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Abstract

Objective: The ability to remotely monitor cognitive skills is increasing with the ubiquity of smartphones. The Mobile Toolbox (MTB) is a new
measurement system that includes measures assessing Executive Functioning (EF) and Processing Speed (PS): Arrow Matching, Shape-Color
Sorting, and Number-Symbol Match. The purpose of this study was to assess their psychometric properties. Method: MTB measures were
developed for smartphone administration based on constructs measured in the NIH Toolbox® (NIHTB). Psychometric properties of the
resulting measures were evaluated in three studies with participants ages 18 to 90. In Study 1 (N = 92), participants completed MTB measures
in the lab and were administered both equivalent NIH TB measures and other external measures of similar cognitive constructs. In Study
2 (N'=1,021), participants completed the equivalent NTHTB measures in the lab and then took the MTB measures on their own, remotely. In
Study 3 (N'=168), participants completed MTB measures twice remotely, two weeks apart. Results: All three measures exhibited very high
internal consistency and strong test-retest reliability, as well as moderately high correlations with comparable NIHTB tests and moderate
correlations with external measures of similar constructs. Phone operating system (iOS vs. Android) had a significant impact on performance
for Arrow Matching and Shape-Color Sorting, but no impact on either validity or reliability. Conclusions: Results support the reliability and
convergent validity of MTB EF and PS measures for use across the adult lifespan in remote, self-administered designs.
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Introduction and early disease detection. Mobile app-based assessments offer a
particularly appealing mechanism for administration, as they can be
completed at any time in nearly any location (Ben-Zeev & Atkins,
2017; Koo & Vizer, 2019). By leveraging personal smartphone
technologies, remote cognitive administration can offer a cost-
effective and efficient alternative to in-person assessment and enable
study designs that include frequent and/or longitudinal cognitive
monitoring.

To address the need for reliable, standardized, remote cognitive
assessments, the National Institute on Aging (NIA) has awarded
multiple grants to create the “Mobile Toolbox,” (MTB) (www.
mobiletoolbox.org, Gershon et al., 2022) a library of cognitive tests
and supplemental scales embedded within the REDCap system and
their companion MyCap App (Harris et al., 2022; Harris et al,,
2019; Harris et al., 2009). MTB and REDCap make it possible for
researchers to design and deploy smartphone-based studies that

Executive Functioning (EF) and Processing Speed (PS) are
foundational for many complex cognitive functions, and worsen-
ing performance in these domains has been hypothesized to play a
dominant role in cognitive decline (e.g., Reynolds et al., 2009;
Salthouse, 1996, 2000). As such, longitudinal monitoring of both
EF and PS has important implications for early detection,
intervention, and management of pathological cognitive impair-
ment. Neuropsychological batteries and standardized assessments
typically include measures of EF and PS; however, most standardized
measures are designed for one-on-one, in-person administration,
which can be costly, burdensome, and often impractical for both
researchers and participants.

Luckily, recent advancements in connected technologies have
provided opportunities to perform remote health monitoring in a
manner that can support research advances toward healthy aging
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participants can complete anywhere and anytime through an iOS-
or Android-based smartphone device. Through MyCap, the MTB
measures are highly accessible, affordable, and as we review here,
have been validated for use across the adult lifespan. Raw data from
the tasks are uploaded to servers, where they are aggregated,
processed for quality, and used to generate performance metrics.
All MTB assessments are designed to measure well-established
constructs, using existing paradigms optimized for self-adminis-
tration on a personal smartphone. Furthermore, the MTB system is
designed to allow these and other measures to be combined into
electronic protocols customized for the needs of a large number
and variety of future studies. Originally intended for research use,
the MTB is not currently suitable for individual diagnosis, but the
platform provides a mechanism for future research to explore this
potential use. Most of the initial core MTB cognitive tests were
adapted from measures included in the NIH Toolbox® for
Assessment of Neurological and Behavioral Function Cognitive
Battery (NIHTB-CB) or are measures of similar constructs
(Carlozzi et al., 2015; Carlozzi et al., 2014; Gershon et al., 2013;
Weintraub et al., 2013; Zelazo et al., 2014). The goal of the current
paper is to describe the process of developing and validating three
MTB measures that assess EF and PS: Arrow Matching (inhibitory
control), Shape-Color Sorting (cognitive flexibility), and Number-
Symbol Match (speed of information processing). These measures
share similarity in that they all rely on reaction time and are all
adaptations of existing NIHTB assessments.

