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The linear instability of circular vortices over isolated topography in a homogeneous
and inviscid fluid is examined for the shallow-water and quasi-geostrophic models
in the f -plane. The eigenvalue problem associated with azimuthal disturbances is
derived for arbitrary axisymmetric topographies, either submarine mountains or valleys.
Amended Rayleigh and Fjørtoft theorems with topographic effects are given for barotropic
instability, obtaining necessary criteria for instability when the potential vorticity gradient
is zero somewhere in the domain. The onset of centrifugal instability is also discussed
by deriving the Rayleigh circulation theorem with topography. The barotropic instability
theorems are applied to a wide family of nonlinear, quasi-geostrophic solutions of circular
vortices over axisymmetric topographic features. Flow instability depends mainly on the
vortex/topography configuration, as well as on the vortex size in comparison with the
width of the topography. It is found that anticyclones/mountains and cyclones/valleys
may be unstable. In contrast, cyclone/mountain and anticyclone/valley configurations
are stable. These statements are validated with two numerical methods. First, the
generalised eigenvalue problem is solved to obtain the wavenumber of the fastest-growing
perturbations. Second, the evolution of the vortices is simulated numerically to detect
the development of linear perturbations. The numerical results show that for unstable
vortices over narrow topographies, the fastest growth rate corresponds to mode 1, which
subsequently forms asymmetric dipolar structures. Over wide topographies, the fastest
perturbations are mainly modes 1 and 2, depending on the topographic features.

Key words: quasi-geostrophic flows, topographic effects, vortex instability

1. Introduction

The ocean is a complex physical system due to the interaction of motions of different
length and time scales. Nevertheless, long-lived coherent structures in the ocean are
discernible in observational data. In particular, mesoscale vortices with typical horizontal
scales of the order of 100 km may persist during several weeks or even months.
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The lifetime of such structures is affected by external forcing mechanisms, interactions
with other oceanic features, and their intrinsic stability properties. An example is reported
by Dewar (2002), who discusses the evolution of meddies (i.e. sub-surface vortices
of Mediterranean origin), which are affected by the shape of the seafloor. Careful
observations of meddies suggest that interactions with topographic features may be
disruptive and lead to vortex disintegration (Shapiro, Meschanov & Emelianov 1995;
Richardson & Tychensky 1998). A similar process is observed during the transit of
Agulhas eddies over submarine ridges in the south-eastern Atlantic Ocean (Kamenkovich
et al. 1996; Schouten et al. 2000). The obstruction and eventual destruction of vortices
encountering topographic obstacles in a rotating system have been studied in laboratory
experiments (Zavala Sansón 2002; Zavala Sansón, Barbosa Aguiar & van Heijst 2012) and
numerical simulations (e.g. van Geffen & Davies 2000; Zavala Sansón & Gonzalez 2021).

Analytical models of coherent vortices are helpful to understand their general dynamics
and stability properties, which can then be compared with realistic conditions. Here, we
are interested in nonlinear vortical solutions in a rotating system, which are often used
to model persistent structures in the oceans and atmosphere (van Heijst & Clercx 2009).
Nonlinearities are a key ingredient that prevents vortex erosion in the form of planetary or
topographic Rossby waves, which are generated in the presence of spatial variations of the
planetary vorticity (β effect) or bottom topography, respectively. In the quasi-geostrophic
(QG) context, a type of dipolar structures is the so-called ‘modon’ (Stern 1975). Solutions
of frontal oceanic eddies in a reduced-gravity model, known as ‘rodons’, were derived by
Cushman-Roisin, Heil & Nof (1985). Azimuthal-mode solutions of multipolar, barotropic
and baroclinic QG vortices were derived by Viúdez (2019a,b). Recently, Gonzalez &
Zavala Sansón (2021) obtained nonlinear solutions of monopoles and dipoles over an
isolated topographic feature. The latter will be considered in this work to study the stability
of monopolar vortices trapped over seamounts and valleys.

The stability of monopolar vortices in a rotating system with no topography has been
studied from different points of view. Gent & McWilliams (1986) investigated the linear
instability of QG circular vortices with zero circulation in the f -plane to azimuthal
normal mode perturbations. The authors found that the fastest growing perturbations
may be internal (with vertical structure) or external (barotropic) depending on the
steepness of the stream function radial profile. A linearised contour dynamics model,
used by Flierl (1988), extended the analysis to baroclinic circular vortices. Rotating tank
experiments and three-dimensional numerical simulations have shown that cyclonic and
anticyclonic vortices may be subject to both barotropic (two-dimensional) and centrifugal
(three-dimensional) instabilities (Kloosterziel & van Heijst 1991; Orlandi & Carnevale
1999). A necessary criterion for barotropic linear instability is obtained from Rayleigh’s
inflexion point theorem adapted to swirling flows (Gent & McWilliams 1986). The authors
found that isolated vortices (circular flows with zero net circulation) may be barotropically
unstable and, for sufficiently steep vorticity profiles, develop a wavenumber two azimuthal
perturbation transforming into tripolar structures. In rotating tank experiments, unstable
cyclonic vortices typically form tripoles (van Heijst & Kloosterziel 1989). Higher
wavenumbers leading to multipolar vortices are also possible (Carnevale & Kloosterziel
1994; Trieling, van Heijst & Kizner 2010; Cruz Gómez, Zavala Sansón & Pinilla 2013).
Anticyclones, in contrast, are prone to centrifugal instabilities and usually break into
dipole pairs (Kloosterziel & van Heijst 1991). The combined effects of barotropic and
centrifugal instabilities were discussed thoroughly by Orlandi & Carnevale (1999). On
the other hand, non-isolated vortices (with monotonic vorticity profiles) are barotropically
stable (Kloosterziel & van Heijst 1992).
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Topographic features at the solid bottom can affect vortices with finite depth. Numerical
and experimental studies have revealed different physical processes involved in the
vortex–topography interactions. These include the radiation of topographic waves and
the paths that monopolar and dipolar vortices follow around local topographies, such as
seamounts and valleys (Carnevale, Kloosterziel & van Heijst 1991). Oceanic eddies are
often eroded or divided when encountering a tall seamount (Herbette, Morel & Arhan
2002, 2005; Sutyrin, Herbette & Carton 2011) or a submarine ridge (van Geffen & Davies
1999; Zavala Sansón 2002). In some cases, vortical structures can be trapped over the
topography (Zavala Sansón et al. 2012; Zavala Sansón & Gonzalez 2021), and a natural
question concerns the stability of such configurations. Carton & Legras (1994) studied
the stability of shielded circular vortices over an axisymmetric parabolic bottom, and
found that if the vortex core is cyclonic, then a compact and stable tripolar structure
emerges. In contrast, the tripoles formed from anticyclonic vortices are unstable and
break into two dipoles moving in opposite directions. Nycander & Lacasce (2004) used
generalised variational principles to find stable regimes for monopolar barotropic vortices
over topography when the potential vorticity profiles are monotonic. In that case, the
authors found a large set of stable anticyclonic and cyclonic vortices over a circular
seamount. Zhao, Chieusse-Gérard & Flierl (2019) studied the stability of a barotropic
Rankine vortex over a cylindrical topography and found that anticyclones are destabilised
by seamounts and stabilised by depressions. These results were based on the assumption
that the potential vorticity is a piecewise constant function. The jumps in the potential
vorticity arose from both the cylindrical topography and the relative vorticity profile.
The linear stability of another piecewise circular flow around a rigid cylindrical ‘island’
with conical topography was studied by Rabinovich, Kizner & Flierl (2018), and the
resulting nonlinear evolution by Rabinovich, Kizner & Flierl (2019). In these studies, the
authors discuss the stabilising/destabilising role of the bottom slope on clockwise and
anticlockwise flows.

