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As behavioral genetic strategies have become part of the arsenal of research in developmental
psychopathology, a wide variety of genetic analyses are being applied to child psychiatric
data. Multivariate genetic techniques have been used to explore comorbidity among traits or
disorders and the main analysis undertaken has been to examine whether comorbidity is due
to shared genetic and}or environmental factors. However, this model ignores other possible
causes of comorbidity, which are reviewed. In particular, genetic analyses of comorbidity
have only infrequently considered the model of phenotypic causality (one disorder directly
influencing another), which provides an important alternative with potentially different
implications for intervention strategies. Data from a recently published article by Wamboldt,
Schmitz, and Mrazek (1998) are used to illustrate the potential difficulties of distinguishing
between models of shared genetic}environmental risk and phenotypic causality. Given that
the sample sizes required to distinguish between these models are often large, and frequently
greater than those of the datasets available, it is argued that researchers should select the
models that they test based on other lines of evidence that these models are plausible. Where
convincing evidence does not exist, researchers should explore alternative models and
determine their power to discriminate between these models.

Keywords: Behavior problems, behavioral genetics, comorbidity, epidemiology, meth-
odology, twins.
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In the last two decades, genetic research has become a
major part of scientific research. One of the effects of the
expansion of genetic research generally has been an
enormous increase in behavior genetic research with
respect to psychiatric disorders and behavioral problems.
Researchers with primary interests in child psychopath-
ology have seen that genetic strategies can be powerful
tools in dissecting issues of interest. Such questions
include whether genetic variability explains sex diffe-
rences in rates of disorders (Eaves et al., 1997), whether
extremes of traits are distinct from the continuum (Rende
et al., 1993; Slutske et al., 1997), whether there are
reciprocal and genetic links between parental treatment
and child behavior (O’Connor, Hetherington, Reiss, &
Plomin, 1995) and whether genetic factors influence the
relationship between ‘‘environmental ’’ risk factors, such
as life events, and psychopathology (Thapar & McGuffin,
1996). One of the issues that has been of great interest in
the last few years has been the nature of the links between
different measures, and this has been tackled using
multivariate genetic analyses. These analyses address the
extent to which latent genetic and environmental factors
are shared across measures. These measures include
symptoms of the same disorder, such as the different
types of conduct disorder symptoms (Simonoff, Pickles,
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Meyer, Silberg, & Maes, 1998), the inattention and
impulsivity dimensions of attention deficit hyperactivity
disorder (Huziak et al., 1998; Nadder, Silberg, Eaves,
Maes, & Meyer, 1998), and different components of
intelligence (Cardon & Fulker, 1994; Petrill & Thomp-
son, 1993). Similar strategies have also been used to
examine whether the reason traits or closely related
disorders are frequently comorbid is because of shared
genetic and}or environmental influences. This has been
applied to a variety of psychopathological traits such as
symptoms of anxiety and depression (Kendler, Heath,
Martin, & Eaves, 1987), conduct disorder and hyper-
activity (Silberg et al., 1996), and internalizing and
externalizing behavior (Gjone & Stevenson, 1997).

Comorbidity in child psychiatry is common and
therefore an important issue to address using a range of
strategies. There are a variety of reasons why comorbidity
may occur, and these have been discussed in detail
elsewhere (Caron & Rutter, 1991; Neale & Kendler,
1995). They are therefore only alluded to briefly here.
Although the term ‘‘disorder ’’ is used here for simplicity,
the concept need not be considered either pathological or
categorical.

(1) Chance. The frequency with which the two dis-
orders occur together is not significantly greater
than that expected by chance. Comorbidity oc-
curring at greater than chance levels is demon-
strated, in systematically assessed populations, by
the frequency or prevalence of the comorbid state
being greater than the product of the frequencies of
the single disorders. For continuous or semi-

667

https://doi.org/10.1017/S0021963099225826 Published online by Cambridge University Press

https://doi.org/10.1017/S0021963099225826


668 E. SIMONOFF

continuous traits, comorbidity may be measured
by a correlation coefficient significantly different
from zero.

(2) Sampling bias. Features of the ascertainment proc-
ess may increase the probability of obtaining
comorbid cases. This may be the case for clinically
ascertained samples (Berkson, 1946; Pauls, Leck-
man, & Cohen, 1993), where treatment-seeking
may be greater in comorbid cases. Sampling
bias can be ruled out in the case of complete
ascertainment and the likelihood of it decreased
when a variety of alternative ascertainment pro-
cedures are employed.

