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Abstract

We show that the fractional integral operator Iα, 0 < α < n, and the fractional maximal operator Mα,
0 ≤ α < n, are bounded on weak Choquet spaces with respect to Hausdorff content. We also investigate
these operators on Choquet–Morrey spaces. The results for the fractional maximal operator Mα are
extensions of the work of Tang [‘Choquet integrals, weighted Hausdorff content and maximal operators’,
Georgian Math. J. 18(3) (2011), 587–596] and earlier work of Adams and Orobitg and Verdera. The results
for the fractional integral operator Iα are essentially new.
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1. Introduction

The purpose of this paper is to study the boundedness properties of the fractional
integral operator Iα, 0 < α < n, and the fractional maximal operator Mα, 0 ≤ α < n, in
the framework of Choquet integrals with respect to Hausdorff content.

Let n ∈ N and 0 < d ≤ n. The symbol Q(Rn) denotes the family of all cubes with
sides parallel to the coordinate axes in Rn. The d-dimensional Hausdorff content of
E ⊂ Rn is defined by

Hd(E) = inf
{ ∞∑

j=1

�(Qj)d : E ⊂
∞⋃

j=1

Qj, Qj ∈ Q(Rn)
}
,

where the infimum is taken over all coverings of the set E by countable families of
cubes Qj and �(Q) stands for the side length of the cube Q. It is easily seen that Hn(E)
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is just the Lebesgue measure of E, which we will denote by |E|. For any cube Q, one
has Hd(Q) = �(Q)d.

For a nonnegative function f, the integral of f with the respect to Hd is taken in the
Choquet sense: ∫

Rn
f dHd =

∫ ∞
0

Hd({x ∈ Rn : f (x) > t}) dt.

For 0 < p < ∞, the Choquet space Lp(Hd) and the weak Choquet space wLp(Hd)
consist of all functions with the properties

‖ f ‖Lp(Hd) :=
( ∫
Rn
| f |p dHd

)1/p
< ∞

and

‖ f ‖wLp(Hd) := sup
t>0

tHd({x ∈ Rn : | f (x)| > t})1/p< ∞,

respectively. For 0 < q ≤ p < ∞, the Choquet–Morrey space Mp
q (Hd) consists of all

functions with the property

‖ f ‖Mp
q (Hd) := sup

Q∈Q
�(Q)d/p−d/q

( ∫
Q
| f |q dHd

)1/q
< ∞.

The fractional maximal operator of order α, 0 ≤ α < n, is defined by

Mα f (x) = sup
Q∈Q(Rn)

χQ(x)�(Q)α−n
∫

Q
| f (y)| dy, x ∈ Rn,

where χE is the characteristic function of the set E. For α = 0, the operator M0 is
the usual Hardy–Littlewood maximal operator which is denoted simply by M. The
fractional integral operator of order α, 0 < α < n, is defined by

Iα f (x) =
∫
Rn

f (y)
|x − y|n−α dy, x ∈ Rn.

Orobitg and Verdera [6] proved that, for 0 < d < n and p > d/n,

‖M f ‖wLd/n(Hd) � ‖ f ‖Ld/n(Hd) and ‖M f ‖Lp(Hd) � ‖ f ‖Lp(Hd).

The tools and ideas that we will use are essentially contained in this classical paper.
We note a disadvantage of the Hausdorff content Hd. It is not true that there exists

a constant C > 0 such that if Q1, . . . , Qm are nonoverlapping dyadic cubes and f ≥ 0,
then

m∑
j=1

∫
Qj

f dHd ≤ C
∫
⋃

j Qj

f dHd.

This can be shown by subdividing the interval [0, 1] into 2m (m large enough) equal
intervals and taking f ≡ 1.
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However, an advantage of the Hausdorff content Hd is that the spaces Lp(Hd),
0 < p ≤ 1, have a block decomposition. As a corollary, (see [8, Theorem 2.3]), if T
is a subadditive operator and 0 < d, δ < n, 0 < p ≤ 1 and q ≥ p, then the following
statements are equivalent:

(a) the inequality ‖T f ‖Lq(Hδ) ≤ C1‖ f ‖Lp(Hd) holds;
(b) the testing inequality ‖TχQ‖Lq(Hδ) ≤ C2�(Q)1/p holds for any Q ∈ Q(Rn).

