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Direct calculation of the eddy viscosity operator
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This study aims to quantify how turbulence in a channel flow mixes momentum in the
mean sense. We applied the macroscopic forcing method (Mani & Park, Phys. Rev.
Fluids, 2021, 054607) to direct numerical simulation (DNS) of a turbulent channel flow at
Reτ = 180 using two different forcing strategies that are designed to separately assess the
anisotropy and non-locality of momentum mixing. In the first strategy, the leading term of
the Kramers–Moyal expansion of the eddy viscosity is quantified, revealing all 81 tensorial
coefficients that essentially characterise the local-limit eddy viscosity. The results indicate
the following: (1) the eddy viscosity has significant anisotropy, (2) Reynolds stresses
are generated by both the mean strain rate and mean rotation rate tensors associated
with the momentum field and (3) the local-limit eddy viscosity generates asymmetric
Reynolds stress tensors. In the second strategy, the eddy viscosity is quantified as an
integration kernel revealing the non-local influence of the mean momentum gradient at
each wall-normal coordinate on all nine components of the Reynolds stresses over the
channel width. Our results indicate that while the shear component of the Reynolds
stress is reasonably reproduced by the local mean gradients, other components of the
Reynolds stress are highly non-local. These results provide an understanding of anisotropy
and non-locality requirements for closure modelling of momentum transport in attached
wall-bounded turbulent flows.

Key words: homogeneous turbulence, turbulent boundary layers, turbulence modelling

1. Introduction

Many of the turbulence models in use today are based on the Boussinesq approximation
(Boussinesq 1877) in which the Reynolds stresses are assumed to be a linear function of
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the local mean velocity gradients. This approximation furthermore assumes isotropy of the
tensor representing the coefficients of this linear relation, which is commonly referred to
as eddy viscosity. The two simplifications offered by the Boussinesq approximation reduce
the job of turbulence modelling to a determination of a scalar eddy viscosity field from
which local Reynolds stresses can be determined algebraically without the need to solve
any additional equations. For cases in which a single component of the Reynolds stress
plays the dominant role, such as in parallel flows, a scalar eddy viscosity can be tuned
to yield acceptable Reynolds stress fields (Pope 2000). However, most turbulence models
utilise this approximation even for multi-dimensional flows (Hanjalić & Launder 1972;
Chien 1982; Durbin 1993; Menter 1994; Spalart & Allmaras 1994; Wilcox 2008). While
some models allow anisotropic eddy viscosities (Spalart 2000; Mani et al. 2013; Rumsey
et al. 2020), they still retain the locality of the Reynolds stress dependence on the mean
velocity gradient.

Experimental measurements, as well as direct numerical simulation (DNS) data, suggest
that the isotropy and locality assumptions of the Boussinesq approximation are not strictly
valid. Several studies have shown significant misalignment between the principal axis of
the Reynolds stress and strain rate tensors indicating non-negligible anisotropy of the eddy
viscosity operator (Champagne, Harris & Corrsin 1970; Harris, Graham & Corrsin 1977;
Rogallo 1981; Moin & Kim 1982; Rogers & Moin 1987; Coleman, Kim & Le 1996).
Furthermore, the assumption of Reynolds stress locality is often not true because turbulent
mixing may exist from the history of the straining in a given region of a turbulent flow. For
instance, the experiment conducted by Warhaft (1980) showed that the Reynolds stress can
arise from the history effects of straining, even with a locally zero mean strain rate. In this
case, the Reynolds stress should incorporate temporal or spatial non-locality of the strain
rate tensor.

Given these pieces of evidence, various modelling techniques have attempted to relax
both locality and isotropy assumptions via development of second-order closure models
(Launder, Reece & Rodi 1975; Wilcox 1998; Speziale, Sarkar & Gatski 1991; Gerolymos
et al. 2012; Cécora et al. 2015) often using the Reynolds stress transport equation as a
framework to identify the needed closures. Each of these models, provides a specific way
in which Reynolds stresses could depend non-locally or anisotropically on the velocity
gradient field. However, standard data of turbulent flows, either from DNS or experiments,
do not provide sufficient information to allow proper discrimination between these models.
While these data reveal anisotropy of the Reynolds stresses, they do not uniquely determine
the anisotropy or non-locality of the closure operators that express their dependence on the
mean velocity gradient. Closing this gap would require quantification of the eddy viscosity
as an operator acting on the mean velocity gradient. With this goal in mind, this study
presents a direct quantification of the eddy viscosity operator in a canonical turbulent flow
via utilisation of the macroscopic forcing method (MFM), developed by Mani & Park
(2021).

Prior to the description of our work, we start by reviewing generalised forms of the eddy
diffusivity and eddy viscosity operators for scalar and momentum transport in turbulent
flows. First, one way of generalising the Boussinesq approximation is to allow for the
anisotropy of the eddy viscosity. Batchelor (1949) suggested using a second-order tensor
replacing the diffusion coefficient in the Fickian model to describe the mean transport of
a scalar quantity. Later, a similar concept was suggested by Rogers, Mansour & Reynolds
(1989), where the mean turbulent flux of a passive scalar was approximated with an
algebraic model expressed in a second-order tensor eddy diffusivity. This anisotropic eddy
diffusivity model can be written as the following: −u′

ic
′ = Dij∂C/∂xj where (·) represents

ensemble-average, u′
i represents the fluctuation of the velocity, C and c′ represent the
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Eddy viscosity operator in turbulent channel flow at Reτ = 180

mean and the fluctuation of the scalar quantity being transported, xi represents the spatial
Cartesian coordinate and D0

ij represents the second-order eddy diffusivity tensor that is
local.

Similarly, for the turbulent momentum flux, one method of generalising the Boussinesq
approximation is to use a tensorial representation of the eddy viscosity. Hinze (1959)
has suggested the use of the fourth-order tensor as the eddy viscosity. Later, Stanišić &
Groves (1965) conducted a systematic investigation of the tensorial character of the eddy
viscosity coefficient and revealed that the eddy viscosity tensor has to be at minimum
fourth order. In parallel to the anisotropic eddy diffusivity model, the anisotropic eddy
viscosity model for momentum transport can be written as −u′

iu
′
j = D0

ijkl∂Ul/∂xk, where

Ul represents mean velocity field. Here, the Reynolds stress u′
iu

′
j is locally closed in terms

of the fourth-order tensorial eddy viscosity D0
ijkl and the mean velocity gradient.

An even more general form of the eddy viscosity can be used to incorporate not only
anisotropy but also non-locality. Hamba (2005, 2013) suggested writing the closure of the
Reynolds stress in terms of the mean velocity gradient at remote times and locations. This
form of eddy viscosity involves a fourth-order tensorial kernel, which we refer to as the
eddy viscosity kernel. For statistically stationary flows, this relation can be expressed as

− u′
iu

′
j(x) =

∫
Dijkl(x, y)

∂Ul

∂xk

∣∣∣∣
y

d3y, (1.1)

where Dijkl(x, y) is the eddy viscosity kernel indicating how mean gradients at location
y result in Reynolds stresses at location x. When written in dimensional form, the eddy
viscosity kernel does not have the same dimension as the kinematic viscosity. Instead, the
kernel represents increment of viscosity per unit volume of the non-locality dimension.
In the case of (1.1) temporal non-locality is not considered due to the system’s statistical
stationarity, but full three-dimensional spatial non-locality is considered. As a result, the
dimensional kernel would have unit of diffusivity per unit volume or m−1 s−1.

Hamba (2005) reported the first quantification of the eddy viscosity kernel for a
turbulent channel flow using a Green’s function formulation approach based on an earlier
work by Kraichnan (1987). However, their study focuses on a subset of the tensorial
coefficients, i.e. Dij21. This choice is motivated since the mean velocity profile in the
channel flow is insensitive to other components of the eddy viscosity kernel, given the
mean velocity gradient, ∂Ul/∂xk shown in (1.1), is non-zero only for (k, l) = (2, 1).
Nevertheless, quantification of other components of eddy viscosity in this canonical setting
would provide significant insights about momentum mixing in the broader context of
wall-bounded shear flows. Aside from this shortcoming, Hamba (2005) chose to manually
enforce the symmetry Dijkl = Djikl by performing arithmetic averaging of the respective
components (i.e. ij and ji) of the output data from their simulations. This choice was made
given the expectation that the Reynolds stress tensor as the output of (1.1) must always be
symmetric, while the raw kernels did not follow this symmetry.

Recently, Mani & Park (2021) presented an alternative interpretation of (1.1) in the
context of the generalised momentum transport (GMT) equation. GMT can be derived
by applying the Reynolds transport theorem to momentum transport without constraining
the momentum field to be identical to the velocity field. In this context, the Reynolds
stress, expressed as u′

iv
′
j , is interpreted as the mean product of two conceptually different

fields, with ui representing the kinematic displacement of volume acting as a transporter
of momentum, and vj representing momentum per unit mass, the quantity of interest
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that results in friction and pressure. Navier–Stokes (NS) is rendered as a special solution
to GMT in which the two fields are constrained to be equal. Specifically, when GMT
is supplied with the same boundary conditions and forcing conditions as those in NS,
the solution to NS is the only attractor solution to GMT, as shown theoretically and
numerically by Mani & Park (2021). With this interpretation, (1.1) is in fact a closure
operator to the ensemble-averaged GMT and not the Reynolds-averaged Navier–Stokes
(RANS) equation. Therefore, Dijkl and Djikl are not required to be equal, since u′

iv
′
j /= u′

jv
′
i .