This work studies the linear stability of barotropic monopolar vortices over isolated
topography. In the first part (§ 2), we pose the problem of a circular flow perturbed
by azimuthal normal modes, and derive a generalised eigenvalue problem for the
corresponding growth rates. The analysis is carried out for flows under the shallow-water
(SW) approximation and extended to the QG dynamics. Then extensions of classical
theorems for barotropic and centrifugal instabilities taking topographic effects into account
are presented. In the second part (§ 3), we study numerically the stability of circular
vortices over axisymmetric topography in the QG limit. The background flow is based on
the recent QG solutions obtained by Gonzalez & Zavala Sansón (2021), which represent
both cyclones and anticyclones over mountains and valleys, and whose potential vorticity
is not uniform. A relevant feature of the solutions is that the bottom topography is arbitrary,
subject only to the restriction of being axisymmetric and isolated (the bottom topography
becomes flat at large radii). The theoretical results are contrasted with the spectral
solution of the corresponding generalised eigenvalue problem. In addition, we perform QG
numerical simulations initialised with different vortex–topography configurations. Finally,
conclusions are discussed in § 4.

2. Stability of monopolar vortices over axisymmetric topography

2.1. Linear analysis for SW and QG flows
This subsection examines the linear stability problem associated with the SW model
on the f -plane, including topographic effects and under the rigid-lid approximation.
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H0

f0/2

b0
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b(r)
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z = 0
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Figure 1. Side view of a fluid layer with mean depth H0 over bottom topography b(r) defined as an
axisymmetric submarine mountain or valley of amplitude b0 and width rt on an f -plane.

Using polar coordinates (r, θ) and assuming an axisymmetric topography, a single fluid
layer in this system satisfies the vorticity equation

hs
∂qs

∂t
+ J(ψs, qs) = 0, (2.1)

whereψs represents the transport function, and qs = h−1
s (ωs + f0) is the potential vorticity

(PV), with ωs = ∇ · (h−1
s ∇ψs) the relative vorticity, and f0 the Coriolis parameter. Also,

J(a, b) = (∂ra ∂θb − ∂θa ∂rb)/r is the Jacobian operator, and hs(r) = H0 − b(r) is the
fluid layer thickness, where b(r) is the axisymmetric topographic profile with amplitude b0
and horizontal scale rt, and H0 is the average depth of the fluid layer (figure 1). We consider
isolated topographies, db/dr → 0 for r � rt, which can be mountains (b0 > 0) or valleys
(b0 < 0). Under the rigid-lid approximation, the temporal variations of the layer thickness
are ignored in the continuity equation, so surface gravity waves are suppressed. The radial
and azimuthal velocity components are defined as us = −(hsr)−1 ∂θψs and vs = h−1

s ∂rψs.
A linear stability analysis is used to introduce small, two-dimensional disturbances

ψ ′
s(r, θ, t) on a basic flow Ψs(r), which represents a steady, axisymmetric solution of (2.1):

ψs(r, θ, t) = Ψs(r)+ ψ ′
s(r, θ, t). (2.2)

The basic flow can be a circular cyclonic or anticyclonic vortex swirling above the
topography, which can be a mountain or a valley. Note that the potential vorticity can
be written as

qs(r, θ, t) = Qs(r)+ q′
s(r, θ, t), (2.3)

where Qs = h−1
s [∇ · (h−1

s ∇Ψs)+ f0] is the basic PV, and q′
s = h−1

s ∇ · (h−1
s ∇ψ ′

s) is its
perturbation. Inserting (2.2) and (2.3) into the vorticity equation (2.1) and linearising:

hs
∂q′

s

∂t
+ J(Ψs, q′

s)+ J(ψ ′
s,Qs) = 0. (2.4)
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The disturbance is assumed of the form

ψ ′
s(r, θ, t) = φ(r) ei(kθ−σ t),

q′
s(r, θ, t) = 1

hs
Ls[φ(r)] ei(kθ−σ t),

⎫⎬
⎭ (2.5)

where Ls[ ] is a differential operator defined by Ls = r−1 ∂r(rh−1
s ∂r)− r−2h−1

s k2, k is
the azimuthal wavenumber, φ(r) is a complex amplitude, and σ = σr + iσi is a complex
number whose real part is the frequency of the disturbance, and the imaginary part
represents its growth rate. The condition for instability is that the growth rate σi is positive.

Applying (2.5) to (2.4) provides the generalised eigenvalue problem

σLsφ = k
r

[
∂rΨs

hs
Ls − ∂rQs

]
φ. (2.6)

The matrix representation of this equation is given by

σAφ(r) = B φ(r), (2.7)

where A and B are non-Hermitian and real matrices, σ is the eigenvalue, and φ is the
eigenfunction. Solutions of (2.6) for different wavenumbers k provide the eigenvalues
and, consequently, the growth rate of the corresponding perturbation. However, analytical
solutions are often difficult to obtain, so the problem is usually solved numerically, as we
will do in § 3.

Now we examine the QG dynamics obtained when the layer thickness is much greater
than the amplitude of the topography, H0 � b0 (Vallis 2017). In this case, the vorticity
equation is

∂

∂t
∇2ψ + J(ψ, q) = 0, (2.8)

where now ψ = ψs/H0 is the stream function, and q = ω + h(r) is the QG PV, with ω =
∇2ψ the relative vorticity, and h(r) = f0H−1

0 b(r) the ambient vorticity (Zavala Sansón
& van Heijst 2014). The radial and azimuthal velocity components are now defined as
u = −r−1 ∂θψ and v = ∂rψ , respectively.