Data from three distinct samples were used to evaluate the
psychometric properties of the MTB measures. In Study 1,
participants completed the MTB measures in a lab on a study-
provided smartphone and were administered external measures
of similar and dissimilar cognitive constructs. The goal of Study 1
was to evaluate the convergent and divergent validity, internal
consistency (split half), and correlations with age for MTB
measures when completed in a controlled laboratory setting. In
Study 2, participants completed MTB measures remotely on their
own smartphones and were administered measures of similar
cognitive constructs in the lab. The goal of Study 2 was to replicate
the results from Study 1 and to evaluate the psychometric properties
of the MTB measures when taken remotely on a personal
smartphone. Study 2 also allowed us to compare results across
Android and iOS devices. In Study 3, participants completed the
MTB twice on their own smartphone, two weeks apart. The goal of
Study 3 was to examine the test-retest reliability of the MTB
measures when taken remotely.

Method
Measure development

Two EF measures from the NIHTB-CB, Flanker Inhibitory
Control and Attention Test and Dimensional Change Card Sort
Test (DCCS; Weintraub et al., 2013; Zelazo et al., 2014), and one PS
measure from the NIHTB supplemental tests, the Oral Symbol
Digit Test (See Carlozzi et al., 2015; Healy & Fernald, 1911), were
selected for adaptation for self-administration on the Mobile
Toolbox app. A preliminary version of each measure was created
for usability and pilot testing. The results of those initial tests
informed revisions, which were incorporated into the versions of
the measures that were used for the validation studies.

Arrow matching
Arrow Matching assesses the inhibitory control component of
executive functioning. Based on the original Eriksen flanker task
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(Eriksen & Eriksen, 1974) as well as the NIHTB version (Flanker
Inhibitory Control and Attention Test; Zelazo et al, 2014)
participants indicate whether a central stimulus is oriented to the
left or right, while inhibiting focus on potentially incongruent
flanking stimuli on either side.

Designed to be taken in landscape orientation on a smartphone
screen, Arrow Matching presents five arrows in a line (See
Figure 1A). Four flanking arrows appear for a fraction of a second
(100 ms) prior to a central arrow. Examinees then have 2000ms to
respond with the direction of the central arrow, selecting from two
buttons. Participants complete 50 trials in a pseudo-random order,
of which approximately one third of the central stimuli are
incongruent with the flankers. A centrally located star rotates
during a variable (500 ms, 1250 ms, or 2000 ms) inter-stimulus-
interval (ISI). The movement of the star was chosen to help
participants maintain attention and provide a sense of system
status, communicating that another trial is soon to appear.

One difference between MTB Arrow Matching and its NIHTB
counterpart (Flanker) was the addition of more trials (50 vs 20),
with less time allotted for each item (2000 ms vs. 10,000 ms). This
faster auto-advance, combined with a variable ISI, was imple-
mented to increase task difficulty, with the goal of expanding
distribution of performance.

Shape-color sorting

Shape-Color Sorting measures the cognitive flexibility component
of executive function. Based on the Dimensional Change Card Sort
Test (Zelazo et al., 2014), participants are cued to match a bivalent
central test stimulus to one of two target stimuli based on one of
two dimensions (Figure 1B). Trials vary in the relevant dimension,
requiring participants to shift their matching rules.

In this test, which is taken in portrait orientation, trials switch
between cueing “color” and “shape.” The measure begins with five
mixed-practice items, followed by 30 test trials, 20 percent of which
cue “color”. The cued word is presented in lowercase text because
words in lowercase font are more easily recognizable (Tinker, 1963).
There is a variable-length ISI (either 300 or 1000ms) between each
trial and participants have 2500ms to respond to each trial.

