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Abstract

We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if p(n)
denotes the number of unrestricted partitions of a positive integer n (and p(0) = 1, p(n) = 0 for n < 0),
then for all nonnegative integers m,

∞∑
k=0

p(24m + 23 − ω(−2k)) +
∞∑

k=1

p(24m + 23 − ω(2k)) ≡ 0 (mod 144),

where ω(k) = k(3k + 1)/2.
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1. Introduction

A partition λ = (λ1, λ2, . . . , λk) of a positive integer n is a nonincreasing sequence
of positive integers that sum to n, that is, λ1 + λ2 + · · · + λk = n. The numbers λj are
known as the parts of λ. The partition function p(n) enumerates the partitions of n.
For example, p(4) = 5, since there are 5 partitions of 4, namely,

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1 + 1.

By convention, we take p(0) = 1 and p(n) = 0 if n is not a nonnegative integer.
The generating function of p(n), found by Euler, is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
(1.1)

(see [3]), where for complex numbers a and q with |q| < 1, the standard q-product
(a; q)∞ is defined by

(a; q)∞ :=
∞∏

j=0

(1 − aqj).
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Work on the arithmetic properties of p(n) started when Ramanujan [20], [21, pages
210–213] discovered his famous congruences for p(n): for every nonnegative integer n,

p(5n + 4) ≡ 0 (mod 5),
p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11).

Since then, these congruences have been studied and generalised extensively in many
directions. Ono [18] proved that for every prime M ≥ 5 there exist infinitely many
nonnested arithmetic progressions An + B such that

p(An + B) ≡ 0 (mod M).

Ahlgren [1] extended this result for arbitrary integers M with gcd(6, M) = 1. However,
for the primes 2 and 3, we have different results on the divisibility of the partition func-
tion. Subbarao [24] conjectured that every arithmetic progression contains infinitely
many integers n for which p(n) is odd as well as infinitely many integers m for which
p(m) is even. The conjecture has been settled by Ono [17] and Radu [19]. Suppose that
A and B are integers with A > B ≥ 0. If ν = 2 or 3, then Radu [19] proved that there
are infinitely many integers n such that

p(An + B) � 0 (mod ν).

Recently, Ballantine and Merca [5] explored the parity of sums of partition numbers
at certain places in arithmetic progressions. In particular, they proved that if

(a, b) ∈ {(6, 8), (8, 12), (12, 24), (15, 40), (16, 48), (20, 120), (21, 168)},

then ∑
ak+1 square

p(n − k) ≡ 1 (mod 2) if and only if bn + 1 is a square

(see [12, 13] for further results of this type).
In this paper, we show that certain sums of partition numbers are divisible by

multiples of 2 and 3. Unlike the results of Ballantine and Merca [5], our results do
not depend on the squares in arithmetic progressions. To state the main results in the
next section, we now recall some more partition functions in the remainder of this
section.

An overpartition of a positive integer n is a nonincreasing sequence of positive
integers that sum to n, where the first occurrence of parts of each size may be overlined
(see [10]). The overpartition function p(n) counts the overpartitions of n. For example,
p(4) = 14 and the overpartitions of 4 are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,

2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.
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Since the overlined parts form a partition into unequal parts and the nonoverlined parts
form an ordinary partition, the generating function of p(n), as noted by Corteel and
Lovejoy [10], is given by

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

. (1.2)

In 2003, Lovejoy [15] considered the function A�(n), known as the �-regular
overpartition function [22], that enumerates the overpartitions of n, which have no
parts being a multiple of �. For example, A3(4) = 10 and the 3-regular overpartitions
of 4 are given by

4, 4, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1,

2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

Andrews [4] extended the idea of �-regular overpartitions by considering the enumer-
ation Ck,i(n) of so-called singular overpartitions of n that correspond to �-regular
overpartitions of n in which only parts ≡ ±i (mod k) may be overlined. Clearly,
A3(n) = C3,1(n) for all n ≥ 1.