(3) Population stratification. Two comorbid disorders
may have completely different risk factors, but the
prevalence of the risk factors is greatest in the same
population groups, so that both disorders are
increased in these groups. Even when population
sampling is unbiased, this effect may lead to
comorbidity.

(4) Symptom overlap. The two disorders have shared
symptoms, producing overlap only because certain
symptoms occur in both. A question that then
arises is whether there is evidence to support the
differentiation of the two disorders. Amongst the
factors determining whether separate classification
is correct are the extent to which there are dif-
ferences in aetiology, response to intervention, and
outcome. For example, several symptoms overlap
between post-traumatic stress disorder and de-
pression. However, aetiological factors are con-
sidered different in the two disorders.

(5) Correlated error variance. All measures of disorder
will have some measurement error. When the
measurement error for the two disorders is corr-
elated, an association based only on the meas-
urement error can occur. This is more likely to
occurwhen the sameperson is rating both disorders
and when evaluations are relative rather than
absolute, as in the case of behavioral ratings
(Fergusson & Horwood, 1987a, b; Simonoff, Pick-
les, Hervas, et al., 1998; Simonoff et al., 1995).

(6) A distinct group. Comorbid conditions could rep-
resent a distinct entity from the two simpler
conditions. In determining the presence of a dis-
tinct entity, the principles underlying classification
would apply. The ICD-10 diagnosis of hyperkinetic
conduct disorder could be considered qualitatively
distinct on the basis of increased rates of family
history of antisocial behavior and more negative
outcomes (although it could also be argued that the
differentiation of comorbidity and severity is diffi-
cult) (Faraone, Biederman, Jetton, & Tsuang,
1997).

(7) Shared risk factors. Risk factors for the two
disorders overlap. Because the risk factors influ-
ence both disorders, the disorders will co-occur at
greater than chance levels. These risk factors may
be conceptualized as genetic or environmental risk
factors, and also as a third trait or disorder with its
own genetic and environmental risk factors.

(8) Phenotypic causality. One disorder confers a risk
for the other. This may occur in one direction only,
or reciprocally, with each disorder increasing the
risk of the other. An example of this would be
hypertension and atherosclerosis, where hyper-
tension is a direct cause of atherosclerosis.

Because the implications of these varying reasons for
comorbidity are quite different, the alternatives need to
be considered seriously and a number of different types of
data collection and analysis may be required to evaluate
the likely role of each as an explanatory mechanism. For
example, the analysis of the role of risk factors in
population subgroups could also alert the researcher to
heterogeneity across the population (Neale & Cardon,
1992; Neale & Kendler, 1995). Psychometric methods for
exploring the question of symptom overlap are high-
lighted by Neale and Kendler. The role of correlated
error variance can be examined when more than one data
source is available, e.g. Simonoff et al. (1995).

Within the model of shared risk factors, discrimination
of the nature of the shared risk factor is potentially
important for intervention. In some ways the model of a
third, measured entity mediating shared risk is always the
ultimate mechanism, as both genes and environment
exert their effects through potentially measurable in-
termediate effects. The extent to which these intermediate
effects can be identified varies but is often important in
designing treatments. For example, the risk of mental
retardation in phenylketonuria is conferred genetically,
but effective intervention occurs at the intermediate step
of reducing plasma phenylalanine levels. In exploring the
links between low IQ and child psychiatric problems
(Goodman, Simonoff, & Stevenson, 1995; Goodman &
Yude, 1996), it is important to know whether the
comorbidity is due to shared susceptibility genes and}or
suboptimal environments that directly influence both
problems, or whether it is mediated by neurological
impairment. In practice, it may not always be possible to
measure potential third factors, but the use of genetic
strategies to determine the extent to which risks are likely
to be genetic or environmental may help to focus our
search for mediators.