Whereas the NIHTB version (DCCS) uses a bunny and sailboat
for practice items and a ball and truck for live items, the MTB
version uses a dog and car for practice items, and balloon and house
for live items. These new stimuli use the same colors, general shape,
and a similar style of drawing as those in the NIHTB version.

Number-symbol match
Number-Symbol Match is an electronic adaptation of the many
extant “coding” types of tests that originated in the early 20th
century (Healy & Fernald, 1911), and shares similarities with the
NIH Toolbox Oral Symbol Digit Test (Carlozzi et al., 2014), which
was similarly adapted from this original source. This measure
assesses processing speed by instructing participants to use a
reference key to pair numbers with symbols in a constrained time.
Number-Symbol Match, completed in landscape orientation,
presents a “key” at the top, showing the numbers one through nine
with a unique symbol connected to each number (See Figure 1C).
Below the key, nine symbols are presented per screen, and the
participant must tap the correct number for each symbol presented,
according to the key at the top. Symbol order is pseudo-random,
with the condition that no identical symbols appear contiguously.
The test includes 16 successive screens of 9 items each (total
items = 144) and participants are given 90 s to complete as many
items as possible.
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Figure 1. Screenshots of the EF and PS MTB measures. In Arrow Matching, participants see four flanking arrows (A1) before the central stimulus appears (A2), and they indicate the
orientation of the central arrow using the buttons below. In Shape-Color Sorting, participants are cued to one of two dimensions (B1), after which they are presented with a
bivalent target and use the buttons below to match with the corresponding category (B2). In Number-Symbol Match (far right figures), the top row contains a “key” and the bottom
row contains nine symbols. The participant uses the number buttons at the bottom to select the correct number for each symbol. Each symbol is sequentially highlighted
(e.g., after indicating one’s response for C1, the measure automatically advances to C2).

One difference between the MTB version of Number-Symbol
Match and other similar tests, including the NIHTB version of the
Oral Symbol Digit Test, is that self-corrections are not permitted
with the MTB design. Moreover, the Oral Symbol Digit Test uses
oral responses whereas Number-Symbol Match uses a motoric
response (tapping a button), as the latter was expected to reduce
potential effects of background noise when collecting data in
unknown environments and obviates the need for an examiner or
speech recognition processing of responses.

Validation studies

Participants

92 participants from Study 1 (M, = 49.27 years, SD = 17.65) and
1021 participants from Study 2 (M,ge = 43.97 years, SD = 21.24)
were enrolled in the NIHTB version 3 re-norming study and had
been recruited by a third-party market research firm. They were
racially and ethnically diverse and represented a range of age
groups and education levels (albeit few participants had less than a
high school education). The only inclusion criteria for participants
were: 1) age 18 or older; 2) ownership of an iOS or Android
smartphone; 3) ability to consent to participation in English.
Participants were not screened for cognitive impairments prior to
participation. Participants in Study 3 (N=168, M., =63.54,
SD =12.10) were enrolled as part of a larger independent
validation study through the Brain Health Registry (BHR), an
online, longitudinal platform with over 100,000 members (Michael
W Weiner et al., 2023). BHR consists of a public-facing website and
a participant portal, where participants over the age of 18 can
register, create an online profile, complete an online informed
consent form, and complete study tasks. Participants are recruited
to BHR through different methods (Weiner et al.,, 2023; Weiner
et al,, 2018) and advertising themes and messages include those
tailored towards older adults with normal cognition, as well as
those likely to have subjective cognitive decline and cognitive
impairment.

Study 3 participants were required to be fluent in English, have
previously opted-in to learning about additional research
opportunities within BHR, and were required to have a compatible
smartphone device. Participants were not screened for cognitive

impairment. Due to an unexpected technical issue that corrupted
data from Android devices, only users of iOS were included in
this sample. See Table 1 for full demographic breakdown of
participants in the three studies.