Since the multiples of � cannot appear in an �-regular overpartition, it follows from
(1.2) that the generating function of A�(n) is given by

∞∑
n=0

A�(n)qn =
(−q; q)∞/(q; q)∞

(−q�; q�)∞/(q�; q�)∞
=

(−q; q)∞(q�; q�)∞
(q; q)∞(−q�; q�)∞

. (1.3)

2. Main results

Euler’s famous recurrence relation for p(n) is given by

∞∑
k=−∞

(−1)k p(n − ω(k)) = δ0,n, (2.1)

where ω(k) = k(3k + 1)/2, for integers k, are the generalised pentagonal numbers and
δi,j is the Kronecker delta. For integers n ≥ 1, it easily follows from (2.1) that

∞∑
k=0

p(n − ω(−2k)) +
∞∑

k=1

p(n − ω(2k))

=

∞∑
k=1

p(n − ω(−2k + 1)) +
∞∑

k=1

p(n − ω(2k − 1)). (2.2)

In this paper, we show divisibility of the above sums of partition numbers by
multiples of 2 and 3. The following main result arises from (2.2) and Jacobi’s triple
product identity [3, page 21, Theorem 2.8].
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THEOREM 2.1. Let A3(n) denote the number of 3-regular overpartitions of n, which is
also equal to Andrews’ singular overpartition function C3,1(n). Then, for all integers
n ≥ 1,

∞∑
k=0

p(n − ω(−2k)) +
∞∑

k=1

p(n − ω(2k))

=

∞∑
k=1

p(n − ω(−2k + 1)) +
∞∑

k=1

p(n − ω(2k − 1)) =
A3(n)

2
. (2.3)

There are several recent papers that studied the arithmetical properties of A�(n)
and Ck,i(n). For results on A3(n) and C3,1(n), see [2, 4, 6–9, 11, 14, 16, 22, 23, 26].
Employing Theorem 2.1 and congruences for A3(n), that is, for C3,1(n), one can
easily deduce divisibility properties of the sums of the partition numbers in (2.2).
For example, Barman and Ray [7, Theorems 1.1–1.3] proved that for a fixed positive
integer k, C3,1(n) is divisible by 2k and 2 · 3k for almost all n. Therefore, it follows
that the above sums of partition numbers are divisible by 3k for almost all n. In the
following corollary, we present selected congruences for the sums in nondecreasing
order of the moduli that arise from the congruences for A3(n) or C3,1(n), which either
appeared in [2, 4, 6, 8, 9, 11, 14, 16, 22, 23, 26] or are easily deduced from these results.

COROLLARY 2.2. For brevity, set

S(n) : =
∞∑

k=0

p(n − ω(−2k)) +
∞∑

k=1

p(n − ω(2k))

=

∞∑
k=1

p(n − ω(−2k + 1)) +
∞∑

k=1

p(n − ω(2k − 1)).

For any nonnegative integers k and n,

S(3n + 2) ≡ 0 (mod 2),
S(4n + 2) ≡ 0 (mod 2),

S(2k(4n + 3)) ≡ 0 (mod 3),
S(9n + 3) ≡ 0 (mod 3),

S(2k+1(6n + 5)) ≡ 0 (mod 4),

S(4k(16n + 6)) ≡ 0 (mod 4),

S(4k(16n + 10)) ≡ 0 (mod 4),

S(4k(16n + 14)) ≡ 0 (mod 4),
S(8n + 7) ≡ 0 (mod 6),

S(36n + 21) ≡ 0 (mod 6),
S(6n + 5) ≡ 0 (mod 8),
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S(4k(72n + 42)) ≡ 0 (mod 8),

S(4k(144n + 78)) ≡ 0 (mod 8),
S(48n + 12) ≡ 0 (mod 9),

S(8n + 6) ≡ 0 (mod 12),
S(9n + 6) ≡ 0 (mod 12),

S(36n + 30) ≡ 0 (mod 12),
S(24n + 17) ≡ 0 (mod 16),

S(4k(72n + 60)) ≡ 0 (mod 16),

S(2k(12n + 7)) ≡ 0 (mod 18),
S(144n + 102) ≡ 0 (mod 24),

S(9k(48n + 28)) ≡ 0 (mod 27),

S(9k(48n + 44)) ≡ 0 (mod 27),
S(72n + 51) ≡ 0 (mod 32),
S(72n + 69) ≡ 0 (mod 32),

S(2k+1(12n + 11)) ≡ 0 (mod 36),
S(24n + 14) ≡ 0 (mod 36),
S(18n + 15) ≡ 0 (mod 48),
S(12n + 11) ≡ 0 (mod 72),
S(24n + 23) ≡ 0 (mod 144).

Note that the last congruence is equivalent to the example stated in the abstract.
The powers of 2 and 3 in the modulus in each of the above congruences are sharp.

However, there might be sub-progressions of the given arithmetic progression along
which the powers of 2 and 3 in the modulus may be higher. Furthermore, combining
two congruences may also give congruences for higher modulus.

There are congruences for A3(n) or C3,1(n) that depend on specific properties of the
integer n. For example, Li and Yao [14] show that if p ≡ 3 (mod 4) and p � n, then for
any k ≥ 0,

A3(108p2k+1(4n + p)) ≡ 0 (mod 27). (2.4)

Noting also that A3(n) ≡ 0 (mod 2) for all integers n ≥ 1 (see [8, Theorem 2.9]), it
readily follows from (2.4) that

S(108p2k+1(4n + p)) ≡ 0 (mod 27).

