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COMPUTABLE PRESENTATIONS OF C*-ALGEBRAS
ALEC FOX

Abstract. We initiate the study of computable presentations of real and complex C*-algebras under the
program of effective metric structure theory. With the group situation as a model, we develop corresponding
notions of recursive presentations and word problems for C*-algebras. and show some analogous results
hold in this setting. Famously, every finitely generated group with a computable presentation is computably
categorical, but we provide a counterexample in the case of C*-algebras. On the other hand, we show every
finite-dimensional C*-algebra is computably categorical.

§1. Introduction. With his 1882 paper [11], Dyck began the study of presentations
of groups in terms of generators and relations, and in doing so laid the foundation for
what would become the field of combinatorial group theory. By the mid-twentieth
century, mathematical logic had been incorporated into the field to incredible
success. A success that was, perhaps, most exemplified by the independently proven
result of Boone [3] and Novikov [39] of the existence of finitely presented groups
with unsolvable word problem. In that same era, defining work by Frohlich and
Shepherdson in effective field theory [17] and by Mal’tsev in effective algebra [27, 28]
established what would later be known as computable structure theory, i.e., the study
of the relationship between computability theoretic complexity and mathematical
structures. Although implicit in the 1989 text [40] by Pour-El and Richards, it
is only within the last decade that a program has emerged to extend computable
structure theory to the uncountable structures one might encounter in analysis. Now
known as effective metric structure theory, the program truly began with the work of
Melkinov and Nies [36] on the classification of compact metric spaces and the work
of Melnikov [34] on the categoricity of various metric spaces. Our goal is to apply
perspectives and techniques from both combinatorial group theory and effective
metric structure theory to C*-algebras.

Complex C*-algebras have become a fixture of modern mathematics, and while
real C*-algebras have not received the same attention, they represent a natural
class of objects for consideration from the viewpoint of computability theory.
Importantly, the classes of real and complex C*-algebras share similarities with
the class of groups. In particular, C*-algebras can be studied by their presentations
in terms of generators and relations, C*-algebras are principally determined by their
algebraic structure, and the universal contraction C*-algebras, while not truly free
objects, can fulfill some of the same roles as free groups. Furthermore, any discrete
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2 ALEC FOX

group has corresponding universal and reduced group C*-algebras, so theorems for
groups can often serve as a bound on theorems for C*-algebras.

Over the last decade, effective metric structure theory has been developed in the
context of metric spaces [15, 18], Polish spaces [1, 19, 20], £7 spaces [30-32], and
L? spaces [5]. This paper fills a remaining hole by initiating the study of real and
complex C*-algebras under the program of effective metric structure theory.

As combinatorial group theory and computable structure theory introduce con-
flicting terminology, we follow [33] in referring to presentations of groups in terms
of c.c. generators and c.e. relations as c.e. presentations instead of recursive presen-
tations. In Section 3, we adapt c.e. presentations and word problems from groups to
C*-algebras and develop the basic theory. Specifically, we give characterizations for
when c.e. presentations are actually computable in the sense of computable structure
theory, and show that the computability theoretic properties of a presentation can be
defined in terms of the word problem. We also investigate the connection between
computable presentations of groups and properties of the word problems of the
corresponding universal and reduced group C*-algebras. In Section 4, we describe
the relationship between real C*-algebras and their complexifications. Consequently,
we are able to transfer some already established results about C(X:R) as a real
Banach space or algebra to C(X:;C) as a complex C*-algebra. Of particular
importance, using a result of Melnikov and Ng [35], we find that, as a complex
C*-algebra, C ([0, 1]; C) is finitely generated and admits a computable presentation
but is not computably categorical. In Section 5, we show, on the other hand, that
every finite-dimensional C*-algebra is computably categorical.

§2. Preliminaries.

2.1. C*-algebras. Although, historically, real C*-algebras were rarely studied in
their own right, interest in real C*-algebras has grown as it has become clear that
the theory of real C*-algebras can not be subsumed under the theory of complex
C*-algebras (see [37] for an overview of some differences) and as new applications of
real C*-algebras have been found (see [42] for an overview of some applications). For
our purposes, the framework of real C*-algebras also provides a crucial link between
complex C*-algebras and previously established results for real Banach algebras. In
this section, we provide an introduction to real and complex C*-algebras. More
information can be found on real C*-algebras in [24] or [43]. and on complex
C*-algebras in [10] or [38].

Throughout the paper, we let K denote the real numbers R or the complex
numbers C.

DEFINITION 2.1. A C*algebra over K is a Banach *-algebra over K which is
isometrically *-isomorphic to a norm-closed *-subalgebra of the set of bounded
operators B(H:K) on a Hilbert space H over K.

We have the following abstract characterizations. A complex Banach *-algebra 4
is a complex C*-algebra if and only if it satisfies the C*-axiom ||x||* = ||x*x|| for
all x € A. In the case of real C*-algebras, however, this is no longer enough. A real
Banach *-algebra 4 is a real C*-algebra if and only if [|x||* < [[x*x + y*y|| for all
X,y € 4.
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If A is a unital complex C*-algebra and x € A4, then the spectrum o 4(x) of x in 4
is defined to be the set {4 € C: A1 — x is not invertible}, where 1 is the unitin 4. For
any complex C*-algebra 4. there is a unique unital complex C*-algebra A, called
the unitization of A, such that A4 is an ideal of Aand 4 /A = C. If A4 is a nonunital
complex C*-algebra and x € 4, then the spectrum o 4(x) of x in A is defined to be
o ;(x) where A is the unitization of 4.

The primary tool connecting real and complex C*-algebras is that of complexifi-
cation.

DerINITION 2.2. Given a real C*-algebra A, its complexification A. is the
complex C*-algebra 4 @ C = 4 + i4 equipped with the natural complex *-algebra
operations and the induced C*-norm.

Note A4, truly is a complexification of 4. Namely, the norm on A4, extends the
norm on A, and ||x +iy|| = ||x —iy|| for all x,y € 4. We also have the useful
consequence that max(||x||.[|y|) < |lx +iy| forall x, y € 4.

Through the complexification, we can define the spectrum of elements in a real
C*-algebra. If 4 is a real C*-algebra and x € A, then the spectrum o 4(x) of x in A4
is defined to be the spectrum o4, (x) of x in A4,. When A4 is unital, we can further
characterize the spectrum by noting that @ + ib € g4(x) if and only if (x — a)? + b?
is not invertible in A4, for a, b € R.

DEFINITION 2.3, Given a complex C*-algebra 4, a conjugation on A is a conjugate-
linearmap 7 : A — A such that t(z(x)) = x, t(xy) = t(x)7(y). and 7(x*) = 7(x)*
forx,y € 4.

If A is a real C*-algebra, then there is a natural conjugation t on A, given by
7(x +iy) = x — iy for x, y € A. We can recover A4 from 7 as the set of fixed points
of 7, {z € A.: 7(z) = z}, with the induced operations and norm. In the same way,
every conjugation T on a complex C*-algebra 4 determines a real C*-algebra.

The natural maps between C*-algebras are those that preserve the *-algebraic
structure, namely *homomorphisms. If w: A — B is a real *-homomorphism
between real C*-algebras, then w extends to a conjugation-preserving complex
*_homomorphism v, : A. — B, givenby w.(x +iy) = w(x) +iw(y) for x, y € 4.
Furthermore, the kernel of . is the complexification of the kernel of y. Note any
*_homomorphism between C*-algebras is necessarily norm-decreasing. In particu-
lar, any *-isomorphism preserves the norm.

Let A be a C*-algebra over K. We say an element x € 4 is self-adjoint if x* = x,
and skew-adjoint if x* =— x. Every z € A can be uniquely expressed as x + y where
x is self-adjoint and y is skew-adjoint. just let x = §(z + z*) and y = 1(z — z*). If
A is a complex C*-algebra, then z can also be uniquely expressed as a + ib where a
and b are both self-adjoint, just let a = %(z +z*)and b = 2ii(z —z*).

In both the real and complex cases, we have a complete classification of the
finite-dimensional C*-algebras.

FAct 2.4. Every finite-dimensional complex C*-algebra is isomorphic to a direct
sum of matrix algebras @f;l M,,(C) for some ny.....n; € N.

We denote the ring of quaternions by H.
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Fact 2.5. Every finite-dimensional real C*-algebra is isomorphic to a direct sum of
matrix algebras @f;l M, (D;) for some ny., ....nx € N, where eachD; is R, C, or H.

We also have a complete classification of the abelian C*-algebras.

FAcT 2.6. Every abelian complex C*-algebra A is isomorphic to Co(X:C), the
space of continuous complex-valued functions on X vanishing at infinity, where X is
the set of nonzero complex *-homomorphisms from A to C.