Moreover, the least possible constants C1 and C2 are equivalent. Because of this
advantage, by using an easy testing inequality, one can verify the following results
from [2]. For d/n < p < d/α,

‖Mα f ‖Lp(Hd−αp) � ‖ f ‖Lp(Hd). (1.1)

For 0 < d ≤ n,

‖Mα f ‖wLd/n(Hd−αd/n) � ‖ f ‖Ld/n(Hd). (1.2)

The reason why the advantage influences the cases p > 1 is that, for the fractional
maximal operator Mα, the pointwise estimate

Mα f (x)p ≤ Mαp[ f p](x), x ∈ Rn,

gives a reduction to the case p = 1. This no longer works for the fractional integral
operator Iα. The difficulty is overcome by using Hedberg’s trick (see Lemma 2.7),
which is due to the first author (Hatano).

THEOREM 1.1. Let 0 < d ≤ n and 0 ≤ α < n. Suppose that d/n ≤ r < p < d/α and

d − αr
q
=

d − αp
p

.

Then:

(i) ‖Mα f ‖wLq(Hd−αr) � ‖ f ‖wLp(Hd);
(ii) ‖Iα f ‖wLq(Hd−αr) � ‖ f ‖wLp(Hd) for 0 < d < n, 0 < α < n and d/n < r.
(iii) ‖Iα f ‖Lq(Hd−αr) � ‖ f ‖Lp(Hd) for 0 < d < n, 0 < α < n and d/n < r.

REMARK 1.2. Taking into account (1.1), one might expect that Theorem 1.1(i) holds
for the case q = r = p. However, this is not so because, as a special case, it would give
the false inequality ‖Mα f ‖wL1(Hn−α) � ‖ f ‖wL1(Hn).

The key ingredient in the proof of Theorem 1.1(i) is a Kolmogorov-type inequality:
for any measurable set E ⊂ Rn,

Hd(E)1/p−1/q‖ fχE‖Lq(Hd) ≤
( q

p − q

)1/p
‖ fχE‖wLp(Hd), 0 < q < p < ∞.

This means that weak Lp integrability implies local Lq integrability provided that
q < p. In the above inequality, taking the supremum over all measurable sets, we can
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obtain the reverse inequality and, as a consequence, the weak Choquet norm can be
estimated as follows (see Proposition 2.5). For 0 < q < p < ∞,

‖ f ‖wLp(Hd) ≤ sup
0<Hd(E)<∞

Hd(E)1/p−1/q‖ fχE‖Lq(Hd) ≤
( q

p − q

)1/p
‖ f ‖wLp(Hd).

We notice that the parameter q does not affect the set wLp(Hd). However, in the
above supremum, if one restricts to the cube Q ∈ Q(Rn) instead of the general set
E ⊂ Rn, then one gets Morrey spaces and one can no longer ignore the influence of
the second parameter q. We establish the following results. The first part is from [10,
Theorem 2].

THEOREM 1.3. Let 0 < d ≤ n and 0 ≤ α < n. Suppose that d/n < r ≤ p < d/α and

d − αr
q
=

d − αp
p

.

Then:

(i) ‖Mα f ‖Mq
r (Hd−αr) � ‖ f ‖Mp

r (Hd);
(ii) ‖Iα f ‖Mq

r (Hd−αr) � ‖ f ‖Mp
r (Hd) for 0 < d < n and 0 < α < n.

The paper is organised as follows. In Section 2, we give a proof of the
Kolmogorov-type inequality and summarise some elementary properties. In Section 3,
we prove the theorems. In Section 4, as an appendix, we gather some further results.

Throughout the paper, we use the following notation. If X and Y are normed
spaces with ‖ · ‖X � ‖ · ‖Y , then we write X ←↩ Y or Y ↪→ X (sometimes called the
embedding). If X ←↩ Y and X ↪→ Y , then we write X = Y .

For quantities A and B, if A ≤ CB, then we write A � B or B � A, and if A � B and
A � B, then we write A ∼ B.

2. Preliminaries

We use the following fact about the Hausdorff content, due to Orobitg and Verdera
[6, Lemma 3].

