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We report on the melting dynamics of frozen olive oil in quiescent water for Rayleigh
numbers up to 109. The density difference results in an upward buoyancy-driven flow
of liquid oil forming a thin film around the frozen oil. We experimentally investigate
flat, cylindrical and spherical shapes and we derive theoretical expressions for the local
film thickness, velocity and the local melt rate for these three canonical geometries.
Our theoretical models predict the correct order of magnitude and the correct scaling as
compared with our experimental findings.
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1. Introduction

Understanding the complicated dynamics of phase change is relevant to predicting and
controlling many natural and industrial processes. Melting and dissolution are examples
of the classical Stefan problem, where the boundary is defined by the phase of the material
and the evolution of the boundary follows from the material undergoing phase change.
Common examples include the freezing of water to make ice cubes, novel developments
in phase change materials, where the latent heat of fusion is used as a temporary energy
storage (Dhaidan & Khodadadi 2015), and the melting of ice around the Earth’s North and
South Poles (Holland, Bitz & Tremblay 2006; Feltham 2008; Cenedese & Straneo 2023).

During melting, the cold melt generally flows along the body, giving rise to non-uniform
melting, and therefore changing the shape of the object, which then feeds back on the
flow. This shape change or self-sculpting process of objects subject to melting, erosion
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or dissolution has been a topic of recent interest. The evolution of eroding clay balls and
cylinders in a flow have been studied by Ristroph et al. (2012). More recently, more studies
have been done with quiescent surroundings, as in Cohen et al. (2016), Davies Wykes
et al. (2018), Pegler & Davies Wykes (2020) and Cohen et al. (2020), where they studied
the pattern formation due to natural convection and dissolution of hard candy and salt,
submerged in water. Pattern formation was also studied by Guérin et al. (2020) who, using
experiments, reveal the dynamics of karst geomorphology and rillenkarren formations.
Further insights into the emergence of rock formations due to dissolution are provided by
Davies Wykes et al. (2018) and Huang et al. (2020), who emphasise the importance of the
directionality of the shaping process. In Huang & Moore (2022) a class of exact solutions
is given for the shape of the pinnacles, which show that the tip curvature is large, but
finite. Recently there have been direct numerical simulations by Yang et al. (2023a,b), who
use the phase-field method to study the morphology of melting ice in a Rayleigh–Bénard
geometry and stratification of salt concentration around a melting cylinder.

Hitherto, most studies have focused on the melting of miscible fluids, i.e. a frozen
object submerged in the same substance in liquid phase, or a similar miscible liquid or
solution (e.g. melting of ice in salty water). The case of immiscible melting has received
little attention. Immiscible melting can be achieved in multiple ways: either we have
organic compounds like oils and waxes and combine those with water, or we have metals
(e.g. gallium) inside water or oils. The most experimentally accessible option is to use
an oil with a freezing point around 0 ◦C and water. Motivated in the context of nuclear
meltdown accidents in nuclear reactors involving molten core material, Taghavi-Tafreshi,
Dhir & Catton (1979) looked at the case of melting of an immiscible liquid where the
frozen oil is below warmer water. In the melting of a horizontal wall the process is
governed by the Rayleigh–Taylor instability (de Gennes et al. 2004), as the melting
material (oil) is positively buoyant in the water. The interface in their case is therefore
heavily undulated by the pinching-off droplets. Nevertheless, they have found a scaling
of the Nusselt number (Nu) with the Rayleigh number (Ra) of Nu ∼ Ra1/4, despite all
the intricacies associated with the pinching-off droplets and the non-uniform liquid oil
layer. These findings were followed up by Farhadieh & Epstein (1982) where they looked
at a variety of oily or waxy substances melting in a variety of watery solutions. They
observe from their experimental measurements that their data are bounded by two different
Nu ∝ Ra1/4 scaling laws, but that their data follow more closely a Nu ∝ Ra1/5 scaling
set forth by Gerstmann & Griffith (1967) in terms of absolute agreement, although they
did not make any definitive conclusion on the scaling exponent due to the scatter in
their experimental findings. In this work we study the melting process of frozen olive
oil in water around room temperature, as this is most accessible experimentally. We will,
however, focus on configurations where the Rayleigh–Taylor instability only plays a minor
role.

For thermal convection problems with phase change the three dimensionless control
parameters are the Rayleigh (Rao = g(ρw − ρo)L3/(νoαoρo)), Stefan (Ste = cp�T/L) and
Prandtl (Pr = νo/αo) numbers, where g is gravity, ρw is the density of the water, ρo is
the density of the olive oil, L is a relevant length scale, ν is the kinematic viscosity,
α is the thermal diffusivity, cp is the specific heat, �T = T∞ − To is the temperature
difference between the ambient and the melting temperature and L is the latent heat of
fusion. We have used o and w subscripts to denote quantities related to oil and water,
respectively. Here, the Rayleigh number is the time scale associated with thermal transport
due to diffusion, as compared with the time scale of thermal transport due to convection.
Whereas in classical Rayleigh–Bénard convection buoyancy is created by (generally) small
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Camera

Support

Frozen olive oil

Light diffuser

LED light source

Water

Tank

PVC holder

Figure 1. Schematic of the experimental set-up. The frozen olive oil object is submerged in quiescent water.
The dimensions of the glass tank are 400 mm × 500 mm × 800 mm. A PVC holder is incorporated in the
frozen oil during freezing, and connects the frozen oil to a support. A white LED light source is used with a
light diffuser to create a uniform background illumination. Three canonical geometries are shown: vertical wall
(photographed), horizontal cylinder and ball. A camera periodically photographs the melting objects from the
side (vertical wall) or the front (cylinder and ball).

density changes due to temperature changes (β�T), in our case a large density difference
is immediately created due to the different substances ((ρw − ρo)/ρo). A high Rayleigh
number means intense thermal driving of the system. The Stefan number describes the
ratio of specific heat vs the latent heat of fusion, where the latent heat is the heat needed
or released by a phase change. A higher Stefan number means that phase change happens
faster. The Prandtl number is a material property describing the ratio of the momentum
diffusivity to the thermal diffusivity, and determines whether the thermal boundary layer
is embedded in the momentum boundary layer or vice versa.

The present work has the following structure: in § 2 we describe the experimental set-up.
In § 3, results for the melt rate of frozen olive oil are shown for three different geometries:
a vertical wall, a cylinder and a ball. For the cylinder we show two different initial Rayleigh
numbers (initial sizes). The obtained local melt rates are compared with theoretical models
that are derived in detail in § 4. The effect of the assumption of constant viscosity is
discussed, and a correction for the variation of the viscosity with temperature is derived.
Lastly, we discuss our findings in detail in § 5 and finish with our conclusions in § 6.

