x′
i = xi if xi occurs only at active positions in l. We have rFRσΨ = D[t1, . . . , tn]

with ti = a(Ψ′(σ(xi))) if xi occurs at an inactive position in l and ti = Ψ(σ(xi))

if xi occurs only at active positions in l. Moreover, Ψ(r′σ) = D[u1, . . . , un] with

ui ∈ {Ψ(σ(xi)),Ψ
′(σ(xi))}. We have a(Ψ′(σ(xi))) →+

FR′ Ψ(σ(xi)) →∗
FR′ Ψ′(σ(xi)) by

Lemmata 52 and 53. Hence ti →∗
FR′ ui and thus rFRσΨ →∗

FR′ Ψ(r′σ). �

Lemma 21

For all terms s, t ∈ T(F1), if s →M2
t then Ψ(s) →∗

FR′ Ψ(t).

Proof

Let s = C[lσ] → C[rσ] = t with l → r ∈ M2. As in the proof of Lemma 20, Ψ(s) =

C ′[Ψ(lσ)] or Ψ(s) = C ′[Ψ′(lσ)] and Ψ(t) = C ′[Ψ(rσ)] or Ψ(t) = C ′[Ψ′(rσ)] for some

context C ′. Since Ψ(lσ) = Ψ′(lσ) and Ψ(rσ) →∗
FR′ Ψ′(rσ) by Lemma 52, it is sufficient

to prove Ψ(lσ) = Ψ(rσ). We distinguish two cases corresponding to the different types

of rules in M2.

(i) If l → r = factive(x1, . . . , xn) → f(x1, . . . , xn) then Ψ(lσ) = Ψ(rσ).

(ii) Let l → r = mark(f(x1, . . . , xn)) → f′([x1]
f
1 , . . . , [xn]

f
i ) with f′ ∈ {factive, f}.

We have Ψ(lσ) = f(〈σ(x1)〉f1 , . . . , 〈σ(xn)〉fn) and Ψ(rσ) = f(〈[σ(x1)]
f
1〉f1 , . . . ,

〈[σ(xn)]
f
n〉fn). Note that if i ∈ µ(f) then 〈σ(xi)〉fi = Ψ(σ(xi)) = Ψ(mark(σ(xi)))

= 〈[σ(xi)]
f
i 〉fi and if i /∈ µ(f) then 〈σ(xi)〉fi = Ψ′(σ(xi)) = 〈[σ(xi)]

f
i 〉fi . Hence

Ψ(lσ) = Ψ(rσ).

�

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


422 J. Giesl and A. Middeldorp

C Proofs for Section 8

Theorem 48

Let (R, µ) be a CSRS. The TRS R1
µ is terminating if and only if R1′′

µ is terminating.

Proof

For the “only if” direction we show that if s →1′′ t with s, t ∈ T(F1′′) by an

application of a rule active(l) → mark(r) in R1′′
µ then s↓A↓M →+

1 t↓A↓M. Moreover,

if s →1′′ t by applying one of the other rules in R1′′
µ then s↓A↓M →∗

1 t↓A↓M. Here A
is the (terminating and confluent) rewrite system consisting of the following rules:

active(f(x1, . . . , xn)) → factive(x1, . . . , xn) for all f ∈ FD

active(f(x1, . . . , xn)) → f(x1, . . . , xn) for all f ∈ FC

active(factive(x1, . . . , xn)) → factive(x1, . . . , xn) for all f ∈ FD

active(mark(x)) → mark(x)

First suppose that s|π = activem(f(l1, . . . , ln))σ and t = s[activem−1(mark(r))σ]π for

some m � 1, position π, substitution σ, and rule f(l1, . . . , ln) → r ∈ R, such that there

is no active symbol directly above the position π in s. Moreover, let the substitutions

σ′ and σ′′ be defined by σ′(x) = σ(x)↓A and σ′′(x) = σ′(x)↓M for all variables x.