LEMMA 2.1. If 0 < d ≤ n, 0 < p < ∞ and 1 ≤ θ ≤ n/d, then

‖ f ‖Lθp(Hθd) ≤ θ1/θp‖ f ‖Lp(Hd). (2.1)

PROOF. By the substitution t = sθ,

‖ f ‖θpLθp(Hθd) =

∫ ∞
0

Hθd({| f |θp > t}) dt = θ
∫ ∞

0
Hθd({| f |p > s})sθ−1 ds.

Since (∑
j

aq
j

)1/q
≤
(∑

j

ap
j

)1/p
for aj ≥ 0 and 0 < p < q < ∞, (2.2)
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we obtain

Hθd({| f |p > s}) ≤ (Hd({| f |p > s}))θ.

Thus,

‖ f ‖θpLθp(Hθd) ≤ θ
∫ ∞

0
(Hd({| f |p > s}))θsθ−1 ds

= θ

∫ ∞
0

(Hd({| f |p > s})s)θ−1Hd({| f |p > s}) ds.

Since

Hd({| f |p > s})s =
∫
{| f |p>s}

s dHd ≤
∫
{| f |p>s}

| f |p dHd ≤
∫
Rn
| f |p dHd,

it follows that

‖ f ‖θpLθp(Hθd) ≤ θ‖ f ‖
θp
Lp(Hd). �

We summarise some elementary properties of the weak Choquet spaces.

PROPOSITION 2.2

(W1) (Chebyshev’s inequality) For p > 0, Lp(Hd) ↪→ wLp(Hd).
(W2) If 0 < d ≤ θd ≤ n and 0 < p < ∞, then wLp(Hd) ↪→ wLθp(Hθd).
(W3) If d = n, then the weak Choquet spaces wLp(Hd) are the usual weak Lp spaces

wLp(Rn).

PROOF. The assertions (W1) and (W3) can be shown immediately from the definition.
To prove assertion (W2), we appeal to (2.2) and observe that

‖ f ‖wLθp(Hθd) = sup
t>0

t Hθd({x ∈ Rn : | f (x)| > t})1/(θp)

≤ sup
t>0

t Hd({x ∈ Rn : | f (x)| > t})1/p = ‖ f ‖wLp(Hd). �

We next prove the Kolmogorov-type inequality. For 0 < p, r ≤ ∞, we define the
Lorentz quasinorm

‖ f ‖Lp,r(Hd) =

( ∫ ∞
0

(tpHd({| f | > t}))r/p dt
t

)1/r
.

The Lorentz space Lp,r(Hd) is the set of all functions for which this quasinorm is finite.

PROPOSITION 2.3. Let 0 < d ≤ n, 0 < q < p < ∞ and E be any measurable set.

(a) If q ≤ r ≤ p, then

Hd(E)1/p−1/q
( ∫

E
| f |q dHd

)1/q
� q1/r‖ fχE‖Lp,q(Hd).
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(b) If p < r, then

Hd(E)1/p−1/q
( ∫

E
| f |q dHd

)1/q
�
(
q
( r − p
r(p − q)

)(r−p)/r)1/p
‖ fχE‖Lp,r(Hd). (2.3)

PROOF. (a) Let E be an arbitrary measurable set satisfying 0 < Hd(E) < ∞. For any
A > 0,∫

E
| f |q dHd =

∫ ∞
0

Hd(E ∩ {| f |q > t}) dt = q
∫ ∞

0
tq−1Hd(E ∩ {| f | > t}) dt

≤ q
∫ A

0
tq−1Hd(E) dt + q

∫ ∞
A

tq−rtrHd(E ∩ {| f | > t})r/pHd(E ∩ {| f | > t})1−r/p dt
t

≤ Hd(E)1−r/p(AqHd(E)rp + qAq−r‖ fχE‖rLp,r(Hd)).

If we take Ar = q‖ fχE‖rLp,r(Hd)H
d(E)−r/p, then the two terms on the right-hand side of

the above inequality balance. Thus,∫
E
| f |q dHd ≤ 2Hd(E)1−r/p(q‖ fχE‖rLp,r(Hd))

q/rHd(E)r/p−q/p

≤ 2qq/rHd(E)1−q/p‖ fχE‖qLp,r(Hd),

and this implies

Hd(E)1/p−1/q
( ∫

E
| f |q dHd

)1/q
� q1/r‖ fχE‖Lp,q(Hd).