2. Experimental set-up

The schematic in figure 1 shows the experimental set-up we use to study the melting
of frozen olive oil. We choose olive oil as our working fluid since the freezing/melting
temperature is reasonable to achieve in the laboratory (To = −8 ◦C), the resulting contact
temperature is above the freezing temperature for the ambient water and it is readily
available. We use a rectangular glass tank of 400 mm × 500 mm × 800 mm, filled with
water. During the melting process, the water is quiescent and kept at a constant room
temperature T∞ = 20 ◦C. We only investigate here for ambient temperatures equal to this
room temperature, so as to avoid any spurious flows created by natural convection caused
by heat transfer from the surroundings to the bath. A small PVC holder (poor thermal
conductivity) is included in the frozen olive oil during the freezing process and is attached
to a support that is submerged in water. The olive oil is cooled down to a temperature
of Ti = −14 ◦C. Further material properties of both substances can be found in table 1,
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(c)

3 cm 3 cm

t

(b)

3 cm

(a)

Figure 2. (a) Melting of a horizontal cylinder in ambient water showing several stages of the droplet
pinch-off at the top where the melted olive oil collects. Note that we consider the melting cylinder only in
two-dimensional cross-section in this work. The distance between the pinching-off droplets is 22.5 mm ±
2 mm. (b) Example image from a melting ball experiment with the contour that is obtained from image analysis
overlaid on the original image. Note that the region where the liquid olive oil melt collects and periodically
pinches off from the ball is ignored. (c) Contours of a melting ball for t = 200 to 3200 s, with intervals of
200 s. Note that the tracking on the apex of the ball is hindered by the collecting and periodic pinching-off of
liquid olive oil melt. Therefore, data are ignored in the grey shaded region.

including the surface tension. Since ρoil < ρwater the melted olive oil will rise and collect
at the apex of the objects where it periodically pinches off. There, the surface tension
is relevant for the pinch-off dynamics. We do not study this effect here and will ignore
the surface tension, which we elaborate on in the discussion section. For studies of droplet
deformation and breakup in viscous fluids we refer to e.g. Stone (1994), Cohen et al. (1999)
and Cohen & Nagel (2001). We study three different canonical geometries: a vertical wall,
a horizontal cylinder and a ball; see figure 1. The melting process is recorded through
interval imaging. For this, a DSLR camera (Nikon D850) with a 100 mm macro objective
(Zeiss Makro Planar T∗ 2/100) is used, resulting in a resolution of 30 μm px−1. An LED
light source and light diffuser are used to create a uniformly lit background. The original
movies can be found in the supplementary material available at https://doi.org/10.1017/
jfm.2024.843. The images are binarised after which we find the contour, area and, for the
cylinders and balls, the centroid of the object, see figures 2(b) and 2(c). From the evolution
of the contour we find the local melt rate.

The image processing is applied to all images that are taken during an experiment,
typically with an interval time of �t = 20 s. In figure 2(c) contours from a single
experiment are shown at different times. Such an image shows a qualitative description
of the melting process of a ball. The contours at the top are more closely spaced, whereas
contours at the bottom are more distant, revealing that the melt rate at the bottom of the
ball is higher than the melt rate at the top.

3. Results

Here we will look at the melt rates obtained from the experiments. We will then
compare these with analytical expressions – derived in the next section – and discuss the
applicability of the theory for the vertical wall, for the two horizontal cylinders and lastly
for a ball.
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Figure 3. Horizontal melt rate as a function of the height for the case of a vertical wall for Ra = O(109). We
show three theoretical approximations that are derived in a later section. Here, the theoretical approximation
with constant viscosityμo is shown as a grey dotted line, the black dashed line assumes a linear viscosity profile
in the melt layer and the grey dash-dotted line assumes variable viscosity resulting from a linear temperature
profiles in the melt layer. The intermediate part of the profile shows a scaling of −1/4 with the height. Profiles
for times from 100 until 380 s from the start of the melting process are shown. At later times the vertical wall
is no longer an appropriate approximation. See the supplementary material for a movie of this experiment.

3.1. Vertical wall
We first look at the case of the melting of a block of olive oil of 30 cm height; see figure 6
for the definitions of the axes and other quantities. We calculate the horizontal local
melting rate from the evolving contours; see figure 3. For the profiles in the early stages
of the melting process, the shape, despite slightly changing over time, can be regarded as
vertical. At later times, the profile of the initially rectangular block has sculpted itself away
from its rectangular shape. While the total process of melting takes approximately 40 min,
here, we just show melt rates obtained during the first 5 min. In the lower regions of the
vertical wall (z < 2 cm), finite-size effects of the object are observed (the bottom corner is
rounded over time). We do not show the upper edge region of the melting wall, since the
results are heavily influenced by the accumulation and detachment of oil droplets. Away
from the top and bottom corners it can be seen that the melt rates are remarkably constant
over time, in both scaling (U ∝ z−1/4) and magnitude. The grey dotted line shows the
theoretical model with constant viscosity in the melt layer, whereas the black dashed line
shows the theoretical model where the viscosity μ(T) varies in the melt layer (see § 4.2).
We find that our analytical expression predicts the correct order of magnitude and the
correct scaling in this region. Note that our model does not contain any fitting parameters,
and even though several approximations have been made, there is order of magnitude and
scaling agreement between the model and the experiments. The inclusion of the variable
viscosity lowers the prediction of the melting rate and therefore improves the prediction.
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Figure 4. (a) Cross-sectional melt rate as a function of the angle θ (polar angle starting from the bottom, see
figure 10) for a small cylinder (R0 = 25 mm) Ra = O(107). The black dashed line shows the theoretical model
for the cylindrical geometry. (b) Large cylinder (R0 = 60 mm) Ra = O(108). See the supplementary material
for movies of these experiments.

Henceforth, we only show models with temperature-dependent variable viscosity in the
melting layer.

3.2. Cylinder
We perform experiments for horizontal cylinders with initial radii 25 mm and 60 mm
corresponding to Rayleigh numbers Ra ≈ 107 and Ra ≈ 108, see figure 10 for the
definition of the axes and other measurements. Figure 4 shows the radial melt rates
U(θ) = dr(θ)/dt for the small and large cylinders, as a function of the polar angle θ , where
θ = 0◦ is at the bottom of the cylinder. For the analysis we restrict ourselves to the early
stages of melting, when the assumption of a circular cross-section is still valid, since this
is one of the key geometrical assumptions in the theoretical model. The theoretical model,
without any fitting parameter, for the cylindrical geometry is included as a black dashed
line. Here, the temperature-dependent viscosity is included in our model. A reasonable
agreement is found between our experiments and our model for both cylinders in terms
of order of magnitude and shape. There are some notable differences between the model
and the experimental observations. The melting process of the cylindrical shape has a
maximum melt rate along the surface at an angle of θ ≈ 60◦ from the bottom, whereas the
theory predicts a monotonic decrease with increasing θ , such that the predicted maximum
melt rate is at the bottom. For θ ≥ 160◦ the theory and experiments do not match due to
the collection of melt at the top before pinching off (Shi, Brenner & Nagel 1994) at the
top of the cylinder and subsequent rise to the water’s surface. The small cylinder has a
higher melt rate than the large cylinder, which we can precisely predict from our theory
since U ∝ R−1/4 ((4.58)) gives us a ratio of 1.24 in the melt rates which we also observe
in our experiments within the experimental error (the value on the ordinate is just below
10 μm s−1 for the R0 = 25 mm cylinder and ≈ 8 μm s−1 for the R0 = 60 mm cylinder,
giving a value of ≈ 1.2, very close to our predicted value).