If X is a locally compact Hausdorff space and 6 : X — X is a homeomorphism
such that 0(6(x)) = x for x € X, then we let

Co(X,0) ={f € Co(X:C): f(O(x)) = f(x)forx e X}.

Fact 2.7. Every abelian real C*-algebra A is isomorphic to Co(X, 0), where X is
the set of nonzero real *-homomorphisms from A to C, and 0 : X — X is defined by
0(x) =X.

Universal C*-algebras are often difficult to realize concretely, but as we will see
further on, their definition in terms of generators and relations grants access to an
effective perspective.

Let G be a set of noncommuting indeterminates, which we call generators. Let R
be a set of relations in G; specifically, relations of the form || p(x;. ..., x,)|| < a where
p is a *-polynomial over K in n noncommuting variables with no constant term,
X1, ..., X, belong to G, and « is a nonnegative real number. We also require that for
every generator x € G there is a relation of the form ||x|| < M in R. We will often
follow the convention of writing p = ¢ for the relation || p — ¢|| < 0. A representation
of (G, R) is an assignment of generators j : G — A, where A4 is a C*-algebra over K,
such that || p(j(x1). .... j(x,))|| ; < a for every relation || p(xi.....x,)|| < a in R.

DEerFINITION 2.8. The universal C*-algebra of (G.R) over K is a C*-algebra
C(G|R:K) over K. along with a representation z:G — C (G| R:K) of
(G.R). such that for all representations j : G — 4 of (G.R) there is a unique
*_homomorphism ¢ : C*(G | R:K) — A for which ¢ (1(x)) = j(x) forall x € G.

If c*<g | R;K) exists, then it is unique up to isomorphism, and it is generated
by 1(G) as a C*-algebra over K. The existence of universal complex C*-algebras
is well-established (see [2] or [26]), and the existence of universal real C*-algebras
follows by the same argument. It may be of interest to model theorists that, in both
cases, existence of universal C*-algebras is just an application of the continuous
form of the classical fact that strict universal Horn theories admit all initial term
models.

Note that if G is a set of generators and R is a set of relations over R, then
C"(G | R:C) is the complexification of C*(G | R: R).

We have not required that the C*-algebras be unital. If we want to speak of
universal C*-algebras among unital C*-algebras, we often need to explicitly require
a generator for the identity and relations describing that it is indeed the identity. To
that end, we define here

Iden(e: X) ={e’ =e* =e}U{ex =xe=x: x € X}

for all indeterminates e and sets of indeterminates X.
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Let G be a countable discrete group with identity e.
DEerFINITION 2.9. If we let G = G and let
R={x"x=xx"*=e:xeGlU{xy=z: x,y.z€Gandxy =zin G},

then the universal C*-algebra of (G.R) over K is called the universal group
C*-algebra of G over K and denoted C,.(G: K).

uni (

There is another important way to form group C*-algebras. Let £2G be the Hilbert
space of all square summable functions from G to C. Then G acts on £2G by left
multiplication on the standard orthonormal basis, and in this way can be embedded
as a set of operators in B(£2G;K).

DErFINITION 2.10. The C*-algebra over K generated by G in B(¢2G:K) is called
the reduced group C*-algebra of G over K and denoted C;d(G; K).

The following lifting property will come in handy. A proof for the complex case
can be found in [41] (2.2.10), and the real case follows from complexification.

Fact 2.11. Let A and B be C*-algebras over K. If n: A — B is a surjective
«-homomorphism, then for all b € B there exist a € A such that ||a|| , = ||b||z and
n(a) =b.

When dealing with finite-dimensional C*-algebras, it will be useful to remember
they are von Neumann algebras.

DEFINITION 2.12. Let H be a Hilbert space over K. For S C B(#H;K), we define
the commutant S’ of S in B(H;:K) by

S'={x e B(H;K): xs =sxfors € S}

DEFINITION 2.13 (Von Neumann double commutant theorem). Let H be a Hilbert
space over K. If 4 C B(H;K) is a C*-algebra over K which contains the identity,
then 4 is a von Neumann algebra if and only if 4A” = 4 in B(H;K).

2.2. Computability. We present the basics of effective metric structure theory in
the context of C*-algebras. Our presentation is an instance of the general framework
for arbitrary metric structures developed by Franklin and McNicholl in [15]. See
also [7] for a treatment of Banach spaces.

DEFINITION 2.14.  Given a separable C*-algebra A over K, a presentation of 4 is a
pair (4, a), where @ is a countable sequence of elements of 4 such that @ generates
A as a C*-algebra over K.

Every separable C*-algebra admits a presentation, just consider any countable
dense subset. The presentation is finitely generated if the length of @ is finite. We
refer to the elements of @ as the special points of the presentation.

We restrict our attention to the class of rational polynomials, where a real
polynomial is rational if its coefficients belong to QQ, and a complex polynomial
is rational if its coefficients belong to Q(i). If p is a rational *-polynomial in n
noncommuting variables with no constant term, and (A4, @) is a presentation of A4,
then we say p(a;,. ... a;,) is a rational point of (4.a) for ii. ... i, € N.
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DEFINITION 2.15. A presentation AT of a C*-algebra 4 over K is computable if
there is an effective procedure which, when given a rational point r of A" and k € N,
returns a rational ¢ € Q such that | ||r|| — ¢| < 27%.

Here are some standard computable presentations.

ExXAMPLES 2.16.

(i) (C([0,1]:K), (1, x)), where x : [0, 1] — K is the identity function. The rational
points are the rational *-polynomials in x, which are dense by Stone—Weierstrass.

(ii) (M,(K). (eij)i<ij<n). where each e;j is 1 in the (i. j) entry and 0 in all others.
The rational points are the rational *-polynomials in (e,'j)lgi, j<n. Which are
clearly dense.

Let 4 be a C*-algebra over K with computable presentation A. We say x € A4 is
a computable point of A if there is an effective procedure which, when given k € N,
returns a rational point r of 4" such that ||x —r|| < 2°%. Trivially, every rational
point of AT is a computable point of 47. A sequence (x,),cn of computable points
of A" is uniformly computable from AT if there is an effective procedure which, when
given n € Nand k € N, returns a rational point r of A" such that ||x, — r| < 27,

Let A and B be C*-algebras over K with computable presentations A" and
BT, respectively. Let ¢ : A — B be a *-homomorphism. Then ¢ is a computable
* homomorphism from A" to BT if the images of rational points of 4" are uniformly
computable with respect to BT. Note this notion of computable map agrees with the
usual one, as in [15], since *-homomorphisms are Lipschitz. If ¢ is bijective and ¢ is
computable, then ¢! is computable, and we say ¢ is a computable isomorphism from
A" to BT. A C*-algebra 4 over K is computably categorical if for all computable
presentations A" and A% of A, there exists a computable isomorphism from A"
to A*.

We also consider computability properties of closed subsets of C*-algebras
as in [4].

Let A be a C*-algebra over K with computable presentation 47. An open (resp.
closed) rational ball of AT is an open (resp. closed) ball in 4 whose center is a rational
point of AT and whose radius is a positive dyadic rational. We require the radius
to be dyadic to better integrate with the framework of continuous first-order logic
established in [45].

Let S be a closed subset of A. If the set of all open rational balls of AT that
intersect S is c.e., then S is c.e. closed. If there is a c.e. set of open rational balls of
A" whose union is the complement of S, then S is co-c.e. closed. Together, if S is c.e.
closed and co-c.e. closed, then S is computable closed. If the set of all closed rational
balls of AT that do not intersect S is c.e., then S is strongly co-c.e. closed. Similarly,
if S'is c.e. closed and strongly co-c.e. closed, then S is strongly computable closed.

Here are some fundamental propositions in the computable structure theory for
C*-algebras. The straightforward proofs are left to the reader.

ProOPOSITION 2.17. There is an effective procedure which, when given a rational
noncommutative *-polynomial over K with no constant term q(zi. ... . z,), a rational
bound M. and k € N, returns j € N such that, for all Banach *-algebras B and all
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VL, oo s U, W1, oon, Wy € Blifmax; ||v|| < M, max; [|w;|| < M, andmax; ||v; — w;|| <
277 then

lg(v1. ..., v,) = q(wy, ..., w,) || < 275

PROPOSITION 2.18. Let A be a C*-algebra over K and let A" be a computable
presentation of A. Let X be a sequence of uniformly computable points of A'. Let B =
C;n (x:K) C A, the C*-algebra over K generated by X. Then (B, X) is a computable
presentation of B and the inclusion map from (B.X) to A" is computable.