A potentially important but often unexplored reason
for comorbidity is phenotypic causality, where the pres-
ence of one disorder alters the risk of another. This is
most powerfully explored with longitudinal data, but
genetically informative designs with cross-sectional data
may be able to discriminate both between reciprocal
versus unidirectional causality and also between the two
alternative directions of causation (Heath et al., 1993;
Neale & Cardon, 1992). In addition, it may be possible to
distinguish between the models of shared risk factors and
phenotypic causality. The differentiation is important in
understanding mechanisms of risk and planning inter-
ventions. Under the shared genes}environment risk
factors model, intervention at the level of the shared risk
factor will have an impact on both disorders, while
intervention at the phenotypic level for one disorder has
no effect on the other. Under the unidirectional pheno-
typic causality model, however, intervention with respect
to the ‘‘upstream’’ disorder will alter the ‘‘downstream’’
disorder. In the reciprocal causality model, influencing
either disorder directly will affect the other.

Although behavior geneticists are aware of the range of
explanations for comorbidity, the literature is replete
with multivariate genetic analyses in which shared
genetic}environmental factors are the only models ex-
plored. In some cases, this may be far and away the most
plausible mechanism for comorbidity. In other cases,
there may be difficulties in testing a variety of alternative
modelswith the data available in anyone study. However,
the general failure to explore alternative mechanisms may
have left many readers unaware of the potential im-
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Figure 1. Bivariate genetic model. The figure shows the latent factors influencing one twin only. Psychiatric symptoms are affected
both by additive genetic (A1), common environmental (C1), and unique environmental (E1) influences specific to psychiatric
symptoms and also by additive genetic (A3), common environmental (C3), and unique environmental (E3) influences shared with
atopy. Atopy is determined by specific additive genetic (A2), common environmental (C2), and unique environmental (E2) influences
and ones (A3, C3, E3) shared with psychiatric symptoms. In the bivariate case, the magnitude of the A3, C3, and E3 parameters is
constrained to be the same for both phenotypes. The bivariate genetic model is based on the classical twin assumptions; genetic
influences for A1, A2, and A3 respectively are correlated 1±0 in MZ twins and ±5 in DZ twins. Common environmental influences (C1,
C2, and C3) are perfectly correlated in both twin types and unique environmental influences (E1, E2, and E3) are uncorrelated in both

twin types. The association between the two phenotypes is estimated by the parameters a3, c3, and e3.

portance of the range of explanations for comorbidity
discussed previously. Although some explanations can-
not be examined without additional data, the shared
genetic}environmental risk and phenotypic causality
models can both be tested with a single data source in
classical twin designs.

In a recent paper, Wamboldt, Schmitz, and Mrazek
(1998) apply a shared genetic}environmental risk factors
analysis to the relationship between atopy and emotional
and behavioral problems in young twins. In support of
the claim for comorbidity between the two phenotypes,
they cite evidence showing an association between a
range of atopic conditions such as hay fever (allergic
rhinitis), eczema (atopic dermatitis), and asthma and
psychiatric symptoms of depression in adults or of
behavioral inhibition in children. They also refer to
evidence supporting a familial component to this as-
sociation, in which family members of children with
hard-to-manage asthma have higher rates of a range of
psychiatric symptoms. There are some methodological
concerns with a number of the studies. However, in their
own study, Wamboldt et al. demonstrate relatively small
but significant correlations between atopy and different
aspects of emotional and behavioural problems (±15–±21).
Therefore, we shall take as given that there is a re-
lationship, although it may not be strong, between
psychiatric symptoms and atopy. In their discussion of
the possible reasons for the association, the authors
highlight some of the alternative causes of comorbidity,
focusing on shared genetic and environmental risk,
phenotypic causality, and correlated error variance.
However, the analyses presented explore the shared
genes}environment model only. Because the authors
published their data, it was possible to explore the
alternative model of phenotypic causality. Although
consideration of correlated error variance is important
because ratings of both behavior and atopy were made by
mothers on both twins, this could not be examined, as
there were no other raters.

The analyses conducted by Wamboldt et al. are
comparable to many currently being published. The use
of their data in this paper is not a criticism of their
work but rather as an illustration of the importance
more broadly of considering the likely causes for associ-
ations among disorders and to use an appropriate array
of models to explore the alternative explanations.

Method

Data

Analyses were all based on the data made available by
Wamboldt et al. (1998) on twins ranging in age from 3 years
9 months to 11 years with a mean age of 7 years 7 months.
Detail of the sample is given in their article. There are minor
deviations in the sample sizes in whom there were complete
ratings from those reported by the authors : there were 58
monozygotic (MZ) pairs, 45 same-sex dizygotic (DZ-SS) and 88
dizygotic opposite-sex (DZ-OS) pairs.