(b) For any A > 0,∫ ∞
A

tq−1Hd(E ∩ {| f | > t}) dt

≤
∫ ∞

A
tqHd({| f | > t}) dt

t
=

∫ ∞
A

tq−p · tpHd({| f | > t}) dt
t

≤
( ∫ ∞

A
t(q−p)r/(r−p) dt

t

)(r−p)/r( ∫ ∞
A

(tpHd({| f | > t}))r/p dt
t

)p/r

≤
( r − p
r(p − q)

)(r−p)/r
Aq−p‖ fχE‖pLp,r(Hd).

This implies∫
E
| f |q dHd � AqHd(E) + q

( r − p
r(p − q)

)(r−p)/r
Aq−p‖ fχE‖pLp,r(Hd)

and, proceeding as before,∫
E
| f |q dHd �

(
q
( r − p
r(p − q)

)(r−p)/r)q/p
Hd(E)1−q/p‖ fχE‖qLp,r(Hd),

which yields (2.3). �
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REMARK 2.4. Taking E = Q ∈ Q(Rn) and r = ∞ in (2.3) yields

�(Q)d/p−d/q‖ fχQ‖Lq(Hd) � ‖ fχQ‖Lp,∞(Hd).

For an arbitrary r with p ≤ r < ∞, multiplying by �(Q)d/r−d/p on both sides gives

�(Q)d/r−d/q‖ fχQ‖Lq(Hd) � �(Q)dr−d/p‖ fχQ‖Lp,∞(Hd).

This means that, for 0 < q < p ≤ r < ∞,

‖ f ‖Mr
q(Hd) � ‖ f ‖Mr

p,∞(Hd) := sup
Q∈Q(Rn)

�(Q)d/r−d/p‖ fχQ‖Lp,∞(Hd). (2.4)

The estimate (2.4) can be found in [4] and the book [9]. It is interesting because one
always has

‖ f ‖Mr
q(Hd) ≤ ‖ f ‖Mr

p(Hd) and ‖ f ‖Mr
p,∞(Hd) ≤ ‖ f ‖Mr

p(Hd).

In the case r = ∞ in Proposition 2.3, we can show the reverse inequality.

PROPOSITION 2.5. Let 0 < d ≤ n and 0 < q < p < ∞. Then

‖ f ‖wLp(Hd) ≤ sup
0<Hd(E)<∞

Hd(E)1/p−1/q
( ∫

E
| f |q dHd

)1/q
≤
( q

p − q

)1/p
‖ f ‖wLp(Hd).

PROOF. The second inequality follows by taking r = ∞ in (2.3). We prove the reverse
inequality. For all t > 0,

tHd({x ∈ Rn : | f (x)| > t})1/p

= Hd({x ∈ Rn : | f (x)| > t})1/p−1/q · t Hd({x ∈ Rn : | f (x)| > t})1/q

≤ Hd({x ∈ Rn : | f (x)| > t})1/p−1/q
( ∫
{| f |>t}

| f |q dHd
)1/q

.

Hence,

tHd({x ∈ Rn : | f (x)| > t})1/p ≤ sup
0<Hd(E)<∞

Hd(E)1/p−1/q
( ∫

E
| f |q dHd

)1/q
,

as desired. �

We summarise some elementary properties of the Choquet–Morrey spaces.

PROPOSITION 2.6

(M1) If 0 < p = q < ∞, thenMp
p(Hd) = Lp(Hd).

(M2) If 0 < q < p < ∞, then wLp(Hd) ↪→Mp
q (Hd).

(M3) If d = n, then the Choquet–Morrey spacesMp
q (Hd) are the usual Morrey spaces

Mp
q (Rn).

(M4) If 0 < q ≤ r ≤ p < ∞, thenMp
r (Hd) ↪→Mp

q (Hd).
(M5) If 0 < d ≤ θd ≤ n and 0 < q ≤ p < ∞, thenMp

q (Hd) ↪→Mθpθq (Hθd).
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PROOF. The assertions (M1)–(M4) are obvious. For assertion (M5), we use (2.1) and
set d̃ = θd, p̃ = θp and q̃ = θq, to give

�(Q)d̃/ p̃−d̃/q̃‖ fχQ‖Lq̃(Hd̃) ≤ θ�(Q)d/p−d/q‖ fχQ‖Lq(Hd). �

It is well known, from Hedberg [5], that for 1 ≤ p < ∞, the pointwise estimate

|Iα f (x)| � ‖ f ‖αp/n
Lp(Rn)M f (x)1−αp/n

holds. To prove the boundedness of the fractional integral operators on weak Choquet
and Choquet–Morrey spaces with Hausdorff content, we extend Hedberg’s inequality.