The present study addresses this issue, by examining the raw eddy viscosity operator
without any symmetry averaging. We confirm that while the eddy viscosity kernel of
channel flow is not symmetric, it still results in symmetric Reynolds stresses when it acts
on the mean velocity gradient of the same flow from which the eddy viscosity data are
obtained.

As mentioned previously, Mani & Park (2021) provide a statistical technique called the
MFM, which allows direct measurement of a flow’s eddy viscosity Dijkl with data gathered
from DNS of the NS equation and GMT. More generally speaking, MFM allows precise
computation of RANS closure operators via applying various macroscopic forcing to the
GMT equations which can be utilised to extract the eddy viscosity operator. It is worth
noting that macroscopic forcing is not limited to delta functions, which reveal Green’s
functions as outputs. For instance, Shirian & Mani (2022) employed harmonic forcing to
efficiently unveil the eddy diffusivity operator for homogeneous isotropic turbulence. They
successfully fitted this operator with an analytical expression. An alternative approach by
Mani & Park (2021), which is more relevant to this study, is the inverse macroscopic
forcing method (IMFM), in which forcing to constrain mean polynomial fields was shown
to reveal non-local moments of the underlying eddy diffusivity operator in an economical
way compared with the Green’s function approach. We examine a systematic procedure for
obtaining a local operator approximation of the full eddy viscosity operator by considering
a Kramers–Moyal expansion (Van Kampen 1992) of the eddy viscosity operator and
quantifying its leading term. This approach does not only enable estimation of the eddy
viscosity in an economical fashion, but it also separates out the easy-to-comprehend local
eddy viscosity by utilising this established expansion, which we believe was a missing
piece in the analysis of Hamba (2005).

The rest of this paper is organised as follows. In § 2, we define the flow system and the
model used which involves the fourth-order tensorial eddy viscosity kernel, and review the
computational methodology. In § 3, we begin with evaluating the isotropy assumption in
the Boussinesq’s approximation. For simplicity, we conduct the leading-order (local-limit)
approximation to the eddy viscosity kernel to solely focus on the anisotropy of the eddy
viscosity. With the measured local eddy viscosity tensor, we discuss the following: the
standard eddy viscosity, the quantified anisotropy, the dependency of Reynolds stress on
the rate of rotation, the leading-order Reynolds stress and the positive definiteness of the
leading-order eddy viscosity operator. In § 4, we extend our study to non-local effects,
by computing the full eddy viscosity kernel representing the non-local effects in the
wall-normal direction. In § 5, we summarise our results and discuss potential extensions
to this study.

2. Problem set-up and governing equations

Figure 1 shows the schematics of the channel flow and its coordinate system where the
flow is bounded by top and bottom walls spaced 2δ apart. We denote the Cartesian
coordinates xi, where x1 is the streamwise direction, x2 is the wall-normal direction, and x3
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2δ

x2

x1x3

Figure 1. Schematics of the channel flow.

is the spanwise direction. The dimensionless equations expressing mass and momentum
conservation are as follows:

∂ui

∂t
+ ∂ujui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
+ ri, (2.1)

∂uj

∂xj
= 0, (2.2)

where ui is the flow velocity, p is the pressure normalised by the density, t is time, and
ri = (1, 0, 0) represents normalised mean pressure gradient. The dimensionless spatial
coordinates are normalised by δ and Re represents the Reynolds number defined based on
δ and the friction velocity uτ = √

τw/ρ where τw is the mean wall shear stress balancing
the force due to the mean pressure gradient and ρ is the fluid density.

The RANS equations can be obtained by taking the ensemble-average of (2.1) and (2.2),
yielding

∂Ui

∂t
+ ∂UjUi

∂xj
= − ∂ p̄

∂xi
+ 1

Re
∂2Ui

∂xj∂xj
−

∂u′
ju

′
i

∂xj
+ r̄i, (2.3)

∂Uj

∂xj
= 0, (2.4)

where Ui is the mean velocity, u′
i is the velocity fluctuation around the mean velocity and

(·) implies ensemble-averaged quantities. To close this system, the divergence of Reynolds
stresses, ∂u′

ju
′
i/∂xj, needs to be modelled in terms of the primary variable Ui. This can be

generally expressed as an operator acting on the ensemble-averaged field, −∂u′
ju

′
i/∂xj ≡

L̄(Ui). One form of such operators is expressed in (1.1).
A DNS solution to the channel flow does not provide enough information to fully

quantify the non-local eddy viscosity kernel, Dijkl(x, y). A full characterisation of D
requires quantification of Reynolds stresses in response to all possible independent flow
gradients scenarios. Following Mani & Park (2021), we next describe the procedure
of obtaining D. In this paper, however, we limit the scope of our analysis to the
one-dimensional RANS context, in which the wall-normal coordinate is the only
independent variable since the flow is statistically homogeneous in all other space–time
coordinates. In other words, we assume the form Dijkl = Dijkl(x2, y2), and the other
dimensions are integrated out in (1.1). However, the employed macroscopic forcing
methodology is in principle generalisable to multi-dimensional cases, and with higher
computational expense can capture the full behaviour of Dijkl(x, y).
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2.1. Macroscopic forcing method
In this section, we discuss details on how to use MFM to measure the eddy viscosity,
starting from the GMT equations.

2.1.1. GMT equation
In our earlier work, which was mainly on the transport of passive scalars, we briefly
introduced how one can apply MFM to analyse momentum transport (Mani & Park
2021). To quantitatively determine the eddy viscosity operator, one first needs the detailed
velocity field of the specific flow of interest. One method of obtaining such velocity fields
is to perform a DNS simulation, which we call the donor simulation, as it donates a velocity
field whose eddy viscosity is to be determined.

To analyse momentum transport by a given flow, we will now consider GMT, which can
be derived from the Reynolds transport theorem for a fluid system with a Fickian model
for molecular viscosity:

∂vi

∂t
+ ∂ujvi

∂xj
= − ∂q

∂xi
+ 1

Re
∂2vi

∂xj∂xj
+ si, (2.5)

∂vj

∂xj
= 0, (2.6)

where vi represents momentum per unit mass, and is considered to be different from ui, the
donor velocity field. Here si is the macroscopic forcing. In addition, q is the generalised
pressure to ensure the incompressibility of the momentum field vi.

Equations (2.5) and (2.6) then describe a passive solenoidal vector field that is
transported by the background velocity field uj governed by (2.1). An advantage of working
with GMT, as opposed to NS, is its linearity with respect to the transported quantity, vi.
Under such conditions, expressing the generalised eddy viscosity in the format given by
(1.1) becomes meaningful. As discussed by Mani & Park (2021), GMT spans a larger
solution space than NS; NS is a special subset of the GMT space where vi = ui.

An important question that naturally follows is whether the computed RANS operator
of GMT is the same as that of the NS equation. In our earlier work, we already showed
analytically and numerically that the macroscopic operators of the GMT and NS equations
are identical (Mani & Park 2021). In brief, we showed that the solutions of GMT and NS
equations become microscopically the same after sufficient time regardless of the initial
conditions when we apply the same boundary conditions to both equations. The time scale
at which the solutions become identical was found to be τmix = 16.6δ/uτ for a turbulent
channel flow. Therefore, it is justified that the macroscopic operator of the GMT equation
obtained by MFM is the same as the RANS operator of the NS equations. In sum, GMT
works as an auxiliary set of equations that probes RANS operator of NS and therefore
we can obtain eddy viscosity of the RANS equations by investigating that of the GMT
equations.

It is important to note that Hamba (2005) wrote an equation very similar to GMT
equations in spite of taking a conceptually different derivation path. His passive vector
equation is indeed GMT subtracted by the mean of GMT. The main difference lies in the
explicit inclusion of forcing in the equations, allowing for a general macroscopic field. In
contrast, Hamba (2005) implicitly applies forcing by specifically considering Dirac delta
function mean fields.
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Eddy viscosity operator in turbulent channel flow at Reτ = 180

2.1.2. Analysis strategy
We aim to study two aspects of the eddy viscosity kernel in a turbulent channel flow: the
anisotropy and the non-locality. To fully investigate such non-Boussinesq effects, it is ideal
to compute every value of the full eddy viscosity kernel Dijkl in (1.1). Since the channel
flow is homogeneous in x1 and x3 directions and statistically stationary, we integrate the
mixing effect in these directions. The simplified Reynolds stress for GMT variables can be
expressed as

− u′
iv

′
j(x2) =

∫
Dijkl(x2, y2)

∂Vl

∂xk

∣∣∣∣
y2

dy2. (2.7)

Equation (2.7) incorporates anisotropy via tensorial representation and non-locality via
the integration form. MFM has the capability to compute all the elements in the eddy
viscosity kernel Dijkl(x2, y2) by tracking the influence of each entry of dVl/dxk on the
entire Reynolds stress field. It has been demonstrated by Liu, Williams & Mani (2023)
that such a brute force approach is theoretically equivalent to Hamba’s Green’s function
approach (Hamba 2005).