Data Analysis

Data analysis was conducted using Mx (Neale, 1996), a
structural equation modeling package designed for genetically
informative studies. The individual fit of models was assessed
using the χ# statistic, with appropriate degrees of freedom (df )
and associated p value, and the Akaike Information Criterion
(AIC, calculated as χ#-2df ). In both cases smaller (negative in
the case of the AIC) values are associated with good fit.
Comparison of nested models used the likelihood ratio χ#

(LR χ# ; difference in the two χ# values) with the associated
degrees of freedom being the difference in these in the compared
models. Because the bivariate genetic model divides the paths
associating the two phenotypes into three (genetic, environ-
mental, and unique environmental), in comparison with the
phenotypic causality model, the latter can be conceptualized as
nested.TheAIC is oftenused to compare non-nestedmodels and
the 95% confidence intervals for this statistic are presented.

The fit of two alternative genetic models of phenotypic
association was compared. The full bivariate genetic model is
shown in Fig. 1. Loehlin (1996) has helpfully discussed the
alternative models of shared genetic and environmental influ-
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Figure 2. Phenotypic causality model. The figure shows the latent factors influencing one twin only. Psychiatric symptoms are
affected by additive genetic (A1), common environmental (C1), and unique environmental (E1) influences and the phenotype of atopy
whereas atopy is determined by specific additive genetic (A2), common environmental (C2), and unique environmental (E2) influences
and the phenotype of psychiatric symptoms. The phenotypic causality model is based on the classical twin assumptions as indicated
for Fig. 1. The association between the two phenotypes is estimated by the phenotypic paths b (from psychiatric symptoms to atopy)

and b« (from atopy to psychiatric symptoms).

ences for interested readers. Although the solutions give the
same fit in the bivariate case and can be transformed to identify
the same parameters, different models may be preferred in
various situations because of the relative ease with which the
output answers the research question. Model 1 is the parameter-
ization used by Wamboldt et al. (1998). Each phenotype is
comprised of its own set of genetic (A), common environmental
(C), and unique environmental (E) factors and also of genetic,
common environmental, and unique environmental factors
shared with the other phenotype. In the bivariate case, to
identify a solution, the value of parameters or the shared
influences (A3, C3, and E3) must be constrained to be equal for
the two phenotypes.

The phenotypic causality model is shown in Fig. 2. Here, both
phenotypes have their individual genetic, common environ-
mental, and unique environmental factors. The association
between the two phenotypes comes from the effect of one
phenotype on the other. In Fig. 2, this is depicted as a reciprocal
pathway (b and b«), with each influencing the other, but the
relationship may also be in one direction only. The usual test is
to fit the reciprocal model and then the two alternative
unidirectional models. If there is a significant reduction in fit
with one unidirectional model but not the other, the one in
which fit is not significantly reduced is accepted over both the
other unidirectional and the reciprocal model. In practice, it is
easier to distinguish direction of causality when the relative
importance of genetic and environmental phenotypes on the
two phenotypes are considerably different and also when the
association between the phenotypes is strong. For interested
readers, a detailed description of the phenotypic causality
model, the underlying assumptions, and its limitations are given
by Heath et al. (1993).

Results

For each of the three areas of psychiatric symptoma-
tology analyzed by Wamboldt et al., results of the
bivariate genetic and phenotypic causality models are
given. The reciprocal and unidirectional phenotypic
causality models have all been tested. For the bivariate
genetic models, only those selected by Wamboldt et al.
(see Corrigendum, p. 674) as the best fitting models are
given. In all cases, this was the model in which there were
genetic, common environmental, and unique environ-
mental influences on psychiatric symptoms, genetic and
unique environmental influences on atopy, and genetic

and unique environmental influences shared between the
two. For the phenotypic causality models, psychiatric
symptoms were parameterized with genetic, common
environmental, and unique environmental influences.
Atopy was parameterized initially with genetic, common
environmental, and unique environmental influences and
subsequently common environmental influences were
eliminated, with a test of the effect on model fit. The latter
is conceptually most similar to the parameterization in
the bivariate genetic models selected by Wamboldt et al.
but the former provides an important test of the absence
of common environmental influences on atopy under a
different model. In all cases, the elimination of common
environmental influences on atopy did not significantly
worsen the fit and the results of the models including
common environment are not shown. Because the aim
was not to determine which model was most parsi-
monious (indeed with the relatively small sample sizes
available, it could be argued that this is not appropriate),
the impact of further removing genetic and environmental
parameters from the phenotypic causality models was not
explored. Only those models in which the direction of
causation was altered were examined.

