
Introduction

In this introduction, we describe in detail the content of the second volume
of the book, simultaneously highlighting its sources and the interconnections
between various fragments of the book. Most of this volume is devoted to a
direct exploration of the dynamics and geometry of elliptic functions. Indeed,
all but one, the first, parts of the volume, i.e., Parts IV–VI, do this.

The first part of this volume, i.e., Part III, “Topological Dynamics of
Meromorphic Functions,” is devoted to the iteration of arbitrary meromorphic
functions. Indeed, it provides a relatively short and condensed account of the
topological dynamics of almost all meromorphic functions with an emphasis
on Fatou domains, including a detailed account of Baker domains that are
exclusive for transcendental functions and do not occur for rational functions.
We actually do this for all meromorphic functions, occasionally restricting our
attention to the class of transcendental meromorphic functions all of whose
prepoles (that include poles) form an infinite set. Essentially, all results of this
part are supplied with full proofs. In particular, we provide a complete proof
of Fatou’s classification of Fatou Periodic Components. We do a thorough
analysis of the singular set of the inverse of a meromorphic function and
all its iterates; in particular, we study at length asymptotic values and their
relations to transcendental tracts. We analyze the structure of these components
and the structure of their boundaries in greater detail. In particular, we
provide a very detailed qualitative and quantitative description of the local
behavior of locally and globally defined analytic functions around rationally
indifferent periodic points and of the structure of corresponding Leau–Fatou
flower petals, including the Fatou Flower Petal Theorem. Such an analysis
will turn out to be an indispensable tool in the last three sections of Chapter
22 in Part VI, where we deal with the ergodic theory of parabolic elliptic
functions. We also distinguish Speiser class S and Eremenko–Lyubich class B
of meromorphic functions, which play a seminal role in the recent development
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of the theory of iteration of transcendental meromorphic functions, proving
their fundamental properties, which include some structural theorems about
their Fatou components such as no existence of Baker domains and wandering
domains (the Sullivan Nonwandering Theorem) for class S. The proof of the
latter theorem, because of its length and high technicality, is however relegated
to Appendix B.

To the best of our knowledge, there is no systematic book account of the
topological dynamics of transcendental meromorphic functions. Some results,
with and without proofs, can be found in [BKL1]–[BKL4] and in [Ber1]. As
we have already said, essentially all results in Part III of our book are supplied
with proofs.

In Part IV, we move on to elliptic functions and stay with them until the end
of the book. The first chapter of this part, i.e., Chapter 16, which is interesting
on its own, is devoted to presenting an account of the classical theory of
elliptic functions. Almost no dynamics is involved here. We will actually not
need this chapter anywhere else in the book except in Chapter 19, where we
provide many examples of elliptic functions, including mainly but, we want to
emphasize this, not only Weierstrass ℘ functions. Here, we primarily follow
the classical books [Du] and [JS]. We would also like to draw the reader’s
attention to the books [AE] and [La].

Throughout the whole of Chapter 17, we deal with general nonconstant
elliptic functions, i.e., we impose no constraints on a given nonconstant elliptic
function. We first systematically deal with forward and, more importantly,
backward images of open connected sets, especially those with connected
components of the latter. We mean to consider such images under all iterates
f n, n≥ 1, of a given elliptic function f . We do a thorough analysis of the
singular set of the inverse of a meromorphic function and all its iterates;
in particular, we study at length asymptotic values and their relations to
transcendental tracts. We also provide sufficient conditions for the restrictions
of iterates f n to such components to be proper or covering maps. Both of
these methods, the latter allowing the use of the machinery of Section 8.6 from
Volume I, are our primary tools to study the structure of connected component
backward images of open connected sets. In particular, they prove the existence
of holomorphic inverse branches if “there are no critical points.” Holomorphic
inverse branches will be one of the most common tools used throughout the
rest of the book. We then apply these results to study images and backward
images of connected components of the Fatou set.

Section 17.2 continues this theme, providing some structural theorems
about Fatou and Julia sets of elliptic functions. Some of these are the immedi-
ate consequences of the results obtained in Part III, “Topological Dynamics of
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Meromorphic Functions,” once we observed that each elliptic function belongs
to Speiser class S, while others are more technically complicated.