3.3. Ball
Finally, we look at the melting of a ball with initial radius R = 60 mm; see figure 2(b)
for the experiment and figure 10 for the definition of the axes and other measurements.
Figure 5 shows the melt rate for this ball and compares the experiments with the theory.

998 A18-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

84
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.843


P. Waasdorp and others

100

T
im

e 
(s

)

80

60

40

20

16

10

12

14

8

6

4

2

1801501209060300

θ°

U
 (
µ

m
 s

–
1
)

Experiments

μo = linear

Figure 5. Cross-sectional inward melt rate of a ball as a function of the angle θ for Ra = O(108). Note
that θ = 0◦ is at the bottom of the ball. The solid green lines are results from the experiments. The black
dashed line is the theoretical model for the spherical geometry. Note that, now, we only show the model with
temperature-dependent viscosity. The reproducibility of this type of experiment is shown in Appendix B. See
the supplementary material for a movie of this experiment.

Again, we restrict ourselves to the early stages of melting, when the assumption of a
circular cross-section is still valid. Note that we also included a temperature-dependent
viscosity in our model. As for the cylinders, the model shows reasonable agreement in
terms of scaling and shape. Deviations for θ ≤ 75◦ may be caused by the ambient water,
which we will discuss in § 5. For high angles (θ ≥ 160◦) the oil layer is much thicker
and the flow is influenced by periodically detaching droplets. In the dissolution-based
problem discussed in Davies Wykes et al. (2018), the interface evolution differs greatly
from what we show here in figure 2. Their sugar balls dissolve into water, creating a
Rayleigh–Taylor-type instability similar to our work. In our present work the instability
is delayed due to the thin film of very viscous olive oil (as compared with water), the
surface tension and the curved surface, all modifying the instability. It is still unstable but
with different wavelengths and growth rates, see e.g. de Gennes et al. (2004), Trinh et al.
(2014) and Balestra, Brun & Gallaire (2016). From the dispersion relation for semi-infinite
bodies from e.g. Mikaelian (1996) we get a positive growth rate only for length scales
from 5 cm and larger. While our objects are bigger than ≈5 cm, the instability does not
have sufficient time to grow to be apparent. We strictly see the pinch-off at the apex of
our objects. For very large objects that are submerged in baths with smaller temperature
differences (slow flow rates) this effect might be important.

4. Theory

In this section we will derive the analytical models for the melt rate of the frozen olive
oil objects that were shown in figures 3–5. We start with the theory for the vertical wall.
After deriving this model we see, from comparison with the experimental results, that we
need to include a temperature-dependent viscosity, and we incorporate this in the analysis.
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Melting of olive oil in immiscible surroundings

g

T ∗

w (x, z)
u (x, z)

x

h (z)

U (z)

z

Figure 6. Schematic overview of melted olive oil (yellow) at a flat plate of frozen olive oil (orange),
submerged in water. Here, U(z) is the melt rate at the frozen/liquid oil interface.

Using this as a starting point we then derive the theory for the cylindrical geometry and
the spherical geometry.

4.1. Vertical wall
We start with the melting of the vertical wall, as shown in figure 6. With horizontal and
vertical axes x and z, respectively, the frozen wall is along the z-axis at x = 0, the liquid
melt layer is in the range 0 ≤ x ≤ h(z) while the ambient water, causing the oil to melt,
stretches from x = h(z) to infinity in the x-direction. The surrounding water is cooling
down as the oil is melting and therefore flows downward under the influence of gravity,
reaching velocities of the order of cm s−1. These velocities are relatively low and, as such,
we will assume that the ambient water is stationary. Inside the melt layer we have the
horizontal velocity u and the vertical velocity w in the x and z directions, respectively.
Gravitational acceleration is g in the negative z direction. The most important are the
densities ρo and ρw and the dynamic viscosities μo and μw. Under these circumstances,
where the oil is very viscous, and assuming we are in a steady state, the w-component of
the Navier–Stokes equations simplifies such that we have a balance between the pressure
gradient due to buoyancy and the viscous forces:

μo

(
∂2w
∂x2 + ∂2w

∂z2

)
− g(ρo − ρw) = 0. (4.1)

Here, we ignore surface tension effects, which we show in the discussion section to be a
valid assumption. At the interface between solid and liquid oil we have w(x = 0) = 0. The
film has a thickness of O(mm), which is very small with respect to the height (30 cm),
such that we are in the thin film limit (∂/∂x 
 ∂/∂z) and we can therefore neglect the
derivatives in the z-direction in (4.1). At the oil–water interface the stresses have to be
balanced across the interface:

μo
∂w
∂x

∣∣∣∣
x=h−

= μw
∂w
∂x

∣∣∣∣
x=h+

, (4.2)
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U (z)

h (z)

dz

h (z)

w (z) dx
0

h (z + dz)

w (z + dz) dx
0

Figure 7. Illustration of the mass flows in a small control volume (dashed grey) of melting olive oil at a
vertical wall. Oil is ‘injected’ into the volume from the wall since the left of the control volume is following
the interface, and oil enters the volume from below due to buoyancy forces. The total ingress from these two
contributions equals the egress at the top of the control volume.

where h− (h+) indicates the gradient at the interface on the oil (water) side of the oil–water
interface. Since our oil is much more viscous as compared with our water (table 1:
μo/μw = O(100)) and there is no reason to expect any sharp gradients in the water, we
have for the velocity gradient at the oil–water interface

∂w
∂x

∣∣∣∣
x=h−

= μw

μo

∂w
∂x

∣∣∣∣
x=h+

≈ 0. (4.3)

The solution of a simplified (4.1) obeying these boundary conditions is

w(x, z) = βx(2h(z)− x) with β = g(ρw − ρo)

2μo
= g�ρ

2μo
. (4.4)

From the continuity equation follows the horizontal velocity:

∂u
∂x

= −∂w
∂z

= −2βx
dh
dz
. (4.5)

We can now find the melt rate U(z) at which the wall melts by integrating the previous
equation to obtain

u(x, z) = U(z)− βx2 dh
dz
. (4.6)