However, one caveat is that the cost of each simulation is significant and consequently
it is not desirable to conduct a full non-local MFM analysis. To conduct computation for
Dijkl for given k and l, one requires as many DNS simulations as the number of degree of
freedom of the RANS space. Therefore, to reduce the cost of the analysis, we conduct two
separate analyses for the anisotropy and non-locality, both using MFM.

First, we focus on studying the anisotropic nature of the eddy viscosity. However, to
focus exclusively on anisotropy, we systematically construct a local approximation of
the eddy viscosity operator using the Kramers–Moyal expansion (Van Kampen 1992), as
investigated by Mani & Park (2021). For instance, in a parallel flow where dV1/dx2 is the
only active component of the velocity gradient, the Reynolds stress u′

2v
′
1 in (2.7) can be

written as the integral of only D2121 component of the eddy viscosity. By considering a
Taylor series expansion of dV1/dx2 around y2 = x2, one can re-express the eddy viscosity
operator in terms of the following expansion:

−u′
2v

′
1(x2) =

∫
D2121(x2, y2)

∂V1

∂x2

∣∣∣∣
y2

dy2 (2.8)

=
∫

D2121(x2, y2)

(
∂V1

∂x2

∣∣∣∣
x2

+ ( y2 − x2)
∂2V1

∂x2

∣∣∣∣
x2

+ · · ·
)

dy2 (2.9)

=
∞∑

n=0

Dn
2121(x2)

∂n+1V1

∂xn+1
2

, (2.10)

where Dn
2121 = ∫

D2121(x2, y2)( y2 − x2)
n/n! dy2 represents the nth spatial moment of the

eddy viscosity kernel.
As discussed by Mani & Park (2021), the leading term in this expansion encapsulates

the local limit eddy viscosity while the subsequent terms characterise finite moments
associated with the non-local effects. The general form of this leading-order approximation
for all components of the Reynolds stress and mean velocity gradient is as follows:

− u′
iv

′
j(x2) = D0

ijkl(x2)
∂Vl

∂xk
, (2.11)
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where D0
ijkl(x2) is called the leading-order eddy viscosity tensor,

D0
ijkl(x2) =

∫
Dijkl dy2. (2.12)

Equation (2.11) would be exact only when Dijkl(x2, y2) is local, i.e. Dijkl(x2, y2) =
D0

ijkl(x2)δ( y2 − x2) where δ(x) is a Dirac delta function.
The local eddy viscosity in (2.11) is no longer a scalar value varying in space; it is

a fourth-order tensor with 81 coefficients. The tensor representation was suggested by
previous researchers including Batchelor (1949), but the full quantification has not been
conducted to the best of the authors’ knowledge. As presented in Appendix B, using only
9 MFM simulations, we computed all 81 coefficients of the eddy viscosity tensor. The
resulting tensor elements are provided in Appendix C.

The next investigation focuses on the non-locality of the eddy viscosity. As conducting
MFM to measure the full kernel can be costly for complex turbulent flow systems, we focus
on calculating a subset of tensorial kernel components, specifically the kernel components
that are multiplied to ∂V1/∂x2 in (2.7). The computed tensorial kernel components are
Dij21(x2, y2) and they are associated with the Reynolds stresses which correspond to the
velocity gradient ∂U1/∂x2, the only velocity gradient appearing in the RANS closure for
a channel flow. The detailed steps on how to measure eddy viscosity kernel using MFM is
discussed in Appendix E.

2.1.3. Application of MFM
The next step involves how we actually compute the leading-order eddy viscosity tensor
and the eddy viscosity kernel. Figure 2 illustrates how we conducted our MFM analysis.
To apply MFM, we start with two sets of solvers: one for the NS equations and the other
for GMT. At each time step, we solve the NS equation to obtain the velocity field ui
and feed it as the advecting velocity to the GMT solver. For the GMT equations, we
force the Reynolds-averaged GMT variable Vi to be a specific value in order to acquire
certain information about the eddy viscosity. A forcing field si that results in V1 = x2 and
V2 = V3 = 0 generates GMT data from which we can extract the leading-order eddy
viscosity D0

ij21. More specifically, D0
2121 can be obtained by post-processing u′

2v
′
1 from this

GMT simulation, and re-evaluating (2.8)–(2.10) to observe

−u′
2v

′
1(x2) =

∫
D2121(x2, y2)

∂V1

∂x2

∣∣∣∣
y2

dy2
V1=x2=

∫
D2121(x2, y2) dy2 = D0

2121(x2). (2.13)

As discussed, the macroscopic operator of the Reynolds-averaged GMT and the RANS
operator of NS are identical. Therefore, D0

2121 corresponds to the standard eddy viscosity
νT used in the Boussinesq approximation in RANS models. Likewise, we can compute
other components of the leading-order eddy viscosity tensor using different selections of
the macroscopic forcing field, si, such that other components of the mean velocity gradient
are activated.

In addition, the same set-up shown in figure 2, can be used to compute the full kernel of
eddy viscosity. The main difference is to apply macroscopic forcings that would generate
mean gradient fields in the form of Dirac delta functions. For example, a macroscopic
field, si, that sustains ∂V1/∂x2 = δ(x2 − y∗

2), would result in GMT data from which we
can extract Dij21(x2, y∗

2), by merely post-processing the u′
iv

′
j data. This specific choice

of forcing would result in data similar to those obtained by Hamba (2005), with the
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′
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Figure 2. Schematics of the MFM analysis.

difference that Hamba used only the symmetric portion of the momentum flux tensor
in order to ensure symmetry of the Reynolds stresses. As we shall see, GMT does
not produce symmetric eddy viscosity kernels and, thus, Dijkl /= Djikl. This is intuitively
understandable noting that Dijkl quantifies the rate of mixing of the mean j-momentum
by the i-component of the velocity fluctuations while Djikl quantifies the rate of mixing
of the mean i-momentum by the j-component of the velocity fluctuations. Since in this
framework, momentum and velocity fields can be quantitatively different, the symmetry
does not hold. Likewise, this asymmetry propagates to the Kramers–Moyal expansion of
the eddy viscosity operator, and as we shall see, even the leading-order eddy viscosities
are not symmetric.

Lastly, we note that the macroscopic forcing procedure used in this work is an inverse
forcing method as discussed by Mani & Park (2021), since we explicitly set the desired
mean momentum field Vi for each GMT simulation, as opposed to setting the macroscopic
forcing field.

2.2. Simulation set-up
We adapt MFM solver to a three-dimensional incompressible NS solver originally
developed by Bose, Moin & You (2010) and modified by Seo, García-Mayoral &
Mani (2015). The present DNS uses the fractional step method with semi-implicit time
advancement (Kim & Moin 1985). For the temporal difference scheme, we use second
order Crank–Nicholson for the wall-normal diffusion and Adams–Bashforth for the rest of
the terms. The solver uses a second-order finite spatial discretisation on a staggered mesh
(Morinishi et al. 1998). In addition, we use a uniform grid in the streamwise and spanwise
directions and grid-stretching in the wall-normal direction. The domain is periodic both in
the spanwise and the streamwise directions, and the no-slip boundary condition is applied
at the two walls.

The numerical set-up for the GMT solver is almost identical to that of DNS, except
for two differences. The first is that GMT obtains the background velocity from the NS
solver at every time step. The other difference is that GMT utilises macroscopic forcing, in
order to maintain a desired macroscopic momentum field Vi(x2). To be most rigorous, the
selected macroscopic forcing, si(x2), must be independent of time. Likewise, the resulting
mean velocity field needs to match the pre-set Vi(x2) only after time averaging. However,
constraining the simulations in this fashion, would require expensive iterations over which
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Analysis Eddy viscosity Number of DNS L1 × L2 × L3 N1 × N2 × N3 Tuτ /L2

Anisotropy D0
ijkl(x2) 9 2π × 2 × π 144 × 144 × 144 750

Non-locality Dij21(x2, y2) 145 2π × 2 × π 144 × 144 × 144 500

Table 1. Simulation set-up for anisotropy analysis and non-locality analysis of the eddy viscosity. Here
L1 × L2 × L3 is the domain size, N1 × N2 × N3 is the number of grids and Tuτ /L2 is the total simulation
time in wall units.

the entire simulation must be repeated after each adjustment of si(x2). To avoid this cost,
in our implementation, we computed ensemble averages by averaging fields only in the x1
and x3 directions, and we constrained si(x2) at each time step such that Vi(x2) is matched
to the pre-set Vi(x2). In other words, one can set si(x2) such that the homogeneous plane
average of the temporal term ∂vi/∂t in (2.5) becomes zero at each timestep.

However, in this implementation the resulting si(x2) is not perfectly time independent.
Due to finite number of samples per time step, fluctuations in time are observed. One
remedy to reduce these fluctuations is to increase the number of samples by selecting a
longer domain in the x1 and x3 directions. We have performed such domain convergence
studies in Appendix A indicating the adequacy of the selected domain size in our MFM
analysis.