The rest of Chapter 17 is actually devoted to analyzing in greater detail
the fractal properties of any nonconstant elliptic function. Following the paper
[KU3], by associating with a given elliptic function an infinite alphabet con-
formal iterated function system, and heavily utilizing its θ number, we provide
a strong, somewhat surprising, lower bound for the Hausdorff dimension of
the Julia sets of all nonconstant elliptic functions. In particular, this estimate
shows that the Hausdorff dimension of the Julia sets of any nonconstant elliptic
function is strictly larger than 1. We also provide a simple closed formula for
the Hausdorff dimension of the set of points escaping to infinity under iteration
of an elliptic function. In the last section of this chapter, we prove that no
conformal measure of an elliptic function charges the set of escaping points.
However, the central focus of this chapter is Section 17.6, where we prove
the existence of the Sullivan conformal measures with a minimal exponent for
all elliptic functions and we characterize the value of this exponent in several
dynamically significant ways. Section 17.6 depends on the preparatory work in
Sections 17.4 and 17.5, which are also interesting on their own. It also heavily
depends on Chapter 10 in the first volume.

In Part V, “Compactly Nonrecurrent Elliptic Functions: First Outlook,” we
define the class of nonrecurrent and, more notably, the class of compactly
nonrecurrent elliptic functions. This is the class of elliptic functions that will
be dealt with by us from the moment compactly nonrecurrent elliptic functions
are defined until the end of the book. Its history goes back to the papers [U3],
[U4], and [KU4]. One should also mention the paper [CJY]. Similarly to
all the papers that our treatment of nonrecurrent elliptic functions is based
on, the fact that this is possible at all is due to an appropriate version of
the breakthrough Mañé’s Theorem that was proven in [M1] in the context
of rational functions. Without Mañé’s Theorem, such treatment would not
be possible. In our setting of elliptic functions, this is Theorem 18.1.6. The
first section of Chapter 18 is entirely devoted to proving this theorem, its first
most fundamental consequences, and some other results surrounding it. The
next two sections of this chapter, also relying on Mañé’s Theorem, provide
us with further refined technical tools to study the structure of Julia sets and
holomorphic inverse branches.

The last section of this chapter, i.e., Section 18.4, has a somewhat different
character. It systematically defines and describes various subclasses of the,
mainly compactly nonrecurrent, elliptic functions that we will be dealing with
in Part VI of the book. Mostly, but not exclusively, these classes of elliptic
functions are defined in terms of how strongly expanding these functions
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are. We would like to add that while in the theory of rational functions
such classes pop up in a natural and fairly obvious way, e.g., metric and
topological definitions of expanding rational functions describe the same
class of functions, in the theory of iteration of transcendental meromorphic
functions such a classification is by no means obvious as the topological and
metric analogs of rational function concepts do not usually coincide and the
definitions of expanding, hyperbolic, topologically hyperbolic, subhyperbolic,
etc. functions vary from author to author. Our definitions seem to us to be
quite natural and fit well with our purpose of the detailed investigation of the
dynamical and geometric properties of the elliptic functions that they define. In
this section, we also define the class of regular elliptic functions. The condition
defining them is quite simple but, although very frequently holding, it does not
look natural. It is, in fact, tailor-made for the proof of the possibly (in a sense)
richest properties of the Sullivan conformal measures obtained in Section 20.3
to go through.

The purpose of Chapter 19 is to provide examples of elliptic functions with
prescribed properties of the orbits of critical points (and values). We primarily
focus on constructing examples of the various classes of compactly nonrecur-
rent elliptic functions discerned in Section 18.4. All these examples are either
Weierstrass ℘� elliptic functions or their modifications. The dynamics of such
functions depends heavily on the lattice � and varies drastically from � to �.

The first three sections of this chapter have a preparatory character and,
respectively, describe the basic dynamical and geometric properties of all
Weierstrass ℘� elliptic functions generated by square and triangular lattices �.

In Section 19.4, we provide simple constructions of many classes of elliptic
functions discerned in Section 18.4. We essentially cover all of them. All these
examples stem from Weierstrass ℘ functions.

We then, starting with Section 19.5, also provide some different, interesting
on their own, and historically first examples of various kinds of Weierstrass ℘

elliptic functions and their modifications. These come from the series of papers
[HK1], [HK2], [HK3], [HKK], and [HL] by Hawkins and her collaborators.

Part VI, “Compactly Nonrecurrent Elliptic Functions: Fractal Geometry,
Stochastic Properties, and Rigidity,” is entirely devoted to getting the dynam-
ical, geometric/fractal, and stochastic properties of dynamical systems gener-
ated by compactly nonrecurrent elliptic functions, primarily subexpanding and
parabolic ones.

In Chapter 20, we use the fruits of the existence of the Sullivan conformal
measures with a minimal exponent proven in Section 17.6 and its dynamical
characterizations obtained therein. Having compact nonrecurrence, we are able
to prove in the first section of this chapter that this minimal exponent is equal
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to the Hausdorff dimension HD(J (f )) of the Julia set J (f ), which we always
denote by h. We also obtain in this section strong restrictions on the possible
locations of atoms of such conformal measures.

