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1. Introduction

A linear operator on a Fréchet space X is said to be hypercyclic if there is a vector x ∈ X
such that for every non-empty open set U ⊂ X the set N(x,U) := {n ∈ N : Tnx ∈ U}
is infinite, where (Tn) is the sequence of iterates of T. In this situation, x is called a
hypercyclic vector. Further there are more precise and stringent notions that allow to
quantify how often a hypercyclic vector visits a non-empty open set. A linear operator
on a Fréchet space X is said to be frequently hypercyclic (resp. U-frequently hypercyclic)
if there is a vector x ∈ X such that for every non-empty open set U ⊂ X the set N(x,U)
has positive lower (resp. upper) density, where the lower and upper densities of a subset
A ⊂ N are defined respectively as follows:

d(A) = lim inf
n→+∞

#A ∩ {1, . . . , n}
n

and d(A) = lim sup
n→+∞

#A ∩ {1, . . . , n}
n

.

These notions were introduced by Bayart and Grivaux [1] and Shkarin [26]. The dynamics
of linear operators is a very active branch of research: we refer the reader to [2, 21] and
the references therein for background in linear dynamics. Clearly a frequently hypercyclic
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vector is U-frequently hypercyclic and a U-frequently hypercyclic vector is hypercyclic.
Classical examples of frequently or U-frequently hypercyclic operators are given by suit-
able weighted shifts. As usual we denote by D the open unit disc {z ∈ C : |z| < 1} of the
complex plane and by H(D) the set of analytic functions in D. It is well known that H(D)
endowed with the topology of uniform convergence on compact subsets is a Fréchet space.
For α ∈ R, let w(α) = (wn(α)) be the weighted sequence of non-zero complex numbers
given by, for all n ≥ 1,

wn(α) =

(
1 +

1

n

)α

.

In the present paper, we consider the associated weighted Taylor shift:

Tα : H(D) → H(D) given by Tα(
∑
k≥0

akz
k) =

∑
k≥0

ak+1wk+1(α)z
k.

For α=0, T 0 is the classical Taylor shift operator. It is easy to check that for every real
number α, Tα is a frequently hypercyclic operator. For instance, we refer the reader to
[4, 20, 25]. The problem of determining possible rates of growth of frequently hypercyclic
functions for Tα in terms of Lp averages was studied in [25] (see [24] for the case α=0
too). For 0 < r < 1 and f ∈ H(D), we consider the classical integral means:

Mp(f, r) =

(
1

2π

∫ 2π

0

|f(reiθ)|p dθ
)1/p

(1 ≤ p <∞) and M∞(f, r) = sup
0≤t≤2π

|f(reit)|.

In the same way, for any holomorphic polynomial P let us define, for p ≥ 1,

‖P‖p =

(
1

2π

∫ 2π

0

|P (eiθ)|p dθ
)1/p

and ‖P‖∞ = sup
0≤t≤2π

|P (eit)|.

In the following, for all p> 1, q will stand for the exponent conjugate to p, i.e. 1
p +

1
q = 1

and we will adopt the convention q = ∞ if p=1. For 1 ≤ p ≤ ∞, the authors recently
highlighted a critical exponent, i.e. a value of the parameter α from which the Lp-growth
of a frequently hypercyclic function for Tα no longer has the same behaviour. In the case
of frequent hypercyclicity for Tα, the critical exponent is equal to α = 1

max(2,q) . Indeed

the authors obtained the following statements. First for p> 1 they proved the following
result.
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Theorem 1.1. ([25, Theorem 1.2]) Let α ∈ R. The following assertions hold

(1) For any 1 < p < +∞ there is a frequently hypercyclic function f in H(D) for Tα

satisfying the following estimates: there exists C> 0 such that for every 0 < r < 1

Mp(f, r) ≤


C(1− r)

α− 1
max(2,q) if α < 1

max(2,q) ,

C| log(1− r)|
1
p if α = 1

max(2,q) ,

C if α > 1
max(2,q) .

These estimates are optimal: every frequently hypercyclic function f in H(D) for
Tα is bounded from below by the corresponding previous estimate depending on α.

(2) There is a frequently hypercyclic function f in H(D) for Tα satisfying the following
estimates: there exists C> 0 such that for every 0 < r < 1

M∞(f, r) ≤


C(1− r)α−

1
2 if α < 1/2,

C| log(1− r)| if α = 1/2,

C if α > 1/2.

For α 6= 1/2, these estimates are optimal: every frequently hypercyclic function
f in H(D) for Tα is bounded from below by the corresponding previous estimate
depending on α.

For p=1, the following result holds. For any positive integer ` ≥ 1, log` stands for
log ◦ · · · ◦ log where log appears ` times.

Theorem 1.2. ([25, Proposition 4.1 and Theorem 4.4])
For any ` ≥ 1, there is a frequently hypercyclic function f in H(D) for Tα satisfying

the following estimates: there exists C> 0 such that for every 0 < r < 1 sufficiently large

M1(f, r) ≤


C(1− r)α log`(− log(1− r)) if α < 0,

C| log(1− r)| log`(− log(1− r)) if α = 0,

C if α > 0.

Moreover every frequently hypercyclic function f in H(D) for Tα satisfies the following
estimates:

lim inf
r→1−

[
M1(f, r)(1− r)−α

]
> 0 if α < 0, lim inf

r→1−

[
M1(f, r)

− log(1− r)

]
> 0 if α = 0,

lim inf
r→1−

[M1(f, r)] > 0 if α > 0.

It should be noted that the study of the growth of hypercyclic or frequently hyper-
cyclic functions started with those related to the differentiation operator on H(C)
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(see for instance [6, 8, 18, 19]) but was also recently extended to the partial differen-
tiation operator [16] or the Dunkl operator [3]. Here, as a first step, we obtain sharp
results on the permissible rates of Lp-growth of hypercyclic and U-frequently hypercyclic
functions for Tα. On one hand, for hypercyclicity, for any 1 ≤ p ≤ ∞ we find that the
rate of growth (1−r)min(α,0) turns out to be critical and hence, for any 1 ≤ p ≤ ∞, α=0
is the critical exponent. Observe that in this case the critical exponent does not depend
on p. We refer to Theorem 2.2. In particular this result states that for 1 ≤ p ≤ ∞ there
is no hypercyclic function f for Tα satisfying lim supr→1−((1 − r)−αMp(f, r)) < +∞
if α ≤ 0 while if α> 0 there exist hypercyclic functions f for Tα such that the aver-
age Mp(f, r) is bounded. In passing Theorem 2.2 gives a negative answer to a question
of [25] which asked if for α< 0 there is a frequently hypercyclic function gα for Tα

such that lim supr→1−((1 − r)−αM1(gα, r)) < +∞. On the other hand, for U-frequent
hypercyclicity, we find the same critical exponent α = 1

max(2,q) as for frequent hyper-

cyclicity. Therefore contrary to the previous case this exponent depends on p. Moreover
we show that the U-frequently hypercyclic functions and the frequently hypercyclic func-
tions for Tα share the same admissible (and optimal) Lp-growth when α is different
from the critical exponent, i.e. α 6= 1

max(2,q) . Concerning the case α = 1
max(2,q) with

1 ≤ p ≤ ∞, we prove that every U-frequently hypercyclic vector f for Tα satisfies
lim supr→1− Mp(f, r) = +∞, without a priori additional information on the growth of
the function. We refer to Theorems 3.3 and 3.5. Nevertheless several questions remain
and need to be addressed. The first question that comes to mind is the following: what
is the optimal boundary growth of U-frequently hypercyclic functions for Tα when α is
the critical exponent? Further if we go back to what was just said, we see that for p=1
the critical exponent is always equal to 0 for the hypercyclic case, the U-frequently case
and the frequently hypercyclic case. But surprisingly for p> 1 this critical exponent is
equal to 1

max(2,q) for the U-frequently or frequently hypercyclic cases and is equal to zero

for the hypercyclic case. Thus, as a second question, we can wonder about what happens
between U-frequent hypercyclicity and hypercyclicity. Why does the critical exponent go
from 1

max(2,q) to zero? In order to understand this phenomenon, we introduce intermediate

notions of linear dynamics between U-frequent hypercyclicity and hypercyclicity: Uβγ -

frequent hypercyclicity related to notions of upper weighted densities dβγ , with 0 ≤ γ ≤ 1
a continuous parameter, where we replace in the definition of U-frequent hypercyclicity
the natural upper density d by dβγ . Moreover for γ=0 Uβ0-frequent hypercyclicity will
coincide with frequent hypercyclicity and for γ=1 Uβ1-frequent hypercyclicity will coin-
cide with hypercyclicity. Further for any 0 ≤ γ ≤ γ′ ≤ 1 and for any subset E ⊂ N,
the following chain of inequalities d(E) ≤ dβγ (E) ≤ d

βγ
′ (E) ≤ dβ1(E) will show that

the notions of Uβγ -frequent hypercyclicity for γ ∈ (0, 1) furnish refined notions of linear
dynamics between U-frequent hypercyclicity and hypercyclicity. We refer the reader to
the beginning of § 4 for the main definitions and properties. Similar notions of weaker
densities have been recently studied in the context of linear dynamics (see for instance
[5, 7, 11–13, 23] and the references therein). In the present paper, we investigate the
growth in terms of Lp-averages of Uβγ -frequently hypercyclic functions for Tα. In par-
ticular, for 0 < γ < 1, and for p> 1 we find that the critical exponent is given by
α = 1−γ

max(2,q) . Hence let us observe that this critical exponent:
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• tends to 1
max(2,q) as γ tends to zero, i.e. tends to the critical exponent for

U-frequent hypercyclicity;
• tends to 0 as γ tends to 1, i.e. tends to the critical exponent for hypercyclicity.