Then we have

s↓A = s[activem(f(l1, . . . , ln))σ]π↓A

= s[factive(l1, . . . , ln)σ]π↓A

= s↓A[factive(l1σ↓A, . . . , lnσ↓A)]π′ (active is not directly above π)

= s↓A[factive(l1σ
′, . . . , lnσ

′)]π′ (l1, . . . , ln do not contain active)

= s↓A[factive(l1, . . . , ln)σ
′]π′

and thus

s↓A↓M = s↓A↓M[factive(l1, . . . , ln)σ
′′]π′′

→1 s↓A↓M[mark(r)↓Mσ′′]π′′

→!
M s↓A[mark(r)σ′]π′ ↓M

Since

t↓A = s[activem−1(mark(r))σ]π↓A

= s[mark(r)σ]π↓A

= s↓A[mark(r)σ↓A]π′ (active is not directly above π)

= s↓A[mark(r)σ′]π′ (r does not contain active)

we obtain t↓A↓M = s↓A[mark(r)σ′]π′ ↓M and thus s↓A↓M →+
1 t↓A↓M.

Next let s|π = activem−1(mark(f(t1, . . . , tn))) and t = s[activem(f([t1]
f
1 , . . . , [tn]

f
n))]π

for some m � 1, position π, terms t1, . . . , tn, and f ∈ F, such that there is no active

symbol directly above the position π in s. Let f′ = factive if f ∈ FD and f′ = f if

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 423

f ∈ FC. Then we have

s↓A = s[activem−1(mark(f(t1, . . . , tn)))]π↓A

= s↓A[mark(f(t1↓A, . . . , tn↓A))]π′ (active is not directly above π)

→M s↓A
[
f′([t1↓A]f1 , . . . , [tn↓A]fn

)]
π′

= s↓A
[
f′([t1]f1 , . . . , [tn]fn)↓A

]
π′

= s↓A
[
active

(
f
(
[t1]

f
1 , . . . , [tn]

f
n

))
↓A

]
π′

= s
[
activem

(
f
(
[t1]

f
1 , . . . , [tn]

f
n

))]
π
↓A (active is not directly above π)

= t↓A

and hence s↓A↓M = t↓A↓M.

Finally, let s|π = activem(f(t1, . . . , tn)) and t = s[activem−1(f(t1, . . . , tn))]π for some

m � 1, position π, some f ∈ F ∪ {mark}, and terms t1, . . . , tn, such that there is no

active symbol directly above the position π in s. We distinguish three cases. First

assume that f ∈ FC ∪ {mark}. Then we have

s↓A = s[activem(f(t1, . . . , tn))]π↓A

= s↓A[f(t1↓A, . . . , tn↓A)]π′ (active is not directly above π)

= s[activem−1(f(t1, . . . , tn))]π↓A (active is not directly above π)

= t↓A

and thus s↓A↓M = t↓A↓M. Similarly, if f ∈ FD and m � 2 then

s↓A = s[activem(f(t1, . . . , tn))]π↓A = s↓A[factive(t1↓A, . . . , tn↓A)]π′

= s[activem−1(f(t1, . . . , tn))]π↓A = t↓A

and thus again s↓A↓M = t↓A↓M. Otherwise, we have f ∈ FD, m = 1, and thus

s↓A = s[active(f(t1, . . . , tn))]π↓A

= s↓A[factive(t1↓A, . . . , tn↓A)]π′ (active is not directly above π)

which implies that

s↓A↓M = s↓A↓M[factive(t1↓A↓M, . . . , tn↓A↓M)]π′′

→1 s↓A↓M[f(t1↓A↓M, . . . , tn↓A↓M)]π′′

→!
M s↓A[f(t1↓A, . . . , tn↓A)]π′ ↓M

= s[f(t1, . . . , tn)]π↓A↓M (active is not directly above π)

= t↓A↓M

The “if” direction can be proved in a similar way, cf. (Giesl & Middeldorp, 2002).