COROLLARY 2.19. Let A be a C*-algebra over K and let A" be a computable
presentation of A. Let X be a uniformly computable sequence of points of A" such that
Coen (x:K) = A. Then (A,X) is a computable presentation of A which is computably
isomorphic to A" via the identity map.

2.3. Linear algebra. When working with real C*-algebras, we will need to do
linear algebra over H. Let D be one of R, H., or C, viewed as a C*-algebra over
corresponding K. We develop basic linear algebra facts over D for that purpose.
See [8] or [25] for the fundamentals of linear algebra, and [14] for an exploration of
linear algebra for quaternions.

A vector space V over D is a right D-module. Any vector space over D can be
viewed as a vector space over K by restricting scalars to K1 inside D. An inner
product space over D is a vector space V' over D equipped with an inner product
(,):V x V — D that has the following properties for x, y,z € V and a € D

x.ya) = (x.p)a.
X, )= (y.x),

(vi) (x,x) > 0andif (x,x) =0, then x = 0.

The inner product determines a norm on ¥ given by x — /(x, x), where we identify
the self-adjoint elements of D with R. A Hilbert space H over D is an inner product
space over DD which is complete with respect to the induced norm. Note H can
also be viewed as a Hilbert space over R when equipped with the inner product
(x.2) = 1) + (v 9)7).

We view D as a vector space over itself. The set of n by n matrices M, (D) with
entries in D can be identified with the set of D-linear operators B(ID"; D) on D”.
Rank is well-defined since D is a division ring so has the invariant basis number
property. Any D-linear operator on a Hilbert space H over D is also K-linear, so we
can view B(#:;D) as a subspace of B(#:K). For all @ € D, define R, : H — H to
be multiplication on the right by . Then the commutant B(#: D)’ of B(#:D) in
B(H:K)is {R,: a € D}. In particular, the center of B(H:D) can be identified with
the center of D.

Of course, D itself is a Hilbert space over K when equipped with the natural inner
product. We identify a standard orthonormal basis Z of D over K as follows. We let:

e Z={1}if D=K=RorD=K=C,
o Z={l.i}ifD=Cand K=R,
o Z={l,i,jk}ifD=Hand K=R.
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We also define a system of matrix units which characterize M,(D) as a
C*-algebra over K up to isomorphism. For any element ¢ in ZU {-z: z € Z}, we
define &(z) € {1,— 1} and b(¢) € Z such that t = &(¢)b(¢). Wesay (fZ: 1 <rs <
n,z € Z) is a system of matrix units for M, (D) over K if (fZ)* =e&(z*)fZ and
fifu = s(zw)émf%zw) for 1 <r, s.u,v <nand z,w € Z. The standard system
of matrix units is then just (eZ: 1 <r,s <n,z € Z) where ¢, is the matrix with z
in the (r,s) entry and 0 in all other entries for 1 < r, s < n and z € Z. When the
superscript of a matrix unit is 1, we will often suppress it.

We will use Skolem—Noether to characterize the *-automorphisms of M, (D).

Fact 2.20 (Skolem—Noether). Let k be a field. Let A be a finite-dimensional k-
algebra which is simple and has center k. Then every automorphism of A is of the form
x +— v xv for some unit v € A.

COROLLARY 2.21. If the center of D is exactly K, then every x-automorphism of
M, (D) is of the form x v~ u*xu for some unitary u € M, (D).

PrOOF. Let ¢ be a *-automorphism of M, (D). It can be observed that M, (D)
is a simple finite-dimensional K-algebra with center K, so, by the previous fact,
there exists an invertible v € M, (D) such that ¢(x) = v 'xv for x € M, (D). For
x € M,(D),

1

*

xov* = v(v ! xv)v* = ve(x)v* = ve(x*)*v* = v x(v ) )v* = v*x.

Hence vv* belongs to the center of M, (D), so is of the form R, for some ¢ € K. In
fact, since vv* is self-adjoint and nonzero, it must be that « > 0. Let 5 = ¢ '/> and let
u = Ryv. Then uu* = Ryvv*R;, = Ry, R, R, = I. By uniqueness of the inverse, u is
unitary. Furthermore. for x € M, (D). u*xu = v 'Ry xRpv = v'xv = p(x). -

§3. C.e. presentations and word problems. Here we introduce c.e. presentations
for C*-algebras, borrowing the terminology from [33], and explore their similarity
to the group situation.

We consider universal C*-algebras where the set of generators forms a sequence.
Let C' (¥ | R: K) be a universal C*-algebra over K. where we identify the elements of
X with their image under the associated representation. The standard presentation
of C"(X | R: K) is then (C (¥ | R: K), X). which we simply denote by C" (¥ | R: K).

On a set of generators, a relation ||p(xi. ..., x,)| < a is rational if p is rational
and a is a positive dyadic rational.

DEFINITION 3.1. A presentation 47 of a C*-algebra 4 over K is c.e. if A" is the
standard presentation C" (X | R: K) for some c.e. set of rational relations R.

If X and R are finite, we say A is finitely c.e.

There is another c.e. notion for presentations that one might consider in any
presented metric structure. We give the definition for C*-algebras (see [1] for the
definition for Polish metric spaces).

DEFINITION 3.2. A presentation A" of a C*-algebra 4 over K is right-c.e. if there
is an effective procedure which, when given a rational point r of A", enumerates a
decreasing sequence (g, ),en of rationals such that lim, . ¢, = ||r||.
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In the following theorem, we show the two notions agree. We use the framework of
continuous first-order logic (see [45] for an overview of the underlying logic and [13]
for a reference on its applications to complex C*-algebras).

THEOREM 3.3. Let A be a C*-algebra over K with presentation AT. Then A" is c.e. if
and only if it is right-c.e. Furthermore, if AT = C* (X | R: K) for some c.e. set of rational
relations R in X, we can effectively determine a procedure which witnesses that A' is
right-c.e. from a computable enumeration of R.

PrOOF. Suppose A" is c.e., so A" is the standard presentation C" (¥ | R: K) for
some c.e. set of rational relations R in X.

Let T be the continuous first-order theory of C*-algebras over K. We expand
our language to include additional constants for the generators X. Note if x; is a
member of X, then there is a relation of the form ||x;|| < M in R, so we can put
X; in an appropriate sort. Given a rational point r(X) of 47, we enumerate through
all formal deductions from 7" U R. For each formal deduction, we output a positive
dyadic rational ¢, if ¢, < ¢; for all i < n and the formal deduction witnesses that
T URHE ||r(X)|| < gn. Note this procedure is defined uniformly in the computable
enumeration of R. By Pavelka-style completeness, ||r(X)|| is the infimum of all
positive dyadic rationals d such that 7 U R + ||r(X)|| < d. Thus, we have enumerated
a decreasing sequence of rationals (g, ),en such that lim,_, « ¢, = ||r(X)]|.

Conversely, suppose AT is right-c.e. Then there is an effective procedure which,
when given a rational point r of A, enumerates a decreasing sequence (g,),en
of dyadic rationals such that lim, . ¢, = ||7|. Let @ be such that 4™ = (4.a).
and let X be a sequence of generators of the same length. Let R be the set of
relations ||r(X)|| < d where r(a) is a rational point of A" and d is one of the
positive dyadic rationals enumerated by the procedure given r(@). Then R is c.e..
and 4" = C" (¥ | R: K). =

It may interest some that the statement and proof directly generalize from C*-
algebras to metric models of a c.e. strict universal Horn theory.

Essentially. with Theorem 3.3, we have rephrased c.e. in terms of the norm so that
it mirrors the definition of computable. From this, it becomes clear that if At is a
computable presentation of a C*-algebra 4 over K. then A is also c.e.

If a finitely presented group is residually finite, then it has solvable word problem,
as shown by Dyson in [12]. We want to establish an analogous result for C*-algebras.

DErFINITION 3.4. A C*-algebra over K is called RFD if its finite-dimensional
representations form a separating family.

In [16], the authors showed that the standard presentation for a universal group
C*-algebra of a finitely presented RFD group is computable, and noted that their
result generalizes to arbitrary finitely-presented *-algebras. Their proof works for
finitely c.e. presentations of C*-algebras over K with only a small modification. We
include the proof here to emphasize that their use of semidefinite programming is
not required, and that the argument is uniform in the sense we describe.