There are two sets of forcings for MFM presented in this paper, each corresponding
to the analysis of anisotropy and the non-locality of eddy viscosity (table 1). Within
each set, multiple simulations are performed where the macroscopic forcings are varied
to reveal different components of the eddy viscosity. The first set uses GMT simulations
under different macroscopic forcings to reveal the leading-order eddy viscosity tensor D0

ijkl.
We utilise these measurements to understand the anisotropy of the eddy viscosity. The
second set probes a subset of the entire eddy viscosity kernel, Dij21, which quantifies the
non-locality of the eddy viscosity in response to the most significant velocity gradient
∂U1/∂x2. In addition to the analysis method and the resulting eddy viscosity, table 1
presents the number of total DNSs in each set, the domain size, the spatial resolution
and the sampling times. For the first set, only nine DNSs are needed corresponding to
k, l ∈ {1, 2, 3}, and for the second set, MFM analyses require a set of simulations with
the number of the macroscopic degrees of freedom. The results of each set are discussed
in §§ 3 and 4, respectively, and the detailed simulation set-up of each set is discussed in
Appendices B and C, respectively. In addition, the measured eddy viscosities, D0

ijkl and
Dij21, are provided as the supplementary data.

3. Anisotropy analysis

In this section, we compute the leading-order eddy viscosity tensor D0
ijkl and focus on the

analysis on anisotropy of the eddy viscosity and specifically contrast it to the standard eddy
viscosity implied by the Boussinesq model. In addition, we assess dependency of Reynolds
stresses on the rate of rotation, examine reconstruction of Reynolds stresses using the
leading-order eddy viscosity, and lastly discuss positive definiteness of the leading-order
eddy viscosity tensor.
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2121

0.06

0.08

0

x2

Figure 3. Eddy viscosity element D0
2121.

3.1. Standard eddy viscosity
In parallel flows, among all the components of the eddy viscosity tensor, by far the
most important component is D0

2121 which represents the mixing effect by ∂U1/∂x2.
This component also corresponds to the standard eddy viscosity νT . Figure 3 shows the
MFM-measured D0

2121 across the wall-normal dimension x2. An important observation
here is that the MFM allows us to measure the eddy viscosity at the channel centre
plane x2 = 0, where the velocity gradient ∂U1/∂x2 is zero due to the symmetry of
the mean velocity profile. This value is hard to obtain in typical approaches: tuning
νT to u′

2u′
1/(∂U1/∂x2). The eddy viscosity can be numerically determined by analysing

the sampling points converging towards the centreline. However, in the vicinity of
the centreline, both the numerator and denominator of the expression are significantly
influenced by statistical noise. To achieve a reliable estimate, an extensive period of time
integration is necessary to reduce the noise to acceptably low levels.

Figure 4 shows instantaneous field data for the normalised streamwise velocities u′
1

and v′
1 of the MFM simulation for evaluation of D0

2121 at the same instantaneous time.
Figures (a,b) show the velocity profile over (x1, x3) cross-section taken at x2 = −0.8492
(x+

2 = 27) and figures (c,d) show the velocity profile over (x3, x2) cross-section taken at
x1 = 3.08. The key feature shown is that even though the forcings for the NS vector field
ui and the GMT vector field vi are completely different macroscopically, MFM leads to
similar features in the u′

1 and v′
1. The same qualitative observation holds across all three

components of the u′
i and v′

i fields. Furthermore, while for x2 < 0 we observe positive
correlation between u′

i and v′
i fields, the sign of correlation flips for x2 > 0. For this

specific MFM analysis, the sole difference between u′
i and v′

i fields is in the enforced mean
velocity profile. As shown by Mani & Park (2021) without forcing, GMT would result
in v-fields identical to u-fields after a few flow through times regardless of the choice of
initial conditions. The case shown in figure 4 corresponds to a forced GMT in which the
mean velocity gradient is kept constant ∂V1/∂x2 = 1 in order to examine mixing by the
leading-order (local limit) eddy viscosity. The observation in figure 4 suggests that mixing
of the streamwise momentum in turbulent channel flow is substantially influenced by the
leading-order effects.

To assess this conclusion quantitatively we next obtain the RANS solution using the
measured D0

2121 to examine how accurate the leading-order eddy viscosity performs for the
prediction of the mean velocity profile. Since the prediction of the mean channel flow only
requires one component in the Reynolds stress, we conduct the RANS simulation using
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Figure 4. Instantaneous velocity contours u′
1 and v′

1 normalised with each maximum value, u′
1/(2 max(u′

1))

and v′
1/(2 max(v′

1)): (a,b) correspond to the cross-section taken at x2 = −0.8492 and (c,d) correspond to the
cross-section taken at x1 = 3.08. The shown vector field vi corresponds to a leading-order MFM in which the
GMT equation is macroscopically forced to achieve V1 = x2 and V2 = V3 = 0. (a) Normalised u′

1 in x1–x3
plane. (b) Normalised v′

1 in x1–x3 plane. (c) Normalised u′
1 in x3–x2 plane. (d) Normalised v′

1 in x3–x2 plane.

D0
2121 and compare the predicted solution with that of the DNS. As shown in figure 5, the

MFM-based leading-order RANS solution predicts the DNS solution very accurately with
an accuracy of 99 %. The accuracy is computed with max absolute error max(UDNS

1 −
UMFM

1 )/ max(UDNS
1 ), where UDNS

1 is the streamwise velocity from DNS and UMFM
1 is the

streamwise velocity predicted from RANS using MFM-measured eddy viscosity D0
2121.

The accuracy of this local RANS prediction indicates that the mean momentum mixing in
the turbulent channel flow might be local. To assess this conclusion with more certainty
we will later directly examine the non-locality of the eddy viscosity kernel.

Hamba (2005) also reported a small subset of the components of the leading-order (local
limit) eddy viscosity, through a more expensive method of first computing the full eddy
viscosity kernel for those components and then performing integration as in (2.12). Our
result in figure 5 regarding accuracy of the leading-order eddy viscosity is in contrast
to his result (see figure 4 in Hamba 2005). We attribute this difference to the fact that
Hamba used the average of D0

2121 and D0
1221 as the representative local eddy viscosity. This

averaging was motivated to enforce symmetric Reynolds stresses. However, conceptually
these two eddy viscosities represent different mixing rates: the former represents mixing
of the streamwise momentum in the wall-normal direction, whereas the latter represents
mixing of the wall-normal momentum in the streamwise direction. As we shall see, while a
full eddy viscosity kernel reproduces symmetric Reynolds stresses, the leading-order eddy
viscosity causes errors not only in magnitude but also in symmetry of Reynolds stresses.

We next use MFM to quantify other components of D0
ijkl. Although these components

do not affect prediction of the mean velocity profile in purely parallel flows, they
provide an understanding of momentum mixing by this parallel flow, if hypothetical
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Figure 5. Plot of U1 reconstructed from D0
2121 and D0

2121 in wall units: (a) RANS prediction using D0
2121 where

the dotted green line is the mean velocity prediction using D0
2121 and the blue solid line is its comparison to the

DNS data; and (b) D0
2121 in wall-units where D0+

2121 = D0
2121Re and x+

2 = x2Re/δ.

mean momentum gradients were imposed in other directions. One motivation to study
these additional components of D0

ijkl is to provide reference data of closure operators, as
opposed to closure terms, for models that offer anisotropic eddy viscosity. Our analysis is
additionally motivated by observation of spatially developing attached turbulent boundary
layers, where weak momentum gradient could exist in both streamwise and spanwise
directions. These mean gradients induce additional Reynolds stresses, due to components
of Dijkl other than D2121. In addition, it has been observed that turbulent boundary layers
have similar hairpin structures in their velocity field as those seen in turbulent channel
flows (Eitel-Amor et al. 2015), and thus are expected to mix momentum in manners
qualitatively similar to that of a turbulent channel flow. While quantitative differences
are expected between the two flows, we expect anisotropy in eddy viscosity observed in
turbulent channel flow be at least qualitatively representative of anisotropy encountered in
wall-attached turbulent boundary layers in the absence of substantial wall curvature. Some
of these qualitative similarities, such as components in Dijkl with the highest magnitude,
can already be confirmed from the study of Park, Liu & Mani (2022) with a specific
focus to their analysis of pre-separation zone of turbulent boundary layers. However,
given the stringent statistical convergence requirements for MFM simulations, e.g. at
least an order of magnitude longer simulations needed than commonly reported DNS,
compared to turbulent boundary layers, turbulent channel flows have the advantage of
cheaper runtime per time step and availability of additional homogeneous direction for
statistical convergence.

3.2. Quantifying anisotropy
We computed all other components of the anisotropic eddy viscosity tensor D0

ijkl, a total
of 81 coefficients as a function of the wall-normal coordinate. All the data are shown in
Appendix C. Out of 81 components, 41 are non-zeros and 40 are inevitably zero due to the
symmetry in spanwise direction.