Table 1 shows the results for atopy symptoms and
internalizing symptoms on the Child Behavior Checklist
(CBCL). All four models demonstrate a good fit by χ#

statistics. A good fit is usually easier to achieve with small
sample sizes and therefore the absolute level of fit here is
less important than the relative fit of different models and
the ability to discriminate between models. For the 1 df
comparison between nested models, an increase in the χ#

of 3±84 is required to show that the more parsimonious
model gives a worse fit. In relation to atopy and
internalizing symptoms, neither of the unidirectional
models was significantly worse than the reciprocal model
(LR χ# 1±29 and 0±19). Although one interpretation could
be that both parsimonious models gave an equally good
fit, another interpretation is that the power to discrimi-
nate the direction of causality is insufficient with the
current data. The 95% confidence intervals on the AIC
are given for all models, demonstrating a high level of
overlap. This substantiates the inability to distinguish
among different models of phenotypic causality. In
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Table 1
Atopy and Internalizing Behavior

Model χ# df p 95% CI on AIC

Bivariate genetic modela 19±62 23 ±604 ®46±000 to ®32±189
Reciprocal causal model 19±51 23 ±671 ®46±000 to ®32±357
Unidirectional causal model

Behavior! atopy 20±80 24 ±650 ®48±000 to ®33±580
Atopy!behavior 19±70 24 ±714 ®48±000 to ®35±331

a Best fitting model in Wamboldt et al. (1998).

Table 2
Atopy and Externalizing Behavior

Model χ# df p 95% CI on AIC

Bivariate genetic modela 18±13 23 ±751 ®46±000 to ®34±605
Reciprocal causal model 19±96 23 ±644 ®46±000 to ®31±651
Unidirectional causal model

Behavior! atopy 21±07 24 ±635 ®48±000 to ®33±161
Atopy!behavior 20±46 24 ±670 ®48±000 to ®34±121

a Best fitting model in Wamboldt et al. (1998).

Table 3
Atopy and Total Problems Score

Model χ# df p 95% CI on AIC

Bivariate genetic modela 21±97 23 ±520 ®46±000 to ®28±518
Reciprocal causal model 23±21 23 ±449 ®46±000 to ®26±625
Unidirectional causal model
Behavior! atopy 23±58 24 ±486 ®48±000 to ®29±289
Atopy!behavior 23±42 24 ±495 ®48±000 to ®29±537

a Best fitting model in Wamboldt et al. (1998).

comparing the bivariate genetic model with the two
unidirectional phenotypic causality models, the LR χ#

were once again not significant for the 1 df test (1±19 and
0±12, respectively). The AIC 95% confidence intervals
showed considerable overlap for both the unidirectional
and the reciprocal phenotypic causality models when
compared with the bivariate genetic model.

Tables 2 and 3 give results for the same models using
the externalizing behavior and total problems score from
the CBCL. Although there are minor differences in
the overall levels of fit, the pattern of findings is very
similar. In both cases, there is no significant worsening
of the fit of either unidirectional phenotypic causality
models over the reciprocal model (LR χ# 0±29 and
0±59 for externalizing symptoms, 0±37 and 0±21 for total
problems score). In comparing the 95% confidence in-
tervals of the AIC for the bivariate genetic and different
phenotypic causality models, they are very similar for
models examining the same symptoms, suggesting little
power to discriminate among models.

As a further demonstration of the difficulty in dis-
criminating between bivariate genetic and phenotypic
causality models, power calculations were carried out,
based on the current data, to determine the sample sizes
required to discriminate between two models. The com-
parison was made using this bivariate genetic model given
in Tables 1–3 and the phenotypic causality model in
which atopy!psychiatric symptoms, as this showed the
lowest χ# in all three cases. Power calculations were
performed using the χ# difference between the two models
as a 1 df test. Sample sizes to obtain 80% power at a

significance level of ±05 were determined in Mx. For
internalizing symptoms, a total sample size of 12,493
subjects was required to reject the phenotypic causality
model ; for externalizing and total problem score, the
required sample sizes were 643 and 1027, respectively.