LEMMA 2.7. Let 0 ≤ β < α < n and d/n ≤ p < q < ∞ with

d − βp
q
=

d − αp
p

.

Then

|Iα f (x)| �
(d

p
− α
)(p/q)−1

(α − β)−p/q‖ f ‖1−p/q
Mp

d/n(Hd)
Mβ f (x)p/q for x ∈ Rn.

PROOF. Fix r > 0. We decompose

|Iα f (x)| ≤
∞∑

j=−∞

∫
2jr≤|x−y|<2j+1r

| f (y)|
|x − y|n−α dy

≤
∞∑

j=−∞

1
(2jr)n−α

∫
|x−y|<2j+1r

| f (y)| dy

=

−1∑
j=−∞

1
(2jr)n−α

∫
|x−y|<2j+1r

| f (y)| dy +
∞∑

j=0

1
(2jr)n−α

∫
|x−y|<2j+1r

| f (y)| dy

=: J1 + J2.

We estimate

J1 �
−1∑

j=−∞
(2jr)α−βMβ f (x) �

rα−β

α − βMβ f (x),

where we have used 2α−β − 1 � α − β. By (2.1),

J2 �
∞∑

j=1

(2jr)α−d/p‖ f ‖Mp
d/n(Hd) �

rα−d/p

(d/p) − α‖ f ‖M
p
d/n(Hd),

where we have used 2(d/p)−α − 1 � (d/p) − α. Then, taking the optimal quantity r > 0
in the previous inequalities and noticing that

p
q
=

d − αp
d − βp

,
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we obtain

|Iα f (x)| �
(d

p
− α
)p/q−1

(α − β)−p/q‖ f ‖1−p/q
Mp

d/n(Hd)
Mβ f (x)p/q,

as desired. �

3. Proof of the theorems

PROOF OF THEOREM 1.1(i). Set δ = d − αr. For t > 0, we see that

Ω(Mα f ; t) := {x ∈ Rn : Mα f (x) > t}
= {x ∈ Rn : Mα[ fχΩ(Mα f ;t)](x) > t}.

Thus,

tHδ(Ω(Mα f ; t))1/q = Hδ(Ω(Mα f ; t))1/q−1/r · t Hδ(Ω(Mα f ; t))1/r

� Hδ(Ω(Mα f ; t))1/q−1/r · ‖ fχΩ(Mα f ;t)‖Lr(Hd),

where we have used (1.1), or (1.2) when r = d/n. By the Kolmogorov-type inequality
(2.3), we need only verify that, for a compact set E ⊂ Rn, Hδ(E)1/r−1/q ≥ Hd(E)1/r−1/p.
By (2.2) and since δ < d,

Hδ(E)1/r−1/q ≥ Hd(E)(1/r−1/q)δ/d,

and
δ

d

(1
r
− 1

q

)
=

1
r
− α

d
− d − αp

dp
=

1
r
− 1

p
.

This completes the proof. �

PROOF OF THEOREM 1.1(ii). Thanks to the continuity, one can choose θ and β so that
1 < θ < n/d, rα/p < β < α and

θ(d − βp) = d − αr = d − r
p
αp.

Setting δ = θd and u = θp gives δ − βu = d − αr. This equation and

d − αr
q
=

d − αp
p

immediately imply

δ − βu
q
=

d − αr
q
=

d − αp
p
=

d
p
− α = δ

u
− α = δ − αu

u
.

Since β < α, we see that p < u < q. The equation

δ − βu
q
=
δ − αu

u
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and Lemma 2.7 yield

|Iα f (x)| � ‖ f ‖1−u/q
Mu
δ/n(Hδ)Mβ f (x)u/q for x ∈ Rn.

The equations
d − αr

u
=
δ − βu

u
=

d − αp
p

and Theorem 1.1(i) yield

‖(Mβ f )u/q‖wLq(Hd−αr) = ‖Mβ f ‖u/qwLu(Hd−αr) � ‖ f ‖
u/q
wLp(Hd).