The perturbed flow is of the form

ψ(r, θ, t) = Ψ (r)+ ψ ′(r, θ, t), (2.9)

where Ψ (= Ψs/H0) is the basic flow, and ψ ′ is a small perturbation. Applying the same
linear analysis used for the SW equations, we obtain the generalised eigenvalue problem

σLφ = k
r

[∂rΨL − ∂r(∇2Ψ + h)]φ, (2.10)

where the linear operator is L = ∂rr + r−1 ∂r − r−2k2. This expression for QG can be
compared with the SW version (2.6).

2.2. Barotropic instability
Barotropic instability refers to growing disturbances that arise on shear flows. A necessary
criterion for instability is provided by Rayleigh’s inflexion point theorem for either parallel
or circular two-dimensional flows (Gent & McWilliams 1986). A more restrictive (yet
necessary) criterion is given by Fjørtoft’s theorem. This subsection presents a new version
of these theorems for circular vortices over topography.
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2.2.1. Rayleigh’s inflexion point theorem with topography
The generalised eigenvalue problem (2.6) in the SW model can provide an equivalent of
Rayleigh’s inflexion point theorem involving topography effects. First, (2.6) is rewritten as

d
dr

(
r
hs

dφ
dr

)
− k2

rhs
φ − drQs

r−1h−1
s drΨs − σ/k

φ = 0, (2.11)

where dr ≡ d/dr. Note that (2.11) assumes r−1h−1
s drΨs − σ/k /= 0 to avoid trivial

solutions of φ (because drQs /= 0 in general). Multiplying this equation by the complex
conjugate φ∗, integrating each term, and applying the null boundary conditions at r = 0
and r = rm → ∞ (the maximum value in the radial direction), both obtained from the
asymptotic analysis for small and large r (Gent & McWilliams 1986), yields∫ rm

0

r
hs

|drφ|2 dr +
∫ rm

0

k2

rhs
|φ|2 dr +

∫ rm

0

(r−1h−1
s drΨs − σ ∗/k) drQs

|r−1h−1
s drΨs − σ/k|2 |φ|2 dr = 0.

(2.12)
The imaginary part of (2.12) is

σi

k

∫ rm

0

drQs

|r−1h−1
s drΨs − σ/k|2 |φ|2 dr = 0. (2.13)

If σi /= 0, then the basic flow could be unstable. In this case, to satisfy (2.13), the potential
vorticity gradient must be zero at some r = rz, i.e.

d
dr

[∇ · (h−1
s ∇Ψs)+ f0

hs

]∣∣∣∣
r=rz

= 0, (2.14)

which is a necessary criterion of instability for the SW model. In the QG limit, the result
is equivalent but now using the QG PV:

d
dr

[∇2Ψ + h(r)]
∣∣∣∣
r=rz

= 0. (2.15)

Note that for the flat-bottom case, h(r) = 0, condition (2.15) demands the relative vorticity
gradient to be null at some radial distance, as reported by Gent & McWilliams (1986).

2.2.2. Fjørtoft’s theorem with topography
Here, we present an equivalent criterion of Fjørtoft’s theorem with topography in the SW
model. First, note that the real part of (2.12) allows us to find∫ rm

0

drQs (r−1h−1
s drΨs − σr/k)

|r−1h−1
s drΨs − σ/k|2 |φ|2 dr < 0. (2.16)

Second, if σi /= 0 and condition (2.13) is satisfied, then

(r−1h−1
s drΨs|r=rz − σr/k)

∫ rm

0

drQs

|r−1h−1
s dr Ψs − σ/k|2 |φ|2 dr = 0. (2.17)

Subtracting (2.17) from (2.16), we obtain∫ rm

0

drQs (r−1h−1
s drΨs − r−1h−1

s drΨs|r=rz)

|r−1h−1
s drΨs − σ/k|2 |φ|2 dr < 0, (2.18)
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which, to be satisfied, requires that the numerator of the integrand be negative for some r:

d
dr

[∇ · (h−1
s ∇Ψs)+ f0

hs

](
1

rhs

dΨs

dr
− 1

rz hs(rz)

dΨs

dr

∣∣∣∣
r=rz

)
< 0. (2.19)

This expression indicates that circular flow over topography could be unstable if the sign
of the velocity relative to the inflexion point is opposite to the sign of the potential vorticity
derivative somewhere.

In the QG approximation, the instability criterion (2.19) is rewritten as

d
dr

[∇2Ψ + h(r)]

(
1
r

dΨ
dr

− 1
rz

dΨ
dr

∣∣∣∣
r=rz

)
< 0. (2.20)

When there is no topography, h(r) = 0, (2.20) is reduced to the theorem reported by Gent
& McWilliams (1986) for circular flow. Notice that Fjørtoft’s theorem (2.20) requires that
the point r = rz, where Rayleigh’s theorem is satisfied, exists.

2.3. Centrifugal instability
Vertical motions in a three-dimensional swirling flow are able to trigger centrifugal
instabilities (Orlandi & Carnevale 1999). Rayleigh’s circulation theorem provides a
criterion to identify this type of instability (Kloosterziel & van Heijst 1991). The
criterion is based on energetic considerations for an axisymmetric flow with an arbitrary
azimuthal velocity v(r) in the absence of viscosity, stratification and rotation, and with
a flat bottom. An extension of the theorem including rotation effects was presented in
Kloosterziel (1990) and Kloosterziel & van Heijst (1991), based on the conservation
of angular momentum of fluid elements subjected to infinitesimal displacements. By
following a similar analytical procedure, in this subsection we present an extension of
the circulation theorem including topography effects. Note that centrifugal instability
is inherently three-dimensional, in contrast with the purely two-dimensional barotropic
instability examined above.

Consider the momentum equations of a circularly symmetric flow in cylindrical
coordinates (r, θ, z) on the f -plane:

Du
Dt

− f0v − v2

r
= − 1

ρ

∂P
∂r
, (2.21)

Dv
Dt

+ f0u + uv
r

= 0, (2.22)

0 = − 1
ρ

∂P
∂z

− g, (2.23)

where (u, v) are the radial and azimuthal velocity components, P(r, z) is the pressure, g is
gravity, and D/Dt = ∂/∂t + u ∂/∂r + w ∂/∂z is the material derivative, with w the vertical
velocity. The pressure is θ -independent because the flow maintains its circular shape. The
flow is assumed to maintain the hydrostatic balance in the vertical direction (as in the SW
approximation).

Now consider the presence of the axisymmetric topography b(r) shown in figure 1.
Integrating (2.23) from an arbitrary level z and the surface, the pressure is

P = ρg[hs(r)+ b(r)] − ρgz. (2.24)

The first term, p(r) = ρg hs(r), is the pressure associated with the surface elevation
(which is neglected only in the continuity equation under the rigid-lid approximation).
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The horizontal momentum equations are rewritten as

Du
Dt

= v2

r
+ f0v − 1

ρ

dp
dr

− g
db
dr
, (2.25)

D
Dt

(
vr + 1

2
f0r2

)
= 0, (2.26)

where (2.26) represents the conservation of absolute angular momentum.
As a basic flow, we assume a circular monopolar vortex with azimuthal velocity v(r).