These estimates thus allow to highlight a continuous path between the rate of growth of
hypercyclic and U-frequently hypercyclic functions: the growth (in terms of Lp-averages)
of a hypercyclic function for Tα continuously depends on the frequency of visits (measured
by the densities dβγ , 0 ≤ γ ≤ 1) of non-empty open subsets by its orbit under the action
of Tα. We also show that the estimates on the growth of Uβγ -frequently hypercyclic
functions that we obtained are optimal. To do this, we apply a method based on the use
of Rudin–Shapiro polynomials and inspired by a construction of frequently hypercyclic
functions with optimal growth for differentiation operator on H(C) due to Drasin and
Saksman [8] and that has also been adapted for the proofs of Theorems 1.1 and 1.2
in [24, 25]. For all these results, we refer the reader to Theorems 4.5, 4.10 and 4.12.
Finally let us return to the first question mentioned above. In the last section, we answer
it by showing that the optimal growth of U-frequently and Uβγ -frequently hypercyclic
functions for Tα coincides whenever α is the critical exponent: actually the Lp-growth
can be arbitrarily slow as in the hypercyclic case. We refer to Theorem 5.12.
The paper is organized as follows. In § 2 and 3, we establish the boundary behaviour

of hypercyclic functions and U-frequently hypercyclic functions for Tα respectively. In
§ 4, we deal with the Uβγ -frequently hypercyclic functions for Tα. In § 5, we turn our
attention to the specific case of critical exponent.
Throughout the paper, whenever A and B depend on some parameters, we will use

the notation A . B (resp. A & B) to mean A ≤ CB (resp. A ≥ CB) for some constant
C > 0 that does not depend on the involved parameters.

2. Growth of hypercyclic functions

In this section, we are going to establish the rate of growth of hypercyclic functions with
respect to the weighted Taylor shift operator Tα. To do this, inspired by the proofs of
[18, Theorem (A)] and [3, Theorem 3], where the authors are interested in the rate of
growth of hypercyclic functions with respect to the Mac-Lane operator or the Dunkl
operator respectively, we need an important tool in linear dynamics: the Universality
Criterion. Indeed a natural extension of the notion of hypercyclicity is the concept of
universality. A sequence of continuous linear mappings Ln : X → Y between topological
vector spaces X,Y is said to be universal whenever there exists a vector x ∈ X such that
the set {Lnx ; n ∈ N} is dense in Y. Such a vector x is called a universal vector for (Ln).
Observe that an operator T : X → X is hypercyclic if and only if the sequence (Tn)
is universal. The following result which is known as the Universality Criterion furnishes
a sufficient condition for universality [17]. It is a refined version of the hypercyclicity
criterion [15, 22].

Theorem 2.1. (Universality Criterion) Assume that X and Y are topological vec-
tor spaces, such that X is a Baire space and Y is separable and metrizable. Let Lj : X → Y
be a sequence of continuous linear mappings. Suppose that there are dense subsets X 0 of
X and Y 0 of Y and mappings Sj : Y0 → X such that
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(i) for every x ∈ X0, Ljx→ 0,
(ii) for every y ∈ Y0, Sjy → 0,
(iii) for every y ∈ Y0, (LjSj)y → y.

Then (Lj) is universal and the set of universal vectors for (Lj) is residual in X.

Now we are ready to obtain the critical rate of growth for hypercyclic functions with
respect to the weighted Taylor shift operator Tα. The following statement holds.

Theorem 2.2. Let 1 ≤ p ≤ ∞.

(1) Let α ≤ 0.
(a) For any function ϕ : [0, 1) → R+ with ϕ(r) → ∞ as r → 1− there is a

hypercyclic function f for Tα with

Mp(f, r) . ϕ(r)(1− r)α for 0 < r < 1 sufficiently close to 1.

(b) There is no hypercyclic function f for Tα that satisfies, for 0 < r < 1

Mp(f, r) ≤ C(1− r)α,

where C> 0.
(2) Let α> 0.

(a) There is a hypercyclic function f for Tα with

Mp(f, r) ≤ C

for some C> 0.
(b) For any function ϕ : [0, 1) → R+ with ϕ(r) → 0 as r → 1−, there is no

hypercyclic function f for Tα that satisfies, for 0 < r < 1

Mp(f, r) ≤ ϕ(r).

Proof. Since we have for 1 ≤ p ≤ l

Mp(f, r) ≤Ml(f, r), for 0 < r < 1,

it suffices to prove assertions (1a) and (2a) for M∞(f, r) and assertions (1b) and (2b) for
M1(f, r).

(1) We begin by the case α ≤ 0.
First we can assume without loss of generality that the function ϕ is increasing and
continuous with ϕ(0) > 0. Let us consider the space X of all functions f in H(D)
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with f(z) =
∑
k≥0

akz
k satisfying for any n ≥ 0, ρn(f) < +∞ and ρn(f) → 0 as

n→ +∞, where

ρn(f) = sup
|z|<1

{∣∣∣∣∣
+∞∑
k=n

akz
k

∣∣∣∣∣ (1− |z|)−α[ϕ(|z|)]−1

}
.

It is easy to check that X endowed with the norm ‖.‖ = supn ρn(.) is a Banach
space. Therefore (X, ‖.‖) is a Baire space. For all integer j, let Lj : X → H(D) be
the operator given by Ljf = T jf . Clearly (Lj) is a sequence of continuous linear
operators. We choose X0 = Y0 = P the set of polynomials. The set P is dense in
H(D). Moreover, setting the polynomial sN (f) =

∑N
k=0 akz

k we get

ρn(f − sN (f)) =

{
ρn(f) for n ≥ N + 1

ρN+1(f) for n ≤ N

which implies ‖f − sN (f)‖ = supn≥N+1 ρn(f) → 0 as N tends to infinity. Hence P
is dense in X. Then we define the operators Sj as follows

Sj : P → X, Sj(
n∑

k=0

akz
k) =

n∑
k=0

ak
(k + 1)α

(k + j + 1)α
zk+j .

Clearly we have, for all P ∈ P,

Lj(P ) → 0, as j → +∞, and LjSj(P ) = P.

Now we prove that, for all P ∈ P, Sj(P ) → 0, as j → +∞. Since Sj(z
k) =

(k+1)αSj+k(1), it suffices to show that Sj(1) → 0, as j → +∞. To do this, observe
that

‖Sj(1)‖ = sup
0<r<1

rj(1− r)−α

(j + 1)αϕ(r)
.

Let us define hj : [0, 1) → R+ given by hj(r) = rj(1−r)−α

ϕ(r) . We have hj(0) = 0 =

lim
r→1−

hj(r). Let 0 < rj < 1 with hj(rj) = sup0<r<1
rj(1−r)−α

ϕ(r) . If rj+1 < rj , we get

hj+1(rj+1) = rj+1hj(rj+1) < rjhj(rj+1) ≤ rjhj(rj) = hj+1(rj)

which gives a contradiction. Hence the sequence (rj) is increasing. If rj → γ with
γ < 1, then

‖Sj(1)‖ = (j + 1)−αhj(rj) ≤ (j + 1)−α γj

ϕ(0)
→ 0, as j → +∞.
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Otherwise rj → 1 and

‖Sj(1)‖ ≤ (j + 1)−α

ϕ(rj)

(
j

j − α

)j (
1− j

j − α

)−α

→ 0, as j → +∞.

Thus we have ‖Sj(1)‖ → 0 as j tends to infinity. We apply the universality criterion
to obtain universal elements for the sequence (Lj) that are hypercyclic functions for
Tα satisfying the growth condition required.
For assertion (1b), assume that f =

∑
k≥0

akz
k is a function in H(D) with, for all

0 < r < 1, M1(f, r) ≤ C(1− r)α, for some C > 0. By Cauchy estimates we get

|an| ≤
M1(f, r)

rn
.

We obtain, for all n ≥ 0 and all 0 < r < 1,

|anw1(α) . . . wn(α)| ≤ C
|w1(α) . . . wn(α)|

rn
(1− r)α.

Hence we get for all n ≥ 0,

|an(n+ 1)α| ≤ C
(n+ 1)α

e−n/(n+1)
(1− e−1/(n+1))α

which is bounded. Hence f cannot be hypercyclic for Tα.
(2) Now let us consider the case α> 0.

First we can assume without loss of generality that the function ϕ is increasing and
continuous with ϕ(0) > 0. Let us consider the Banach space (H∞(D), ‖.‖)

H∞(D) =
{
f ∈ H(D) ; ‖f‖ := sup

0<r<1
M∞(f, r) <∞

}
which is continuously embedded in H(D). We set X the closure of the polynomials
in H∞(D). Let us define the sequences (Lj) and (Sj) of linear operators as in the
previous case. Clearly we have, for all P ∈ P, where P is the set of polynomials,

Lj(P ) → 0, as j → +∞, and LjSj(P ) = P.