Since we always have ‖ f ‖Mu
δ/n(Hδ) � ‖ f ‖Mp

d/n(Hd) � ‖ f ‖wLp(Hd), this completes the
proof. �

PROOF OF THEOREM 1.1(iii). Setting β = rα/p, we have

d − βp
q
=

d − αr
q
=

d − αp
p

.

From Lemma 2.7,

‖Iα f ‖Lq(Hd−βp) � ‖ f ‖1−p/q
Mp

d/n(Hd)
‖(Mβ f )p/q‖Lq(Hd−βp).

By (1.1), ‖Mβ f ‖Lp(Hd−βp) � ‖ f ‖Lp(Hd) and, by the inclusion property, ‖ f ‖Mp
d/n(Hd) �

‖ f ‖Lp(Hd). These estimates complete the proof. �

PROOF OF THEOREM 1.3(ii). This theorem can be proved in the same manner as
Theorem 1.1(ii). �

4. Appendix

In this section, we give some further consequences of our theorems and the
embedding lemma (Lemma 2.1).

PROPOSITION 4.1. Let 0 < d, δ < n and 0 ≤ α < n. If q > p, d/n < p < d/α and
δ

q
=

d
p
− α,

then

‖Mα f ‖wLq(Hδ) � ‖ f ‖wLp(Hd).

PROOF. Because δ > d − αp, we can choose u, r and θ > 1 so that d/n < r < p and

q = θu, δ = θ(d − αr).

Since
d − αr

u
=

d − αp
p

,

Theorem 1.1(i) yields ‖Mα f ‖wLu(Hd−αr) � ‖ f ‖wLp(Hd), which gives, by the embedding in
Proposition 2.2, ‖Mα f ‖wLq(Hδ) � ‖ f ‖wLp(Hd). This completes the proof. �
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PROPOSITION 4.2. Let 0 < d, δ ≤ n and 0 ≤ α < n. Suppose that d/n < r ≤ p < d/α,
q ≥ p, δ ≥ d − αr, s ≥ r and

δ

q
=

d
p
− α,

δ

s
=

d
r
− α.

Then

‖Mα f ‖Mq
s (Hδ) � ‖ f ‖Mp

r (Hd).

PROOF. We can choose u and θ ≥ 1 so that q = θu and δ = θ(d − αr). Since

d − αr
u
=

d − αp
p

,

it follows from Theorem 1.3(i) that ‖Mα f ‖Mu
r (Hd−αr) � ‖ f ‖Mp

r (Hd). Since

d
r
− α = d − αr

r
=
δ

θr
,

we must have s = θr. Thus, by the inclusion property (Proposition 2.6),

‖Mα f ‖Mq
s (Hδ) � ‖Mα f ‖Mu

r (Hd−αr) � ‖ f ‖Mp
r (Hd),

as desired. �

The case d = δ = n of Proposition 4.2 was first studied in unpublished work of
Spanne (for the fractional integral operator) and Peetre published in [7, Theorem 5.4].
After that, the condition used by Spanne was generalised to

1
q
=

1
p
− α

n
,

s
q
=

r
p

by Adams [1], and Chiarenza and Frasca [3].

PROPOSITION 4.3. Let 0 < d ≤ n, 0 < α < n, d/n < r ≤ p < ∞ and 0 < s ≤ q < ∞. If

1
q
=

1
p
− α

d
,

s
q
=

r
p

,

then

‖Iα f ‖Mq
s (Hd) � ‖ f ‖Mp

r (Hd).

PROOF. Taking β = 0 in Lemma 2.7 gives |Iα f (x)| � ‖ f ‖1−p/q
Mp

d/n(Hd)
M f (x)p/q. By the

boundedness of M on the Morrey spaces,

‖Iα f ‖Mq
s (Hd) � ‖ f ‖

1−p/q
Mp

d/n(Hd)
‖(M f )p/q‖Mq

s (Hd)

= ‖ f ‖1−p/q
Mp

d/n(Hd)
‖M f ‖p/qMp

r (Hd)

� ‖ f ‖1−p/q
Mp

d/n(Hd)
‖ f ‖p/qMp

r (Hd)
� ‖ f ‖Mp

r (Hd),

where, in the last inequality, we have used Proposition 2.6. �
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