Here, one has to show that if s →1 t for s, t ∈ T(F1), then s↓B →+
1′′ t↓B, where B is

the confluent and terminating TRS consisting of the rules

factive(x1, . . . , xn) → active(f(x1, . . . , xn))

for all f ∈ FD. The key observation is that mark(u) →∗
1′′ mark(u)↓M↓B for all terms

u ∈ T(F,V). �

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


424 J. Giesl and A. Middeldorp

D Example 49

Let (R, µ) be the CSRS of Example 49. Our transformation Θ1 generates the

following TRS R1
µ:

0 −active y → 0 mark(0) → 0

s(x) −active s(y) → x −active y mark(s(x)) → s(mark(x))

x �active 0 → true mark(x − y) → x −active y

0 �active s(y) → false mark(x � y) → x �active y

s(x) �active s(y) → x �active y mark(x ÷ y) → mark(x) ÷active y

0 ÷active s(y) → 0 mark(if(x, y, z)) → ifactive(mark(x), y, z)

s(x) ÷active s(y) → ifactive(x �active y, s((x − y) ÷ s(y)), 0)

ifactive(true, x, y) → mark(x) x −active y → x − y

ifactive(false, x, y) → mark(y) x �active y → x � y

ifactive(x, y, z) → if(x, y, z) x ÷active y → x ÷ y

We prove termination with the dependency pair method. There are 13 dependency

pairs, where f� denotes the tuple symbol corresponding to f:

s(x) −�
active s(y) → x −�

active y mark�(s(x)) → mark�(x)

s(x) ��
active s(y) → x ��

active y mark�(x − y) → x −�
active y

s(x) ÷�
active s(y) → if�active(x �active y, s((x − y) ÷ s(y)), 0)

s(x) ÷�
active s(y) → x ��

active y mark�(x � y) → x ��
active y

if�active(true, x, y) → mark�(x) mark�(x ÷ y) → mark(x) ÷�
active y

if�active(false, x, y) → mark�(y) mark�(x ÷ y) → mark�(x)

mark�(if(x, y, z)) → if�active(mark(x), y, z) mark�(if(x, y, z)) → mark�(x)

Since the pairs s(x) ÷�
active s(y) → x ��

active y, mark�(x − y) → x −�
active y, and

mark�(x � y) → x ��
active y are not on cycles of the (estimated) dependency

graph, we can ignore them. Moreover, it suffices if dependency pairs of the form

mark�(·) → f(· · · ) with f �= mark� are only weakly decreasing (since they do not

form a cycle on their own). By using an argument filtering which maps x − y,

x −active y, mark(x), and mark�(x) to x, the resulting constraints are satisfied by the

recursive path order induced by the quasi-precedence f ∼ factive ∼ f
�
active for all

f ∈ FD\{−} and “÷” 
 if , “�”, s, 0 and “�” 
 true, false. Thus, termination of

the original CSRS can easily be proved automatically using our transformation Θ1.

References

Arts, T. and Giesl, J. (2000) Termination of term rewriting using dependency pairs. Theoretical

Computer Science, 236, 133–178.

Baader, F. and Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.

Bellegarde, F. and Lescanne, P. (1990) Termination by completion. Applicable Algebra in

Engineering, Communication and Computing, 1, 79–96.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 425

Ben Cherifa, A. and Lescanne, P. (1987) Termination of rewriting systems by polynomial

interpretations and its implementation. Science of Computer Programming, 9, 137–159.

Borralleras, C., Ferreira, M. and Rubio, A. (2000) Complete monotonic semantic path

orderings. Proceedings 17th International Conference on Automated Deduction: Lecture Notes

in Artificial Intelligence 1831, pp. 346–364.

Borralleras, C., Lucas, S. and Rubio, A. (2002) Recursive path orderings can be context-

sensitive. Proceedings 18th International Conference on Automated Deduction: Lecture Notes

in Artificial Intelligence 2392, pp. 314–331.