Out of all the elements, the largest eddy viscosity component is D0
1111, with a maximum

value of 1.318, and the smallest non-zero eddy viscosity component is D0
2331 with the

maximum value of 0.00248. After comparing these values to a maximum value of the
nominal eddy viscosity D0

2121, which is 0.0767, we determined that the largest coefficient
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in the eddy viscosity tensor is one order of magnitude larger than the nominal eddy
viscosity and three orders of magnitude larger than the smallest coefficient, indicating
a significant anisotropy. When we examine these ratios locally at each x2, the differences
are more drastic and may go up to a few orders of magnitude. After D0

1111, the largest
eddy viscosity components are D0

1212 and D0
1313 with maximum values of 0.573 and 0.407,

respectively. All three eddy viscosities have their first and third index represented by the
streamwise direction. These indices represent the component of the velocity field that
mixes momentum and the direction of the mean-momentum gradient, respectively. This
observation coincides with the fact that u′

1 is the largest fluctuating velocity component in
channel flow. Combining the two observations, we conclude that u′

1 is the strongest mixer
of momentum and is most effective in mixing in the x1 direction, as intuitively expected.
Specifically, the rate of momentum mixing in the streamwise direction is substantially
faster than the standard eddy viscosity which characterises the rate of (streamwise)
momentum mixing in the wall-normal direction.

In addition, all three dominant eddy viscosity components have repeated second and
fourth indices. These indices respectively represent the momentum component that is
being mixed and the momentum component whose mean gradient is responsible for
mixing. Based on this observation, we conclude that within D0

1j1l, mean gradient of

component l most effectively contributes to the generation of u′
1v

′
j when j = l. In other

words, gradient of each momentum component most effectively generates fluxes of the
same momentum component at least in the leading-order limit. This latter observation is
extendable to D0

ijil components, and is not a surprising outcome given that the production

term in the transport equation for u′
iv

′
j involves the mean gradient of Vj.

As we discussed previously, since flow structures and thus momentum mixing is similar
between the channel flow and the attached boundary layers, we can use the measured eddy
viscosity anisotropy in the former setting to identify important eddy viscosity components
for the latter setting. To this end, we present in Appendix D a scaling analysis of various
gradients contributing to the Reynolds stress tensor. Combining this analysis with the
measured order of magnitude of each eddy viscosity component that acts as a pre-factor
multiplying components of the velocity gradient tensor, we identify the key eddy viscosity
components that contribute dominantly to the Reynolds stress tensor budget. Based on our
analysis we identify D1111, D1121, D2121 and D2221 as the key four, out of 16, dominant eddy
viscosity components for two-dimensional spatially developing turbulent boundary layers.

Motivated by this example, we next examine the identified anisotropy against the
Boussinesq approximation. When we cast the Boussinesq approximation to our tensorial
representation, the components in the eddy viscosity tensor are in ratio of 0, 1 or 2
to the standard eddy viscosity νT . For instance, the four elements are prescribed with
following ratios; D1111 = 2νT , D1121 = 0, D2121 = νT and D2221 = 0. Figure 6 shows
a comparison of these eddy viscosity components to the Boussinesq approximation.
In figure 6(a), we show the measured four elements using our MFM calculation. In
figure 6(b) we set the standard eddy viscosity to the MFM-measured leading-order
value, νT = D0

2121 and prescribe the other components with the ratio to νT . As shown in
the figure, a huge anisotropy is observed not only among all elements but specifically
among these four critical elements, and the ratio of these plots can locally go up to
hundreds. We conclude that whereas D2121 is the most important eddy viscosity component
for parallel and semi-parallel flows, the presence of small non-parallel effects could
lead to significant influence of anisotropy in momentum transport in wall bounded
flows.
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Figure 6. Comparison of the measured eddy viscosity elements D0
1111 (blue line), D0

1121 (orange line), D0
2121

(green line) and D0
2221 (red line) to the Boussinesq approximation.

Lastly, we point out that there have been attempts to include the anisotropy in RANS
such as Spalart–Allmaras model with quadratic constitutive relation (SA-QCR) (Spalart
2000; Mani et al. 2013; Rumsey et al. 2020). However, examining our results suggest that
these models do not captured the level of the anisotropy that MFM measured. For instance,
SA-QCR still prescribes D1111 = 2νT and the anisotropy is not yet introduced in needed
directions.

3.3. Dependence on the rate of rotation
The dependence of Reynolds stress on rate of rotation is studied previously in the
literature. Key main examples are (1) investigation of environmental flows that include the
Coriolis term (Speziale, Raj & Gatski 1992) and (2) corrections to the Boussinesq eddy
viscosity based on Cayley–Hamilton theorem (Pope 1975), which are also incorporated in
quadratic constitutive relation (QCR) models (Spalart & Allmaras 1994). However, these
models incorporate the mean rotation effects as higher-order nonlinear corrections to the
Boussinesq eddy viscosity.

With our eddy viscosity tensor notation, insensitivity of Reynolds to the mean rotation
implies that D0

ijkl must be equal to D0
ijlk because under this condition, each Reynolds stress

component, u′
iu

′
j, would be equally sensitive to both ∂Ul/∂xk and ∂Uk/∂xl, and thus is a

function of the summation ∂Ul/∂xk + ∂Uk/∂xl, which is 2Skl. However, our measurement
of the leading-order eddy viscosity tensor invalidates the relation D0

ijklD
0
ijlk. Figure 7 shows

the comparison between D0
2121 and D0

2112. These two components have the same sign
and their qualitative shape is similar, but the magnitudes are drastically different. This
highlights an important conclusion: sensitivity of Reynolds stresses on mean rotation is
not a secondary or higher-order effect and is present even at the leading-order term of the
eddy viscosity expansion. Likewise, we reach the same conclusion with the case of D0

ij13
and D0

ij23.

3.4. Leading-order Reynolds stress
In § 3.1, we computed a RANS solution using D0

2121 and compare the solution with that
of the DNS to assess appropriateness of the leading-order eddy viscosity for prediction of
the mean velocity profile. Another way to make this assessment is to reconstruct Reynolds
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Figure 7. Comparison of D0
2121 (blue line) and D0

2112 (green line).

stress using the computed eddy viscosity tensor and compare it with the Reynolds stress
of DNS. In this way, we can assess some other components in D0

ijkl. The Reynolds stress

in the channel flow can be represented in the following way: u′
iu

′
j
0 = −D0

ij21∂U1/∂x2, with
the leading-order eddy viscosity tensor D0

ij21 computed using MFM and with the mean
velocity gradient ∂U1/∂x2 measured from the DNS data. Here, the superscript zero is
added to the Reynolds stress to indicate that this is the leading-order reconstruction.

Figure 8 shows the five reconstructed Reynolds stresses associated with the RANS
prediction of the channel flow, in comparison with the Reynolds stresses from the
DNS data. There are three important observations with the Reynolds stresses that are
reconstructed with the leading-order eddy viscosity tensor. The first finding is that while
the Reynolds stresses reconstructed using the leading-order eddy viscosity show similar
qualitative trends and orders of magnitudes to those from DNS, there is still a noticeable
difference between the two. This difference is likely due to the leading-order truncation
of the eddy viscosity operator. Among various components of the Reynolds stress tensor,

only u′
2u′

1
0

is reasonably constructed. This observation is compatible with the previous
observation of reasonable RANS solution for the mean flow, since only this Reynolds
stress component is involved in mean momentum mixing for this flow.

The next important observation is that constructed Reynolds stresses from the
leading-order eddy viscosity are not symmetric. When the eddy viscosity operator is
modelled through a truncated Kramers–Moyal expansion, we introduce an approximation
that inherently involves a loss of symmetry. This asymmetry arises from employing the

GMT equation to examine momentum transport, leading to the observation that u′
2v

′
1

0

is not equal to u′
1v

′
2

0
. However, considering that the NS equations serve as the attractor

solution to the GMT framework, as established by Mani & Park (2021), utilising exact
closure operators ensures that u′

iv
′
j aligns with u′

iu
′
j, thereby preserving the symmetry of

the tensor. As we shall see, inclusion of the full non-local eddy viscosity will eliminate this

error. However, the fact that the leading-order u′
2u′

1
0

match the DNS substantially better

than u′
1u′

2
0

indicates that the former Reynolds stress is more local while the latter has
substantial non-local sensitivity to the mean velocity gradient. Although we do not have an
intuitive explanation for this observation, we note the coincidence that the former Reynolds
stress represents flux of an active mean momentum component in the direction where its
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Figure 8. Reynolds stresses constructed by the leading-order eddy viscosity tensor associated with (a) D0
1121,

(b) D0
1221, (c) D0

2121, (d) D0
2221 and (e) D0

3321: green dotted line, the reconstructed Reynolds stress by the

leading-order eddy viscosity tensor u′
iu

′
j
0
; blue solid line, the DNS data.

gradients are active. The only way that the latter Reynolds stress could be generated in this
setting is through pressure coupling, whose fluctuations are known to non-locally depend
on velocity fluctuations.

Lastly, we observe that the leading-order eddy viscosity cannot reproduce the non-zero
Reynolds stresses at the centreline, where the velocity gradient is zero due to the symmetry
of the channel flow. Non-locality needs to be included in eddy viscosity to enable
prediction of non-zero Reynolds stresses in regions of zero mean velocity gradient.