From mass conservation, see figure 7, we can relate the melt rate and the film thickness:

U(z) = d
dz

(∫ h

0
w dx

)
= d

dz

(
2
3
βh(z)3

)
. (4.7)

To find h(z) we need to consider the thermal transport. The ambient water, with a
temperature of T∞ = 20 ◦C far away, transfers heat to the melt layer. This, in turn,
transfers heat to the solid oil, causing this to melt further. We first consider the
advection–conduction equation inside the thin melt layer. Assuming stationarity and using
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Melting of olive oil in immiscible surroundings

the thin film approximation we arrive at

u
∂T
∂x

+ w
∂T
∂z

= α
∂2T
∂x2 , (4.8)

where α = (λ/(ρcp))o is the thermal diffusivity, λ is the thermal conductivity and cp
is the specific heat capacity. In order to make the following analysis tractable (the
Mises transformation (Schlichting & Gersten 2016, p. 183), where instead of x and z the
coordinates z and the streamfunction ψ are used, leads to ∂T/∂z = α(∂/∂ψ)(w(∂T/∂ψ)),
which is no more tractable), we focus on the first term and neglect the second term of the
left-hand side of (4.8). For the first term we approximate u by only taking the first term of
(4.6):

U(z)
∂T
∂x

= α
∂2T
∂x2 . (4.9)

After the result for T(x, z) is obtained we will estimate the involved error in these
approximations. One boundary condition is that T equals the melting temperature To at
x = 0. At the interface of the melt layer and the ambient water, x = h, temperature and
heat flux must be continuous. Since the velocity is small in both the oil and water, heat
conduction is prominent. At the boundary, the water flowing down is only in contact with
the wall for a short time (see the discussions in § 5). Therefore, we approximate here
the temperature at the interface between the water and oil with the so-called contact
temperature, occurring when two semi-infinite media with different temperatures are
brought in contact. With material properties f = √

λρcp, this contact temperature is then
(see e.g. § 5.7, (5.63) from Incropera & De Witt 1990)

T∗ = foTo + fwT∞
fo + fw

, (4.10)

where T∞ is the temperature of the water far away. Filling in the values for water and oil
we get

T∗ = To + 0.75(T∞ − To). (4.11)

The solution of (4.9) with To at x = 0 and T = T∗ at x = h results in

T(x, z) = To + 0.75(T∞ − To)

∫ x

0
eU(z)x/α dx∫ h

0
eU(z)x/α dx

. (4.12)

The heat flux at the wall, λ(dT/dx)x=0, results in the melting rate. With latent heat L this
means that

λ(dT/dx)x=0 = U(z)ρoL. (4.13)

Combining (4.12) and (4.13) gives

0.75λ(T∞ − To)∫ h

0
eU(z)x/α dx

= U(z)ρoL. (4.14)

We now rewrite the expression and introduce the non-dimensionalisation ξ = x/h:

0.75λ(T∞ − To) = U(z)ρoLh
∫ 1

0
eU(z)hξ/α dξ. (4.15)
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Working out the integral and rearranging gives

0.75λ(T∞ − To) = ρoLα[eU(z)h/α − 1], (4.16)

α ln
(

1 + 0.75λ(T∞ − To)

ρoLα
)

= U(z)h = β

2
d
dz
(h4), (4.17)

where in the last step we used (4.7). We can now solve (4.17) for h without further
approximation:

h(z) = z1/4
[

2α
β

ln(1 +Λ)

]1/4

, (4.18)

Λ = 0.75(T∞ − To)
cp

L = 0.75Ste. (4.19)

We note that the dependence of the bath temperature on the layer thickness h is very
weak, not only is there a logarithmic dependence, but also the fourth root would make
experimentally verifying the dependence of T∞ on h very challenging. Now that we have
found an expression for h, T and U we can consider the approximations we have made
before. We first focus on neglecting the term w(∂T/∂z) in (4.8). Since Uh/α is in all our
experiments small with respect to unity we may, from (4.12), for an estimate we take T −
To as Cx/h with C a constant. The main term, from (4.6), U(z) = 2βh2(dh/dz). Hence, the
term u(∂T/∂x) connected herewith is 2Cβh(dh/dz). The term w(∂T/∂z) is smaller, using
(4.4), by an amount ξ2(2 − ξ)/2. This is significantly, although not negligibly, smaller;
the error is 18.75 % at ξ = 1/2. To obtain an estimate of the temperature distribution this
is acceptable. We next consider the approximation of u in (4.6). We now use in (4.12),
instead of U, the full expression in (4.6) and carry out the integration of the thus obtained
version of (4.14) numerically, inserting the solution ((4.18)) for h. We find that the value
of the integral then differs only 0.6 %, owing to the fact that the argument of the exponent
is � 1 for both cases (with and without the second term in (4.6)), such that the exponent
is roughly constant ≈ 1.

Finally, we consider the neglect of convection in the transfer of heat between the oil film
and water. In this connection we can consider the melt oil film as a solid since the velocity,
as figures 3 and 5 show, is of order of 10 μm s−1, which is negligibly small. Water is
cooled by the cold wall and flows downward. We can make an estimate of the velocity
and the associated heat transfer by making use of the data on the opposite case, a hot
wall and a cold fluid, since that is extensively dealt with in the literature. Following Bejan
(1993) (pp. 345–346) for the case of the vertical wall, we define the Rayleigh number
by Raw = εwg(T∞ − T∗)(L/2)3Prw/ν

2
w, where, in addition to the quantities in table 1,

ε = 1.7 × 10−4 K−1 is the thermal expansion coefficient of water at 16.5 ◦C, νw = μw/ρw
the kinematic viscosity of water and Pr = ν/α the Prandtl number of water. Here, Raw
depends on the location along the wall, for which we have taken the half-way height L/2 =
0.15 m. Using these quantities and table 1, we find Raw = 2.5 × 108. With (7.43) from
Bejan (1993) (p. 345) and G from figure 7.5 (Bejan 1993, p. 346) the downward velocity
is 1.04 cm s−1. In this calculation the estimate of a water velocity of the order of cm s−1,
made earlier in this paper, was used. The corresponding Reynolds number (Re = vL/ν =
2800) is far below O(105) where the flow becomes turbulent. Bejan (1993) ((7.51)) gives,
for the above mentioned Raw, a Nusselt number Nu = KL/(2λw) = 58, where K is a heat
transfer coefficient, with a value of approximately 225 W (m2K)−1. The associated heat
flux from the oil film to the water is then 1.6 kW m−2. This is small with respect to the
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Melting of olive oil in immiscible surroundings

heat flux by conduction which is λo(T∗ − To)/h. With h ≈ 0.3 mm from ((4.18)) this is
≈12 kW m−2. An additional and strong argument for the neglect of free convection is the
following: consider (4.17). The quantity 0.75(T∞ − To) is T∗ − To. In our theory this is a
constant. If free convection where important T∗ would depend on z and, as (4.17) shows,
h would not vary as z1/4, but then deviate from that.