There are several other results like (2.4), which can be derived from results in [8, 9,
14, 16, 23, 25, 26].

We prove Theorem 2.1 and Corollary 2.2 in the next two sections.
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3. Proof of Theorem 2.1

We use Jacobi’s triple product identity and (2.1) to prove Theorem 2.1.
Jacobi’s triple product identity [3, page 21, Theorem 2.8] can be stated as follows.

For z � 0 and |q| < 1,
∞∑

k=−∞
zkqk2

= (−zq; q2)∞(−q/z; q2)∞(q2; q2)∞.

Replacing q by q3/2 and z by
√

q and then manipulating the q-products,

∞∑
k=−∞

qk(3k+1)/2 = (−q2; q3)∞(−q; q3)∞(q3; q3)∞

=
(−q; q)∞(q3; q3)∞

(−q3; q3)∞

=
(−q; q)∞(q3; q3)∞
(q; q)∞(−q3; q3)∞

· (q; q)∞.

It follows that

1
(q; q)∞

∞∑
k=−∞

qk(3k+1)/2 =
(−q; q)∞(q3; q3)∞
(q; q)∞(−q3; q3)∞

,

which, with the aid of (1.1) and (1.3), may be rewritten as

( ∞∑
n=0

p(n)qn
)( ∞∑

k=−∞
qk(3k+1)/2

)
=

∞∑
n=0

A3(n)qn.

Equating the coefficients of qn on both sides of this equation yields
∞∑

k=−∞
p(n − ω(k)) = A3(n),

which may be rewritten as
∞∑

k=0

p(n − ω(−2k)) +
∞∑

k=1

p(n − ω(2k)) +
∞∑

k=1

p(n − ω(−2k + 1))

+

∞∑
k=1

p(n − ω(2k − 1)) = A3(n). (3.1)

From (2.2) and (3.1) it readily follows that

2
( ∞∑

k=0

p(n − ω(−2k)) +
∞∑

k=1

p(n − ω(2k))
)
= A3(n)
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and

2
( ∞∑

k=1

p(n − ω(−2k + 1)) +
∞∑

k=1

p(n − ω(2k − 1))
)
= A3(n);

which is equivalent to (2.3). This completes the proof of Theorem 2.1.

4. Proof of Corollary 2.2

Most of the congruences follow easily from the corresponding congruences and
generating function representations of A3(n) or C3,1(n) in [2, 4, 6, 8, 9, 11, 14, 16,
22, 23, 26] and Theorem 2.1. Therefore, we only prove the last three congruences in
Corollary 2.2, that is,

S(18n + 15) ≡ 0 (mod 48), (4.1)

S(12n + 11) ≡ 0 (mod 72), (4.2)

and

S(24n + 23) ≡ 0 (mod 144). (4.3)

Andrews [4, Theorem 2] and Yao [26, Theorem 1.1, (1.8)] proved that

A3(9n + 6) ≡ 0 (mod 3) and A3(18n + 15) ≡ 0 (mod 32),

from which it follows that

A3(18n + 15) ≡ 0 (mod 96).

Now (4.1) is apparent from Theorem 2.1 and the above congruence.
Next, Barman and Ray [6, Section 3] showed that
∞∑

n=0

A3(12n + 11)qn = 144
(q2; q2)13

∞ (q3; q3)12
∞

(q; q)22
∞ (q6; q6)3

∞
+ 576q

(q2; q2)10
∞ (q3; q3)3

∞(q6; q6)6
∞

(q; q)19
∞

.

(4.4)

Therefore,

A3(12n + 11) ≡ 0 (mod 144),

which, by Theorem 2.1, readily implies (4.2).
It also follows from (4.4) that

∞∑
n=0

A3(12n + 11)qn ≡ 144
(q2; q2)13

∞ (q3; q3)12
∞

(q; q)22
∞ (q6; q6)3

∞
(mod 288). (4.5)

But, by the binomial theorem, (qj; qj)2
∞ ≡ (q2j; q2j)∞ (mod 2) for any integer j ≥ 1.

Therefore, it follows from (4.5) that
∞∑

n=0

A3(12n + 11)qn ≡ 144 f4 f 3
6 (mod 288).
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Equating the coefficients of q2n+1 on both sides of this congruence yields

A3(24n + 23) ≡ 0 (mod 288),

which, by Theorem 2.1, readily gives (4.3).
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