Following Kloosterziel & van Heijst (1991), we consider a fluid element that is displaced
from r = r0 to r′ = r0 + δr without changing the pressure field p(r) (in this sense the
displacement is considered as virtual). The new azimuthal velocity is v′(r′). Using the
conservation law (2.26) yields

v′(r′) r′ + 1
2 f0r′2 = v(r0) r0 + 1

2 f0r2
0. (2.27)

The radial acceleration due to the virtual displacement is obtained from (2.25) as the
variation of the acceleration between both states (disturbed and basic) evaluated at r′:

D2δr
Dt2

=
(

Du′

Dt
− Du

Dt

)∣∣∣∣
r=r′

. (2.28)

Using (2.25), and after some manipulations,

D2δr
Dt2

=
[
v′(r′)2

r′ + f0 v′(r′)− v(r′)2

r′ − f0 v(r′)
]

− gδ
db
dr

= 1
r′3

[(
v′(r′) r′ + 1

2
f0r′2

)2

−
(
v(r′) r′ + 1

2
f0r′2

)2
]

− gδ
db
dr
. (2.29)

Here, δ db/dr = db/dr|r′ − db/dr|r0 is the variation of the topography gradient as the
particle is displaced. Substituting the first term with (2.27) gives

D2δr
Dt2

= 1
r′3

[(
v(r0) r0 + 1

2
f0r2

0

)2

−
(
v(r′) r′ + 1

2
f0r′2

)2
]

− gδ
db
dr
. (2.30)

A Taylor expansion close to r0 simplifies this expression to order δr:

D2δr
Dt2

∼ −δr d
dr

[
1
r3

0

(
v(r) r + 1

2
f0r2

)2

+ g
d
dr

b(r)

]
r=r0

. (2.31)

If the fluid element is displaced outwards (δr > 0), then the acceleration (2.31) in that
direction is positive when

d
dr

[
1
r3

0

(
v(r) r + 1

2
f0r2

)2

+ g
d
dr

b(r)

]
r=r0

< 0. (2.32)

Or, taking the derivative,

2
r0

(
v(r0)+ 1

2
f0r0

)
(ω(r0)+ f0)+ g

d2

dr2 b(r0) < 0, (2.33)

with the vorticity ω(r) = dr[r v(r)]/r. The same condition applies for an inward
displacement δr < 0 and a negative acceleration. Thus (2.33) is a sufficient criterion for
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Linear stability of monopolar vortices

centrifugal instability. Scaling (2.33), we obtain the dimensionless criterion

1
ra
(εva + ra)(εωa + 2)+ 2Δ

(
LD

L

)2 d2ba

dr2
a
< 0, (2.34)

where ( )a represents dimensionless variables, ε = 2U/Lf0 is the Rossby number based
on the horizontal length L, the velocity scale U and the system’s angular speed f0/2,
LD = √

gH0/f0 is the deformation radius based on the mean depth, and Δ = b0/H0 is
the normalised topographic amplitude (to be used later). Notice that the first term in (2.34)
corresponds to the circulation theorem reported by Kloosterziel & van Heijst (1991) for a
flat bottom, b0 = 0. The new condition extends Rayleigh’s circulation theorem involving
topography effects. The criterion applies for SW flows and also in the QG limit, in which
b0 is restricted to be much smaller than the average depth H0.

The stability criterion (2.34) indicates that the shape of the topography and the vortex
size are essential. The shape establishes the sign of d2b/dr2; for example, a topography
without inflexion point in its skirt, as is the case for a hemispherical topography, has a
second derivative with only one sign, negative for a mountain or positive for a valley.
Thus the hemispherical mountain (valley) tends to destabilise (stabilise) the vortex stable
(unstable) over the flat bottom. A more realistic topographic shape would have at least one
inflexion point, as in a Gaussian profile, so instabilities may develop depending on the
radial distance at which the flow is disturbed. On the other hand, for a ‘small’ vortex in
the SW dynamics (Δ ∼ O(1) and L < LD but still within the mesoscale), the topographic
contribution is more relevant in the centrifugal instability than for ‘big’ vortices (L > LD).
In QG, L ∼ LD and Δ � 1, so the topographic term is less important.

3. Stability analyses of QG vortices over topography

In this section, we discuss the stability criteria for a special class of QG monopolar vortices
over arbitrary axisymmetric topography derived recently by Gonzalez & Zavala Sansón
(2021). These nonlinear solutions of (2.8) represent a versatile family of cyclonic and
anticyclonic vortices over mountains and valleys on the f -plane. The analytical vortical
solutions support the notion that long-lived motions may exist over topographic features,
as often occurs in the oceans, rotating tank experiments and numerical simulations
(see § 1 and references therein). Despite the strong simplifications (circular flows over
axisymmetric topography), the relevance of analytical solutions is that they allow one to
test the barotropic instability theorems discussed in § 2. Also, exact solutions are a suitable
initial condition in numerical simulations, as we will see below.

3.1. Vortices over an isolated topography: the basic flow
The analytical solutions reported by Gonzalez & Zavala Sansón (2021) are steady
structures based on azimuthal modes adapted to the shapes of mountains and valleys. The
flows discussed here correspond to monopolar vortices with azimuthal mode m = 0, and
stream function amplitude ψ̂ , whose sign corresponds to either anticyclonic (ψ̂ > 0) or
cyclonic (ψ̂ < 0) vortices. The arbitrary topographic profile is chosen Gaussian, b(r) =
b0 e−r2/r2

t , where b0 is the mountain (valley) height (depth), and rt is the width of the
topography (see figure 1).