3.5. Positive definiteness
It is noted that the Reynolds stress is a positive semi-definite tensor (Du Vachat 1977;
Schumann 1977). We often require eddy viscosity to satisfy the same condition as done
in the Boussinesq approximation with νT � 0 (Speziale, Abid & Durbin 1994) for a
well-posed closure model. In this section, we discuss whether this condition holds for
our leading-order eddy viscosity tensor D0

ijkl as well.
The positive definiteness of the eddy viscosity is closely related to the mean kinetic

energy equation, which is the following:

∂

∂t

(
UiUi

2

)
+ Uj

∂

∂xj

(
UiUi

2

)
= ∂

∂xj

(
−P

ρ
Uj

)
+ ν

∂2UiUi/2
∂xj∂xj

(3.1)

− ν
∂Ui

∂xj

∂Ui

∂xj
− ∂

∂xj

(
Uiu′

ju
′
i

)
+ u′

ju
′
i
∂Ui

∂xj
. (3.2)

The last term in (3.2) is the negative of turbulent kinetic energy production. It is
well-known that this term drains the kinetic energy from the mean flow via interactions
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of the mean shear and the turbulent fluctuations, and provides energy to the turbulence
production. We denote the turbulent kinetic energy production as Pk = −u′

ju
′
i(∂Ui/∂xj).

In all statistically stationary flows, the volumetric integral of Pk must be non-negative,
otherwise turbulent kinetic energy cannot be sustained. There are certain cases such as
the separation of the shear layer where Pk is locally negative, but even for those cases, the
turbulent production is positive for most of the domain (Cimarelli et al. 2019) rendering the
total volume integral positive. The volumetric integral condition for Pk can be expressed
using our generalised eddy viscosity expression in (1.1):∫

Pk d3x =
∫

−u′
ju

′
i
∂Ui

∂xj

∣∣∣∣
x

d3x, (3.3)

=
∫ ∫

Dijkl(x, y)
∂Ul

∂xk

∣∣∣∣
y

∂Ui

∂xj

∣∣∣∣
x

d3y d3x � 0. (3.4)

The last relation is the same statement as conditioning the eddy viscosity operator to be
positive semi-definite. For well-posedness of its RANS mathematical model, any given
eddy viscosity field must satisfy this condition for all arbitrary admissible input mean
velocity gradients ∂Ui/∂xj. Otherwise, there will be unstable modes of mean flow that can
be energised by the turbulence model, leading to their time exponential blow-up.

Equation (3.4) can be further simplified to a single spatial integral when the eddy
viscosity operator is local Dijkl(x, y) = D0

ijkl(x)δ(y − x) such as in the case of the
leading-order eddy viscosity. Substitution of a local model in (3.4) results in∫

Pk d3x �
∫

D0
ijkl(x)

∂Ul

∂xk

∣∣∣∣
x

∂Ui

∂xj

∣∣∣∣
x

d3x. (3.5)

Since the operator now involves the local interactions of the mean velocity gradient and
since this condition must hold for all fields of ∂Ui/∂xj, the positive definiteness must be
satisfied for each point. In other words, D0

ijkl(∂Uj/∂xi)(∂Ul/∂xk) � 0 must also be satisfied
pointwise for each local D0

ijkl tensor and for all admissible values of mean velocity gradient.
Therefore, the quadratic form of the eddy viscosity tensor must be non-negative implying
that the eddy viscosity tensor must be positive semi-definite. This result is also similar to
the condition considered by Milani (2020) in the context of local scalar transport.

Using our MFM measurement of the eddy viscosity, we can examine whether a local
model from the truncated Kramer–Moyal expansion satisfies the positive semi-definite
condition. Since the exact eddy viscosity must satisfy the positive semi-definite condition
in (3.4), if this condition is not satisfied for the leading-order eddy viscosity, it is an
indication that the local truncation is not valid and non-locality is needed for the positive
definiteness condition.

To test the positive semi-definiteness of the leading-order eddy viscosity tensor, we
flatten the eddy viscosity tensor and the velocity gradient. Then, the turbulent production
becomes D0

ijkl(∂Uj/∂xi)(∂Ul/∂xk) = zTDz where z is the flattened velocity gradient
[∂U1/∂x1 ∂U2/∂x1 ∂U1/∂x2 ∂U2/∂x2]T and where D is the following matrix:

D =

⎡
⎢⎢⎢⎢⎣

D0
1111 D0

1112 D0
1121 D0

1122

D0
1211 D0

1212 D0
1221 D0

1222

D0
2111 D0

2112 D0
2121 D0

2122

D0
2211 D0

2212 D0
2221 D0

2222

⎤
⎥⎥⎥⎥⎦ . (3.6)
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Figure 9. The minimum eigenvalue of the matrix C(D + DT )CT .

It is well known that a symmetric D is positive semi-definite if and only if all of its
eigenvalues are non-negative However, for our case, D is non-symmetric and z is limited
to only certain value due to the incompressible condition. Therefore, we modified the
quantity of interest. First, instead of the non-symmetric matrix D, we look at the positive
definiteness of D + DT . If D + DT is positive semi-definite, zTDz � 0 also holds (Milani
2020). Second, since the flow system is incompressible, z is limited to certain values
satisfying ∂U2/∂x2 = −∂U1/∂x1. To expand the column vector multiplied to matrix D
to every non-zero real column vector, we must embed the incompressibility condition
to the matrix D. We define z = Cz∗ where z∗ is the reduced flattened velocity gradient
[∂U1/∂x1 ∂U2/∂x1 ∂U1/∂x2]T and C is the following matrix:

C =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

−1 0 0

⎤
⎥⎦ . (3.7)

Using this definition, zTDz becomes z∗T CTDCz∗. Combining these two methods, we
conclude that the eddy viscosity tensor is positive semi-definite when all the eigenvalues
of the matrix C(D + DT)CT is non-negative. We computed the smallest eigenvalue of this
matrix at each x2. The resulting plot is shown in figure 9. As shown, except for the thin
zones near the wall, we see that the eigenvalues are positive, hence the eddy viscosity
tensor is positive definite. Near the wall, however, the eigenvalues become negative,
indicating that the leading term is not sufficient to capture the positive semi-definiteness of
the eddy viscosity. In other words, this negativity occurs due to the local truncation of the
eddy viscosity tensor and therefore non-locality should be incorporated to make the eddy
viscosity positive semi-definite. The same analysis was conducted in the three dimension
space context and the conclusion remains the same.

4. Non-locality analysis

In § 3.3, we concluded that aside from u′
2u′

1, capturing other components of the Reynolds
stress field requires inclusion of non-local terms in the eddy viscosity operator. To better
understand the non-local effect, in this section, we investigate the full eddy viscosity kernel
Dijkl(x2, y2) in (2.7).
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Figure 10. Distribution of D2121: (a) contour plot of D2121; (b) D2121(x2 = x∗
2, y2) with various x∗

2 where the
blue line is at x∗

2 = 0.502 and the velocity gradient ∂U1/∂x2 is drawn as a red line; and (c) the blue solid line,∫
D2121 dy2, and the orange dashed line, D0

2121.

4.1. Non-locality
Figure 10 shows the full eddy viscosity kernel representation of the D2121 component.
Each point in figure 10(a) represents the effect of the velocity gradient at the location y2
to the Reynolds stress at the location x2. The distribution of D2121 is confined to x2 ∼ y2,
indicating the approximate locality of this eddy viscosity component. At a given location
x2, we can visualise how much contribution the remote velocity gradient at a different
location, y2, makes to the Reynolds stress at the location x2.

For instance, in figure 10(b), the thick blue line represents D2121(x2 = 0.502, y2) and
the distribution indicates the effects of the velocity gradient nearby. For a purely local
eddy viscosity, a delta function around y2 = 0.502 would b e expected. In the figure,
even though the plotted profile is not a Dirac delta function, D2121(x2 = 0.502, y2) shows
concentrated behaviour around y2 = 0.502. The blue line peak value is D2121 = 0.53 and
the width that the curve drops to one third of its peak value is 0.12. Overall, our narrow
banded results indicate that D2121 is relatively local throughout the domain. Such locality
explains the earlier observation in § 3 where the leading-order eddy viscosity was shown
to construct the shear component of the Reynolds stress within roughly 10 % error, and the
mean velocity profile within 1 % error. However, a more quantitatively rigorous assessment
would require examination of the mean velocity gradient across the kernel width. The
leading-order eddy viscosity relegates the entire sensitivity of Reynolds stresses to the
local pointwise value of the mean velocity gradient. If the mean velocity gradient happens
to be relatively constant across the kernel width, the pointwise approximation, and hence
the local model will be accurate. As shown in figure 10(b), the mean velocity gradient has
a non-negligible variation across the sample kernel indicated by the blue curve. Therefore,
strictly speaking, non-local effects in D2121 should not be negligible. We conclude that
the accurate outcome of the local approximation for D2121 is partially owed to the error
cancellation due to monotonic variation of the mean velocity gradient in the domain. In
other words, the pointwise value of ∂V1/∂x2 near the centroid of the kernel, reasonably
represents the mean value given that errors from the left side and right side of the kernel
partially cancel out each other.