For comparison with experiments, U(z) is the best quantity. From (4.7) (or, alternatively,
(4.17)) and (4.18) we have

U(z) = α

h
ln (1 +Λ) ∝ z−1/4, (4.20)

which scales with the height z to a power of −1/4. This exponent has been shown before in
similar configurations by Wagner (1949), Ostrach (1953), Merk & Prins (1954) and Wells
& Worster (2011). We note that the melt rate only has a weak dependence on the bath
temperature T∞. Combining (4.18) and (4.20), we see that U scales as the logarithm of
Λ taken to the power 3/4. To achieve a doubling of our U therefore means increasing our
bath temperature to ≈71 ◦C, which would create all kinds of problems with spurious flows
created by heat leak with the surroundings causing natural convection. The predicted melt
rate in (4.20) is drawn in figure 3 as the grey dotted line. This shows that the slope agrees
satisfactorily with the experimental data, but the values are considerably higher. We have
now estimated the effect of three approximations viz. the reduction of u to U, the neglect
of w∂T/∂z in (4.8) and the neglect of free convection at the water side of the melt film.
None of these seems dominant as the source of the discrepancy between the theory and
the measurements. Initially, we suspected the neglect of the vertical heat transport to be
the main cause. We made another estimate of the involved error by first writing (4.8) as

∂

∂x
(uT)+ ∂

∂z
(wT) = α

∂2T
∂2x

, (4.21)

and subsequently integrating this term by term over the melt layer, using the solution of
(4.12) for the temperature and U and (4.4) for u and w. Whereas the first term on the left
and the conduction term both give U(T∗ − To), the second term on the left, the neglected
term, results in (U/8)(T∗ + 3To). With T∗ = 13 ◦C and To = −8 ◦C, this term has a value
of −11/8 Km s−1, in absolute magnitude only 6 % of U(T∗ − To). This again does not
mark the neglect of vertical heat transport as causing the discrepancy.

So far we have approximated the viscosity of the oil as constant inside the melt layer,
however, the strong temperature gradient inside the melt layer does not allow us to model
the viscosity as constant. The temperature dependence of the viscosity of the oil is shown
in figure 8 for the relevant temperature range. The temperature at the wall is −8 ◦C and
the temperature at the oil–water interface is T∗ = 13 ◦C. The viscosity varies from 380 to
100 cP over this interval. In the following section we calculate again the vertical velocity
w in the melt, however, now taking a variable viscosity into account.

4.2. Variation in viscosity
In table 1 we state a value for the viscosity of olive oil of 170 cP. This value is taken
at a mean olive oil temperature of 3 ◦C. An Anton Paar MCR502 rheometer was used
to measure temperature dependence of the viscosity of the olive oil, see figure 8. As the
oil is cooling down and approaching its freezing temperature its viscosity is increasing
substantially. To account for the variation in the viscosity, we recalculate the vertical
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Figure 8. Olive oil viscosity as a function of the temperature. Measurements are done using an Anton Paar
MCR502 rheometer with Peltier cooling. Measurements are done starting at a temperature of 20 ◦C and
decreasing step-wise to a minimum of −8 ◦C. We estimate an error of ±5 cP.

velocity w. In order to do this, we have to consider the Navier–Stokes equations where
constant viscosity is not assumed and from that we obtain (different from (4.1))

∂

∂x

(
μo(x)

∂w
∂x

)
= −g�ρ. (4.22)

Crucially, here, we see that the viscosity is now inside the first derivative. After integrating
once with respect to x and rearranging we obtain

∂w
∂x

= −g�ρx
μo(x)

+ C. (4.23)

The boundary conditions remain unchanged:

w|x=0 = 0, (4.24)

∂w
∂x

∣∣∣∣
x=h

= 0. (4.25)

We find the integration constant C from using the boundary equation (4.25)

∂w
∂x

= g�ρ(h − x)
μo(x)

. (4.26)

This cannot be further solved analytically without assuming a particular shape for μo(x).
We will follow two approaches. For the first, we will assume that the viscosity varies
linearly inside the thin film to find the velocity profile w, which can be done fully
analytically. For the second approach we will assume a linear temperature profile inside
the thin film, and by numerically integrating (including the viscosity curve of figure 8), we
find the velocity profile.
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For the first approach we will assume that the viscosity is varying linearly inside the
thin film:

μo(x) = μo(To)
(

1 − x
h

)
+ μo(T∗)

x
h
. (4.27)

We introduce the dimensionless quantity μ̃:

μ̃ = μo(T∗)− μo(To)

μo(To)
. (4.28)

Using this definition, (4.26) can be rewritten and we obtain

∂w
∂x

= 2β∗h(h − x)
h + μ̃x

, (4.29)

where β∗ is similar to β ((4.4)) but with μo = μo(To). After integrating and applying the
boundary condition (4.24) we get

w(x, z) = 2β∗h2
(
μ̃+ 1
μ̃2 ln

(
μ̃x
h

+ 1
)

− x
hμ̃

)
. (4.30)

We see by expansion in μ̃ that, for μ̃ = 0, w is the same as in (4.4). Note that w is still a
function of both x and z, since h is a function of the height. As before, to get the melt rate
U(z) we integrate over a control volume in the liquid melt layer (see (4.7)):

U(z) = d
dz

(
β∗ 2

3
h(z)3

)(
3(1 + μ̃)2

μ̃3 ln(1 + μ̃)− 6 + 9μ̃
2μ̃2

)
. (4.31)

Comparing this result with the previously found expression for melt rate U(z) (right-hand
side of (4.7)), it is seen that the varying viscosity introduces a correction to the melt rate
that is dependent on the values for the viscosity at the wall and at the oil–water interface.
Using (4.17) we see that the ratio between the melt rates for the constant viscosity vs the
linearly varying viscosity is β∗/β times the fourth root of the last bracketed term in (4.31).

For the second approach we will assume that the temperature is varying linearly inside
the thin film:

T(ξ) = ξT∗ + (1 − ξ)To. (4.32)

We can now fill this into (4.26) and integrate to find w:

∂w
∂x

= g�ρ(h − x)
μo(T(ξ))

, (4.33)

w(ξ)
h2 = g�ρ

∫
1 − ξ

μo(T(ξ))
dξ + C. (4.34)

The curve μo(T) from figure 8 is used to numerically integrate the profile and, using the
boundary condition ((4.24)), the integration constant can be determined. The comparison
of all these velocity profiles can be found in figure 9. Going from a constant viscosity to
a viscosity that varies linearly dramatically decreases the velocity w and stays relatively
close to a parabolic profile. If we now vary the viscosity according to the curve of figure 8
(on average this viscosity is lower than the linear approximation) the curve is slightly
higher but the shape of the profile is still roughly parabolic for the viscosities under
consideration.
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Figure 9. Vertical velocity profiles assuming constant viscosity (grey dotted, (4.4)), linear viscosity (black
dashed, (4.30)) and linear temperature profile and viscosity following figure 8 (grey dash-dotted, (4.34)).