THEOREM 3.5. If A is an RFD C*-algebra over K, then any finitely c.e. presentation
A" = C (x| R:K) of 4 is computable. Furthermore, from R one can effectively
determine a procedure which witnesses that the presentation is computable.
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Proor. We write ||| , for the norm on the direct sum of all finite-dimensional
representations of 4. Since 4 is RFD, we have |- , =[],
For any n € N, consider the set X, = {m € M, (K)*: R[m] holds in M, (K)} as

a subset of R¥I¥I"* where k is the dimension of K over R. Note X, 1s compact since
every relation in R is a closed condition and we require for every generator x; that
there is a relation of the form ||x;|| < M; in R. Furthermore, X, is definable in the
language of real closed fields since R is finite and if || p(X)|| < d is a relation in R,
then || p(m)|| < d holds in M, (K) if and only if

(V4 € R)[det, (p(m)* p(m) — AI) = 0 — 4 < d?].

Let D, = {& € K" : ||€]| < 1}. Fix a rational point ¢(X) € A". Define F,, : X, X
D, — R by F,,(m.¢&) = ||g(m)E| 2 and let an, be the maximum value of F,,.
Following closely, we see there is actually an effective procedure which, when given
inputs n and ¢, returns a formula that defines o, , in the language of real closed
fields. Applying the effective quantifier elimination given by Tarski-Seidenberg, we
see this formula can even be made quantifier-free, so a,, is computable uniformly
inn and gq.

Observe |l¢(X)| , = lgF)|| ;< sup{a,l,_/qz: n € N} since every finite-dimensional
representation of 4 can be embedded in M, (K) for sufficiently large n. By the
universality of C(¥|R:K), we also have [|¢(¥)||, > sup{a,l,_/qzz n € N}. Hence

g, = sup{oz,i./q,2 :n € N}, so along with Theorem 3.3 we can conclude that
l¢(x)|| is computable uniformly in ¢g. Thus A" is computable. This procedure is
uniform in R since the formula which defines «,, can be effectively determined
uniformly in R, and the procedure from Theorem 3.3 is uniform in R. —1

We would like to study word problems associated with presentations of
C*-algebras. Although the category of C*-algebras over K does not admit-free
objects, we can recover a lot of their utility for word problems by considering
universal contraction algebras.

DEFINITION 3.6. Forn € N, we let F(1: K) denote C {cy. ... ¢, | || ¢;|| < 1:K), the
universal contraction C*-algebra over K on n generators. Similarly, we let F(w; K)
denote C*({c;: j € N}||l¢;|| < 1:K), the universal contraction C*-algebra over K
on infinitely many generators.

To avoid confusion, we will always use ¢ to refer to the generators of a universal
contraction C*-algebra.

In order to study the computability properties of subsets of the standard
presentation F(n;K), we first need to establish that the presentation is computable.
The following is a standard fact (see [26] for details).

Fact 3.7. F(n:K) is RED for every n € NU {w}.
Together with the previous theorem, we have the following.
COROLLARY 3.8. The standard presentation F (n; K) is computable for every n € N.

Not only that, but the effective procedure which witnesses that F(n:K) is
computable is uniform in n. If p(cy.....c;) is a rational point of F(w:K). then
[p(ers e el Fwm) = IlP(er. oo i)l Fpx)» SO We have the following.
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COROLLARY 3.9. The standard presentation F(w:; K) is computable.

Now we are in a position to define the word problem. When considering the word
problem, it is convenient if we assume every presentation (4. a) satisfies ||a;|| < 1
for all j.

DEerINITION 3.10. Let A be a C*-algebra over K with presentation (4,a). The
word problem of (A.a) is the kernel of the natural quotient map from F(|a|; K)
onto A.

As with groups, there are relationships between the word problem and the
presentation.

THEOREM 3.11. Let A be a C*-algebra over K with presentation A*. The following
are equivalent:

(a) AT is the standard presentation C* (X | S:K) where S is a computable set of
relations.

(b) the word problem of A' is c.e. closed.

(c) A" is a c.e. presentation.

Proor. (a) = (c) clearly holds.

(¢) = (a). This follows by the standard argument known as Craig’s trick. Since
AT is c.e., AT is the standard presentation C' (X | R: K) for some c.e. set of rational
relations R. For every relation || p(X)|| < d in R, include the relation || p(X) + k0| <
d in S, where k encodes a Turing computation which witnesses that ||p(X)|| < d
belongs to R. Then S is computable and A" is the standard presentation C* (¥ | S: K).

Let @ be such that A" = (4.@), and let ¢ be the corresponding sequence of
generators for F(|a|:K). Let N be the word problem of A.

(b) = (c). Given a rational point r(@) of A", we enumerate the set of all
open rational balls of F(|a|; K) that intersect N. For each rational ball, we output
a positive dyadic rational ¢, if ¢, < ¢; for all i < n, and the open rational ball is
of the form B(r(¢),q,). Note B(r(¢),q,) intersects N if and only if ||r(@)| < ¢x.
Then (g,)qen is a decreasing sequence of rationals such that lim, o, ¢, = ||r(@)]|.
By Theorem 3.3, we conclude the presentation A" is c.e.

(c) = (b). We enumerate through all rational points of 7 (|z|; K) and all positive
dyadic rationals. For each rational point r(¢) and positive dyadic rational d, we
begin an enumeration of the decreasing sequence (g, ),en of rationals determined
by Theorem 3.3 on input r(a), and output B(r(c).d) ifever ¢, < d for some n € N.
Since B(r(c).d) intersects N if and only if ||r(a)|| < d, we have shown N is c.e.
closed. -

We can even define when a presentation is computable in terms of the word
problem.

THEOREM 3.12. Let A be a C*-algebra over K with presentation AT. Then AT is
computable if and only if the word problem of A" is strongly computable closed.

ProoF. Let @ be such that 4™ = (4, @), and let ¢ be the corresponding sequence
of generators for F(|a|; K). Let N be the word problem of 47.

Suppose A is a computable presentation. Then A" is a c.e. presentation, so N is
c.e. closed by Theorem 3.11. We show N is strongly co-c.e. closed. We enumerate
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through all rational points (@) of A", positive dyadic rationals d, and k € N. The
computable presentation 47 determines a rational ¢ such that | ||r(@)| — ¢| < 27~.
Ifd < q—2%, then we output the closed rational ball B(r(?).d). If d is a positive
dyadic rational such that B(r(¢).d) NN = 0. then ||r(@)| > d by Fact 2.11. So. if
k € Nis such that 2! < ||r(@)|| - d. thend < g — 2% for any rational ¢ such that
|||r(@)| - g| < 2°*. Hence B(r(c).d) is eventually output.

Conversely, suppose N is strongly computable closed. If B(r(¢),d) is an open
rational ball, then it intersects N if and only if ||r(a) || < d. Similarly, if B(r(¢), e) isa
closed rational ball, then B(r(¢).e) N N = 0 if and only if ||(@)| > e by Fact 2.11.
We define an effective procedure which witnesses that A is computable. Given a
rational point (@) € A" and k € N, we begin enumerating all open rational balls
B(r(c), d;). centered at r(c), that intersect N. We also begin enumerating all closed
rational balls B(r(¢), e ;7). centered at r(¢), such that B(r(@). e;) NN = 0. If ever
di —e; < 271 forsomel j € N. we return 3(d; —¢;). x

Consequently. if A" is a computable presentation of a C*-algebra 4 over K. then
the word problem of 4" is computable closed. In the group situation, we know the
converse holds.

QUESTION 3.13. Is there a presentation A" of a C*-algebra A over K such that AT
is not computable but has computable closed word problem?

In [23], Kuzntsov proved that a recursively presented simple group has solvable
word problem. Analogously, we have the following theorem.

THEOREM 3.14. If A is a simple C*-algebra over K, then any c.e. presentation A'
of A is computable.

PrOOF. Let R be a c.e. set of rational relations such that AT is C* (¥ | R; K).

Let T be the continuous first-order theory of C*-algebras over K. We expand
our language to include additional constants for the generators x. Fix a rational
point ¢(X) of A" and a positive dyadic rational £ such that lg(x)|| > £. Since 4
1s s1mp1e if 7(X) is a rational point of A" and d is a positive dyadic rational, then

C(X|RU{|Ir(X)|| < d}:K)is just 4if |r(X)|| < d and {0} if ||#(X)|| > d. Hence
by Pavelka-style completeness, ||(X)|| > d if and only if 7 UR U {|[r(X)|| < d}
lgGll < ¢.

We define an effective procedure which witnesses that AT is computable. Given
a rational point 7(X) € A" and k € N, we apply Theorem 3.3 and enumerate a
decreasing sequence (¢, ),en of positive dyadic rationals such that lim,_, . ¢, =
|r(X)||. Leta ~bbea — bifa > b and 0 otherwise for a, b € R. Foreach g,,, we begin
enumerating through all formal deductions from 7 U R U {||r(X)|| < ¢, =27}, and
we return g, if the formal deduction witnesses that T U R U {||r(X)|| < ¢, ~27*} -

lg(x)| <e. B
The computability of several standard presentations follows as a direct conse-
quence.