Procedure

Study 1. Participants self-administered the MTB measures on
study-provided iOS smartphones (iPhones), unproctored in the
lab. They were also administered the NIHTB Version 3 measures
on study-provided tablets (iPads), which included measures of
interest for validation: Flanker, DCCS, Oral Symbol Digit Test, and
Pattern Comparison Processing Speed Test. Participants were also
administered several external measures of similar constructs,
including the Delis Kaplan Executive Function System (D-KEFS)
Color Word Interference Test (Delis et al., 2001), Wisconsin Card
Sorting Test (WCST-64; Heaton, 1981), and the Coding and
Symbol Search subtests from the Wechsler Adult Intelligence Scale,
4™ edition (Wechsler, 2008), as well as two measures for divergent
validity - the Peabody Picture Vocabulary Test, 5 edition (PPVT-
5; Dunn, 2018) and the NIH Toolbox Picture Vocabulary Test
(TPVT; Gershon et al., 2014), both of which measure receptive
vocabulary, a construct that is distinct from EF and PS. The PPVT
has previously been used as a measure of divergent validity vis-a-
vis the NIHTB EF measures (Zelazo et al., 2014). We expected the
MTB EF measures to correlate at least moderately with respective
measures of similar constructs (r > .3) and weakly with a measure
of a divergent construct (i.e., the PPVT-5; r < .3).

Study 2. Participants were administered the NIHTB measures
used on Study 1 in the lab, and then completed the MTB measures
on their own iOS or Android smartphone remotely, no more than
14 days later.

Study 3. BHR participants were invited by email, screened for
eligibility (access to a compatible smartphone), and provided
online instructions for MTB app download. Participants self-
administered the MTB measures on their own iOS smartphone
remotely twice - once at baseline, and once 14 (+ 3) days later.
Participants were only included in final analyses if they completed
the measures at both timepoints, and if they did not switch devices
between sessions (i.e., from iOS to Android, iPhone to iPad). Of the
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Table 1. Sample descriptives for validation studies
Study 1 Study 2 Study 3
(N=92) (N=1021) (N =168)
Missing data % (n) % (n) % (n)
Arrow matching 0.00 (0) 3.82 (39) 15.48 (26)
Shape-color sorting 0.00 (0) 5.58 (57) 14.29 (24)
Number-symbol match 0.00 (0) 8.81 (90) 16.07 (27)
Age
Mean (SD) 49.27 (17.65) 43.97 (21.24) 63.54 (12.10)
Range [20, 84] [18, 90] [28, 87]
% (n) % (n) % (n)
Device type
iPhone 100.00 (92) 63.66 (650) 100.00 (168)
Android 0.00 (0) 36.34 (371) 0.00 (0)
Gender
Female 67.39 (62) 55.63 (568) 83.93 (141)
Male 32.61 (30) 44,37 (453) 16.07 (27)
Other 0.00 (0) 0.00 (0) 0.00 (0)
Not identified 0.00 (0) 0.00 (0) 0.00 (0)
Racial Identity
White or Caucasian 52.17 (48) 73.65 (752) 88.69 (149)
Black or African American 32.61 (30) 13.91 (142) 4,17 (7)
Asian 9.78 (9) 6.27 (64) 2.98 (5)
Native American or Alaska Native 0.00 (0) 0.69 (7) 0.60 (1)
Native Hawaiian or Other Pacific Islander 1.09 (1) 0.49 (5) 0.00 (0)
Middle Eastern or North African 0.00 (0) 0.88 (9) 0.00 (0)
Multiracial or more than one race 4.35 (4) 2.15(22) 2.98 (5)
Other 0.00 (0) 0.00 (0) 0.60 (1)
Prefer not to say or not identified 0.00 (0) 1.96 (20) 0.00 (0)
Ethnic identity
Hispanic / Latino (Any Race) 1.09 (1) 14.69 (150) 7.14 (12)
Not Hispanic / Latino (Any Race) 98.91 (91) 85.31 (871) 92.86 (156)
Prefer not to say or not identified 0.00 (0) 0.00 (0) 0.00 (0)
Education level
Less than HS 2.17 (2) 1.67 (17) 0.00 (0)
HS Diploma or GED 54.35 (50) 32.03 (327) 0.60 (1)
Some college 20.65 (19) 35.16 (359) 25.60 (43)
College or bachelor’s degree (4-year degree) 15.22 (14) 20.27 (207) 32.74 (55)
Graduate or professional degree (Any Level) 7.61 (7) 10.87 (111) 41.07 (69)
Prefer not to say or not identified 0.00 (0) 0.00 (0) 0.00 (0)

168 participants enrolled, 144 participants provided data for test-
retest reliability for Shape-Color Sorting, 142 participants for
Arrow Matching, and 141 participants for completed Number-
Symbol Match.