We can now find U for the general case of μ(T(ξ)) by rewriting (4.7):

U(z) = ∂

∂z

(
h3
∫ 1

0

w
h2 dξ

)
= ∂

∂z
(h3)

∫ 1

0

w
h2 dξ, (4.35)

where we note that the integral is only a function of ξ (see (4.34)) and evaluates to a
constant, and can therefore be taken outside the derivative. We evaluate now hU(z),

hU(z) = 3
4
∂

∂z
(h4)

∫ 1

0

w
h2 dξ, (4.36)

which we can now insert into (4.15) to find an equation similar to (4.17):

α ln
(

1 + 0.75λ(T∞ − To)

ρoLα
)

= U(z)h = 3
4
∂

∂z
(h4)

∫ 1

0

w
h2 dξ. (4.37)

We can solve for h (again realising that the last integral evaluates to a number and does not
depend on z nor h):

h(z) = z1/4

⎡
⎢⎢⎢⎣α ln(1 +Λ)

3
4

∫ 1

0

w
h2 dξ

⎤
⎥⎥⎥⎦

1/4

. (4.38)

We now plug this in (4.35) to obtain

U(z) = ∂

∂z
z3/4

⎡
⎢⎢⎢⎣α ln(1 +Λ)

3
4

∫ 1

0

w
h2 dξ

⎤
⎥⎥⎥⎦

3/4 ∫ 1

0

w
h2 dξ, (4.39)

U(z) = 1
z1/4 [α ln(1 +Λ)]3/4

[
3
4

∫ 1

0

w
h2 dξ

]1/4

. (4.40)
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One can see that (4.40) simplifies to (4.20) once we take μo constant, which allows us to
integrate equation (4.34) analytically (to obtain a half-parabolic profile), and we integrate
that once more with respect to ξ to obtain the vertical flux.

4.3. Cylinder
For the horizontal cylinder (see figure 2a), we need to perform a coordinate transform to
polar coordinates, see figure 10. The buoyancy term β now depends on the angle θ with
the vertical direction, and the coordinate transform is applied to the governing equations.
The melt rate U and film thickness h now depend on the angle θ instead of height z. Since
h � R, with R the radius of the cylinder, the tangential velocity (with x = r − R) has the
same profile as w for the vertical wall. Equation (4.41) shows the continuity equation in
polar coordinates where the axial dependence has been assumed absent, where ur is the
radial velocity and uθ is the tangential velocity, with uθ = β̄x(2h(θ)− x) analogous to the
vertical velocity w for the vertical wall, where μo is taken as constant, conforming to (4.4),
and β̄ = β sin θ is the buoyancy term adapted to the geometry:

∂

∂x
((R + x)ur) = ∂

∂θ
(uθ ). (4.41)

Substituting uθ in (4.41) and using an analogous boundary condition to the vertical wall
case, ur(x = 0) = U(θ), results in an expression for ur:

ur(θ, x) = U(θ)+ 1
R

(
−1

3
d

dθ
(β̄)x3 + d

dθ
(β̄h)x2

)
. (4.42)

An expression for the melt rate can be obtained by considering mass conservation:

U(θ) = 1
R
∂

∂θ

∫ h(θ)

0
uθ (θ, x) dx = 1

R
d

dθ

(
2
3
β̄h3

)
. (4.43)

The advection–conduction equation, analogous to (4.9), with ξ = x/h, follows

ur
∂T
∂ξ

= α

h
∂2T
∂ξ2 . (4.44)

For the temperature we make an approximation analogous to the case of the vertical wall,
i.e. ur ≈ U(θ). The boundary conditions are analogous to the case of a vertical wall:

T|ξ=0 = To, (4.45)

T|ξ=1 = To + 0.75�T, (4.46)

where �T = T∞ − To. The solution for the temperature profile is

T(ξ) = To + 0.75�T

∫ ξ

0
exp

[
2h

3Rα
d

dθ
(β̄h3)ξ

]
dξ∫ 1

0
exp

[
2h

3Rα
d

dθ
(β̄h3)ξ

]
dξ
. (4.47)

Analogous to (4.13) the heat flux balance is

ρoU(θ)L = 0.75λ�T
h

1∫ 1

0
exp

[
2β̄h
3Rα

d
dθ

(
sin(θ)h3

)
ξ

]
dξ
. (4.48)
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We define the quantities

q4 = Rα
β

and H = h4

q4 . (4.49a,b)

Then the integral in (4.48) becomes

∫ 1

0
exp

[(
1
2

dH
dθ

sin(θ)+ 2
3

H cos(θ)
)
ξ

]
dξ. (4.50)

We define a function G(θ):

G(θ) = 2
3

H cos(θ)+ 1
2

dH
dθ

sin(θ), (4.51)

such that we can write the integral as

∫ 1

0
exp [G(θ)ξ ] dξ. (4.52)

From (4.43), (4.49a,b) and (4.51) we deduce that

hU(θ) = αG(θ). (4.53)

Inserting this into (4.48) and using (4.52) results in

0.75Ste = exp(G(θ))− 1. (4.54)

With (4.19) and taking logarithms we arrive at

G(θ) = 2
3

H cos(θ)+ 1
2

dH
dθ

sin(θ) = ln (1 +Λ). (4.55)

Solving and requesting regularity at θ = 0 gives

H =
(

h
q

)4

= 4 ln (1 +Λ)

∫ θ

0
sin(θ∗)1/3 dθ∗

sin(θ)4/3
. (4.56)

The final solution for the melt film thickness and melt rate can now be found by rewriting
equation (4.56), using (4.49a,b), and substituting the result for the melt film thickness in
(4.53):

hcyl(θ) = R1/4
[

2α
β

ln (1 +Λ)

]1/4

fcyl(θ), (4.57)

Ucyl(θ) = α

hcyl
ln (1 +Λ), (4.58)
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g

U (θ)

h (θ)

x = 0

θ

T∞To

ρo ρw

R

x

Figure 10. Schematic overview of molten olive oil (yellow) over a circular shape of frozen olive oil (orange),
submerged in water (blue). Here, U(θ) is the melt rate at the frozen/liquid oil interface. Definitions are used for
the horizontal cylinder (polar coordinates) and for the ball (spherical coordinates).

where fcyl(θ) is a shape function

fcyl =

(∫ θ

0
sin(θ∗)1/3 dθ∗

)1/4

sin(θ)1/3
, (4.59)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

√√√√32F1

(1
2
,
2
3

;
5
3

;sin(θ)2
)

√
2

0 ≤ θ ≤ π

2

4

√√√√√√√3
√

3Γ
(

2
3

)3

22/3π
−

3
4

sin(θ)4/32F1

(1
2
,
2
3

;
5
3

;sin(θ)2
)

3
√

sin(θ)

π

2
≤ θ ≤ π

, (4.60)

where 2F1 is Gauss’s hypergeometric function and Γ the complete gamma function.
Compared with the expressions that were found for the vertical wall, the difference is
in this shape function, which compensates for the geometry varying when following the
boundary of the wall, and the dependence on the radius hcyl ∝ R1/4. Similar expressions
occur in Acrivos (1960a,b) and also resemble the solutions for a dissolving vertical
cylinder found by Pegler & Davies Wykes (2020).