Clavel, M., Eker, S., Lincoln, P. and Meseguer, J. (1996) Principles of Maude. Proc. 1st WRLA,

Electr. Notes in Theor. Comput. Sci. 4.

Contejean, E., Marché, C., Monate, B. and Urbain, X. (2000) CiME version 2. Available at

http://cime.lri.fr/.

Dershowitz, N. (1982) Orderings for term-rewriting systems. Theoretical Computer Science,

17, 279–301.

Dershowitz, N. (1987) Termination of rewriting. J. Symbolic Computation, 3, 69–116.

Dershowitz, N. and Hoot, C. (1995) Natural termination. Theoretical Computer Science, 142(2),

179–207.

Diaconescu, R. and Futatsugi, K. (1998) CafeOBJ Report: The language, proof techniques,

and methodologies for object-oriented algebraic specification. AMAST Series in Computing,

vol. 6. World Scientific.

Ferreira, M. C. F. and Ribeiro, A. L. (1999) Context-sensitive AC-rewriting. Proceedings

10th International Conference on Rewriting Techniques and Applications: Lecture Notes in

Computer Science 1631, pp. 173–187.

Fokkink, W. J., Kamperman, J. F. Th. and Walters, H. R. (2000) Lazy rewriting on eager

machinery. ACM Trans. Program. Lang. Syst. 22(1), 45–86.

Giesl, J. (1995) Generating polynomial orderings for termination proofs. Proceedings

6th International Conference on Rewriting Techniques and Applications: Lecture Notes in

Computer Science 914, pp. 426–431.

Giesl, J. and Kapur, D. (2001) Dependency pairs for equational rewriting. Proceedings

12th International Conference on Rewriting Techniques and Applications: Lecture Notes in

Computer Science 2051, pp. 93–107.

Giesl, J. and Middeldorp, A. (1999) Transforming context-sensitive rewrite systems.

Proceedings 10th International Conference on Rewriting Techniques and Applications: Lecture

Notes in Computer Science 1631, pp. 271–285.

Giesl, J. and Middeldorp, A. (2002) Transformation techniques for context-sensitive rewrite

systems. Technical report AIB-2002-02, RWTH Aachen, Germany. Available from

http://aib.informatik.rwth-aachen.de.

Giesl, J. and Middeldorp, A. (2003) Innermost termination of context-sensitive rewriting.

Proceedings 6th International Conference on Developments in Language Theory: Lecture

Notes in Computer Science 2450, pp. 231–244.

Giesl, J., Arts, T. and Ohlebusch, E. (2002) Modular termination proofs for rewriting using

dependency pairs. J. Symbolic Computation, 34(1), 21–58.

Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K. and Jouannaud, J.-P. (2000) Introducing

OBJ. In: Goguen, J. and Malcolm, G., editors, Software Engineering with OBJ: Algebraic

specification in action. Kluwer.

Gramlich, B. and Lucas, S. (2002a) Modular termination of context-sensitive rewriting.

Proceedings 4th International Conference on Principles and Practice of Declarative

Programming, pp. 50–61. ACM Press.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


426 J. Giesl and A. Middeldorp

Gramlich, B. and Lucas, S. (2002b) Simple termination of context-sensitive rewriting.

Proceedings 3rd ACM SIGPLAN Workshop on Rule-Based Programming, pp. 29–42.

Hong, H. and Jakuš, D. (1998) Testing positiveness of polynomials. J. Automated Reasoning,

21, 23–28.

Jones, N. D. and Glenstrup, A. J. (2002) Program generation, termination, and binding-time

analysis. Proceedings ACM SIGPLAN/SIGSOFT Conference on Generative Programming

and Component Engineering: Lecture Notes in Computer Science 2487, pp. 1–31.

Kapur, D. and Sivakumar, G. (1997) A total ground path ordering for proving termination of

AC-rewrite systems. Proceedings 8th International Conference on Rewriting Techniques and

Applications: Lecture Notes in Computer Science 1231, pp. 142–156.