The solutions are a family of piecewise functions depending on the topographic
parameters. Scaling the radial coordinate as s = c0r, with c0 a factor with units
1/length, the non-dimensional forms of the stream function Ψa(s), the azimuthal velocity
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va(s) = dsΨa, and the relative vorticity ωa(s) = s−1 ds(sva) (where ds is the dimensionless
radial derivative) are

Ψa(s) = Ψ

ψ̂
=
{
ΨI(s; ξt, st)− a0(ξt, st)− a2(ξt, st) s2, s ≤ sl,

a1(ξt, st) ln s, s ≥ sl,
(3.1)

va(s) = v

c0ψ̂
=
{

dsΨI(s; ξt, st)− 2a2(ξt, st) s, s ≤ sl,

a1(ξt, st)/s, s ≥ sl,
(3.2)

ωa(s) = ω

c2
0ψ̂

=
{

−ΨI(s; ξt, st)+ ξt H(s; st)− 4a2(ξt, st), s ≤ sl,

0, s ≥ sl.
(3.3)

The core of the vortex is centred at the topography in a circular interior region of radius
sl, chosen as the first zero of the order 1 Bessel function (sl = 3.8317). The exterior region
s ≥ sl consists of a potential flow. The coefficients ai (i = 0, 1, 2) are used to guarantee the
continuity of the flow variables (see Appendix A). The axisymmetric functionsΨI(s; ξt, st)
and H(s; st) (defined below), as well as the constants ai, depend on the dimensionless
parameters

ξt = h0

c2
0ψ̂

≡ Δ

Ro
, st = c0rt. (3.4a,b)

The first is the ratio between the ambient vorticity at the origin, h0 ≡ h(0) = f0b0/H0,
and the vorticity scale, c2

0ψ̂ . Note that ξt is equivalent to the ratio between the
relative topographic amplitude Δ = b0/H0 and the Rossby number based on the Coriolis
parameter, Ro = c2

0ψ̂/f0 (and hence ε = 2 Ro in the circulation theorem (2.34)). The
second parameter, st, is the dimensionless horizontal scale of the topography. Hereafter
we will refer to ‘narrow’ topographies when st < sl, that is, the horizontal scale of the
mountain or valley is shorter than the vortex scale. Similarly, a ‘wide’ topography means
st > sl.

The explicit expression for the topographic function H is

H(s; st) = 1 − e−(s2/s2
t ), (3.5)

while the stream function ΨI , and dsΨI in the interior region, are given by

ΨI(s; ξt, st) = J0(s)

+ ξt

(
π

2
Y0(s)

∫ s

0
H(s′; st) J0(s′) s′ ds′ − π

2
J0(s)

∫ s

0
H(s′; st)Y0(s′) s′ ds′

)
, (3.6)

dsΨI(s; ξt, st) ≡ vI(s; ξt, st) = −J1(s)

+ ξt

(
−π

2
Y1(s)

∫ s

0
H(s′; st) J0(s′) s′ ds′ + π

2
J1(s)

∫ s

0
H(s′; st)Y0(s′) s′ ds′

)
, (3.7)

where J0 and Y0 are the order 0 Bessel functions of the first and second kind, respectively.
Note that the divergence of Ym is avoided because H(s) → 0 at s → 0. Function vI(s)
defined in (3.7) will be used later. After some calculations, it is verified that the potential
vorticity is proportional to ΨI , so that qa ≡ ωa + ξt e−(s2/s2

t ) = −ΨI + ξt − 4a2.
A special feature of the QG solutions (3.1) is the symmetry between the signs of

the vortex and topography amplitudes, both contained in parameter ξt. Specifically, an
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Linear stability of monopolar vortices

Configuration Identifier Vortex Topography ξt = Δ/Ro

Anticyclone/mountain A/M ψ̂ > 0 b0 > 0
ξt > 0

Cyclone/valley C/V ψ̂ < 0 b0 < 0

Anticyclone/valley A/V ψ̂ > 0 b0 < 0
ξt < 0

Cyclone/mountain C/M ψ̂ < 0 b0 > 0

Table 1. Outline of the flow/topography configurations in the analytical solutions of circular vortices (with
cyclonic or anticyclonic amplitude ψ̂) over topography (with height or depth b0).

anticyclone (ψ̂ > 0) over a mountain (b0 > 0) is equivalent to a cyclone (ψ̂ < 0) over
a valley (b0 < 0). Analogously, the case of a cyclone over a mountain is equivalent to
an anticyclone over a valley. For quick reference, the flow/topography configurations are
summarised in table 1.

Figure 2 presents several velocity and vorticity radial profiles of the anticyclone/mountain
case, ξt > 0. When the topography is narrow (figures 2a,b), both profiles change sign at
a certain radius (except for the flat topography ξt = 0). The vorticity profiles indicate that
the negative core of the vortex is shielded by a ring of opposite vorticity that becomes zero
at sl. In general, the vortices are not isolated because the total circulation (the area integral
of the vorticity) is evidently different from zero. For a wide topography (figures 2c,d), the
azimuthal velocity reaches a maximum at a certain radius and then decays slowly, as in
typical vortex models (see e.g. van Heijst & Clercx 2009). In addition, there is also a weak
opposite-sign vorticity ring surrounding the vortex core (figure 2d).

Figure 3 shows the velocity and vorticity profiles obtained for the cyclone/mountain
case ξt < 0 (equivalent to the anticyclone/valley system). Panels (a) and (c) indicate no
changes in the azimuthal velocity sign for narrow and wide topographies. The signs of the
vorticity profiles do not change either (panels b,d). However, with the increase of ξt, the
vorticity at the periphery is more intense than at the origin.

We will now evaluate the theorems obtained in subsections §§ 2.2 and 2.3 for the basic
flow presented in this subsection.

3.2. Conditions for barotropic instability: Rayleigh’s theorem
Using solutions (3.1)–(3.3), the dimensionless form of Rayleigh’s theorem (2.15) can be
rewritten as

ds[ωa(s; ξt, st)+ ξt(1 − H(s; st))] ≡
{

−vI(s; ξt, st) = 0, s ≤ sl,

−ξt dsH(s, st) = 0, s ≥ sl,
(3.8)

where vI = dsΨI was defined in (3.7). Consider the following cases for narrow and wide
topographies. If the topography becomes flat at the outer region, dsH(s; st) ≡ 0 (narrow
topography), then the theorem requires that

vI|sin = 0 (3.9)

at some sin < sl in the interior region. Figures 4(a,b) present the radial profiles of vI(s) for
positive and negative ξt values with st = 2. Vortices with ξt > 0 (figure 4(a) satisfy (3.9)
because the sign of vI(s) changes somewhere in the interior region. Therefore, the A/M
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Figure 2. (a) Azimuthal velocity and (b) relative vorticity profiles, for several antyciclone/mountain (A/M)
cases over a narrow topography, st = 2. (c,d) Corresponding profiles for a wide topography, st = 5. The blue
curves indicate the flat-bottom cases, ξt = 0.
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Figure 3. Same as in figure 2, but now for cyclone/mountain (C/M) cases.
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Figure 4. Profiles of the radial function vI used to evaluate Rayleigh’s inflexion point theorem for narrow
topography st = 2: (a) ξt > 0, and (b) ξt < 0. (c,d) Corresponding profiles for a wide topography st = 5.

and C/V configurations may be barotropically unstable. Conversely, the velocity fields,
corresponding to the cases where ξt < 0 (figure 4(b), do not satisfy (3.9) because vI(s) > 0
everywhere. Thus the C/M and A/V cases are neutrally stable.