Figure 10(c) compares the results of kernel integration
∫

D2121 dy2 against the
leading-order eddy viscosity for the same component D0

2121. The definition of D0
2121 is

the leading-order moment of the eddy viscosity kernel D2121. In other word, with correct
quantification the integration of the kernel

∫
D2121 dy2 must match D0

2121. Figure 10(c)
shows that the two results are collapsing verifying the consistency between our two
different MFM measurements.
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Figure 11. Error in RANS prediction of the streamwise velocity using eddy viscosity tensor D0
2121 (denoted as

MFM0) and eddy viscosity kernel D2121 (denoted as MFM), U1 − U1,DNS: dotted green line, U1 predicted with
D0

2121, and dashed orange line, U1 predicted with D2121.

In § 3, we demonstrated that the leading-order eddy viscosity alone can predict an
accurate RANS solution for the channel mean velocity with the prediction error around
1 %. This error can be further reduced by including the non-locality using the full kernel
representation of the eddy viscosity. Figure 11 shows the two RANS results, one obtained
using the leading-order eddy viscosity D0

2121 and the other obtained using eddy viscosity
kernel D2121. Analytically, the full measurement of the kernel is expected to provide the
RANS solution that is identical to the averaged DNS result. In our simulation, small
errors are due to statistical noise that we expect to resolve with a larger data set. Still,
the kernel result is significantly better than the leading-order result, indicating that the
RANS solution to the leading-order eddy diffusivity model, which is highly local, can be
improved using a non-local model.

Next, we assess non-locality of other components of Dijkl by examining the
corresponding kernels. For example, the eddy viscosity kernel D1221 (figure 12) is
widespread and shows significant non-locality, invalidating the intrinsic assumption in
the Boussinesq approximation. The level of non-locality is drastic such that the velocity
gradient at one half of the channel may affect the Reynolds stress at the other half of the
domain. Moreover, the shape of D2121 differs from D1221, implying the non-universality
of the kernel profile across different components of eddy diffusivity. Furthermore, the
differences in the kernel shape between D2121 and D1221, clarifies why a truncated eddy
viscosity operator based on the leading term of its Kramer–Moyal expansion can lead
to asymmetric Reynolds stresses. Figure 13 shows the additional three non-zero eddy
viscosity kernels D1121, D2221 and D3321. The rest of the components are zero due to
channel symmetry. These three kernels correspond to the trace part of the eddy viscosity
kernel and are also highly non-local.

4.2. Revisit of Reynolds stress
Lastly, we revisit the Reynolds stress reconstruction with the inclusion of the non-local
effects. Figure 14 shows three different ways of constructing the Reynolds stresses. The
first shown in the orange dashed line is the reconstructed Reynolds stress by the eddy
viscosity kernel from MFM and the mean velocity gradient from DNS. The second shown
in green dotted line is the reconstructed Reynolds stress by the leading-order eddy viscosity
tensor from MFM and the mean velocity gradient from DNS. The last one is from the mean
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0
; blue solid line, the DNS data.
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DNS data shown in blue solid line. The leading-order result and the mean DNS data are
shown before in figure 8.

Unlike the leading-order analysis, the results from the full kernel eddy viscosity match
very well to the DNS data. These plots verify our computational method yielding two
findings. First, with full kernels, the Reynolds stresses recover the symmetry that was
lost in the leading-order approximation. Only D2121, which is relatively narrow banded, is
applicable for the local approximation. Hence, this leads to the symmetry breakage after
leading-order approximation. Second, now we can capture the non-zero Reynolds stress at
the channel centreline. Thus, the measured non-local eddy viscosity allows prediction of
non-zero Reynolds stresses near the centreline, whereas the leading-order approximation
fails to do so.

4.3. Revisit of positive definiteness
In § 3.5, we discuss the positive definiteness of the local eddy viscosity tensor D0

ijkl. Due
to the leading-order truncation of the eddy viscosity kernel, Dijkl, our result indicated that
the local eddy viscosity tensor was not positive definite near the walls. In this section,
we introduce the full kernel and examined whether including the non-locality restores the
semi-positive definite condition.

Using the full eddy viscosity kernel expression and applying the fact that only one
component of the velocity gradient tensor is non-zero, the turbulent production in (3.4)
can be written as the following:∫

Pk dx2 =
∫ ∫

D2121(x2, y2)
∂U1

∂y2

∂U1

∂x2
dy2 dx2 =

[
∂U1

∂x2

]T

[D2121]
[
∂U1

∂x2

]
. (4.1)

The far right term represents the discrete form of the expression, where [∂U1/∂x2]
represents any velocity gradient vector at each point in x2 and [D2121] represents the
discrete matrix value of D2121(x2, y2). To make the turbulent production non-negative,
the matrix [D2121] needs to be semi-positive definite. Likewise in § 3.5, we computed
eigenvalues of [D2121] + [D2121]T to determine the positive definiteness. The computed
eigenvalues range from 0.00 to 7.58, indicating that the eddy viscosity kernel D2121
is indeed semi-positive definite, recovering the stability condition that was lost by the
leading-order truncation.

5. Conclusions

This study presents a quantification of non-Boussinesq effects in eddy viscosity in a
subclass of turbulent wall-bounded flows. The presented analysis is systematically focused
on two aspects: anisotropy and non-locality of momentum mixing. To assess these effects
and quantify the deviation from Boussinesq limit, we calculated the eddy viscosity of
the turbulent channel flow at Reτ = 180 using a statistical technique that we recently
developed called MFM. Using MFM, we quantified the leading-order eddy viscosity
tensor for the analysis of anisotropy and expanded our study to quantify the eddy viscosity
tensorial kernel for the analysis of non-locality.

Our results indicate the following: (1) eddy viscosity is highly anisotropic with some
elements orders of magnitude larger than the nominal eddy viscosity; (2) the Reynolds
stresses reconstructed from this eddy viscosity depends not only on the mean rate of strain
but also on mean rate of rotation; (3) leading-order eddy viscosity, which is obtained
by neglecting higher spatial moments of the closure kernel, generates a non-symmetric
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Reynolds stress tensor; and (4) aside from the shear component of the Reynolds stress,
u′

2u′
1, which showed a limited level of non-locality, the dependence of other components

of Reynolds stress on mean velocity gradient is highly non-local at the level where some
components of the Reynolds stress are influenced by the velocity gradient on the other half
of the channel.

The exact measurement of the eddy viscosity of the channel flow has different
implication for RANS modelling of parallel flows and that of the spatially developing
attached boundary layers. For parallel flows, only one Reynolds stress component and one
velocity gradient are important; hence anisotropy does not influence the prediction of the
mean flow as long as D2121 is properly modelled. At the same time, not only the anisotropy
but also non-locality may be omitted for the channel flow. This outcome is in part due to
relatively narrower kernel of D2121(x2, y2), as shown in our MFM measurement of the eddy
viscosity kernel, but also due to coincidental error cancellations that render reasonable
estimation of the Reynolds stresses based on a single-point quadrature relegating the entire
weight of the kernel on the local mean velocity gradient.

These two findings may explain why the Boussinesq approximation works well for
prediction of mean parallel flows. However, our quantification suggests that this conclusion
does not hold for normal components of the Reynolds stress, as well as for spatially
developing wall-bounded flows where the non-parallel effects become important. For
instance, even a small gradient in the streamwise direction can have a non-negligible effect
since D0

1111 is very large compared with most of other eddy viscosity components. Our
measurements reveal that the eddy viscosity is highly anisotropic and highly non-local,
when it comes to components other than D2121, indicating a clear need to include
non-Boussinesq effects in RANS models.

While we focused on full non-local analysis in the x2 direction, we did not consider
non-local spatial effects in other directions and non-local temporal effects. Equation
(2.7) is a reduced version of (1.1) using leading-order moments in x1, x3 and t. These
leading-order reductions are justified for channel flow since it is statistically homogeneous
in these directions, and are expected to be qualitatively valid for systems with slow
variation of turbulence in these directions. While it is possible to quantitatively assess
such effects with MFM, we defer analysis of streamwise and spanwise non-locality in
eddy viscosity to a future study.
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Appendix A. Estimation of the convergence error

Figure 15 shows the convergence analysis of MFM results with respect to the
spatiotemporal domain size. Figure 15(a) shows the estimated temporal error due to the
finite time horizon of the MFM simulations. In our MFM studies we used a temporal
sampling window of T = 850 in eddy turnover time unit, which is substantially longer than
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Figure 15. Convergence studies on D0
2121: (a) D0

2121(T = 400) − D0
2121(T = 850), where T is normalised

sampling time period; (b) D0
2121, where the blue solid line is from the original domain (table 1) and the orange

dashed line is from the larger domain where domain length is twice as large in both x1 and x3 directions.

simulation times typically used in the literature. We estimate the temporal convergence
error by comparing D0

2121 obtained from a shorter window, T = 400, with that obtained
from the full simulation. Based on the magnitude of the difference, shown in figure 15(a),
we estimate that the temporal convergence error, is about 1 %.