Studies 1 and 2 were conducted in compliance with, and
approved by, the Internal Review Board (IRB) at Northwestern
University (IRB STU00207455) and Study 3 was conducted in
compliance with, and approved by, the IRB at the University of
California, San Francisco (IRB 20-30058). All data was obtained in
accordance with Helsinki Declaration.

Analyses
Scores for Arrow Matching and Shape-Color Sorting use a rate-
based score - the number of correct trials completed per second,
which matches the scoring model used for NIHTB version 3 and is
taken from prior literature (Woltz & Was, 2006). The score for
Number-Symbol Match uses the number of correct responses
completed in the allocated time (90 s). All MTB analyses reported
here used raw scores. While these reflect the primary scores, similar
to other EF tests (e.g., the DEFKS), additional metrics are also
available for Arrow Matching and Shape-Color Soring including
error rate, anticipation errors, median correct and incorrect, etc.
Spearman correlations were conducted to explore convergent
validity against external measures of similar cognitive constructs
(Study 1), and NIHTB equivalent measures (Studies 1 & 2), as well

as divergent validity against the NIH Toolbox PVT (Studies 1 & 2)
and PPVT (Study 2). Note that TPVT is an interval scale based on
IRT models, and the remaining convergent measures are each ratio
scales. Parametric tests are appropriate for the comparison of
interval scales to ratio scales, as well as between ratio scales.

Tests of independence assessed whether MTB correlations with
NIHTB varied as a function of testing environment (in-person vs.
remote—i.e., Study 1 vs. Study 2). Performance across age was also
computed with Spearman correlations (Studies 1 & 2). We
anticipated that all three measures would correlate negatively with
age, as EF and PS are known to decline across the adult lifespan.

Internal consistency reliability (Studies 1 & 2) was calculated
using a median correlation with Spearman-Brown correction
between bootstrapped random split-half coefficients. Test-retest
reliability (Study 3) was calculated using intraclass correlation
coefficients, and practice effects were analyzed using linear mixed-
effects models with two time points and a random intercept for
participant (which is statistically equivalent to a paired samples
t-test).

Finally, because subtle differences in operating system can
influence the timing of stimuli presentation and response
recording we considered the effect of operating system (iOS vs.
Android) on standardized scores, using linear regression models
and controlling for age in each model. In addition to evaluating
differences in performance scores across device type, we also
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compared validity and reliability metrics across device types
considering overlapping 95% Confidence Intervals (for validity
estimates) and overlapping 25%-75% percentiles (for reliability
estimates).

Analyses for all validation studies were conducted in R (R Core
Team, 2023). Due to the number of comparisons, p-values were
only considered significant if they were less than .01.

Results
Study 1 (In-person sample)

Examination of score distributions did not suggest floor or ceiling
effects of the measures (i.e., there were very few cases with perfect
or zero scores). Validity estimates comparing scores between MTB
measures and NIHTB counterparts were strong, ranging from
r=.58 to r=.74 (See Table 2). Validity estimates compared to
external measures were more variable. Number-Symbol Match had
a strong correlation with the WAIS-IV Coding score (r=.68) and
Symbol Search (r=.63). Shape-Color Sorting correlated moder-
ately in the expected negative direction with all D-KEFS subscores
(—.54 < r< —.38), as well as moderately in the expected positive
direction with the WCST-64 (r = .41). Similarly, Arrow Matching
correlated moderately in the expected negative direction with all
D-KEEFS subscores (—.45 < r < —.39), as well as in the expected
positive direction with the WCST-64 Test (r=.32).

All three measures showed no significant relationship to scores
on the two vocabulary measures: NIHTB PVT (r < .15) and PPVT
(r <.29), demonstrating evidence of divergent validity. Measures
in this study also demonstrated very strong internal consistency
reliability (r’s > .93) and expected negative correlations with age
(r’s < —.39).