As a more general illustration of the sample sizes
required to discriminate between phenotypic causality
and bivariate genetic models, the results of a series of
power calculations are given in Table 4. It is not possible
to reject the bivariate genetic model when the phenotypic
causality model has been specified, as the single causal
path can always be partitioned in a bivariate genetic
model into genetic and environmental paths. The pro-
portions of the genetic and environmental paths shared
between phenotypes will be determined by the genetic
and environmental parameter estimates for the two traits,
the strength of the causal association, and whether the
phenotypic causal pathways are unidirectional or re-
ciprocal. However, it is possible to exclude the phenotypic
causality model when the true model is the bivariate
genetic model. Table 4 gives the total sample sizes
required for 80% power to reject the phenotypic causality
model at a significance level of ±05. Results are shown for
various values of the bivariate genetic model and for the
three possible phenotypic causality models : trait 1! trait
2, trait 2! trait 1, and reciprocal causality. The sample
sizes given are for the total number of twin pairs. Wide
variation in required sample sizes can be seen and several
general principles emerge. First, the larger the parameters
in the shared pathways (i.e. the stronger the phenotypic
association), the greater the power (the smaller the sample
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Table 4
Power Calculations to Reject Phenotypic Causality Model under True Model Bivariate Genetic Model

True model parameters (bivariate genetic model)

Trait 1-specific Trait 2-specific
Shared Trait 1

and Trait 2 Sample sizes to reject various phenotypic causality models

a1# c1# e1# a2# c2# e2# a3# c3# e3# Trait 1!Trait 2 Trait 2!Trait 1 Reciprocal causation

±2 ±2 ±2 ±2 ±2 ±2 ±2 ±2 0 253 253 228
±2 ±2 ±2 ±2 ±2 ±2 0 ±2 ±2 836 836 2±06¬10"$

±2 ±2 ±2 ±2 ±2 ±2 0 ±2 2553 2553 3±89¬10"$

±2 ±2 ±2 ±2 ±2 ±2 ±2 ±1 ±1 6890 6890 1±31¬10"%

±2 ±2 ±2 ±2 ±2 ±2 ±1 ±2 ±1 2387 2387 1±81¬10"$

±2 ±2 ±2 ±2 ±2 ±2 ±1 ±1 ±2 1745 1745 1430
±3 ±3 ±3 ±3 ±3 ±1 0 0 3443 3443 1±46¬10"%

±3 ±3 ±3 ±3 ±3 ±3 0 ±1 0 1216 1216 1±77¬10"%

±3 ±3 ±3 ±3 ±3 ±3 0 0 ±1 927 927 741
±4 ±2 ±2 ±2 ±2 ±4 ±1 ±1 0 1002 408 4061
±4 ±2 ±2 ±2 ±2 ±4 ±1 ±1 1198 9322 13458
±4 ±2 ±2 ±2 ±2 ±4 0 ±1 ±1 2808 10365 9480
±4 ±1 ±1 ±4 ±1 ±1 ±2 ±1 ±1 2264 2264 1876
±4 ±1 ±1 ±4 ±1 ±1 ±1 ±2 ±1 1247 1247 1049
±4 ±1 ±1 ±4 ±1 ±1 ±1 ±1 ±2 309 201
±4 ±1 ±1 ±4 ±1 ±1 ±4 0 0 195 195 172
±4 ±1 ±1 ±4 ±1 ±1 0 ±4 0 70 70 1±56¬10"#

±4 ±1 ±1 ±4 ±1 ±1 0 0 ±4 92 92 2±65¬10"$

±4 ±1 ±1 ±1 ±1 ±4 ±2 ±1 ±1 7169 326
±4 ±1 ±1 ±1 ±1 ±4 ±1 ±2 ±1 2313 248 1866
±4 ±1 ±1 ±1 ±1 ±4 ±1 ±1 ±2 616 2304 498
±4 ±1 ±1 ±1 ±1 ±4 ±4 0 0 822 83 10007
±4 ±1 ±1 ±1 ±1 ±4 0 ±4 0 122 52 298
±4 ±1 ±1 ±1 ±4 0 0 ±4 124 764 23870
±3 ±2 ±1 ±2 ±3 ±1 ±2 ±1 ±1 2341 1124 6283
±3 ±2 ±1 ±2 ±3 ±1 ±1 ±2 ±1 2173 2780 2834
±3 ±2 ±1 ±2 ±3 ±1 ±1 ±1 ±2 290 238 4102
±3 ±2 ±1 ±2 ±3 ±2 ±1 ±1 3517 794 2561
±3 ±2 ±1 ±1 ±2 ±3 ±1 ±2 ±1 4485 580 3645
±3 ±2 ±1 ±1 ±2 ±3 ±1 ±2 ±2 435 36480 33781
±3 ±2 ±2 ±3 ±2 ±2 ±1 ±1 ±1 27808 27808 20540
±2 ±1 ±1 ±2 ±1 ±2 ±2 ±2 4580 4580 2353
±2 ±1 ±1 ±1 ±2 ±1 ±2 ±2 ±2 4553 1798 4519
±2 ±1 ±1 ±1 ±1 ±2 ±2 ±2 ±2 6697 1289 17927