Now we prove that, for all P ∈ P, Sj(P ) → 0, as j → +∞. To do this, it suffices to
show that Sj(1) → 0, as j → +∞. Since

‖Sj(1)‖ ≤ 1

(j + 1)α

and α> 0 we have ‖Sj(1)‖ → 0 as j tends to infinity. We apply the universality
criterion to obtain universal elements for the sequence (Lj). These universal vectors
are clearly hypercyclic functions for Tα satisfying the growth condition required.
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For assertion (2b), assume that f =
∑
k≥0

akz
k is a function in H(D) with, for all

0 < r < 1, M1(f, r) ≤ ϕ(r), where ϕ : [0, 1) → R+ is a function such that ϕ(r) → 0
as r → 1−. We obviously may assume that ϕ is continuous and decreasing. By
Cauchy estimates, we get

|an| ≤
ϕ(r)

rn
.

We obtain, for all n ≥ 0 and all 0 < r < 1,

|an(n+ 1)α| ≤ (n+ 1)αϕ(r)

rn
.

Let us choose a sequence (rn) such that rn ≥ max(1− 1/n, ϕ−1 ((n+ 1)−α)). Hence
we get, for all n ∈ N,

|an(n+ 1)α| ≤ (n+ 1)αϕ(rn)

rnn
≤ e−n log(1−1/n)

which is bounded. Hence f cannot be hypercyclic for Tα.

�

Remark 2.3. For α< 0, Theorem 2.2 ensures that every hypercyclic function f for
Tα satisfies

lim sup
r→1−

[
(1− r)−αM1(f, r)

]
= +∞.

Since a frequently hypercyclic function is necessarily hypercyclic, this observation gives
a negative answer to the first part of the question from Remark 4.5 of [25] which
asked if for α< 0 there is a frequently hypercyclic function gα for Tα such that
lim sup
r→1−

((1− r)−αM1(gα, r)) < +∞.

3. Growth of U-frequently hypercyclic functions

In this section, we are interested in the growth of U-frequently hypercyclic functions for
Tα. First of all, in the sequel, we will need the following easy lemmas.

Lemma 3.1. Let N ∈ N. Let AN be a subset of {1, . . . , N}. For all γ ∈ R \ {−1} the
following estimate holds

∑
k∈AN

(k + 1)γ ≥


(#AN + 1)γ+1 − 1

γ + 1
if γ ≥ 0,

(N + 2)γ+1

γ + 1

(
1−

(
1− #AN

N + 2

)γ+1
)

if γ < 0, γ 6= −1.
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Proof. We begin by the case γ ≥ 0. We write

∑
k∈AN

(k + 1)γ ≥
#AN∑
k=1

(k + 1)γ ≥
∫ #AN

0

(t+ 1)γ dt,

which gives the announced result.
For γ < 0 with γ 6= −1, we obtain in an analogue way

∑
k∈AN

(k + 1)γ ≥
N∑

k=N−#AN+1

(k + 1)γ ≥
∫ N+1

N−#AN+1

(t+ 1)γ dt,

which allows to finish the proof. �

Lemma 3.2. Let (uk) and (vk) be two sequences of non-negative real numbers. Assume
that (vk) is decreasing. For any increasing sub-sequence (Nj) ⊂ N, the following inequality
holds, for all l ≥ 1:

Nl∑
k=1+N0

ukvk ≥ SNl
vNl

− SN0
vN0

+
l∑

j=1

SNj−1
(vNj−1

− vNj
),

with SN =
N∑

k=1

uk.

Proof. Observe that (SN ) is increasing and (vk) is decreasing. Thus by using a
summation by parts we derive

Nl∑
k=1+N0

ukvk =
l∑

j=1

Nj∑
k=1+Nj−1

ukvk

=
l∑

j=1

SNj
vNj

− SNj−1
vNj−1

+

Nj−1∑
k=Nj−1

Sk(vk − vk+1)


= SNl

vNl
− SN0

vN0
+

l∑
j=1

Nj−1∑
k=Nj−1

Sk(vk − vk+1)

≥ SNl
vNl

− SN0
vN0

+
l∑

j=1

SNj−1
(vNj−1

− vNj
).

�

We are ready to establish the boundary behaviour of U-frequently hypercyclic functions
for Tα. Actually we are going to prove that these functions share the same optimal growth
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as frequently hypercyclic functions except in the case where α is the critical exponent,
for which we will show in § 5 that the growth can be arbitrarily slow. We begin by the
case p> 1.

Theorem 3.3. Let f be a U-frequently hypercyclic function for the operator Tα and
1 < p ≤ ∞. Then the following estimates hold

lim sup
r→1−

(
(1− r)

1
max(2,q)

−α
Mp(f, r)

)
> 0, if α <

1

max(2, q)
,

lim sup
r→1−

(Mp(f, r)) = +∞, if α =
1

max(2, q)
,

lim sup
r→1−

Mp(f, r) > 0, if α >
1

max(2, q)
.

For α 6= 1
max(2,q) , these results are optimal in the following sense: for all p> 1, there

exists a U-frequently hypercyclic function for Tα such that, for every 0 < r < 1,

Mp(f, r) .

 (1− r)
α− 1

max(2,q) if α < 1
max(2,q)

1 if α > 1
max(2,q) .

Remark 3.4. For the critical value α = 1
max(2,q) , the optimality of the rate of growth

in this theorem will be obtained in Theorem 5.7 further in the paper.

Proof. We write f =
∑
k≥0

ak
(k+1)α z

k. Since f is U-frequently hypercyclic there exists an

increasing sub-sequence (nk) ⊂ N with positive upper density such that for all k ≥ 1

|Tnk
α f(0)− 3/2| = |ank − 3/2| < 1/2.

We get, for all k ≥ 1, |ank | ≥ 1. Set I = {nk : k ≥ 1} and for all N ≥ 1, IN =

I ∩ {1, . . . , N}. The hypothesis d(I) > 0 ensures that there exist 0 < C < 1 and an
increasing sequence (Nl) of positive integers such that

#INl
≥ CNl. (1)

Up to take a sub-sequence, we can also assume that

C(Nl+1 + 1) ≥ Nl + 1. (2)

Let us consider, for all l ≥ 1, 1− 1
Nl−1 ≤ rl < 1− 1

Nl
. Thus, we derive

Nl − 1 ≤ 1

1− rl
< Nl. (3)
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(1) Case 2 ≤ p ≤ ∞:
Jensen’s inequality and Parseval’s Theorem give

[Mp(f, rl)]
2 ≥ [M2(f, rl)]

2 =
∑
k≥0

|ak|2

(k + 1)2α
r2kl ≥

Nl∑
k=1

|ak|2

(k + 1)2α
r2kl .

Thus, we deduce

[Mp(f, rl)]
2 ≥

(
1− 1

Nl − 1

)2Nl
Nl∑
k=1

|ak|2

(k + 1)2α
&

Nl∑
k=1

|ak|2

(k + 1)2α
(4)

and using the inequality |ak| ≥ 1 for k ∈ INl

[Mp(f, rl)]
2 &

∑
k∈INl

1

(k + 1)2α
. (5)

(a) Case α ≤ 0: Combining Lemma 3.1 with (1), (3) and (5) we get

[Mp(f, rl)]
2 & N−2α+1

l ≥ (1− rl)
2α−1.

(b) Case 0 < α < 1/2: using (5) and Lemma 3.1 again, we get

[Mp(f, rl)]
2 ≥ (2 +Nl)

−2α+1

−2α+ 1

(
1−

(
1−

#INl

2 +Nl

)−2α+1
)
.

The inequality (1) ensures

(
1−

#INl
2+Nl

)−2α+1

≤
(
1− CNl

2+Nl

)−2α+1

. We deduce

by using (1) and (3) again

[Mp(f, rl)]
2 & N−2α+1

l ≥ (1− rl)
2α−1.

Hence we conclude

lim sup
r→1−

(
(1− r)

1
2−αMp(f, r)

)
> 0.

(c) Case α = 1
2 : using (4), we know

[Mp(f, rl)]
2 &

l∑
j=1

Nj∑
k=1+Nj−1

|ak|2

k + 1
.
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Hence applying Lemma 3.2 with uk = |ak|2 and vk = 1/(k + 1), we get, for all
l ≥ 1,

[Mp(f, rl)]
2 &

SNl

Nl + 1
−

SN0

N0 + 1
+

l∑
j=1

SNj−1

(
1

Nj−1 + 1
− 1

Nj + 1

)
.

By construction SNk−1
& Nk−1+1. Thus taking into account (2) we derive, for

all l ≥ 1, the inequality

[Mp(f, rl)]
2 &

l∑
j=1

(
1− Nj−1 + 1

Nj + 1

)
& l,

that allows to obtain lim sup
r→1−

Mp(f, r) = +∞.

(2) Case 1 < p < 2:
From Hausdorff–Young inequality (see [9]) we get

[Mp(f, rl)]
q ≥

∑
k≥0

|ak|q

(k + 1)qα
rqkl ≥

Nl∑
k=1

|ak|q

(k + 1)qα
rqkl .