Study 2 (Fully remote sample)

Examination of score distributions did not suggest floor or ceiling
effects of the measures. Reliability and validity estimates, as well as
correlations with age, were largely similar to those seen in Study 1
(See Table 3 for all results on the Full Sample). Tests of
independent correlations comparing NIHTB convergent validity
correlations between the in-person (Study 1) and remote (Study 2)
samples indicated no significant differences between the estimates
for Arrow Matching vs. NIHTB Flanker (z = 1.56, p =.12), Shape-
Color Sorting vs. NIHTB DCCS (z=0.18, p=.86), Number-
Symbol Match vs. NIHTB Pattern Comparison (z=0.21, p = .83),
or Number-Symbol Match vs. NIHTB Oral Symbol Digit Test
(z=0.14, p=.89). Finally, all three measures again showed no
significant correlation with the divergent measures of NIHTB PVT
(r’s <.15) and PPVT (r’s < .27). Like in Study 1, all three measures
demonstrated very strong internal consistency reliability (r’s > .94)

Unlike Study 1, in which all individuals completed the MTB
measures on a study-provided iOS smartphone (iPhone), in
Study 2, participants completed the measures on their own phones,
31% of which were Android devices. Therefore, Study 2 allowed us to
compare MTB reliability and validity between operating systems.

First, we considered the effect of operating system on scores.
Linear regressions demonstrated that operating system did indeed
have a significant effect on standardized scores, controlling for age,
for both Arrow Matching (f=0.23, p <.001) and Shape-Color
Sorting (#=0.21, p <.001), but not for Number-Symbol Match
(#=0.005, p=.93). For both Arrow Matching and Shape-Color
Sorting, scores were higher on iOS than on Android. See Table 4 for
full regression results.

Miriam A. Novack et al.

Importantly, despite the small effect of operating system on
scores, there were no significant differences in convergent validity,
divergent validity, or internal reliability between operating
systems, as evidenced by overlapping confidence intervals (See
Table 3 for estimate comparisons by operating system).

Study 3 (Fully remote test-retest sample)

Again, examination of score distributions did not suggest floor or
ceiling effects of the measures. Shape-Color Sorting showed good test-
retest reliability (N =144, ICC=.78, 95% CI: [.71-.84]) with no
significant practice effects from baseline to retest (average increase of
0.03 items correct per second, £ (143) = 1.8, p = .08). Number-Symbol
Match exhibited excellent test-retest reliability (N =141, ICC = .83,
95% CI: [.74-.89]), with a small but significant increase of 2.73
additional items correct the second time it was taken (#(140) = 4.8, p <
.0001). Finally, Arrow Matching showed good test-retest reliability
(N=142,ICC=0.69, 95% CI: [.59-.76]), and unexpectedly showed a
small but significant decrease in performance between baseline and
retest. On average, scores changed by -0.05 items correct per second
(t(141) = —2.3, p=.02) on the second administration.

Discussion

This paper describes the results of a multi-part validation effort
demonstrating the psychometric properties of three MTB
measures that assess EF and PS. Results from the in-person
sample (Study 1) provide convergent validity evidence compared
to both NIHTB measure equivalents as well as external measures,
under “optimal” circumstances. Results from a larger and fully
remote sample (Study 2) replicate the validity and reliability results
of Study 1 while demonstrating an effect of phone operating system
on results for two of the tests. Study 3 provides evidence of test-
retest reliability and practice effects.

All three measures demonstrated good evidence of convergent
and divergent validity on both iOS and Android devices, supporting
their effectiveness in assessing the specified constructs. Scores on
Arrow Matching correlated strongly with those on the NIHTB
Flanker and moderately with D-KEFS Color Word Inhibition
including the raw score, Color Naming, Word Reading, and
Inhibition/Switching. Shape-Color Sorting scores correlated strongly
with the NIHTB DCCS measure, as well as moderately with the
D-KEFS Inhibition/Switching. Number-Symbol Match correlated
strongly with NIHTB Pattern Comparison and Oral Symbol Digit
tests, and with the WAIS-IV Coding and Symbol Search scores.
Additionally, all three measures had small, non-significant correla-
tions with both the NIHTB PVT and PPVT, measures of vocabulary
knowledge that tend to be a proxy for general abilities. Together, these
results suggest that Arrow Matching, Shape-Color Sorting, and
Number-Symbol Match assess the targeted constructs of EF and PS.