a1#­c1#­e1#­a3#­c3#­e3#¯ 1±0; a2#­c2#­e2#­a3#­c3#­e3#¯ 1±0.

sizes required to reject the phenotypic causality model).
Second, the more the shared influences are unevenly
distributed across the three possible parameters (genetic,
common environmental, and unique environmental), the
greater the power. It can be seen that there are some
values for the bivariate genetic model where effectively
the reciprocal causality model cannot be rejected. In
those cases, the phenotypic causal paths have gone to
values that are the same but differ in sign, e.g., ®0±5 and
0±5. Although the possibility that such equal opposing
effects may exist must be considered, such parameter
estimates should alert the researcher to the possibility
that the genetic and environmental parameters allow
identification of a phenotypic model that cannot be
resolved. As the usual method of testing models of
phenotypic causality is first to test the reciprocal model,
and then to compare its fit with that of the two
unidirectional models, these are serious implications for
distinguishing between bivariate genetic and phenotypic
causality models. In instances where there is adequate
power to reject unidirectional but not reciprocal models,
it would not be possible to accept the true bivariate
genetic model. This table complements that published by
Heath et al. (1993), which examines the power to

discriminate between the alternative phenotypic causality
models.

Discussion

Understanding the reasons for comorbidity is a central
question in child psychopathology research. A number of
the reasons for comorbidity were outlined. Genetic
strategies have the potential to contribute in important
ways to testing alternative reasons for its existence. The
designs and samples required to explore the alternatives
properly do not often arise without careful planning,
however. For example, to explore whether population
stratification is a cause of comorbidity, population
sampling in a manner that allows stratification could
allow direct examination. Assessment of the role of
correlated measurement error requires that multiple
indicators of each trait be obtained. Therefore, those
interested in using genetic analyses to answer substantive
questions must plan ahead to consider what data should
be collected to test alternative hypotheses.

In the last 10 years, a number of papers have been
published using genetic strategies to explore associated
phenotypes. In the overwhelming number of cases, the
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bivariate genetic model has been tested, with the aim of
seeing whether shared risk could be described as due to
either genetic or environmental factors that are shared
across the phenotypes. In almost all instances, the
possibility of phenotypic causality has been ignored or
given short shrift. The current analyses show that the
data of Wamboldt et al. (1998) have insufficient power to
discriminate between the bivariate genetic and pheno-
typic causality models with the current sample sizes.
Rather, sample sizes would seem to need to be increased
some 3- to 65-fold before discrimination would be
possible.

An important limitation of the phenotypic causality
model relates to that of error variance, or unreliability of
measurement, discussed by both Heath et al. (1993) and
Neale and Cardon (1992). First, unreliability in the
measurement of the traits will reduce the estimated
casual paths, if it is not accounted for. Second, differ-
ential unreliability in the measurement of the two traits
can lead to false conclusions about whether a reciprocal
causality or a unidirectional model best fits the data and
can even lead to acceptance of the wrong direction of
causality (e.g., B!A when the correct model is A!B).
Attempts to reduce unreliability, such as accounting for
test–retest reliability and the use of multiple measures of
each phenotype, are therefore very important. It should
also be noted that unreliability of measurement will affect
parameter estimates for any genetic model, and not just
those of phenotype causality.