Thus, we deduce

[Mp(f, rl)]
q ≥

(
1− 1

Nl − 1

)qNl
Nl∑
k=1

|ak|q

(k + 1)qα
&

Nl∑
k=1

|ak|q

(k + 1)qα
.

Using the same strategy as in the case 2 ≤ p ≤ ∞, we obtain,

lim sup
r→1−

(
(1− r)

1
q−αMp(f, r)

)
> 0, for α < 1/q,

lim sup
r→1−

(Mp(f, r)) = +∞, for α = 1/q.

Moreover, since a U-frequently hypercyclic function is necessarily hypercyclic, the
assertion for the case α > 1

max(2,q) of the statement is given by the assertion (2b) of

Theorem 2.2.
Finally, since a frequently hypercyclic function is necessarily U-frequently hyper-

cyclic, Theorem 1.1 ensures that the estimates we have proved are optimal when
α 6= 1

max(2,q) . �

Now we deal with the case p=1.

Theorem 3.5. Let f be a U-frequently hypercyclic function for the operator Tα. Then,
the following estimates hold
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lim sup
r→1−

(
(1− r)−αM1(f, r)

)
= +∞, if α ≤ 0,

lim sup
r→1−

M1(f, r) > 0, if α > 0.

For α 6= 0, these results are optimal in the following sense: for any positive integer l ≥ 1,
there exists a U-frequently hypercyclic function for the operator Tα such that for every
0 < r < 1 sufficiently large

M1(f, r) .

{
(1− r)α logl(− log(1− r)) if α < 0

1 if α > 0.

Proof. First since a U-frequently hypercyclic function is necessarily hypercyclic, the
assertions (1b) and (2b) of Theorem 2.2 ensure that,

lim sup
r→1−

(
(1− r)−αM1(f, r)

)
= +∞, if α ≤ 0, and lim sup

r→1−
M1(f, r) > 0, if α > 0.

Moreover, since a frequently hypercyclic function is necessarily U-frequently hypercyclic,
Theorem 1.2 shows that the previous estimates are optimal when α 6= 0. �

Remark 3.6. For the critical value α=0, the optimality of the rate of growth in
Theorem 3.5 will be obtained in Theorem 5.7 again.

4. Between U-frequent hypercyclicity and hypercyclicity

Let 1 ≤ p ≤ ∞. In view of Theorems 1.1, 1.2, 3.3 and 3.5, the critical exponent related
to the Lp growth of frequently hypercyclic functions for Tα is the same as that related to
the Lp growth of U-frequently hypercyclic functions. It is equal to 1

max(2,q) . Nevertheless,

this critical exponent is always equal to 0 in the case of hypercyclic functions, and hence
it does not depend on p. In this section, we are interested in what happens between
U-frequent hypercyclicity and hypercyclicity. In particular, when p> 1, we will try to
understand why and how the critical exponent goes from 1

max(2,q) in the case of Lp-

norm of U-frequently hypercyclic functions to 0 for the Lp-norm of hypercyclic functions.
To do this, we introduce intermediate notions of linear dynamics that link U-frequent
hypercyclicity and hypercyclicity. First of all, we need some definitions and results.

4.1. Some weighted densities

First, we introduce a refined notion of upper densities.

Definition 4.1. Let β = (βn) be a non-decreasing sequence of positive real numbers
tending to infinity. For a subset E ⊂ N, its upper β-density is given by

dβ(E) = lim sup
n→+∞

∑n
k=1;k∈E βk∑n

k=1 βk
.
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These quantities enjoy all the classical properties of densities (see [12, 14]) and
allow to define dynamical notions of the same nature as hypercyclicity or U-frequent
hypercyclicity.

Definition 4.2. Let β = (βn) be a non-decreasing sequence of positive real numbers
tending to infinity and let E be a subset of N. An operator T : X → X, where X is a
Fréchet space, is said to be Uβ-frequently hypercyclic if there exists x ∈ X such that for
every non-empty open subset U ⊂ X,

dβ({n ∈ N : Tnx ∈ U}) > 0.

In the sequel, we are interested in densities given by the weighted sequence denoted
by βγ and defined by βγ = (en

γ
), where γ is a parameter with 0 ≤ γ ≤ 1. First of all,

let us notice that:

(i) the density dβ0 coincides with the upper natural density d,

(ii) for any subset E ⊂ N, dβ1(E) > 0 if and only if E is infinite.

Moreover for 0 < γ < 1 an integral comparison test leads to the estimate

n∑
k=1

ek
γ
∼ n1−γ

γ
en

γ
, as n tends to infinity,

that we will use regularly in the rest of the paper. In addition, according to Lemma 2.8
of [12], the following inequalities hold. For the sake of clarity, let us mention that the
density dβγ is denoted by dAγ in [12].

Lemma 4.3. For any 0 ≤ γ1 ≤ γ2 ≤ 1 and for any subset E of N, we have

d(E) ≤ dβγ1 (E) ≤ dβγ2 (E) ≤ dβ1(E).

Therefore, the densities dβγ can give very different notions of dynamics that are inter-
mediate between U-frequent hypercyclicity and hypercyclicity. In particular, the following
lemma holds.

Lemma 4.4. Let 0 < γ ≤ 1. There exists a subset Eγ ⊂ N such that, for any 0 ≤ γ′ <
γ ≤ 1, dβγ (E) > 0 and d

βγ
′ (E) = 0.

Proof. First observe that, for all 0 < t < 1,

∑2n−1

k=1 ek
t∑2n

k=1 e
kt

∼ 2−(1−t)e−2nt(1−2−t) → 0 as n→ +∞. (6)
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Let γ 6= 1. Set Eγ = N
⋂(⋃

n≥b 1γ c+1

[
2n − b2n(1−γ)c; 2n

])
. Clearly, for all n large

enough, we have

2n∑
k=1;k∈Eγ

ek
γ
≥

2n∑
k=2n−b2n(1−γ)c+1

ek
γ
. (7)

Moreover, we get

∑2n

k=2n−b2n(1−γ)c+1
ek

γ∑2n

k=1 e
kγ

= 1−
∑2n−b2n(1−γ)c

k=1 ek
γ∑2n

k=1 e
kγ

.

But we compute

∑2n−b2n(1−γ)c
k=1 ek

γ∑2n

k=1 e
kγ

∼
(
1− b2n(1−γ)c

2n

)1−γ

e2
nγ((1−2−nb2n(1−γ)c)γ−1) → e−γ as n→ +∞.

Taking into account (6) and (7), we deduce

dβγ (Eγ) > 0.

Now let 0 ≤ γ′ < γ ≤ 1. Clearly keeping in mind that

2n∑
k=1;k∈Eγ

ek
γ′

≤
2n−1∑
k=1

ek
γ′

+
2n∑

k=2n−b2n(1−γ)c

ek
γ′

and by using both γ′ − γ < 0, the estimate

∑2n−b2n(1−γ)c
k=1 ek

γ′∑2n

k=1 e
kγ

′ ∼
(
1− b2n(1−γ)c

2n

)1−γ′

e2
nγ′ ((1−2−nb2n(1−γ)c)γ

′
−1) → 1 as n→ +∞,

and (6) we derive

d
βγ

′ (Eγ) = 0.

Finally, for γ=1, the lemma is easy to establish since a subset E ⊂ N satisfies dβ1(E) > 0
if and only if E is infinite. This finishes the proof. �

In some sense, the densities dβγ , 0 ≤ γ ≤ 1, will us allow to interpolate the behaviour
of hypercyclic vectors between U-frequent hypercyclicity and hypercyclicity.
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4.2. Rate of growth of Uβγ -frequently hypercyclic functions

First, we deal with the case p> 1. We will discuss the case p=1 at the end of the
section. We are ready to state the result that highlights both the continuous variation
of the critical exponent and that of the growth (in term of Lp averages) of a hypercyclic
function for Tα according to the frequency of visits of non-empty open subsets by its
orbit under the action of Tα.

Theorem 4.5. Let 0 < γ < 1 and 1 < p ≤ ∞. Let f be a Uβγ -frequently hypercyclic
function for the operator Tα. Then, the following hold

if α <
1− γ

max(2, q)
, lim sup

r→1−

(
[1− r]

1−γ
max(2,q)

−α
Mp(f, r)

)
> 0,

if α =
1− γ

max(2, q)
, lim sup

r→1−
(Mp(f, r)) = +∞,

if α >
1− γ

max(2, q)
, lim sup

r→1−
(Mp(f, r)) > 0.

Proof. Let f be a Uβγ -frequently hypercyclic function for Tα. We write f =∑
k≥0

ak
(k+1)α z

k. Since f is Uβγ -frequently hypercyclic, there exists an increasing sub-

sequence (nk) ⊂ N with positive upper βγ-density such that, for all k ≥ 1,

|Tnk
α f(0)− 3/2| = |ank − 3/2| < 1/2.