DEerFINITION 3.15. For 2 < n < oo, the Cuntz algebra O(n;K) over K is the
universal C*-algebra given by

C'(s1.....8,. 1|Iden(1:sy. ... 5,) UR:K).
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where
R=A{s/s;=0;1: i,j <n}U{sis] + -+ sp8, =1}.
We also consider n = oo and define O(oco; K) to be the universal C*-algebra given by
C'({s;: i e N}, 1|Iden(1; {s;: i € N}),s/s; =01 (i. j € N): K).

It is known that O(n; C) is simple (see [9] for details). Note then O(n; R) is simple
by complexification.

COROLLARY 3.16. The standard presentation of O(n;K) is computable for
2<n<o0.

DEFINITION 3.17. For irrational 8 € (0, 1), the irrational rotation algebra Ay is
the complex universal C*-algebra given by

C*<u,v, 1|Iden(1;u,v) UR;C),
where
R = {u*u = uu* = v*v =vw* =1} U {uv = *vu}.
It is known that A, is simple (see [10] for details).

COROLLARY 3.18. Let 0 € (0, 1) be irrational. The following are equivalent:

(a) 0 is computable.
(b) The standard presentation Ay is c.e.
(¢c) The standard presentation Ay is computable.

Proor. (a) = (b). Since 0 is computable, cos(2n) and sin(2z60) are also
computable. Let (a;)ren be a computable enumeration of rationals such that
|cos(270) — a;| < 27% for k € N, and let (b;)ren be a computable enumeration
of rationals such that | sin(270) — b;| < 27 for k € N. Let

S =Iden(l;u,v) U{u*u = uu* = v*v = vw* = 1}

U {[Juv — (ay + iby)vu|] <2751k € N}

Then S is c.e. and A4y is the standard presentation C*<u, v, 1]S;K).

(b) = (c). Since Ay is simple, by Theorem 3.14, 4y is computable.

(¢) = (a). Note that uvu*v* — vuv*u* = 2i sin(270)1 is a rational point of Ay,
so sin(2z6) is computable. Similarly, uvu*v* + vuv*u* = 2i cos(2n6)1 is a rational
point of 4y, so cos(270) is computable. The angle 0 can be calculated from sin(270)
and cos(270) with use of the arctangent function. Thus 6 is computable. -

We now investigate the connections between a group and its group C*-algebras.
We cover some of the same ground as in [16], but our perspective has the advantage
of avoiding the use of semidefinite programming.

When working with arbitrary countable groups, we adopt the same language of
presentations that we have used for C*-algebras. We can again use the framework
for arbitrary metric structures developed in [15] if we view discrete groups as metric
structures equipped with the discrete metric.
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DEerNITION 3.19. Given a countable discrete group G with identity e, we say
(G.Z) is a presentation of G if g is a countable sequence of elements from G that
generates G as a group. The presentation (G, g) is computable if the set of all words
w, on generators g, for which w = e in G is computable.

We say a presentation of G is c.e. if the presentation witnesses that G is recursively
presented, and is finitely c.e. if the presentation witnesses that G is finitely presented.
Let G be a countable discrete group with presentation G'. We denote by
C,,;(G:KK) the induced presentation of C,,;(G:K). and by Cr4(G":K) the induced
presentation of C,,,(G:K). From the definition of Cy,;(G:K), it is clear that if G

is c.e., then C,.(G": K) is c.e. Furthermore, if G is finitely c.e.. then C, .(G*: K) is

finitely c.c.

uni uni

THEOREM 3.20. Let G be a countable dzscrete group with presentation G'. Let
Nuni and Nieq be the word problems of Cyyi(G1: K) and C,,,(G': K), respectively. The
following are equivalent:

(a) G isa computable presentation.

(b) Nuni is c.e. closed and N,eq is strongly co-c.e. closed.

(c) Nuni is c.e. closed and the set of rational points which belong to the complement
N§, is ce.

(d) Ny is co-c.e. closed and there is a c.e. set of open rational balls, each which
intersects Nieq. such that the set contains all balls centered at rational points

belonging to Nyeq.

PrOOF. Let g be such that G = (G, g). Let ¢ be the corresponding sequence of
generators for F(|g|: K). Let e be the identity in G.

(a) = (b). Smce G'is cee., C,,;(G":K) is c.e. By Theorem 3.11, Ny is c.e.
closed.

We show N4 is strongly co-c.e. closed. We enumerate through all rational points

r(g) of Cred(GJr K) and all positive dyadic rationals d. Since G' is computable, for

each pair r(g) and d. we can begin an enumeration of all finite sums ) ", a;h; where
ai, ..., a, are nonzero rationals of K, 4, ..., h, are words on g such that 4; # &; in
Gforl <i< j<n,and

n 2

Zaihi

i=1

22(G) i=1

Again using that G' is computable, we can effectively rewrite the action of #(g) on
Z?:l a; h; into the form Z:”:1 b; fi where by, ..., b,, are nonzero rationals of K, and
f1..... fm are words on g such that f; # f;in Gfor 1 <i < j < m. Note

Zb fi = <§b?)1/2.

Ifd < (3, b2)'/2, we output B(r(?).d). Since [[(2)]],eq 1s the supremum of all
such | Y1 b; f ”52(0)’ by Fact 2.11, we have shown Ny is strongly co-c.e. closed.

||r ||red

£2(G)
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(b) = (c). Since N, is strongly co-c.e. closed. we can enumerate all rational
points r such that ||r||..4 > 0. Now, we just observe that ||r||,,; > 0 if and only if
|7 |l,eq > O for rational points r.

() = (a). Let w be a word on generators g. Then |w —ell,,, =0 or
|w — el|,; > V2. Since Ny, is c.e. closed, we can enumerate all open rational balls
B(r(2).d) that intersect Nyy;. If ever 7(g) = w — e and d < v/2, we have determined
that w = e in G. Simultaneously, we enumerate all rational points ¢ (¢) which belong

N&yi- Ifever ¢(g) = w —e. then ||w —e||,; > 0.s0w # e in G.

(b) = (d). Since Ny is c.e. closed, we can enumerate all open rational balls
B(r(c).d) such that ||r(g)]|,,; < d. Any such open rational ball intersects Nyq since
(Nl ed < Ml If 7(€) belongs to Nieq. then [[r(g)||,.q = 0. so [|(g) ]|, = 0. Hence
B(r(¢). d) will be enumerated for all positive dyadic rationals d.

(d) = (a). Let w be a word on generators g. Then [w —el/ 4 =0 or
|w — el|,.q > V2. We express w — e as a rational point ¢(g). Since Ny is co-c.e.
closed, we can enumerate a sequence of open rational balls B(r(¢),d) whose
union is N&,. If ever ||¢(¢) — r(¢)|| < d. then ¢(¢) belongs to N¢,. so we have
determined w # e in G. Simultaneously, we enumerate a sequence of open rational
balls B(s(¢). e). each which intersects N,¢q. such that the sequence contains all balls
centered at rational points belonging to Nyeq. If ever s(g) = w — e and d < /2, we
have determined that w = e in G. -

uni

||uni

The properties (¢) and (d) may fail to be computably robust for an arbitrary
C*-algebra. However, in theorem above, the properties are robust in the sense that
they are preserved between computably isomorphic presentations of G.

Observe if Cfmi(G ":K) has computable closed word problem, then (c) is satisfied,
so G' is computable. Similarly, if C:ed(GT; K) has computable closed word problem,
then (d) is satisfied, so G is computable.

QUESTION 3.21. Is there a computable presentation G of a countable discrete
group G such that Cum(GT: K) or Cfed(GT; K) does not have computable closed word
problem?

If G is amenable, then C, .(G":K) = C]
following stronger characterization.

(GT:K) (see [10]), so we have the

red

COROLLARY 3.22. Let G be an amenable discrete group with presentation G'. Then
G is computable if and only if Cyy(GT: K) = C, ,(G": K) is computable.

uni

For finitely generated groups, we can thus restate the theorem as follows.

COROLLARY 3.23. Let G be a finitely generated discrete group. Then G has solvable
word problem lf and only if the word problem of Cfmi(Gf; K) is c.e. closed and the word
problem of C, ,(G":K) is strongly co-c.. closed for all (for some) presentations G
of G. If in addition G is amenable, then G has solvable word problem if and only if
Cuni(G1:K) = C.,(G":K) is computable for all (for some) presentations G* of G.