Section 20.3, the last section in Chapter 20, is a culmination of our work on
the Sullivan conformal measures for elliptic functions treated on their own.
There, and from then onward, we assume that our compactly nonrecurrent
elliptic function is regular, which is the concept introduced in Section 18.4. For
this class of elliptic functions, we prove the uniqueness and atomlessness of h-
conformal measures along with their first fundamental stochastic properties
such as ergodicity and conservativity.

The results of Chapter 20 are not, however, the last word on the Sul-
livan conformal measures. Left alone, these measures would be a kind of
curiosity that is perhaps only worthy of shrugging shoulders and raised eye-
brows. Their true power, meaning, and importance come from their geometric
characterizations, and, more accurately, from their usefulness – one could
even say indispensability – for understanding geometric measures on Julia
sets, i.e., their Hausdorff and packing h-dimensional measures, where, we
recall, h=HD(J (f )). This is fully achieved in Chapter 21 for compactly
nonrecurrent regular elliptic functions. Having said this, Chapter 21 can be
viewed from two perspectives. The first is that we provide therein a geometrical
characterization of the h-conformal measure mh, which, with the absence of
parabolic points, turns out to be a normalized packing measure; the second
is that we give a complete description of geometric, Hausdorff, and packing
measures of the Julia sets J (f ). All of this is contained in Theorem 21.0.1,
which gives a simple clear picture. Because of the fact that the Hausdorff
dimension of the Julia set of an elliptic function is strictly larger than 1, this
picture is even simpler than for nonrecurrent rational functions of [U3]; see
also [DU5].

Throughout the whole of Chapter 22, f : C → Ĉ is assumed to be a
compactly nonrecurrent regular elliptic function. This chapter is, in a sense,
the core of our book. Taking the fruits of what has been done in all previous
chapters, we prove in Chapter 22 the existence and uniqueness, up to a
multiplicative constant, of a σ -finite f -invariant measure μh equivalent to the
h- conformal measure mh. Furthermore, still heavily relying on what has been
done in all previous chapters, particularly on conformal graph directed Markov
systems, nice sets, first return map techniques, and Young towers, we provide
here a systematic account of the ergodic and refined stochastic properties
of the dynamical system (f ,μh) generated by such subclasses of compactly
nonrecurrent regular elliptic functions as normal subexanding elliptic functions
of finite character and parabolic elliptic functions. By stochastic properties, we
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mean here the exponential decay of correlations, the Central Limit Theorem,
the Law of the Iterated Logarithm for subexpanding functions, the Central
Limit Theorem for those parabolic elliptic functions for which the invariant
measure μh is finite (probabilistic after normalization), and an appropriate
version of the Darling–Kac Theorem that establishes the strong convergence of
weighted Birkhoff averages to Mittag–Leffler distributions for those parabolic
elliptic functions for which the invariant measure μh is infinite.

In Chapter 23, the last actual chapter of the book, we deal with the problem
of dynamical rigidity of compactly nonrecurrent regular elliptic functions. The
issue at stake is whether a weak conjugacy such as a Lipschitz one on Julia
sets can be promoted to a much better one such as an affine conjugacy on
the whole complex plane C. This topic has a long history and goes back at
least to the seminal paper [Su4] by Sullivan, who treated, among others, the
dynamical rigidity of conformal expanding repellers. Its systematical account
can be found in [PU2]. A large variety, in many contexts, both smooth and
conformal, of dynamical rigidity theorems have been proved. The literature
abounds.

Our approach in this chapter stems from the original article by Sullivan
[Su4]. It is also influenced by [PU1], where the case of tame rational functions
has actually been done, and [SU], where the equivalence of statements
(1) and (4) of Theorem 23.0.1 was established for all tame transcendental
meromorphic functions. Being tame means that the closure of the postsingular
set does not contain the whole Julia set; in particular, each nonrecurrent elliptic
function is tame. We would, however, like to emphasize that, unlike [SU],
we chose in our book the approach that does not make use of the dynamical
rigidity results for conformal iterated function systems proven in [MPU].

In Appendix A, “A Quick Review of Some Selected Facts from Complex
Analysis of a One Complex Variable,” we collect for the convenience of the
reader many basic and fundamental theorems of complex analysis. We provide
no proofs, but we give detailed references (quite arbitrarily chosen) where the
proofs can be found. We use these theorems throughout the book, frequently
without directly referring to them. The content of Appendix B is clear from its
title. It stems from the Sullivan breakthrough paper [Su1] and follows closely
the proof presented in [BKL4].
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