We get, for all k ≥ 1, |ank | ≥ 1. Set I = {nk : k ≥ 1} and for all N ≥ 1, IN =

I ∩ {1, . . . , N}. The hypothesis dβγ (I) > 0 ensures that there exist 0 < C < 1 and an
increasing sequence (Nl) of positive integers such that

∑
k∈INl

ek
γ
≥ C

N1−γ
l

γ
eN

γ
l . (8)

Up to take a sub-sequence, we can suppose that

C(Nk+1 + 1) ≥ Nk + 1. (9)

Let us consider, for all l ≥ 1, a sequence (rl) with 1− 1
Nl−1 ≤ rl < 1− 1

Nl
. Observe that

Nl − 1 ≤ 1

1− rl
< Nl. (10)
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(1) Case 2 ≤ p ≤ ∞:
Jensen’s inequality and Parseval’s Theorem give

[Mp(f, rl)]
2 ≥ [M2(f, rl)]

2 =
∑
k≥0

|ak|2

(k + 1)2α
r2kl ≥

Nl∑
k=1

|ak|2

(k + 1)2α
r2kl &

Nl∑
k=1

|ak|2

(k + 1)2α
.

(11)

Let us choose j0 ∈ N such that the function t 7→ (t+ 1)−2αe−tγ is decreasing for
t ≥ Nj0

. Thus, we can write, for all l ≥ j0 + 1,

[Mp(f, rl)]
2 &

l∑
j=1+j0

Nj∑
k=1+Nj−1

|ak|2

(k + 1)2α
ek

γ
e−kγ .

Then applying Lemma 3.2 with uk = |ak|2ek
γ
, we get

[Mp(f, rl)]
2 & SNl

(Nl + 1)−2αe−N
γ
l − SNj0

(Nj0
+ 1)−2αe

−N
γ
j0

+
l∑

j=1+j0

SNj−1

(
(Nj−1 + 1)−2αe

−N
γ
j−1 − (Nj + 1)−2αe

−N
γ
j

)
.

(12)

Since SNi
=
∑

k≤Ni

|ak|2ek
γ
, by construction and by (8), we get, for all i ≥ 1,

SNi
≥
∑

k∈INi

ek
γ
& N1−γ

i eN
γ
i & (N1−γ

i + 1)eN
γ
i . (13)

From (12) and (13), we deduce

[Mp(f, rl)]
2 &(Nl + 1)(1−γ)−2α

+
l∑

j=1+j0

(Nj−1 + 1)1−γe
N

γ
j−1

(
(Nj−1 + 1)−2αe

−N
γ
j−1

−(Nj + 1)−2αe
−N

γ
j

)
. (14)

(a) Case α < 1−γ
2 : From (14), we get, for l large enough,

[Mp(f, rl)]
2 & (Nl + 1)(1−γ)−2α. (15)

Thanks to (10) and (15), we deduce

[Mp(f, rl)]
2 & (1− rl)

2α−(1−γ).
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Hence we conclude

lim sup
r→1−

[
(1− r)−α+

1−γ
2 Mp(f, r)

]
> 0.

(b) Case α = 1−γ
2 : taking into consideration (14), we can write, for all l ≥ 1 + j0,

[Mp(f, rl)]
2 &

l∑
j=1

(
1−

(
Nj−1 + 1

Nj + 1

)1−γ

e
N

γ
j−1

−N
γ
j

)
.

Thus taking into account (9), we derive, for all l ≥ 1+j0, [Mp(f, rl)]
2 & l, which

allows to obtain

lim sup
r→1−

Mp(f, r) = +∞.

(c) Case α > 1−γ
2 : since f is hypercyclic, the conclusion is given by Theorem 2.2.

(2) Case 1 < p < 2:
It suffices to combine the arguments of the proof of the preceding case with those
of the proof of (2) of Theorem 3.3 to obtain the desired conclusions.

�

4.3. Optimal growth of Uβγ -frequently hypercyclic functions: a constructive

proof

In this subsection, we intend to prove that the estimates given by Theorem 4.5 whenever
α is different from the critical exponent, i.e. α 6= 1−γ

max(2,q) , are optimal. The case α =
1−γ

max(2,q) will be treated separately in § 5. Thus for all 0 < γ < 1 and for α 6= 1−γ
max(2,q) ,

we propose to build Uβγ -frequently hypercyclic functions for Tα that have the required
Lp growth and no more. To do this, we follow the construction of frequently hypercyclic
functions for Tα given in [25] which itself was partly inspired by [8]. In particular, we will
need the so-called Rudin–Shapiro polynomials (combined with the de la Vallée–Poussin
polynomials), which have coefficients ±1 (or bounded by 1) and an optimal growth of Lp-
norm. Let us recall the associated result in the form of Lemma 2.1 of [8] that summarized
the result of Rudin–Shapiro [27].

Lemma 4.6.

(1) For each N ≥ 1, there is a trigonometric polynomial pN =
∑N−1

k=0 εN,ke
ikθ where

εN,k = ±1 for all 0 ≤ k ≤ N − 1 with at least half of the coefficients being +1 and
with

‖pN‖p ≤ 5
√
N for p ∈ [2,+∞].

https://doi.org/10.1017/S0013091524000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000312


Growth of hypercyclic functions 813

(2) For each N ≥ 1, there is a trigonometric polynomial p∗N =
∑N−1

k=0 aN,ke
ikθ where

|aN,k| ≤ 1 for all 0 ≤ k ≤ N − 1 with at least bN
4 c coefficients being +1 and with

‖p∗N‖p ≤ 3N1/q for p ∈ [1, 2].

For any given polynomial q with q(z) =
∑d

j=0 bjz
j with bd 6= 0, we denote d = deg(q)

and ‖q‖`1 =
d∑

j=0

|bj |. We set 2N =
⋃
k≥1

Ak where for any k ≥ 1, Ak =
{
2k(2j − 1); j ∈ N

}
.

Denote by P the countable set of polynomials with rational coefficients and let us also
consider pairs (q, l) with q ∈ P and l ∈ N satisfying ‖q‖`1 ≤ l, displayed as a single
sequence (qk, lk). Clearly, (qk) is a dense set in H(D). Hence, for any k ≥ 1, we set
dk = deg(qk) and we have

‖qk‖`1 ≤ lk for every k ≥ 1.

For any α ∈ R, for any positive integer k ≥ 1, we set q̃k(z) =

dk∑
j=0

(j + 1)αb
(k)
j zj .

Let α be a real number and p ∈ (1,∞]. For all integer n ≥ 0, we set
In = {2n, . . . , 2n+1 − 1}. Next, for k ≥ 1, let us define the integers

αk = 1 +
⌊
max

(
l2k(1 + dk)

2max(α,0), dk +max(3, 3 + α)l2k +max(α, 0)lk log(1 + dk)
)⌋

and

α∗
k = 1 +

⌊
max

(
lqk(1 + dk)

qmax(α,0), dk +max(3, 3 + α)l2k +max(α, 0)lk log(1 + dk)
)⌋
.

We set fα =
∑
n≥0

Pn,α where the blocks (Pn,α) are polynomials defined as follows, using

Rudin–Shapiro polynomials given by Lemma 4.6,

Pn,α(z) =


0 if n is odd

0 if n ∈ Ak and 2n−1 < αk

z2
n
Qn(z) if n ∈ Ak and 2n−1 ≥ αk

(16)

with for n ∈ Ak,

Qn(z) =
∑
j∈In

(j + 1)−αc
(k)
j−2nz

j−2n

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

p
b 2

n(1−γ)
αk

c
(zαk)q̃k(z).
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We also set f∗α =
∑
n≥0

P ∗
n,α where the blocks (P ∗

n,α) are polynomials defined as follows,

using the de la Vallée–Poussin polynomials given by Lemma 4.6,

P ∗
n,α(z) =


0 if n is odd

0 if n ∈ Ak and 2n−1 < α∗
k

z2
n
Q∗

n(z) if n ∈ Ak and 2n−1 ≥ α∗
k,

(17)

with, for n ∈ Ak,

Q∗
n(z) =

∑
j∈In

(j + 1)−αc
(k)
j−2nz

j−2n

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

p∗
b2

n(1−γ)

α∗
k

c
(zα

∗
k)q̃k(z).

A combination of Lemma 4.7 below with the triangle inequality shows that the func-
tion fα (resp. f∗α) belongs to H(D). Observe that, if we denote the polynomial z 7→
p
b2n−1

αk
c
(zαk) (resp. z 7→ p∗

b2n−1
αk

c
(zα

∗
k)) by gk (resp. g∗k), we have, for all 1 ≤ p ≤ +∞,

‖gk‖p = ‖p
b2n−1

αk
c
‖p (resp. ‖g∗k‖p = ‖p∗

b2n−1

α∗
k

c
‖p). Finally for any integer n, let us denote

(φn(k)) the sequence defined as follows

φn(k) =

{
(k + 1)−α if k ∈ In
0 otherwise.

Lemma 4.7. Let α ∈ R. The following estimates hold.

(i) For any 2 ≤ p ≤ +∞, any 0 < r < 1 and any n ∈ N, we have

Mp(Pn,α, r) . 2n(
1−γ
2 −α)r2

n
.

(ii) For any 1 < p < 2, any 0 < r < 1 and any n ∈ N, we have

Mp(P
∗
n,α, r) . 2n(

1−γ
q −α)r2

n
.

Proof.

(i) On one hand, we deal with the case 2 ≤ p < +∞. Let n be a positive integer.
Without loss of generality, we can assume that n belongs to the set Ak for some
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k ≥ 1. Let r be in (0, 1). Since r 7→Mp(f, .) is increasing, we get

Mp(Pn,α, r) ≤ r2
n
‖Qn‖p.