By Boone [3] and Novikov [39], there are finitely presented groups with unsolvable
word problem. If G is such a group with corresponding presentation G, then
Cum(GI K) is finitely c.e. but not computable, in fact, the word problem is not even
computable closed.
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§4. The relationship between real and complex C*-algebras. In this section, we
investigate the relationship between presentations of real C*-algebras and their
complexifications. The main benefit is the ability to extend results already established
for real Banach algebras to real and complex C*-algebras. In particular, using a result
of Melnikov and Ng [35], we show C ([0, 1]: K) is not computably categorical as a
C*-algebra over K.

First, we include a result about presentations of abelian C*-algebras Cy(X:K)
induced from presentations of X. By Fact 2.6, every abelian complex C*-algebra is
of this form. However, by Fact 2.7, only those abelian real C*-algebras with trivial
x-operation are of this form.

DErINITION 4.1. Given a separable metric space X, a presentation of X is a pair
(X, X) where X is a countable sequence of elements from X which is dense in X. The
presentation (X, X) is computable if d (x;, x ;) is computable uniformly in / and ;.

We will only really be concerned with proper metric spaces, i.e., metric spaces
in which every closed ball is compact. Note proper metric spaces are both locally
compact and complete.

DEFINITION 4.2. A computable presentation X' of a proper metric space X is
computably proper if there is an effective procedure which, when given a closed
rational ball K and i € N, returns a finite sequence of open rational balls of radius
at most 27 that covers K.

For those in computable analysis, this is simply a reformulation of the
effective covering property for metric spaces with compact closed balls (see [21]).
Furthermore, if X is compact then a computable presentation of X is computably
proper if and only if it is effectively compact as defined in [22].

We extend an observation made by Tim McNicholl in [1] and include a proof.

THEOREM 4.3. Let X be a separable proper metric space which admits a computably
proper presentation. Then Co(X : K) admits a computable presentation as a C*-algebra
over K. In particular, Co(X:R) admits a computable presentation as a real Banach

space.
Proor. Let X' = (X.(x,),cn) be a computably proper presentation of
X. For each neN, let f,: X - K be defined by fn(z):m, and

observe f, belongs to Co(X:K). Since (f,),cy separates points and vanishes
nowhere, C;n(( Sn)wen: K) = Co(X:K) by Stone-Weierstrass. Let Co(X K =
(XK. (f)yer)-

We show Cy(X:K)' is computable. We are given a rational point ¢(f%,. ... fs,)
of Co(X ;]K)T and a positive integer k € N. We must compute a rational r
such that ||q(fy,..... f4,)]| —r| <27*. By Proposition 2.17, we can effectively
determine j € N so that, for all z,w € X, if max; |fy,(z) — f¢,(w)| <27/, then

1g(fe,(2). s f0,(2)) = q(fo, (w). ... fo,(w))] < 27K+D Let M a positive integer
which bounds the sum of the absolute values of the coefficients of ¢. Let K =
Ul {z € X: d(x;.z) < M2}, so K is a finite union of closed rational balls. As
X7 is computably proper, we can effectively determine a sequence of open rational
balls of radius at most 27/, centered at points Xy,» ... Xy,, such that the sequence
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covers K. Let N = max; |¢(f¢, (x,). ... f,(xy,))]. so N is computable since X is
computable.

Now, for all z € X, either there exists x,,, such that d(x,,,.z) <27/, orz ¢ K so
lg(fe,(2). ... fe,(2))] < 20+ I d(x,,,.z) < 27/, then since

d(xlwz)*d()(,'g.,xv )
z i m <d o ./
14 d(xg;. x0,)) (1 +d(xq.2) | — (%0, 2)

we can conclude |¢(f4,(z). ... f4,(2))| < N + 2%+ Hence

m;‘lx|f2,~(xvm) - ff,- (Z)| = miax (

N <|q(fe,ooe. fo)] < N 2 (k+D),

Since N is computable, we can effectively determine a rational r such that
a(feyor. fe,)|| = 7| < 27%. as required.

If Co(X:R) admits a computable presentation as a real C*-algebra (real Banach
algebra), then the real Banach space presentation formed from a computable
sequence of the products of the special points is computable. -

Now, we begin our investigation of the relationship between real C*-algebras and
their complexifications.

We can easily extend our computability notions from complex C*-algebras
to complex C*-algebras with an associated conjugation operation. This is. once
again, an instance of the framework for arbitrary metric structures developed
in [15]. Let B be a complex C*-algebra and let T be a conjugation on B. We say
(B. 7, (zn)nen) is a presentation of (B, 7) if {z,: n € N} U{z(z,): n € N} generates
B as a complex C*-algebra. The rational points of (B, 1, (z,).en) take the form
p(zips s zis r(z,»j+1 ).....t(z;,)) for iy. ... i € N where p is a rational *-polynomial
in k noncommuting variables with no constant term. We can then define computable
presentations and computable categoricity as we did for complex C*-algebras, where
Wwe now require isomorphisms to preserve t.

LeMMA 4.4. Let B be a complex C*-algebra and let © be a conjugation on B.
Let A=1{b € B: t(b) =b} be the real C*-algebra determined by (B.t). Then
any computable presentation of (B.t) induces a computable presentation of A.
Furthermore, if A is computably categorical as a real C*-algebra, then (B.t) is
computably categorical as a complex C*-algebra with conjugation.

PrOOF. If (B.1,(z,).en) is a presentation of (B, ), then we consider the induced
presentation (A, (x,),en) on A given by x5, = %(zn +1(z,)) and x,, = 2%(2,1 -
7(z,)) forn € N. Let (B.7)* and (B. 7)" be computable presentations of (B. 7). Let
AT and A" be the presentations of A4 induced by (B, 7)* and (B, 1)", respectively.
Then A+ and AT are also computable. As 4 is computably categorical, there exists
a computable isomorphism # : AT — A7, Thus ¢ : B — BT defined by ¢(z) =
n(3(z +1(2))) + in(%(z — 7(z))). is a computable isomorphism. .

If B is abelian, then we can consider the x-operation as a conjugation on B, and
in this case, there is a strong converse.

THEOREM 4.5. Let B be an abelian complex C*-algebra with a computable
presentation. Let A be the subset of self-adjoint elements of B. Then A is a real

https://doi.org/10.1017/js1.2023.23 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2023.23

18 ALEC FOX

C*-algebra, and any computable presentation of A induces a computable presentation
of B. Furthermore, the following are equivalent:

(a) Bis computably categorical as a complex C*-algebra.
(b) A is computably categorical as a real C*-algebra.
(c) A is computably categorical as a real Banach algebra.

ProOF. Note A4 is the real C*-algebra determined by (B, x). If (4, (x,).en)
is a presentation of A4, then we call (B, (x,),en) the induced presentation of B.
Furthermore, if (A4, (x,),en) is computable, then (B, (x,),cn) is computable since

I+ isll = I+ )+ i)l = |l + 521

for all rational points r and s of (4. (x,),en).

(b) <= (c). This follows since * : 4 — A is simply the identity map.

(b) = (a). By Lemma 4.4, if 4 is computably categorical as a real C*-algebra,
then (B, *) is computably categorical as a complex C*-algebra with conjugation.
Since the conjugation on B is just the x-operation, B is computably categorical as a
complex C*-algebra.

(a) = (b) Let A" and 4" be computable presentations of 4. Let B* and Bf
be the computable presentations on B induced by A and A", respectively. As B is
computably categorical, there exists a computable isomorphism ¢ : B¥ — BT. Then
@ | A: AT — A" is a computable isomorphism. -

We can achieve a partial converse to Theorem 4.3 by extending the result, in [1],
which states that a separable Stone space Z is computably metrizable if and only
if C(Z;R) has a computable presentation as a real Banach space. Here, a Stone
space is a totally disconnected compact Hausdorff space, and we say a separable
Stone space Z is computably metrizable if it admits a metric d such that (Z, d) has a
computable presentation.

COROLLARY 4.6. Let Z be a separable Stone space. Then the following are
equivalent:

(a) Z is computably metrizable.

(b) C(Z:R) has a computable presentation as a real Banach space.

(c) C(Z;R) has a computable presentation as a real C*-algebra.

(d) C(Z:C) has a computable presentation as a complex C*-algebra.

ProOOF. (a) <= (b) is the result in [1].

(c) <= (d) was established above.

As shown in [19], every computably metrizable Stone space has a computably
compact presentation. By Theorem 4.3, (a) = (d).

Finally, (c) = (b) follows by taking any real C*-algebra presentation which is
computable and considering a computable sequence of the products of the special
points. =

We also have the following.
CoroLLARY 4.7.  C([0, 1]: K) is not computably categorical as a C*-algebra over K.