4.4. Ball
The problem of a melting ball is very similar to the cylinder described above. Here,
θ = 0 is again defined on the bottom side of the object, the azimuthal angle φ is defined
positive in clockwise direction and x = r − R, with x = 0 at the surface, is defined in the
same manner as the horizontal cylinder; see figure 10. An important difference is a flow
focusing due to the varying circumference of the ball with changing polar angle θ . The
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continuity equation in spherical coordinates, where uθ = β̄x(2h − x) (again assuming μo
is constant), is unchanged and azimuthal symmetry is assumed:

1
r2
∂

∂r
(r2ur)+ 1

r sin(θ)
∂

∂θ
(uθ sin(θ)) = 0. (4.61)

From this, ur can be found as before:

ur = U(θ)− β̄

(
2h cos(θ)+ dh

dθ
sin(θ)

)
x2

R
+ 2

3
β̄ cos(θ)

x3

R
. (4.62)

The control volume over the film thickness is now taken in three dimensions:

2πR2 sin(θ)U(θ) = d
dθ

∫ h

0
2πR sin(θ)uθ dx, (4.63)

which after substitution of uθ gives

U(θ) = 1
R sin(θ)

∂

∂θ

(
2
3
β̄h3 sin(θ)2

)
. (4.64)

Following a similar procedure as before, we find a new function G(θ):

G(θ) = 4
3

cos(θ)H + 1
2

sin(θ)
dH
dθ

= ln (1 +Λ). (4.65)

This can be solved to obtain the final solutions for the film thickness and the melt rate:

hball(θ) = R1/4
[

2α
β̄

ln (1 +Λ)

]1/4

fball, (4.66)

Uball(θ) = ln (1 +Λ)
α

hball
, (4.67)

where fball is a shape function for the spherical geometry, different from the one for the
cylinder,

fball =

(∫ θ

0
sin(θ∗)5/3 dθ∗

)1/4

sin(θ)2/3
, (4.68)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

√√√√32F1

(1
2
,
4
3

;
7
3

;sin(θ)2
)

23/4 0 ≤ θ ≤ π

2

4

√√√√√√√
√

3Γ
(

1
3

)3

5 3√2π
−

3
8

sin(θ)8/32F1

(1
2
,
4
3

;
7
3

;sin(θ)2
)

sin(θ)2/3
π

2
≤ θ ≤ π

. (4.69)

We would like to highlight that the solutions for the thickness h ((4.18), (4.57) and
(4.66)) and for the melt rate U ((4.20), (4.58) and (4.67)) for all three geometries have a
very similar form.
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5. Discussion

In § 4 we already discussed some approximations that we made. We have shown that our
models match relatively well with our experimental findings, especially considering that
our model does not contain any free (fitting) parameters. During the derivation we made
several approximations, and the model does not include all effects. We will now go through
the remaining approximations and assess their validity.

First, we have made use of the thin film approximation, which seems like a reasonable
approximation since our layer thickness is of O(mm) while our objects are of O(100 mm).

Second, we had made the assumption that ∂w/∂x|x=h ≈ 0, which also seems justified
since the ratio of the viscosities, even in the worst case, is μo/μw ≈ 75 
 1.

Third, the assumption of a constant contact temperature T∗ along the wall turns out to
be realistic for the vertical wall and for the cylinder, as can be seen from figures 3 and 4. In
the case of the ball, the agreement with the model is good between 60◦ and 130◦ but there
is a significant difference in the bottom region; see figure 5. The reason for that becomes
clear from the following analysis. When two semi-infinite media of different temperatures
are brought into contact the interface assumes a temperature, the contact temperature T∗,
given in (4.10), which remains constant thereafter. In our case one of the media, the melt
film, is of finite extent h. If we take, for convenience, equal material properties at both
sides, the contact temperature changes in time according to (see Appendix A)

T∗ = To + T∞ − To

2
erf
(

h√
αt

)
, (5.1)

where erf(τ ) = (2/
√

π)
∫ τ

0 e−t2 dt is the error function. Given a typical time of 20 s of
contact of a water element from top to bottom of the ball, and a h = 2 mm, with α =
8 × 10−8 m2 s−1, this means that, after 20 s, the error function in (5.1) has still 96 % of
its initial value. However, near the bottom, where θ = 0 and h is very small, of the order
of tenths of a millimetre, and where probably the contact time is longer, the error function
decreases from its initial value. This means a drop in the contact temperature and thereby
of the melting rate. For the vertical wall the film thickness is of the order of a 1 mm along
most of the wall. Unfortunately, we are unable to locally measure the temperature profiles
since the scales are too small (and probes too big).

Four, throughout the analysis we had assumed that the problem is time-independent.
Since our freezing temperature is Ti = −14 ◦C and the melting point is To = −8 ◦C all
the matter has to warm up 6 K before it melts. At t = 0 a skin layer of the temperature
grows inside the material. The typical dimensionless similarity variable η = x/

√
αt can

then be used to find the temperature profile inside the material which goes like erf(η/2).
The typical penetration depth of the temperature is thus given by

√
αt, such that the speed

at which this front moves is Uskin layer = √
α/(4t). If we equate this to our melt speed

of U ≈ 10 μm s−1 we find a typical time scale of t ≈ 200 s at which the speed of the
penetrating skin layer reaches the same speed as the melting boundary. In other words,
for times below a few minutes, there is energy spent on heating up material that is not
melted in this time. For larger times, the speeds of the skin layer and the melting boundary
are the same, and energy is only spent on heating material that is also melted. This thus
means that for small times we overpredict the melting rate, and the actual melting rate is
slightly lower since we heat more material up than we melt. Note that the energy spent
on heating is relatively small as compared with the energy spent on the phase transition
cp(Ti − To)/L = 4.4 %, such that the effect is comparatively small. This is, however, a
clear case in which our prediction causes an over-prediction of the melt rate. A small
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correction could be made by introducing an effective latent heat. The idea is to include
not only the energy for the phase change (the latent heat), but also the energy needed to
heat up the material from its initial temperature of −14 ◦C to the melting point −8 ◦C.
Heating up the oil by �T = −8 ◦C − (−14 ◦C) = 6 K prior to melting requires an energy
of cp�T = 11.82 kJ kg−1. Comparing this with the latent heat of olive oil 267 kJkg−1,
this amounts to roughly 4.4 %. An effective latent heat could then be defined that takes
into consideration: Leff = L + cp(Ti − To).