Although there may be many different reasons for
comorbidity, as illustrated above, discrimination between
the bivariate genetic and phenotypic causality models
may be particularly important because there are po-
tentially very different implications for intervention.
Under the bivariate genetic model, the reduction of
psychiatric symptoms occurring in the presence of atopy
will only alter the rates of atopy if the intervention
reduces risk factors shared between the two disorders.
Under the phenotypic causality model, however, re-
duction of one phenotype can have a direct impact on the
other. Under the atopy!behavior model, where the
causal path coefficient is positive, reduction in atopic
symptoms by whatever method would influence psy-
chiatric symptoms. However, reduction in psychiatric
symptoms would not affect atopy. Were the direction
of causation reversed, then decreasing psychiatric
symptoms would lower atopic symptoms. It is worth
noting that, under the reciprocal model, it is possible
to have a positive path coefficient in one direction;
e.g., atopy!psychiatric symptoms, and a smaller
negative path coefficient in the opposite direction, e.g.,
psychiatric symptoms! atopy, while retaining an over-
all positive phenotype correlation. In this case, a reduct-
ion in atopy would lead to a reduction in psychiatric
symptoms but a reduction in psychiatric symptoms
would cause (a smaller) increase in atopy.

We have seen that it is only possible to reject the
phenotypic causality model when the true model is the
bivariate genetic model, and not the reverse. Further-
more, under some sets of genetic and environmental
parameters estimates, the sample sizes required are very
large, often greater than those available in many of the
current twin studies. Many readers may not be aware that
the methods of structural equation modeling mean that
smaller sample sizes, for the same variance-covariance
matrices, will give better fit statistics, potentially luring
the reader into the belief that the models explored give the

best explanation. Rather, it may often be the case that
there was insufficient power to detect the lack of fit. The
implication is that analytic strategies must be selected to
consider the plausible alternative explanations for the
phenomenon under investigation.

In selecting between the bivariate genetic and pheno-
typic causality models, researchers should take into
account a number of features in ranking the plausibility
of the two models. Is there a consistent temporal
relationship between the two traits? Where there is, a
unidirectional phenotypic causality model may be the one
preferred, although temporal links should not be taken to
imply causal ones (Heath et al., 1993). It is entirely
possible that shared genetic and environmental risk
factors exert their effects on different traits at various
points in development, so that one trait appears before
another. Furthermore, this does not help in relation to
reciprocal causality models, where a temporal relation-
ship would not be expected. As information from other
sources, e.g., biological and psychological, about risk
factors becomes available, this can be brought into
consideration in evaluating competing mechanisms of
comorbidity. The role of third variables in mediating
covariance often needs evaluation. Ideally, the possible
causes of comorbidity should be identified at the stage of
study design, so that sampling and measurement strate-
gies can test more convincingly the causes of comorbidity.
Genetic strategies will remain an important component
of the investigation of comorbidity. However, additions
to designs, including longitudinal data collection, strati-
fied sampling, direct measures of third variables, and
multiple raters, can greatly increase the robustness of
interpretation. Because all designs have limitations, it will
be important to demonstrate that similar results can be
obtained from a variety of studies. In the meantime, the
genetic designs considered here will be important, but
need to be evaluated with knowledge of their limitations.
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Corrigendum

To Wamboldt, Schmitz, & Mrazek (1998). Genetic
association between atopy and behavioural symptoms in
middle childhood. Volume 39 (7), pp. 1007–1016.

Through Dr Emily Simonoff’s re-analysis of our data
(see article above, pp. 667–674) we found a slight model
specification change which has now been corrected and
which actually provides stronger results. Revised Tables
4–6 are available from the authors by request.

Correct covariance matrix for the DZ opposite-sex
pairs for atopy and total problem score

1 2 3 4
1 0.710
2 0.352 2.393
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4 0.025 1.717 0.137 2.980
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Corrected last paragraph of the Results section

Additive genetic effects accounted for most of the
correlation between atopy and the three CBCL scores :
77% of the correlation between atopy and internalising
symptoms, 100% of the correlation between atopy and
externalising symptoms, and 93% of the correlation
between atopy and total problem scores. The genetic
correlation (rG) between atopy and INT was .34 and the
nonshared environmental correlation (rE) was .16; for
atopy and EXT rG was .29 and there was no rE; for total
problems and atopy rG was estimated at .37 and rE at
.06. The parameter estimates obtained from the bivariate
factor model (full model, or A & E) are as follows: for
atopy, h2¯ .72 and e2¯ .28; for INT, h2¯ .35, c2¯
.28 and e2¯ .37; for EXT, h2¯ .55, c2¯ .23 and
e2¯ .22; and for Total Problems, h2¯ .34, c2¯ .45 and
e2¯ .21.
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