Proor. By Theorem 4.5, C([0, 1]: K) is computably categorical as a C*-algebra
over K if and only if C([0, 1]; R) is computably categorical as a real Banach algebra.
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Melnikov and Ng showed in [35] that C([0. 1];R) is not computably categorical in
the language of real Banach algebras. -

This lies in contrast to the group situation, where every finitely generated group
that admits a computable presentation is computably categorical (see [27]), since
C([0.1];K) is finitely generated with a computable presentation, even one that is
finitely c.e. as witnessed by

C([0.1]:K) = C (1. x |Iden(I: x).x = x*, ||x| < 1.

- x| < LK),

but is not computably categorical.

§5. Computable categoricity of finite-dimensional C*-algebras. Although
Corollary 4.7 introduces a divergence between computable categoricity results
for C*-algebras and for groups. in this section, we establish that finite-dimensional
C*-algebras are, as one would expect, computably categorical.

The following is folklore for computable unital presentations, but since we may
not have a unit we have to work a little harder.

LeMMA 5.1, Let A be a C*-algebra over K with computable presentation A'. Let x
be a computable point of AT which is self-adjoint and has finite spectrum o (x). Then
every element of a(x) is computable.

PrOOF. We proceed by induction on the size of o (x) \ {0}. Clearly, if card(a(x) \
{0}) = 0, then o(x) = {0} where 0 is computable.

Otherwise. let u € o(x)\ {0} be such that |u| = max,c, () |t| = [|x]|. so u is
computable. Let p(z) = z(z —u) € R[z]. Then p(x) = x> —ux is a self-adjoint
computable point of 4™ and

card(a(p(x)) \ {0}) = card(p[o(x)]\ {0}) < card(a(x) \ {0}).

By the inductive hypothesis, every element of ¢(p(x)) is computable. Since
a(p(x)) = p[o(x)]. every element of o(x) is a real root of the computable
polynomial p(z) —w € R[z] for some w € o(p(x)). It is well known that the
computable reals form a real closed field (see [40] for details). Thus every element
of g(x) is computable. 4

With this, we are ready to show computable categoricity for finite-dimensional
abelian real and complex C*-algebras.

THEOREM 5.2. Every finite-dimensional abelian real C*-algebra is computably
categorical as a real C*-algebra.

ProOF. Let 4 be an abelian finite-dimensional real C*-algebra, and let A" be a
computable presentation of 4. By Fact 2.5, we can identify 4 with R* @ C” for
some positive integers k and m.

Let X be the set of self-adjoint rational points of A", and let Y be the set of
skew-adjoint rational points of 47, so the set of rational points of AT is X + Y. We
know X is dense in R¥ @ R” and Y is dense in {0} @ (iR)". In particular, there
must exist x € X such that x has distinct nonzero entries, and y € Y such that only
the first k entries are zero. We view R¥ @ R” as a subspace of B(R¥ @ R”;R) where
R* @ R™ acts on itself by multiplication. In this sense. the minimal polynomial
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of x must be of degree k + m with a nonzero constant term. Then x, o, xTAm
are linearly independent over R, so C;en(x; R) = R¥ @ R”. Also. we can find z €

R @ R™ such that the last m entries of zy are i. Hence C, (x. y:R) = RF & C™.
By Corollary 2.19, (A4, x. y) is a computable presentation computably isomorphic
to A" via the identity map.

The entries of an element z € A4 belong to o 4(z) since if @ + ib is an entry of z
for some a. b € R, then (z — a)? + b? is not invertible in A. Every element of o (x) is
computable by Lemma 5.1, so in particular, every entry of x is computable. Similarly,
y?is self-adjoint, so by Lemma 5.1, every element of ¢ (y?) is computable. Then every
element of ¢ (y) is computable, since a(y?) = o(y)?, and the computable complex
numbers form an algebraically closed field (see [44] for details). In particular, every
entry of yis computable. Thus, by Corollary 2.19, (4, x, y) is computably isomorphic
to the standard presentation R¥ @ C™. .

COROLLARY 5.3. Every finite-dimensional abelian complex C*-algebra is com-
putably categorical as a complex C*-algebra.

Proor. By Fact 2.4, any abelian finite-dimensional C*-algebra can be identified
with C" for some n € N. It can be observed, with the use of Theorem 4.5, that C”
is computably categorical as a complex C*-algebra if and only if R” is computably
categorical as real C*-algebra. =

Since H is one of the building blocks of finite-dimensional real C*-algebras, but
is not abelian, we separately show it is computably categorical.

LeEMMA 5.4. H is computably categorical as a real C*-algebra.

Proor. Let H' be a computable presentation of H.

For any nonzero self-adjoint computable point x of H', we know x € R, and ||x||
is computable. Hence 1 = sgn(x)ﬁ is a computable point of H'.

We apply the Gram-Schmidt process to a pair of R-linearly independent
skew-adjoint computable points of H', noting that (a.b)r = 3(a*b +b*a) is a
computable operation, to get a pair p, ¢ of R-orthonormal skew-adjoint computable
points of H.

Then p*> =- p*p=-1=-¢"¢=¢*. and 0 = (p.q)r = 3(pq +qp) so pq =-
qp. Thus there is an automorphism ¢ of H which sends 1 — 1, p — i, ¢ — j, and
pq — k. By Corollary 2.19, (H. 1, p.¢q) is a computable presentation computably
isomorphic to H'. Therefore, ¢ is a computable isomorphism from H to the
standard presentation H. .

From the rigid characterization of subalgebras generated by a self-adjoint element,
we are able to find a finite set of computable minimal projections which spans the
set of self-adjoint elements.

Let A be a C*-algebra over K with computable presentation A”. Let p be a
computable projection in 47, Then pAp is a C*-algebra over K, and 4" induces
a presentation pA'p on pAp formed from the products pz --- z, p where z;. ... z,
are special points of A7. By Proposition 2.18, pA™ p is a computable presentation of
pAp and the inclusion map from pA4¥p to A" is computable.
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THEOREM 5.5. Let A be a finite-dimensional C*-algebra over K with computable
presentation AY. Then there is a finite set M of computable minimal projections in A"
such that spang (M) is the set of self-adjoint elements of A.

Proor. We proceed by induction on the K-dimension of 4. Let X be the set of
self-adjoint elements of 4. Let Z be the subset of A™-computable points of X, so Z
is dense in X.

For z € Z, Cgen( K) =~ K" for some n € N. By Theorem 5.2 or Corollary 5.3,
K" is computably categorical as a C*- algebra over K. In particular, there must be
a family F of minimal projections in C,, (z:K). each computable with respect to

(Cgen
with respect to (C;m(
Proposition 2.18.

If 1 is a minimal projection in 4, then X = R = spang(1) and 1 is A"-computable.
In that case, we just let M = {1}.

Suppose 1 is not a minimal projection in 4. Then there exists z € Z such that
C;n(z; K) is not isomorphic to K, so must contain a copy of K & K. Hence, there
is a nontrivial computable projection ¢ in AT. Let N be the set of all nontrivial
projections computable with respect to A, If 1 is 4T-computable, then 1 — ¢ € N,
so spang(N) = spang (N U {1}) = spany(Z) = X. If 1 is not 4"-computable, we
directly see spang(N) = spang(Z) = X.

Let K be a finite subset of N such that spanR(K )=spang(N)=X. For any
pEK, pAp is a C*-subalgebra of 4 over K of strictly less dimension. By the
inductive hypothesis, there is a finite set M, of computable minimal projections in
pAT p such that spang (M) is the set of self adjoint elements of pA4 p. In particular,
p € spang(M,). Every projection r which is minimal in pAp is also minimal in A
since for ¢ € A ift <r thent < p,sot e pAp. Also, each r € M, is computable
with respectto A™. If welet M = | pex Mp. then M satisfies the required conditions.

_|

(

gen

(z:K), z), such that z € spang (F). Since every projection in F is computable
R

z:K). z). they must be also computable with respect to 47 by

As an immediate application, we can reduce the computable categoricity of a
direct sum to the computable categoricity of its summands.

Let A and B be C*-algebras over K with computable presentations A" and BT,
respectively. These presentations induce a computable presentation 47 @ BT on
A @ B formed from points (z.0) and (0, w) where z is a special point of A" and
w is a special point of BT.

THEOREM 5.6. Let A and B be finite-dimensional C*-algebras over K which are
computably categorical as C*-algebras over K. Then A & B is computably categorical
as a C*-algebra over K.