In addition to the sampling time convergence study, we discuss the use of
time-dependent forcing. MFM restricts the forcing to be in the macroscopic space, the
Reynolds-averaged space. For the channel flow, the forcing needs to be only a function
of wall-normal direction, i.e. si(x2), and, hence, time independent. Therefore, the precise
way of conducting the MFM analysis is to estimate the stationary forcing prior to the
computation. This is problematic since it is difficult to know the forcing terms before
the simulation. The remedy to this issue is to perform averages over ensembles, instead
of using time averages. For a statistically stationary flow, the ensemble-averaged fields
tend to time-constant fields as one increases the number of ensembles. Ensemble averages
can then be accessed at each time step, in order to estimate si(x2) according to the
procedure described in § 2.1.3. Since channel flow is statistically homogeneous in x1 and
x3 directions, instead of creating new simulations, we used these directions for ensemble
averaging. We then increased the number of independent ensembles by increasing the
domain size in these directions. Figure 15(b) shows the computed D0

2121 in two different
domain sizes: one is the original domain size shown in table 1 and the other is a larger
domain which is twice as large in both x1 and x3. The difference between these two plots
is approximately 2 %. This difference quantitatively represents the error committed by
using a weakly time-dependent forcing and finite domain size.

Appendix B. Implementation for determining D0
ijkl in a periodic domain

MFM allows computation of every component in the leading-order eddy viscosity tensor
D0

ijkl in (2.11). In § 2.1.3, we briefly explained how D0
ij21 is determined via MFM with a

forcing that would maintain V1 = x2 and V2 = V3 = 0. For this case, boundary conditions
and the initial condition are easily chosen to be compatible with the MFM instructions; for
instance, periodic conditions in x1 and x3 direction and a Dirichlet condition in x2 such as
v1(x1, x2 = ±1, x3) = ±1. The simple generalisation of the forcing to other directions is
Vn = xm and Vi /= n = 0 where m and n are not indices in the index notation, rather a choice
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of the forcing direction. However, such forcing is not directly implementable in codes with
periodic boundary conditions. For example, to compute D0

ij12 we need the forcing scenario
that sustains V2 = x1 and V1 = V3 = 0 which has incompatible boundary conditions with
the DNS solver since V2 = x1 is not a periodic field in the streamwise direction. As a
remedy, to compute all the components of the eddy viscosity tensor, we modify the GMT
to solve for the fluctuating part of the GMT variable v′

i as follows. We start from the GMT
equations with forcing of Vn = xm and Vi /= n = 0 which allows quantification of D0

ijmn as
shown in (B2). When we subtract the mean of the GMT equation from the GMT equation,
the resulting equation becomes

∂v′
i

∂t
+ ∂

∂xj

(
ujv

′
i
) = − ∂p

∂xi
+ ν

∂2v′
i

∂xj∂xj
+ si − umδin, (B1)

which is implementable in a periodic solver since it eliminates the need for explicit
inclusion of Vn = xm. For a given m and n, once we numerically solve the equation above,
we can determine the nine components of the eddy viscosity tensor by post-processing the
results as (B2). Using different combinations of m and n, we reveal all the elements in the
leading-order eddy viscosity tensor:

− u′
iv

′
j(x2) =

∫
y2

Dijkl(x2, y2)
∂Vl

∂xk

∣∣∣∣
y2

dy2 =
∫

y2

Dijmn(x2, y2) dy2 = D0
ijmn(x2). (B2)

There are multiple advantages of solving for GMT fluctuation equations. The first
advantage is that the boundary condition is now compatible with the periodic conditions.
Second, all wall boundary conditions for v′

j are easily set with a Dirichet condition of
v′

j = 0. With these two advantages, the solver become more systematic and simple.
Lastly, we note that in RANS solutions dV1/dx1 can only be present when either

dV2/dx2 or dV3/dx3 are non-zero. Imagining a two-dimensional flow as a simple example,
this implies that dV1/dx1 = −dV2/dx2. As a result, a macroscopic forcing that honors this
constraint can only measure the combined term D0

ij11 − D0
ij22, but not the individual terms.

However, in the procedure described above we have taken advantage of the linearity of the
GMT equation in our analysis. In other words, while the solutions to v′ fields in (B1) are
obtained by enforcing the divergence-free condition, we recognise that these solutions are
linear response to the source term, which is the last term in the equation and is controlled
by the pre-specified gradient of V . This allows quantification of response to independent
components of gradient of V , and thus prediction of D0

ij11 independent of D0
ij22. When

the resulting D0 is used in a RANS solver to predict the mean momentum field, one
always uses divergence-free momentum fields, which bundles back the components of
D0 together. Therefore, our choice of decomposition by independently activating different
components of the mean momentum gradient, would not affect the outcome of Reynolds
stress predictions.

Appendix C. Leading-order eddy viscosity tensor

This appendix provides the entire non-zero values of the leading-order eddy viscosity
tensor D0

ijkl (figures 16–24). This corresponds to the eddy viscosity tensor in (2.11). The
values not shown converge to zero.
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Figure 16. Distribution of non-zero D0
ij11: (a) D1211; (b) D2111; (c) D1111; (d) D2211; (e) D3311.
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Figure 17. Distribution of non-zero D0
ij12: (a) D1212; (b) D2112; (c) D1112; (d) D2212; (e) D3312.

Appendix D. Scaling analysis for two-dimensional spatially developing boundary
layer

To determine which components of the eddy viscosity tensor are critical to the RANS of
the two-dimensional spatially developing boundary layer, we conduct the following scaling
analysis. The flow system with the streamwise length scale l and the wall-normal length
scale d is considered where l 
 d. Based on the correlation by White & Majdalani (2006),
a typical ratio for Rex ∼ O(106) is d/l ∼ 0.02. Using the leading-order eddy viscosity
tensor model (2.11), the Reynolds stress term includes a summation of the eddy viscosity
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Figure 19. Distribution of non-zero D0
ij21: (a) D1221; (b) D2121; (c) D1121; (d) D2221; (e) D3321.

tensor terms. For instance, u′
2u′

1 is represented as follows:

− u′
2u′

1 = D2111
∂U1

∂x1
+ D2112

∂U2

∂x1
+ D2121

∂U1

∂x2
+ D2122

∂U2

∂x2
. (D1)
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Figure 20. Distribution of non-zero D0
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Figure 21. Distribution of non-zero D0
ij23: (a) D1323; (b) D2323; (c) D3123; (d) D3223.

One needs to consider not only the magnitude of the eddy viscosity tensor element but
also the estimated scales of each term in this equation. To evaluate the length scales for the
velocity, we set U1 ∼ 1, and the continuity enforces U2 ∼ d/l. Ignoring D21kl coefficients,
the length scales of the four terms on the right-hand side are 1/l, d/l2, 1/d and 1/l.
Since l 
 d, D2121 plays the major role for this Reynolds stress. The next two are the
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Figure 22. Distribution of non-zero D0
ij31: (a) D1331; (b) D2331; (c) D3131; (d) D3231.
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Figure 23. Distribution of non-zero D0
ij32: (a) D1332; (b) D2332; (c) D3132; (d) D3232.
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Figure 24. Distribution of non-zero D0
ij33: (a) D1233; (b) D2133; (c) D1133; (d) D2233; (e) D3333.

terms that multiply D2111 and D2122. However, MFM reveals that D2111 is one order of
magnitude larger than D2122. Hence, D2111 is the next important eddy viscosity tensor
for this Reynolds stress. Likewise, we conducted scaling analysis for all other Reynolds
stresses. The analysis informs us that D1111, D1121, D2121 and D2221 are among the most
significant eddy viscosity tensor elements for the case of slowly developing semi-parallel
wall-bounded flows.

Appendix E. MFM for Dij21 measurement

To compute the eddy viscosity kernel Dij21(x2, y2), we use brute force MFM method using
delta function forcing of the velocity gradient at each location. We start from the full
kernel eddy viscosity representation in (2.7). We macroscopically force the mean velocity
gradient by ∂Vl/∂xk = δ( y2 − y∗

2)δk2δl1, where δ(x) represents Dirac delta function, δij
represents Kronecker delta in index notation, and y∗

2 is the probing location of the eddy
viscosity. With such forcing, (2.7) becomes the following:

−u′
iv

′
j(x2) =

∫
Dijkl (x2, y2)

∂Vl

∂xk

∣∣∣∣
y2

dy2

=
∫

Dijkl (x2, y2) δ
(

y2 − y∗
2
)
δk2δl1 dy2

= Dij21
(
x2, y2 = y∗

2
)
. (E1)

Forcing that would maintain the mean streamwise velocity as a Dirac delta function at
y2 = y∗

2 reveals the eddy viscosity kernel Dij21(x2, y2 = y∗
2). By setting y∗

2 for all possible
locations, we can obtain the eddy viscosity kernel Dij21. In numerical implementation of
this strategy, instead of dealing with Dirac delta functions, we selected V1 to be a step
function with respect to the y2 direction. In discrete space, the MFM is conducted at each
discrete point of y∗

2 in wall-normal direction with a corresponding Heaviside function
where the discontinuous point lies at that point. In order to compute the entire kernel
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Dij21, one need to conduct many MFM simulations. More specifically, the number of
simulations has to be the number of degrees of freedom of the Reynolds-averaged space,
i.e. the number of mesh points in the wall-normal direction. For instance, since our RANS
space has 144 cell centres, we need 146 MFM simulations, including two for the boundary
values.
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