Then, the polynomial Qn can be viewed as a trigonometric polynomial obtained by

an abstract convolution operator on T, given by (ck)k≥0 7→ (φn(j)c
(k)
j−2n)j≥0 (where

(c
(k)
j ) denotes the sequence of the coefficients of the polynomial p

b2n−1
αk

c
q̃k). Now, we

are going to apply the Marcinkiewicz Multiplier Theorem [10, Theorem 8.2 p.148].
To do this, observe that we have, for any l ≥ 1,

sup
j∈Il

|φn(j)| ≤ sup
j∈In

|φn(j)| . 2−nα

and

sup
l

∑
j∈Il

|φn(j + 1)− φn(j)| ≤
∑
j∈In

|φn(j + 1)− φn(j)| . 2−nα.

Hence, taking into account the choice of αk and Lemma 4.6, we get

‖Qn‖p . 2−nα‖p
b2

n(1−γ)
αk

c
‖p‖q̃k‖∞

. 2−nα

√
2n(1−γ)

αk
lk(1 + dk)

max(α,0)

. 2n(
1−γ
2 −α).

Finally, we obtain the desired estimate

Mp(Pn,α, r) . 2n(
1−γ
2 −α)r2

n
.

On the other hand, we deal with the case p = ∞. Let us recall that Pn,α(z) = 0 or

z2
n
Qn(z) with Qn(z) =

∑
j∈In

(j+1)−αc
(k)
j−2nz

j−2n where (c
(k)
j ) denotes the sequence

of the coefficients of the polynomial p
b 2

n(1−γ)
αk

c
(zαk)q̃k(z). First, assume that α ≤ 0.

We write

M∞(Pn,α, r) . r2
n
‖Qn‖∞.

Using the form of Qn, as in the proof of Lemma 3.6 of [25], we apply a fractional
Bernstein’s inequality to obtain, taking into consideration Lemma 4.6,

M∞(Pn,α, r) . r2
n
2−nα‖Qn‖∞ . 2−nα‖p

b2
n(1−γ)
αk

c
‖∞‖q̃k‖∞ . 2−nα

√
b2

n(1−γ)

αk
clk.

Thanks to the choice of αk, we have, for α ≤ 0,

M∞(Pn,α, r) . 2n(
1−γ
2 −α).
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To conclude, it suffices to mimic the induction of the proof of Lemma 3.7 of [25].
(ii) The proof is similar as that of the case 2 ≤ p < +∞ by applying Lemma 4.6 for

1 < p < 2.

�

Now we are ready to obtain the rate of growth of the aforementioned functions fα and
f∗α. We refer to Lemmas 3.4, 3.5 and 3.8 of [25] with obvious modifications.

Lemma 4.8.

(1) Let 2 ≤ p ≤ +∞. For all 0 < r < 1, the following estimates hold

Mp(fα, r) .

{
(1− r)α−

1−γ
2 if α < 1−γ

2 .

1 if α > 1−γ
2

(2) Let 1 < p < 2. For all 0 < r < 1, the following estimates hold

Mp(f
∗
α, r) .

{
(1− r)α−

1−γ
q if α < 1−γ

q .

1 if α > 1−γ
q

Now we are going to prove that the functions fα and f∗α are Uβγ -frequently hypercyclic
for Tα.

Proposition 4.9. For p ≥ 2 (resp. 1 < p < 2), the function fα (resp. f∗α) is a
Uβγ -frequently hypercyclic vector for the operator Tα.

Proof. We only prove that the vector fα is Uβγ -frequently hypercyclic for the operator
Tα. We do not repeat the details for f∗α: it will be enough to make the appropriate
modifications.
Let k be a large enough integer. Let us consider n ∈ Ak such that

2n−1 ≥ αk. We consider Bn the set of s in In such that the coefficient of
z s in the polynomial z2

n
p
b2

n(1−γ)
αk

c
(zαk) is equal to 1 and we denote by Tk ={

s : s ∈ Bn, n ∈ Ak, 2
n−1 ≥ αk

}
.

Observe that max(Bn) ≤ 2n + b2n(1−γ)c and since at least half of the coefficients of
p
b2

n(1−γ)
αk

c
being +1, we get

∑
j≤max(Bn);

j∈Tk

ej
γ

∑
j≤max(Bn)

ej
γ ≥

2n+2−1b2n(1−γ)c∑
j=2n

ej
γ

2n+b2n(1−γ)c∑
j=1

ej
γ

=

2n+2−1b2n(1−γ)c∑
j=1

ej
γ

2n+b2n(1−γ)c∑
j=1

ej
γ

−

2n−1∑
j=1

ej
γ

2n+b2n(1−γ)c∑
j=1

ej
γ

. (18)
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Clearly, we have (
2n +

b2n(1−γ)c
2

)γ

−
(
2n + b2n(1−γ)c

)γ
→ −γ

2

and

(2n − 1)
γ −

(
2n + b2n(1−γ)c

)γ
→ −γ,

which implies, using similar estimations as those of the proof of Lemma 4.4,

2n+2−1b2n(1−γ)c∑
j=1

ej
γ

2n+b2n(1−γ)c∑
j=1

ej
γ

→ e−γ/2 and

2n−1∑
j=1

ej
γ

2n+b2n(1−γ)c∑
j=1

ej
γ

→ e−γ , as n→ +∞.

Hence the inequality (18) ensures that

dβγ (Tk) > 0.

Then let α be a real number and let k ∈ N. Let us consider s ∈ Bn with n ∈ Ak satisfying
2n−1 ≥ αk. As in the proof of Lemma 3.9 of [25] with easy modifications, we can prove
that

sup
|z|=1− 1

lk

|T s
α(fα)(z)− qk(z)| .

1

lk
,

provided that k is chosen large enough. This allows to obtain Uβγ -frequent hypercyclicity
of fα. �

In summary, Lemma 4.8 and Proposition 4.9 leads to the following result, which shows
that the statement of Theorem 4.5 is optimal whenever α is not the critical exponent.

Theorem 4.10. Let 0 < γ < 1 and 1 < p ≤ ∞.

(1) for α < 1−γ
max(2,q) , there exists a Uβγ -frequently hypercyclic function for the operator

Tα such that

Mp(f, r) . (1− r)
α− 1−γ

max(2,q) ;

(2) for α > 1−γ
max(2,q) , there exists a Uβγ -frequently hypercyclic function for the operator

Tα such that

Mp(f, r) . 1.
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Remark 4.11.

(1) For the critical value α = 1−γ
max(2,q) , the optimality of the rate of growth in this

theorem will be obtained in Theorem 5.11.
(2) Let 0 < γ < 1. It seems important to note that the functions constructed for

the proof of Theorem 4.10 are Uβγ -frequently hypercyclic for Tα but neither
U
βγ

′ -frequently hypercyclic for 0 < γ′ < γ nor U-frequently hypercyclic, since they

don’t satisfy the estimates given by Theorem 4.5 or Theorem 3.3.

Finally let us say some words for the case p=1. As in the proof of Theorem 3.5, observe
that a Uβγ -frequently hypercyclic function is necessarily hypercyclic and a U-frequently
hypercyclic function is necessarily Uβγ -frequently hypercyclic. This leads to the following
statement.

Theorem 4.12. Let 0 < γ < 1. Let f be a Uβγ -frequently hypercyclic function for the
operator Tα. Then, the following assertions hold

lim sup
r→1−

(
(1− r)−αM1(f, r)

)
= +∞, if α ≤ 0,

lim sup
r→1−

M1(f, r) > 0, if α > 0.

These results are optimal in the following sense: for any positive integer l ≥ 1, there exists
a Uβγ -frequently hypercyclic function for the operator Tα such that for every 0 < r < 1
sufficiently large

M1(f, r) .

{
(1− r)α logl(− log(1− r)) if α < 0

1 if α > 0.

Remark 4.13. For the critical value α=0, the optimality of the rate of growth in
Theorem 4.12 will be obtained in Theorem 5.11 again.

5. Optimal estimates: the case of the critical exponent

In this section, we are going to show that the growth of U-frequently or Uβγ -frequently
hypercyclic functions for Tα can be arbitrarily slow when α is the critical exponent. The
situation will therefore be similar to the hypercyclic case for which for all 1 ≤ p ≤ ∞ the
critical exponent is α=0 and, according Theorem 2.2, the two following properties hold:
for all hypercyclic function f for Tα, lim supr→1− Mp(f, r) = +∞ and for any function
ϕ : [0, 1) → R+ tending to infinity as r tends to 1, there is a hypercyclic function f such
that Mp(f, r) ≤ ϕ(r). For this, we are going to adapt the constructive method used in
§ 4.3. Before we start, we establish a lemma that will be useful in the following.

Lemma 5.1. Let (wn) be an increasing sequence of positive integers such that
wn+1
wn

→
+∞ as n tends to infinity. Let (an) be a bounded sequence of positive real numbers such
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that
∑
an = +∞. If we denote by h : R+ → R+ an increasing function with, for all

n ∈ N, h(n) = wn, the following estimate holds

∑
n≥0

an

(
1− 1

h(x)

)wn

∼
∑
n≤x

an, as x→ ∞.