When dsH(s; st) /= 0 in the outer region (wide topographies), the vortex might be
unstable for the following situation. If dsH(s; st) is of definite sign, then (3.8) is satisfied
if vI(s; ξt, st) is of opposite sign to ξt dsH(s; st) in some region, that is,

vI |sin

{
> 0 if ξt dsH(s; st) < 0,

< 0 if ξt dsH(s; st) > 0,
(3.10)

where sin < sl. In the particular case of Gaussian topography, these relations apply because
dsH(s; st) > 0 (< 0) for a mountain (valley). Figures 4(c,d) present the radial profile of
vI(s) for positive and negative ξt values with st = 5. The A/M and C/V configurations in
figure 4(c) may be unstable because they satisfy the second inequality in (3.10). In contrast,
the C/M and A/V cases shown in figure 4(d) do not satisfy the first inequality in (3.10),
and hence are stable.

Summarising, configurations with ξt > 0 may be unstable, and those with ξt < 0 are
stable for any topography.
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3.3. Conditions for barotropic instability: Fjørtoft’s theorem
Now we will evaluate criterion (2.20) for our basic flow. We consider only configurations
with ξt > 0 and narrow topographies where Rayleigh’s criterion (3.9) is satisfied, that
is, dsH(s; st) = 0 at the outer region (see figure 4a). In these cases, the dimensionless
Fjørtoft’s theorem (2.20) states that the following inequality should be satisfied
simultaneously with Rayleigh’s theorem for some s:

γF ≡ vI(s; ξt, st)

(
1
s
vI(s; ξt, st)− 1

sin
vI(sin; ξt, st)

)
> 0 for s < sl, (3.11)

where we have used the fact that dsqa = −dsψI = −vI . From (3.9), we know that
vI(sin; ξt, st) = 0, so we can conclude that γF satisfies Fjørtoft’s theorem because

γF = v2
I (s; ξt, st)/s (3.12)

is always definite positive.

3.4. Conditions for centrifugal instability
Finally, the circulation theorem (2.34) is evaluated for our circular vortices over
topography. Recalling that ε = 2 Ro = 2Δ/ξt, we obtain the necessary instability criterion
if, for some s,

2
s

(
Δ

ξt
va(s; ξt, st)+ s

2

)(
Δ

ξt
ωa(s; ξt, st)+ 1

)
+Δ

(
LD

L

)2 d2

ds2 ba(s; st) < 0. (3.13)

Figure 5 shows a set of parameter space maps Ro versus Δ for different Gaussian
topographies with horizontal scale st. The colours represent logical values for the
condition (3.13), where blue indicates false (the configuration does not satisfy Rayleigh’s
circulation theorem), and red means true values (the configuration does satisfy the
theorem, therefore the flow is unstable). In general, the configurations with anticyclones
shown in the upper quadrants tend to be centrifugally unstable (red areas).

3.5. Numerical solution of the generalised eigenvalue problem
The linear stability analysis for monopolar vortices over topography presented in § 2
led us to obtain the generalised eigenvalue problem (see (2.7) and (2.10)) involving the
real matrixes A (without dependence on physical parameters) and B (depending on all
physical parameters and the properties of the basic flow). The non-dimensional form of
the eigenvalue problem for the circular vortices introduced in 3.1 is given by

σa

k
∇2

kaζa =
[

1
s
va ∇2

ka + H1
1
s

dsΨI − H2
ξt

s
ds(e−s2/s2

t )

]
ζa, (3.14)

with σa = σ/c2
0ψ̂ , ∇2

ka = dss + s−1 ds − s−2k2, and the piecewise form of the basic flow
is

H1 =
{

1 s, < sl,

0, s > sl,
H2 =

{
0, s < sl,

1, s > sl.
(3.15a,b)

The numerical solution to this eigenvalue problem is based on a spectral method,
which is of great accuracy and computationally economic due to exponential convergence
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Figure 5. Dimensionless parameter space Ro = c2
0ψ̂/f0 versusΔ = b0/H0 for different width topographies st.

The red (blue) colour indicates the vortex/topography configuration that satisfies (does not satisfy) Rayleigh’s
circulation criterion (3.13) for centrifugal instability.

(Orszag 1971; Yuhong 1998). Here, we will use a spectral collocation method because it is
much easier to implement than the Galerkin and Tau schemes (Yuhong 1998; Trefethen
2000). The radial direction is non-uniformly discretised from 0 to 32 dimensionless
units with sufficient resolution to obtain convergence. The eigenfunction is set to zero
at the outer boundary. Some results were confirmed by solving the eigenvalue problem
with a finite difference method. More importantly, the stability curves obtained in the
study of Gent & McWilliams (1986) (their figures 2 and 5) for five different profiles of
two-dimensional circular vortices were reproduced with great accuracy.

Solutions are obtained for anticyclones over mountains (A/M equivalent to C/V) and
cyclones over mountains (C/M equivalent to A/V), for both st = 2 (narrow topography)
and st = 5 (wide topography). The A/M configurations are chosen with integer values of
parameter ξt, {ξt ∈ Z | 1 ≤ ξt ≤ 10}, and the C/M with {ξt ∈ Z | −10 ≤ ξt ≤ −1}. The
solutions identify the growth rate σi of perturbations (2.5) with a given wavenumber k.
These numbers have physical meaning only when they are integers, guaranteeing that the
perturbation is azimuthally periodic. The aim is to find the wavenumber kc with the fastest
growth rate, hereafter called the characteristic wavenumber.

Figure 6 presents the stability profiles for the A/M configurations (ξt > 0). The C/M
solutions (ξt < 0) are not presented because they have a zero growth rate (neutrally stable
configurations). In the case of narrow topographies (figure 6a), the fastest growth rates
have kc = 1 and correspond to ξt = 1 and 2, that is, intense vortices or weak topographies.
The instability with kc = 1 can be associated with a slight displacement of the vortex
off the centre of the topography. Dominant perturbations in vortices with ξt > 2 may
have a wavenumber kc = 2 but the growth rate is too small. These instability profiles are
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Figure 6. Instability profiles σai (imaginary part of σa) versus k for cases with ξt > 0 (A/M and C/V
configurations) for (a) narrow and (b) wide topographies.

obtained with 1200 Chebyshev points. In the case of wide topographies (figure 6b), the
characteristic wavenumbers are kc = 1 for ξt = {1, 2, 8 − 10} and kc = 2 for ξt = {3 − 7},
using 2500 Chebyshev points. Again, the fastest growth rate corresponds to kc = 1 for
ξt = 1, although other vortices show high values for kc = 2.

Overall, the results from the solution of the generalised eigenvalue problem indicate
that cases with ξt > 0 are unstable, whereas the cases with ξt < 0 are stable, which is in
accordance with the theorems found in §§ 3.2 and 3.3 from the linear analysis.