Kapur, D., Sivakumar, G. and Zhang, H. (1995) A path ordering for proving termination of

AC-rewrite systems. J. Automated Reasoning, 14, 293–316.

Knuth, D. E. and Bendix, P. (1970) Simple word problems in universal algebras. In: Leech, J.,

editor, Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press.

Kusakari, K. and Toyama, Y. (2001) On proving AC-termination by AC-dependency pairs.

IEICE Trans. Infor. Syst. E84-D(5), 604–612.

Lankford, D. (1979) On proving term rewriting systems are Noetherian. Technical report, MTP-

3. Louisiana Technical University, Ruston, LA, USA.

Lucas, S. (1996) Termination of context-sensitive rewriting by rewriting. Proceedings 23rd

International Colloquium on Automata, Languages and Programming: Lecture Notes in

Computer Science 1099, pp. 122–133.

Lucas, S. (1998) Context-sensitive computations in functional and functional logic programs.

J. Functional & Logic Program. 1, 1–61.

Lucas, S. (2001a) Termination of on-demand rewriting and termination of OBJ programs.

Proceedings 3rd International Conference on Principles and Practice of Declarative Pro-

gramming, pp. 82–93. ACM Press.

Lucas, S. (2001b) Termination of rewriting with strategy annotations. Proceedings 8th

International Conference on Logic for Programming, Artificial Intelligence and Reasoning:

Lecture Notes in Artificial Intelligence 2250, pp. 669–684.

Lucas, S. (2002a) Lazy rewriting and context-sensitive rewriting. 10th International Workshop

on Functional and (Constraint) Logic Programming. Electr. Notes in Theor. Comput. Sci. 64.

Lucas, S. (2002b) Termination of (canonical) context-sensitive rewriting. Proceedings

13th International Conference on Rewriting Techniques and Applications: Lecture Notes in

Computer Science 2378, pp. 296–310.

Marché, C. and Urbain, X. (1998) Termination of associative-commutative rewriting by

dependency pairs. Proceedings 9th International Conference on Rewriting Techniques and

Applications: Lecture Notes in Computer Science 1379, pp. 241–255

Middeldorp, A. and Ohsaki, H. (2000) Type introduction for equational rewriting. Acta

Informatica, 36(12), 1007–1029.

Middeldorp, A., Ohsaki, H. and Zantema, H. (1996) Transforming termination by self-

labelling. Proceedings 13th International Conference on Automated Deduction: Lecture Notes

in Artificial Intelligence 1104, pp. 373–387.

Plasmeijer, R. and van Eekelen, M. (1993) Functional Programming and Parallel Graph

Rewriting. Addison Wesley.

Rubio, A. (2002) A fully syntactic AC-RPO. Infor. & Computation, 178, 515–533.

Rubio, A. and Nieuwenhuis, R. (1995) A total AC-compatible ordering based on RPO. Theor.

Comput. Sci. 142, 209–227.

Steinbach, J. (1994) Generating polynomial orderings. Infor. Process. Lett. 49, 85–93.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945


Transformation techniques for context-sensitive rewrite systems 427

Steinbach, J. (1995) Simplification orderings: History of results. Fundamenta Informaticae, 24,

47–87.

Toyama, Y. (1987) Counterexamples to the termination for the direct sum of term rewriting

systems. Infor. Process. Lett. 25, 141–143.

Zantema, H. (1994) Termination of term rewriting: Interpretation and type elimination.

J. Symbolic Computation, 17, 23–50.

Zantema, H. (1995) Termination of term rewriting by semantic labelling. Fundamenta

Informaticae, 24, 89–105.

Zantema, H. (1997) Termination of context-sensitive rewriting. Proceedings of the 8th

International Conference on Rewriting Techniques and Applications: Lecture Notes in

Computer Science 1232, pp. 172–186.

https://doi.org/10.1017/S0956796803004945 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803004945