Proof. Let ε> 0. Let n ≤ x < n+1, n ≥ 1 so big that h(n) > 1. Clearly, the following
inequality holds

(
1− 1

h(n)

)h(k)

≤
(
1− 1

h(x)

)h(k)

≤
(
1− 1

h(n+ 1)

)h(k)

. (19)

From this, we get for k ≤ n− 1

1 ≥
(
1− 1

h(x)

)h(k)

≥
(
1− 1

h(n)

)h(n−1)

=

((
1− 1

wn

)wn)wn−1
wn

→ 1

as n→ +∞ since
wn+1
wn

→ +∞. Thus, there is some N > 0 such that, whenever N ≤ k ≤
n− 1 and n ≤ x < n+ 1,

1− ε ≤
(
1− 1

h(x)

)h(k)

≤ 1. (20)

Next let k ≥ n+ 2. From 19, we get

(
1− 1

h(x)

)h(k)

≤
(
1− 1

h(n+ 1)

)h(k)

=

((
1− 1

wn+1

)wn+1
) wk

wn+1
.

Now there is some N
′
such that, for all n ≥ N ′,(

1− 1

wn+1

)wn+1

≤ 1

2

and, for all k ≥ n+ 2 ≥ N ′,

wk

wn+1
=

k−n+2∏
j=0

wk−j

wk−j−1
≥ 2k−(n+1) ≥ k − (n+ 1),

so that, with M = supn an,

+∞∑
k=n+2

ak

(
1− 1

h(x)

)h(k)

≤M
+∞∑

k=n+2

1

2k−(n+1)
=M. (21)
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Thus, for n ≥ max(N,N ′) and n ≤ x < n+ 1, let us define

ρn :=

∑
k≥0

ak

(
1− 1

h(x)

)h(k)
∑
k≤x

ak

=

N−1∑
k=0

uk(x) +
n−1∑
k=N

uk(x) +
n+1∑
k=n

uk(x) +
∑

k≥n+2

uk(x)

N−1∑
k=0

ak +
n−1∑
k=N

ak + an

,

with uk(x) = ak

(
1− 1

h(x)

)h(k)
. Since (1 − ε)

n−1∑
k=N

ak ≤
n−1∑
k=N

uk(x) ≤
n−1∑
k=N

ak thanks to

(20), we deduce, taking into account (21) and the fact that (an) is a bounded sequence,

1− ε ≤ lim inf
n→+∞

ρn ≤ lim sup
n→+∞

ρn ≤ 1,

which implies the claim. �

As a direct corollary of Lemma 5.1, we can state the following result.

Lemma 5.2. Let (wn) be an increasing sequence of positive integers such that
wn+1
wn

→
+∞ as n tends to infinity. Let (an) be a bounded sequence of positive real numbers such
that

∑
an = +∞. If we denote by h : R+ → R+ a continuous and strictly increasing

function with, for all n ∈ N, h(n) = wn, the following estimate holds

∑
n≥0

anr
wn ∼ (θa ◦ h−1)

(
1

1− r

)
as r → 1−,

where for all x ∈ R+, θa(x) =
∑
n≤x

an.

5.1. The U-frequently hypercyclic case

We keep the definitions and the notations of § 4.3. Let us also consider an increasing
function h : R+ → R+ tending to infinity such that, for any n ∈ N, h(n) := un ∈ N and
un+1 − un → +∞ as n tends to infinity. Let α be a real number. For all integer n ≥ 0,

we set I
(u)
n = {2un , . . . , 2un+1 − 1}. Next, for k ≥ 1, we keep the definition of integers αk

and α∗
k given in § 4.3. We set f (u)α =

∑
n≥0

P (u)
n,α where the blocks (P

(u)
n,α) are polynomials

defined as follows, using Rudin–Shapiro polynomials given by Lemma 4.6,

P (u)
n,α(z) =


0 if n is odd

0 if n ∈ Ak and 2un−1 < αk

z2
un
Qn(z) if n ∈ Ak and 2un−1 ≥ αk

(22)
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with for n ∈ Ak,

Q(u)
n (z) =

∑
j∈I

(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

pb 2unαk
c(z

αk)q̃k(z). We also set f∗(u)α =
∑
n≥0

P ∗(u)
n,α where the blocks (P

∗(u)
n,α ) are polynomials

defined as follows, using polynomials given by Lemma 4.6,

P ∗(u)
n,α (z) =


0 if n is odd

0 if n ∈ Ak and 2un−1 < α∗
k

z2
un
Q∗(u)

n (z) if n ∈ Ak and 2un−1 ≥ α∗
k,

(23)

with, for n ∈ Ak,

Q∗(u)
n (z) =

∑
j∈I

(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

p∗
b 2un

α∗
k

c
(zα

∗
k)q̃k(z).

For 1 ≤ p ≤ ∞, we denote by αc the critical exponent αc =
1

max(2,q) .

Lemma 5.3. We have, for any 0 < r < 1,

Mp(P
(u)
n,αc , r) . r2

un
if 2 ≤ p ≤ ∞, Mp(P

∗(u)
n,αc , r) . r2

un
if 1 < p < 2,

and M1(P
∗(u)
n,0 , r) . r2

un
lk.

Proof. For p> 1, it suffices to argue along the same lines as the proof of Lemma 4.7
replacing the sequence (2n) by (2un).
Now let us consider the case p=1 (hence αc = 0). We can write, keeping in mind that

qk = q̃k for α=0,

M1(P
∗(u)
n,0 , r) ≤ r2

un

2π

∫ 2π

0

∣∣∣Q∗(u)
n (reit)

∣∣∣ dt
≤ r2

un

2π

∫ 2π

0

|
∑

j∈I
(u)
n

c
(k)
j−2un (re

it)j−2un |dt

≤ r2
un

2π

∫ 2π

0

∣∣∣∣∣p∗b2unα∗
k

c
((reit)α

∗
k)q̃k(re

it)

∣∣∣∣∣ dt
≤ r2

un‖p∗
b2un

α∗
k

c
‖1‖qk‖∞

. r2
un
lk.

�
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From Lemma 5.2 and 5.3, we deduce the rate of growth of the functions f
(u)
αc and f

∗(u)
αc .

We begin by the case p 6= 1.

Lemma 5.4. Let 1 < p ≤ ∞. Under the preceding definitions and assumptions, the
following estimates hold: for all 0 < r < 1,

Mp(f
(u)
αc , r) . h−1

(
− log(1− r)

log(2)

)
if 2 ≤ p ≤ ∞

and Mp(f
∗(u)
αc , r) . h−1

(
− log(1− r)

log(2)

)
if 1 < p < 2.

Proof. Let 2 ≤ p ≤ ∞. Combining Lemma 5.3 with triangle inequality, we get

Mp(f
(u)
αc , r) .

∑
n≥0

r2
un
.

By hypothesis 2un+1−un → +∞ as n tends to infinity. We apply Lemma 5.2 with wn =
2un and an = 1 and we obtain, for 0 < r < 1,

Mp(f
(u)
αc , r) . h−1

(
− log(1− r)

log(2)

)
.

For the case 1 < p < 2, the proof works along the same lines. �

Now we are interested in the specific case p=1.

Lemma 5.5. There is a function of the form f
∗(u)
0 such that

M1(f
∗(u)
0 , r) .

(
h−1

(
− log(1− r)

log(2)

))2

.

Proof. Without loss of generality we can assume that α∗
k > 1+ bmkc where mk is the

least real number such that g(log(α∗
k)/ log(2)) > lk. Observe that, for all k ≥ 1, for any

n ∈ Ak with 2un−1 ≥ α∗
k, we have h−1(un) ≥ h−1(un−1) ≥ h−1(log(α∗

k)/ log(2)). Taking
into account Lemma 5.3 and the inequality 1 − t ≤ e−t, we get, for any 1 − 1

2
uj ≤ r <

1− 1

2
uj+1 (j ≥ 1),
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M1(f
∗(u)
0 , r) ≤

∑
n≥1

M1(P
∗(u)
n,0 , r)

.
∑
k

∑
n∈Ak;2

un−1≥α∗
k

(
1− 1

2uj+1

)2un

lk

.
∑
k

∑
n∈Ak;2

un−1≥α∗
k

e−2
un−uj+1

lk
h−1(un)

h−1(log(α∗
k)/ log(2))

.
j+1∑
n=1

e−2
un−uj+1

h−1(un)

. (j + 1)h−1(uj+1) = (j + 1)2.

Since 2uj ≤ 1
1−r < 2uj+1 , we find j ≤ h−1(− log(1−r)

log(2) ) and we get

M1(f
∗(u)
0 , r) .

(
h−1

(
− log(1− r)

log(2)

))2

.

�

Now we are going to prove that the functions f
(u)
αc and f

∗(u)
αc are U-frequently

hypercyclic for Tαc .

Proposition 5.6. For p ≥ 2 (resp. 1 ≤ p < 2), the function f
(u)
αc (resp. f

∗(u)
αc ) is a

U-frequently hypercyclic vector for the operator Tαc .

Proof. We only prove that the vector f
(u)
αc is frequently hypercyclic for the operator

Tαc . We do not repeat the details for f
∗(u)
αc : it will be enough to make the appropriate

modifications.
Let k be a large enough integer. Let us consider n ∈ Ak such that 2un−1 ≥ αk.We con-

sider Bn the set of s in I
(u)
n such that the coefficient z s in the polynomial z2

un
pb2unαk

c(z
αk)

is equal to 1 and we denote by Tk = {s : s ∈ Bn, n ∈ Ak, 2
un−1 ≥ αk} .