ProoF. Let (4@ B)" be a computable presentation of 4 & B. By Theorem 5.5,
there is a finite set M of computable minimal projections in (4 & B )" such that
spang (M) is the set of self-adjoint elements of 4 & B. Any minimal projection
in A @& B must belong to either 4 or B by minimality. For X = 4 or X = B, let
My be the subset of M which belongs to X. Also, let Zx be the set of products
gzy -+ z,p where zi,....z, are special points of (4 ® B)™ and p,q € My. Note

Z4C A and Zg C B. Since 1 € spang(M). we have Cgen(ZAUZB;K) =A@
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B. Hence Cg,(Zs:K) =4 and Cg,(Zp:K) = B. Then (4.Z,) and (B.Zp)
are computable presentations of A4 and B, respectively, by Proposition 2.18,
and (4.Z4) ® (B, Zp) is a computable presentation computably isomorphic to
(4 ® B)* by Corollary 2.19.

Let AT and BT be computable presentations of 4 and B, respectively. Since A
is computably categorical, there exists a computable isomorphism ¢ from A7 to
(A4.Z4). Similarly, since B is computably categorical, there exists a computable
isomorphism w from B' to (B.Zz). Then o &y : A" ®@B' - (4o B) is a
computable isomorphism. o

Thus, by Facts 2.4 and 2.5, in order to prove computable categoricity for arbitrary
finite-dimensional C*-algebras, it suffices to consider the matrix algebras. We would
like to induct on the dimension of the matrix algebra, but first we need a way to
access matrix algebras of smaller dimension.

Let D denote R, H, or C as a C*-algebra over corresponding K.

LemMA 5.7. Let H be a Hilbert space over D. Let (p;);_, be a sequence of
minimal projections in B(H: D). If p1 does not commute with q,, :== \/"_, p; for any
1 <m < n, then Cgen(U,’;1 piB(H:D)pi:K) = M, (D).

Proor. We proceed by induction on the length of the sequence. We denote

B(H:D) by A for clarity.

It can be observed that Cgen( pAp;K) = pAp = B(pH;D) = D for any minimal
projection p in A.

Now. let (p;)'"] be as stated such that Coen(Ui_ piApiK) = M, (D). Since

*

M, (D) = Cye, (Ui, pidpi:K) € B(g,H: D), by dimensionality we must have
C;m(U;':lp,-Ap[;K) = B(g,H:D). Then g, must be of D-rank n, so ¢,4 is of
D-rank n + 1 as p, | does not commute with ¢,. Hence

n+1

en( U [),’AﬁﬁK) - B(‘]nHHLD) = Mn+1(D)-
i=1

For each a € D, we let R, : H — H be multiplication on the right by a. Let
w € B(qu11H;K) commute with Cgm(Ufﬂ1 piAp;i;K). In particular, wg, belongs
to the commutant of B(q,H:;D) in B(g,H:K). so is of the form R.g, for some
x € D. Also, wp,, belongs to the commutant of B(p, H;:D) = pyy1Apus1 in
B(p,11H:K), sois of the form Ry pys1 for some y € D. As w commutes with p,41.

we have that

Rypui1gn = pnriRuqn = prpWqn = Wppy1qn = Ryanrlqn'

Since p,y; does not commute with ¢,. p,.1¢4, is nonzero, so x = y. Then w =
Ry gny1 since ¢y 1H = ppi1H + g, H. Hence w commutes with B (g, ;D). Thus,
by Definition 2.13,

"

n+1 n+1
gen(U pidp;: > = <U piApi: ) = B(qn—o-er;]D))H = B(Qn+lH;D)-

i=1
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Now., we are ready to show matrix algebras are computably categorical.
We identify M, (D) with the collection of matrices in M, (D) which have all
zeros in their last column and row.

THEOREM 5.8. M, (D) is a computably categorical C*-algebra over K.

Proor. We proceed by induction on 7.

Observe D is computably categorical as a C*-algebra over K by Theorem 5.2,
Corollary 5.3, or Lemma 5.4.

Now, assume M, (D) is computably categorical. For ease of reading, we denote
M, (D) by A. Let A" be a computable presentation of A.

To make use of the inductive hypothesis, we determine a subalgebra B isomorphic
to M, (D) which is computably included in A7. By Theorem 5.5, there is a finite set
M of computable minimal projections in 47 such that spang (M) is the set of self-
adjoint elements of A. We construct a sequence ( pi);';“ll of minimal projections
from M so that py,; does not commute with ¢, for 1 <k <n+ 1, where ¢, =
\/f:1 pi. Choose pi € M. Suppose we have constructed (p;)*_, for some k < n. If
qr commutes with every projection in M, then ¢; commutes with every self-adjoint
element of 4, so g, = dI for some nonzero d € D. However, g, has rank at most k,
while dI has rank n + 1. Thus, we may choose p;.; € M which does not commute
with g. Let B = Cy (", pidpi:K). Let B be the presentation of B formed
from the special points of pA'py..... p,A"p,. Then BT is computable and the
inclusion from B into A" is computable by Proposition 2.18. By Lemma 5.7, we have
C;en(U?ill pidApi:K) = M, (D) and B = M, (D). Hence C;en(U;’Ll pidpi:K) =
A and B = B(q,D"!: D).

Let Z be the standard orthonormal basis of D over K. By the inductive hypothesis,
M, (D) is computably categorical over K. In particular, there is a system of matrix
units (/7 i l<kj<nzeZ ). computable with respect to BT so computable with
respect to A", such that B = C;en({f,ij: 1<k, j<nzeZ}K).

Let (e,i IE 1<k, j<n+1,z¢€ Z) be the standard system of matrix units for
M, (D). We find a unitary Uin M, (D) such that U* /7 U = ¢f  for1 < k.j <n
and z € Z. To that end, observe we can extend a D-orthonormal basis on
(X%, fr)(D™1) to one for D"*+!, so there exists a unitary V € M, (D) such that
V*BV = M,(D). Then (V*f;;j V:1<k,j<nzeZ)formsa system of matrix
units for M, (D). Before we find U, we show there exists a unitary u in M, (D)
such that u* V*f,ij Vu = e,ij for 1 <k,j <nand z € Z. There are two cases. If
the center of D is K, then u exists by Corollary 2.21. If the center of D is not K, it
must be that D = C, K=R, and Z = {1.i}. Then }_;_, V*f1 V belongs to the
center of M, (C).and (}_;_, V*f1, V) =1I.s0 Yoo V*fiV = +i. By possibly
replacing f,’(j by their negations for 1 <k, j < n, we may assume y ,_, 1, =1i.
Then there exists a unitary matrix u € M,(C) such that u*V* fy; Vu = e; for
1<k, j< n,henceu*V*f;:jVu :e,fj for1 <k,j <mandz € Z. For both cases,
welet U=V (u+ e 1)n1)-

Using U, we show we can construct a system of matrix units for A that is
computable with respect to A™. As U* p, | U is a projection which does not commute
with the identity in M, (D), there must exist 1 < £ < n such that the (n + 1,£)th
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entry of U*p,41U is nonzero. For z € Z, let w. = pui1fi, — Y p—y fikPnir1 5y

Then there exists a nonzero d € D such that U*w.U = de( e for z € Z. Note

|ld|| = ||wi|| is computable. Now, we are ready to extend the system of matrix units.
Forz € Z, let
f(szrl)/ Hd”wf(fk forl <k <n,
fli(anl) Hd”fkgwl for 1 < k < n,
1
and f7 = w.w?
(n+1)(n+1) S W Wy
1]

Then for z € Z, we observe
U*fij:e,ijforl <k, j<n,

* 0z d
Uf(n+1)k Hd” n+1 forl1 <k <n,

*

x £z d
v fk(n+l) ek<n+l ||d|| for 1 < k <n,

d . d*
and U™/ U = ] e T
We only need to tweak our unitary conjugation. Let xi, ..., x,;1 be the standard

D-orthonormal basis for D" If W € M, (D) is the unitary matrix which sends
x; toitself for 1 < i < n and sends x,,,| to anH‘Tl” then (UW)*f,f UW = ¢, for

1<k j<n+landze Z. Noteeachmemberof(fk 1<k.j<n+1, zeZ)
is computable with respect to 47, so by Corollary 2.19, ( S 1<k j<n+1,
z € Z)) is computably isomorphic to 4" via the identity map. Thus conjugation

by UW gives a computable isomorphism from A7 to the standard presentation
Mn+1(D)- -

COROLLARY 5.9. Every finite-dimensional C*-algebra over K is computably
categorical as a C*-algebra over K.

Since the identity is computable with respect to the standard presentation of any
finite-dimensional C*-algebra, and automorphisms preserve the identity, we also
have the following.

COROLLARY 5.10. Let A be a finite-dimensional C*-algebra over K. The identity is
computable with respect to any computable presentation of A, and A is computably
categorical as a unital C*-algebra over K.
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