Another experimental issue not yet discussed in detail might be that, as we remove the
frozen oil from the metallic mould and then place it in our water tank the oil has slightly
heated up. We are not sure whether all objects were −14 ◦C throughout. Whereas the
melting profiles U are more or less constant for the vertical wall and the large horizontal
cylinder, for the ball and the small cylinder the melting profiles U change a bit over
time. The reason between those could be the varying time between releasing the olive
oil from the mould and placing it in our aquarium; see figure 1. We hypothesise that,
for the vertical wall and the large cylinder, the object was left (relatively) long in air and
would already have started forming the temperature skin layer. For the experiments with
the small cylinder and the ball we quickly used the object after releasing it from the mould,
not allowing the temperature skin layer to develop. This could then explain the differences
in steadiness between the melting profiles’ U for the various geometries.

Fifth, up to now we have ignored surface tension effects. To justify this assumption,
we compare the hydrostatic pressure and the Laplace pressure. The typical difference
in hydrostatic pressures (for the vertical wall at mid-height) is given by Phydrostatic =
g�ρL/2 ≈ 200 Pa. Now the Laplace pressure can be approximated as PLaplace =
σ |d2h/dz2| = 0.2 mPa. Since the Laplace pressure is smaller by 6 orders of magnitude,
we are confident in ignoring the effects of surface tension. This ratio is substantially less
for the cylindrical and spherical experiments; ≈200 and ≈500, respectively, but still high
enough for us to be confident in ignoring the effects of surface tension. However, surface
tension might be important for the spherical and cylindrical geometries for θ > 90◦ to
stabilise the oil film.

Sixth, we observe no turbulence in the ambient fluid nor in the thin oil film, such that we
expect our results to be valid at least up to Ra = 108. Since our Stefan number is relatively
low (0.21) the heating up of the oil is small as compared with the heat needed to melt. For
high Stefan numbers we expect an additional conduction problem inside the objects that,
for small t, delays the melting. So we can therefore conclude that our results should also
be valid for Stefan numbers at least up to Ste = 0.2.

Lastly, throughout our derivation we have considered the ambient water to be stationary,
which we have discussed before. The velocity in the oil layer along the wall is of order
1 mm s−1 and the velocity in water 1 cm s−1. This is so low that heat transfer is still mainly
by conduction and will influence T∗ by a small amount. However, for applications with
much larger Rayleigh and Stefan numbers this situation might change, and our analysis
and assumptions will no longer hold. For example increased velocities in the surrounding
water may affect the pinch-off at the apex due to increased shear forces, or the attached
oil film may show instabilities which might result in detachment of the oil film from the
object prior to reaching the apex.

6. Conclusion

In this work we have studied the melting process of frozen olive oil in an immiscible
environment of water for Rayleigh numbers of order O(108) and a Stefan number of Ste =
0.21. We have studied three different geometries with different symmetries experimentally
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and modelled the melt rate along the interface. Our model can predict the height (or
angular) dependence of the melt rate for the three geometries, and not only the scaling
but also the prefactor can be reasonably predicted (correct order of magnitude). In
our derivation of the model, we highlight the importance of the approximation to the
viscosity and its dependence on temperature. As discussed in the prior section, none of
the approximations made in the model appears to be the main cause of the discrepancy
with the experiments. We do not observe the sharpening that had been observed by Huang
& Moore (2022) in the immiscible case as the pinching off at the tip (either for the case of
a horizontal cylinder or a ball) hinders the smooth flow that would otherwise sharpen it.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.843.
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Appendix A. Effect of finite h on T ∗

Consider a piece of material of length h, and temperature To, lying between x = 0 and
x = h. This is at time t = 0 brought into contact with a semi-infinite piece of the same
material, between x = h and x = ∞, and at temperature T∞. The side of the first piece at
x = 0 is kept at To at all times. We are interested in the temperature at x = h. With α as
defined in the text, the heat equation in both pieces is

∂T
∂t

= α
∂2T
∂x2 . (A1)

Applying a Laplace transform L(t) = ∫∞
0 T e−st dt, taking into account the above

mentioned boundary and initial conditions, gives, for the solution of the Laplace transform
of the temperature at x = h,

L(T(x = h)) = T∞ − To

2
e−2h

√
s/α

s
. (A2)

Using a table of inverse Laplace transforms results for the temperature at x = h in

T∗ = To + T∞ − To

2
erf
(

h√
αt

)
. (A3)

Appendix B. Reproducibility

We have done several experiments for each geometry with similar results, although
the experimental conditions are generally slightly different (freezing temperature, water
temperature, time outside the mould before being inserted in the aquarium, camera field
of view, recording frame rate etc.). We have found three experiments with very comparable
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Figure 11. The average melting rate U for 600 s ≤ t ≤ 960 s as a function of the angle θ for three comparable
experiments of a melting ball with initial radius R = 60 mm corresponding to Ra = O(108).

experimental conditions for the spherical geometry to show the reproducibility of the
experiments. Although the recording frame rates are different, their lowest common
multiple is 60 s, such that we can compare frames at this interval. To release the balls
from their moulds we have to slightly heat the mould to melt a very thin layer of oil.
After that, it can take some time to screw the ball to the holder and to place the ball in
the aquarium, and there can be slightly different fluid motions inside the tank due to the
insertion of the oil ball into the tank. Combining these effect gives a slight uncertainty in
the exact starting temperature (although all close to −14 ◦C), and slightly different initial
conditions in terms of flow. We therefore opt to look at the balls at a slightly later stage
where these transient effects are less important. Whereas figure 5 shows multiple times for
a single experiment, we now focus on the average melting rate over a single time interval,
600 s ≤ t ≤ 960 s, for several experiments to keep the figure legible, see figure 11. We find
reasonable reproducibility between the different experiments. For θ ≥ 160◦ (top region)
we see more spread between the experiments as there the droplets are pinching off. For
θ ≤ 20◦ we also see the triangle dataset to be different from the other two. We observe
a slightly flattened bottom in the images which can explain this discrepancy, which is
perhaps due to an air bubble or crack during the unmoulding and freezing process. Lastly,
the water temperature is slightly higher for the triangle experiment (T∞ = 19.2 ◦C) as
compared with the other two experiments (T∞ = 18.5 ◦C).
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