Observe that max(Bn) ≤ 2un+1 and since at least half of the coefficients of pb2unαk
c

being +1, we get

#{j ≤ max(Bn); j ∈ Tk}
max(Bn)

≥ 2un−1

2un+1
=

1

4
, (24)

which implies

d(Tk) > 0.
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Then let α be a real number and let k be in N. Now let us consider s ∈ Bn with n ∈ Ak

satisfying 2un−1 ≥ αk. As in Proposition 4.9, by construction we get

sup
|z|=1− 1

lk

|T s
αc(f

(u)
αc )(z)− qk(z)| .

1

lk
,

provided that k is chosen large enough. This allows to obtain frequent hypercyclicity of

f
(u)
αc . �

Combining Lemma 5.4 with Proposition 5.6, we obtain the following result.

Theorem 5.7. Let 1 ≤ p ≤ ∞ and αc =
1

max(2,q) . Then, for any function ϕ : [0, 1) →
R+ with ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with

Mp(f, r) . ϕ(r), for 0 < r < 1 sufficiently close to 1,

that is U-frequently hypercyclic for Tαc .

Proof. We begin by the case p> 1. Without loss of generality, we can assume that
the function ϕ is a continuous increasing function that can be written, for all 0 < r < 1,

ϕ(r) = ψ
(

1
1−r

)
where ψ is a continuous increasing function with, for all n ∈ N, un :=

ψ−1(n) ∈ N and un+1 − un → +∞. Thus Lemma 5.4 and Proposition 5.6 ensure that,
for all 1 < p ≤ ∞, there is a function f in H(D) with

Mp(f, r) . ψ

(
− log(1− r)

log(2)

)
. ψ

(
1

1− r

)
= ϕ(r)

that is U-frequently hypercyclic for Tαc .
Now we deal with the case p=1. Without loss of generality, we can assume that ϕ is a

continuous increasing function that can be written, for all 0 < r < 1, ϕ(r) =
(
ψ
(

1
1−r

))2
where ψ is a continuous and increasing function such that, for all n ∈ N, un := ψ−1(n) ∈ N
and un+1 − un → +∞. Applying Lemma 5.5 and Proposition 5.6, we find a function
f ∈ H(D) with

M1(f, r) .

(
ψ

(
− log(1− r)

log(2)

))2

.

(
ψ

(
1

1− r

))2

= ϕ(r)

that is U-frequently hypercyclic for T 0.
The proof is complete. �
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The Uβγ -frequently hypercyclic case

We keep the definitions and the notations of § 5.1. We modify the definitions of

polynomials P
(u)
n,α and P

∗(u)
n,α as follows:

P (u)
n,α(z) =


0 if n is odd

0 if n ∈ Ak and 2un−1 < αk

z2
un
Qn(z) if n ∈ Ak and 2un−1 ≥ αk

(25)

with for n ∈ Ak,

Q(u)
n (z) =

∑
j∈I

(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

p
b 2

un(1−γ)
αk

c
(zαk)q̃k(z).

P ∗(u)
n,α (z) =


0 if n is odd

0 if n ∈ Ak and 2un−1 < α∗
k

z2
un
Q∗(u)

n (z) if n ∈ Ak and 2un−1 ≥ α∗
k,

(26)

with, for n ∈ Ak,

Q∗(u)
n (z) =

∑
j∈I

(u)
n

(j + 1)−αc
(k)
j−2un z

j−2un

where the sequence (c
(k)
j ) denotes the sequence of the coefficients of the polynomial

p∗
b 2

un(1−γ)

α∗
k

c
(zα

∗
k)q̃k(z).

Let 1 < p ≤ ∞. Set αc =
1−γ

max(2,q) .

Lemma 5.8. We have, for any 0 < r < 1 and all n ∈ N,

Mp(P
(u)
n,αc , r) . r2

un
if 2 ≤ p ≤ ∞ and Mp(P

∗(u)
n,αc , r) . r2

un
if 1 < p < 2.

Proof. It suffices to argue along the same lines as the proof of Lemma 4.7 replacing
the sequence (2n) by (2un). �

From Lemma 5.2 and 5.8, we deduce the rate of growth of the functions f
(u)
αc and f

∗(u)
αc .
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Lemma 5.9. Let 1 < p ≤ ∞ and αc =
1−γ

max(2,q) . Then, for all 0 < r < 1,

Mp(f
(u)
αc , r) . h−1

(
− log(1− r)

log(2)

)
if 2 ≤ p ≤ ∞,

and

Mp(f
∗(u)
αc , r) . h−1

(
− log(1− r)

log(2)

)
if 1 < p < 2.

Now we are going to prove that the functions f
(u)
αc and f

∗(u)
αc are Uβγ -frequently

hypercyclic for Tαc .

Proposition 5.10. For p ≥ 2 (resp. 1 < p < 2), the function f
(u)
αc (resp. f

∗(u)
αc ) is a

Uβγ -frequently hypercyclic vector for the operator Tαc .

Proof. We only prove that the vector f
(u)
αc is frequently hypercyclic for the operator

Tαc . We do not repeat the details for f
∗(u)
αc : it will be enough to make the appropriate

modifications.
Let k be a large enough integer. Let us consider n ∈ Ak such that

2un−1 ≥ αk. We consider Bn the set of s in I
(u)
n such that the coefficient z s

in the polynomial z2
un
p
b2

un(1−γ)
αk

c
(zαk) is equal to 1 and we denote by Tk =

{s : s ∈ Bn, n ∈ Ak, 2
un−1 ≥ αk} .

Observe that max(Bn) ≤ 2un + b2un(1−γ)c and since at least half of the coefficients of
p
b2

un(1−γ)
αk

c
being +1, we get

∑
j≤max(Bn);

j∈Tk

ej
γ

∑
j≤max(Bn)

ej
γ ≥

2un+2−1b2un(1−γ)c∑
j=2un

ej
γ

2un+b2un(1−γ)c∑
j=1

ej
γ

=

2un+2−1b2un(1−γ)c∑
j=1

ej
γ

2un+b2un(1−γ)c∑
j=1

ej
γ

−

2un−1∑
j=1

ej
γ

2un+b2un(1−γ)c∑
j=1

ej
γ

.

(27)
Clearly, we have

(
2un +

b2un(1−γ)c
2

)γ

−
(
2un + b2un(1−γ)c

)γ
→ −γ

2
,

(2un − 1)
γ −

(
2un + b2un(1−γ)c

)γ
→ −γ,
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which implies, using similar estimations as those of the proof of Lemma 4.4,

2un+2−1b2un(1−γ)c∑
j=1

ej
γ

2un+b2un(1−γ)c∑
j=1

ej
γ

−

2un−1∑
j=1

ej
γ

2un+b2un(1−γ)c∑
j=1

ej
γ

→ e−γ/2(1− e−γ/2), as n→ +∞.

Hence the inequality (27) ensures that

dβγ (Tk) > 0.

Then let α be a real number and let k be in N. Now for s ∈ Bn with n ∈ Ak satisfying
2un−1 ≥ αk, as in Proposition 4.9, by construction we get

sup
|z|=1− 1

lk

|T s
αc(f

(u)
αc )(z)− qk(z)| .

1

lk
,

provided that k is chosen large enough. This allows to obtain frequent hypercyclicity of

f
(u)
αc . �

Combining Lemma 5.9 with Proposition 5.10 we obtain the following result.

Theorem 5.11. Let 0 < γ < 1. Let 1 ≤ p ≤ ∞ and αc = 1−γ
max(2,q) . Then, for any

function ϕ : [0, 1) → R+, with ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with

Mp(f, r) . ϕ(r), for 0 < r < 1 sufficiently close to 1,

that is Uβγ -frequently hypercyclic for Tαc .

Proof. For p=1, we have αc = 0 and the result is given by Theorem 5.7. Now let p> 1.
Without loss of generality, we can assume that the ϕ is a continuous increasing function

such that, for all 0 < r < 1, ϕ(r) = ψ
(

1
1−r

)
where ψ is continuous and increasing with,

for all n ∈ N, un := ψ−1(n) ∈ N and un+1−un → +∞. Thus, Lemma 5.9 and Proposition
5.10 ensure that, for all 1 < p ≤ ∞, there is a function f in H(D) with

Mp(f, r) . ψ

(
− log(1− r)

log(2)

)
. ϕ(r)

that is Uβγ -frequently hypercyclic for Tαc . The proof is complete. �

From Theorems 2.2, 5.7 and 5.11, we can state the following result that unifies what
happens in the critical case, given by the critical exponent, for the Lp growth of Uβγ -
frequently hypercyclic functions for Tα, when γ belongs to [0, 1].
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Theorem 5.12. Let 0 ≤ γ ≤ 1 and 1 ≤ p ≤ ∞. Then, for any function ϕ : [0, 1) →
R+, with ϕ(r) → +∞ as r → 1−, there is a function f in H(D) with Mp(f, r) . ϕ(r)
that is Uβγ -frequently hypercyclic for Tαc where αc =

1−γ
max(2,q) .
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