3.6. Numerical simulations of vortices over topography
The evolution of circular vortices over topography is simulated numerically by solving
the QG model (2.8). The numerical experiments are initialised with the circular vortices
over isolated topography introduced in § 3.1. We examine the instability of A/M and C/M
configurations, equivalent to the C/V and A/V cases, respectively. The vortices are liable to
disturbances owing to the numerical error. We aim to detect whether the vortices are stable
or unstable in long-term simulations, and in the latter case, to identify the wavenumber of
the growing disturbance.

The numerical method is based on finite differences in a square grid with 513 ×
513 points, an Arakawa scheme to discretise the nonlinear terms, and a third-order
Runge–Kutta for time advancement. The non-dimensional length side of the domain is
L = 64 or about 16 times the vortex size (∼3.86), so the lateral walls are sufficiently far
from the vortex. The boundary conditions are free-slip. The topography is assumed to
be Gaussian. The time step is 1 % of the system’s rotation period, so 100 time steps are
one ‘day’. The scheme has been used in numerous previous studies on vortices over a flat
bottom or involving topography effects (Zavala Sansón & van Heijst 2002, 2014).

Figures 7(a,b) show the vorticity distributions at t = 0 and several days later for an
anticyclone (bounded by the black circumference) over a narrow Gaussian mountain
(magenta circumference). The vorticity profile is shown in figure 2(b). The results
indicate that the disturbance grows and misaligns the vortex core from the origin.
Hence the characteristic wavenumber is kc = 1, which agrees with that predicted by the
spectral method (black curve in figure 6a). The new structure can be characterised as an
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Figure 7. Numerically calculated vorticity distributions of an anticyclone over a narrow mountain (ξt, st) =
(1, 2) at (a) t = 0 days, and (b) t = 160 days. The limits of the colour bars are set by the peak vorticity
ωmin = min{ωa}. (c) Time evolution of five azimuthal mode amplitudes Ak (see text). The fastest growth is
for k = 1.

asymmetric dipolar vortex trapped over the mountain, as discussed in Gonzalez & Zavala
Sansón (2021). To verify that the fastest growing mode has kc = 1, we calculate the time
evolution of the perturbations amplitude as done by Carton & Legras (1994). First, the
vorticity perturbation is defined as

ω′(r, θ, t) = ω(r, θ, t)− ∇2Ψ (r). (3.16)

Second, this field is decomposed in angular modes

{Ck(r, t), Sk(r, t)} = 1
π

∫ 2π

0
ω′(r, θ, t) {cos(kθ), sin(kθ)} dθ, (3.17)

whose amplitudes are

Ak(t) = 1
rmax

∫ rmax

0
[C2

k(r, t)+ S2
k(r, t)] dr, (3.18)

with rmax ∼ 4sl. Figure 7(c) presents the amplitudes time evolution for modes k = 1 − 5.
After a brief initial period of adjustment, the amplitudes remain small and constant
during 120 days, approximately. Afterwards, amplitude A1 grows faster than the others,
in agreement with the prediction of the stability analysis.

Figures 8(a) and 8(b) presents the vorticity distributions for an anticyclone over a wide
Gaussian mountain (the vorticity profile is shown in figure 2d). Note that the external
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Figure 8. Numerically calculated vorticity distributions of an anticyclone over a wide mountain (ξt, st) =
(1, 5) at (a) t = 0 days, and (b) t = 143 days. (c) Time evolution of five azimuthal mode amplitudes Ak. The
fastest growth is for k = 1.

ring of positive vorticity is very weak in comparison to the anticyclonic centre. The
simulation indicates that the anticyclonic core is displaced from the origin, yielding a
weak dipolar structure over the topography. This result agrees with the corresponding
instability profile in figure 6(b) (black curve), which predicts that the fastest growing
mode has a characteristic wavenumber kc = 1 for this configuration. The dipole-like
vortices emerging from this and the previous simulation have very different structures
because of the radical differences in their initial vorticity profiles. Figure 8(c) presents
the perturbations amplitude evolution, where it is verified that the most unstable mode is
kc = 1.

In figure 9, we present a case similar to that shown in figure 8, but now with ξt = 3 (a
higher mountain or weaker vortex). In this case, the dominant mode has wavenumber 2,
yielding an anticyclonic core with two positive vorticity satellites. The spectral solution
also points out that the characteristic wavenumber is kc = 2 (see the blue curve in
figure 6b). The vortex evolution during an extended period is shown in supplementary
movie 1, available at https://doi.org/10.1017/jfm.2023.153. The structure rotates as a whole
in the clockwise direction around the mountain. This new vortex resembles the well-known
tripolar vortices observed in laboratory experiments, which have a cyclonic core and two
negative satellites, and rotate anticlockwise (Kloosterziel & van Heijst 1991). However, the
vorticity distribution is notoriously different to the typical tripoles because here the core
is anticyclonic, and the cyclonic satellites are very weak. Furthermore, the vortex motion
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Figure 9. Numerically calculated vorticity distributions of an anticyclone over a wide mountain (ξt, st) =
(3, 5) at (a) t = 0 days, and (b) t = 500 days. (c) Time evolution of five azimuthal mode amplitudes Ak. The
fastest growth is for k = 2.

is affected by the topography. The amplitudes shown in figure 9(c) verify that the most
unstable mode is kc = 2.

Overall, the numerical experiments indicate that most of the A/M and C/V
configurations are unstable. We performed additional simulations for C/M and A/V cases,
which showed that the initial vorticity distributions remained stable during very long time
integrations in all cases. As an example, the evolution of a cyclone over a mountain (with
st = 2, ξt = −4) during an extended period is shown in supplementary movie 2. These
results are in agreement with the stability analysis, which yields a zero growth rate in
these configurations, and also with the barotropic instability theorems found in §§ 3.2 and
3.3 because the necessary instability criteria are not met.

Table 2 compares the wavenumber of the fastest growing mode calculated from the
eigenvalue problem and that observed in the numerical simulations. We consider narrow
and wide topographies with 1 ≤ ξt ≤ 4 (A/M or C/V) and −4 ≤ ξt ≤ −1 (C/M or A/V).
In almost all configurations, the wavenumber obtained with both methods is the same,
which suggests that the linear analysis provides reliable results. However, there are a few
discrepancies, such as the two configurations with ξt = 3, 4 and st = 2 (A/M or C/V over
narrow topography). The instability analysis predicts kc = 1 and 2, respectively, but the
numerically calculated vortices remained stable during about 600 days of simulation. The
reason may be due to the small growth rate of the perturbation, as observed in figure 6(a).
Probably, more simulation days would be necessary to appreciate the expected instability.
Another discrepancy is the configuration with ξt = 2 and st = 5 (A/M or C/V over a
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Vortex/topography configuration

Narrow topography Wide topography

st 2 5
ξt −4 −3 −2 −1 1 2 3 4 −4 −3 −2 −1 1 2 3 4

kc obtained from the eigenvalue problem

kc 0 0 0 0 1 1 1 2 0 0 0 0 1 1 2 2

kc observed in numerical simulations

kc 0 0 0 0 1 1 0 0 0 0 0 0 1 2 2 2

Table 2. Comparison of the characteristic wavenumber kc predicted by the spectral solution of the generalised
eigenvalue problem (§ 3.5) and that found in the numerical simulations for different vortex/topography
configurations (ξt, st).

wide topography), for which the predicted wavenumber is kc = 1 but the simulated vortex
indicates kc = 2. In this case, the difference may be due to the almost equal growth rate
values for both wavenumbers, as shown in figure 6(b) (light grey curve).

4. Discussion and conclusions

We investigated the stability of cyclonic and anticyclonic circular vortices over isolated
topographies, which can be either mountains or valleys. The results include: (i) a linear
stability analysis that led to the generalised eigenvalue problem and to the incorporation of
finite topography effects in classical instability theorems in the SW dynamics (§ 2); and (ii)
the application of these results to QG analytical vortices over low-amplitude topography
(§ 3). The latter analysis includes the spectral solution of the eigenvalue problem, and
numerical simulations showing the long-term evolution of the vortices.

As a basic flow in § 3, we considered stationary, nonlinear analytical vortices
over a Gaussian topography (Gonzalez & Zavala Sansón 2021). The flow/topography
configurations are characterised by the dimensionless number ξt, which is the ratio
between the relative height of the topography (whose sign indicates whether it is a
mountain or a valley) and the Rossby number (also signed to distinguish cyclones and
anticyclones). Thus the two dynamical configurations are comprised in cases with ξt > 0
(A/M and C/V), and ξt < 0 (A/V and C/M). The flat-bottom case is ξt = 0. A second
parameter is the horizontal scale of the topography st.

According to the spectral solution of the generalised eigenvalue problem, the
configurations A/M and C/V are unstable. The characteristic wavenumbers of the fastest
growing modes are kc = 1 and 2 in the range 1 ≤ ξt ≤ 10. The largest growth rates were
found for smaller ξt (figure 6), which indicates that the intense vortices are more unstable.
In contrast, the growth rate is very small for ξt ≥ 3 with narrow topography, and also
for ξt ≥ 7 with wide topography. This is an indication that the height of the topography
may be a stabilising factor in these ξt ranges. On the other hand, configurations A/V and
C/M (ξt < 0) are linearly stable in all cases. These results agree with the analytical and
numerical study of Zhao et al. (2019) for the case of a Rankine vortex over a cylindrical
mountain, which concluded that anticyclones are destabilised by seamounts while they
are stabilised by depressions. Recently, numerical simulations carried out by Solodoch,
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Stewart & McWilliams (2021) showed the formation and persistence of anticyclonic eddies
over topographic depressions under a wide range of parameters, which is in agreement
with the present result regarding the stability of the A/V configuration.

Long-term numerical simulations of vortices over topography agree well with the
conclusions obtained from the eigenvalue problem. An aspect that stands out is that the
new vortical structures emerging from unstable cases remain trapped and rotating around
the topography. This behaviour resembles the asymmetric dipolar solutions obtained in
Gonzalez & Zavala Sansón (2021), which rotate steadily around a seamount or valley. In
Zavala Sansón & Gonzalez (2021), we reported that the residual flow over a submarine
mountain after the passage of a travelling vortex is a dipolar structure that remains trapped
around the tip of the mountain. A similar structure was found in laboratory experiments in
a large rotating tank (Zavala Sansón et al. 2012).

Let us discuss the stability properties in terms of the vorticity profiles of the different
vortex solutions used here. In general, the vortices have non-zero circulation, Γ /= 0. For
cases with ξt > 0 (A/M and C/V), the vorticity profiles have a core shielded by a ring
with opposite vorticity (figure 2). We found that the potential vorticity gradient is zero
somewhere (figure 4), so the vortices meet the modified Rayleigh and Fjørtoft instability
criteria (2.15) and (2.20), respectively. Shielded vortices with Γ = 0 on a flat bottom are
also barotropically unstable (Carton & McWilliams 1989; Kloosterziel & van Heijst 1991).
However, in the present cases with topography and Γ /= 0, the external ring can have much
more or much less vorticity than the vortex core. As a result, the emerging ‘tripolar’ vortex
may have a very different aspect in comparison to the traditional, flat-bottom tripoles. An
example with a very weak external ring was presented in figure 9.

For cases with ξt < 0 (C/M and A/V), the vorticity profiles have definite sign, as
shown in figure 3. The vorticity maximum might be either at the centre (unshielded
monopoles) or at a certain radius off the origin (unshielded annuli, a vortex class that
has been studied rarely). It was found that in all cases, the vorticity profiles do not meet
the instability criteria, so the vortices are sufficiently stable. This result is in agreement
with the well-known stable behaviour of unshielded, circular vortices found typically in
laboratory experiments (Kloosterziel & van Heijst 1992). However, the stable evolution
over topography contrasts with that observed for a flat bottom by Carton & McWilliams
(1989), who indicated that unshielded annuli with non-zero circulation exhibit a breaking
behaviour.

Finally, we discussed centrifugal instability in the presence of topography, which can
be contrasted with that obtained by Kloosterziel & van Heijst (1991) for rotating flows
over a flat bottom. The new criterion depends on the second radial derivative of the
topographic profile and is weighted by the factorΔ(LD/L)2; see (2.34). Roughly, we found
that cyclones tend to be centrifugally stable and anticyclones unstable when seated on
mountains or valleys (figure 5). Laboratory experiments or additional three-dimensional
simulations would be required to test these predictions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.153.
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Appendix A. Exterior field coefficients

The coefficients of the solution (3.1) are given by

a0 = 1
4
{f00(4 + s2

l )+ [4slf01 + 2s2
l (ξt H(sl)− f00)] ln sl − ξt H(sl) s2

l },

a1 = 1
2

sl[sl( f00 − ξt H(sl))− 2f01],

a2 = 1
4
(ξt H(sl)− f00),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A1)

where f00 and f01 are

f00 = J0(sl)− ξt

(π

2
I2(sl) J0(sl)− π

2
Y0(sl) I1(sl)

)
,

f01 = ξt
π

2
Y1(sl) I1(sl),

⎫⎪⎬
⎪⎭ (A2)

and I1(sl) and I2(sl) are integrals involving the topography:

I1(sl) =
∫ sl

0
H(s′) J0(s′) s′ ds′, I2(sl) =

∫ sl

0
H(s′)Y0(s′) s′ ds′. (A3a,b)

Further details about these coefficients and the properties of the background flow can be
consulted in Gonzalez & Zavala Sansón (2021).
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