Correlations between MTB scores and age are similar to those
reported for the original NTHTB (—0.50 to —0.55; Carlozzi et al.,
2014; Zelazo et al., 2014). Additionally, correlations between MTB
and NIHTB equivalents reported here were quite strong (ranging
from .58 to .70), and correlations between MTB measures and
external measures of similar cognitive constructs reflected a similar
range to those seen for the original NIHTB validation study
(.52 between NIHTB Flanker and D-KEFS Color-Word
Interference Inhibition, .55 between NIHTB DCCS and D-KEFS
Color-Word Interference Inhibition). This level of correlation is
impressive given that MTB measures are self-administered (and,
for two of our three samples, were completed in an unproctored
setting).
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Table 2. Validity and reliability estimates for Mobile Toolbox measures: Study 1 (in-person sample)

Arrow matching

Shape-color sorting Number-symbol match

Value N Value N Value N
Age correlation —.497 92 —.397 92 —.677 92
Convergent validity
NIHTB flanker 74 84
NIHTB DCCS - - 69 92 - -
NIHTB pattern comparison - - - - .58 92
NIHTB oral symbol digit - - - - 71 92
WCST-64 correct 32 86 41 86 - -
D-KEFS color word inhibition raw score —A417 76 —.547 76 - -
D-KEFS raw score of color naming —.45% 76 —.437 76 - -
D-KEFS raw score of word reading —.397 76 —.387 76 - -
D-KEFS raw score of inhibition/switching —.45% 76 —.497 76 - -
WAIS-IV coding - - - - .68 76
WAIS-IV symbol search - - - - .63 76
Divergent validity
NIHTB PVT .15 (ns) 92 .13 (ns) 92 .06 (ns) 922
PPVT-5 .22 (ns) 78 .28 (ns) 78 .20 (ns) 78
Internal reliability: 50%, [25-75 percentile] .97 [.96, .97] 92 .93 [.92, .94] 92 .99 [.97 .98] 92

Note. All correlations significant at p <.01 unless otherwise noted.

ANegative correlation expected due to the inverse relationship between scores (e.g., performance vs. age; speed vs. accuracy).

Table 3. Validity and reliability estimates for Mobile Toolbox measures: study 2 (fully remote sample)

Arrow matching

Shape-color sorting Number-symbol match

Value N Value N Value N

Age correlation Full sample —.57 982 —.50% 964 —.617 931
i0S —.55 [-.61, —.49]" 626 —.46 [-.52, —.39]" 625 —.58 [-.63, .52]* 622
Android —.44 [-.52, —.35] 356 — 41 [-.49, —31] 339 —.62 [—.69, .54] 309

Convergent validity

NIHTB flanker Full sample 0.65 837 - - - -
i0S .66 [.61, .71] 551 - - - -
Android .57 [.48, .65] 286 - - - -

DCCS Full sample - - .70 884 - -
ioS .68 [.63, .72] 584
Android 70 [ .62, .76] 300

Pattern comparison Full sample - - - - .57 923
i0S 58 [ .52, .63] 616
Android AT [.37, .55] 307

Oral symbol digit Full sample - - - - .70 917
i0S .69 [.64, .73] 613
Android .68 [.61, .74] 304

Divergent validity

NIHTB PVT Full sample .003 (ns) 975 —.002 (ns) 958 —0.07 (ns) 924
i0S —.02 [-.1, .06] 621 —.01 [ —.09, .06] 620 —.08 [-.16, —.004] 617
Android .14 [ .04, .24] 354 12 [.01,.22] 338 .009 [-.10, .12] 307

Reliability

Internal reliability 50%, [25, 75 percentile] Full sample .97 [.97, .98] 982 .94 [.93, .94] 964 .98 [.97, .98] 931
i0S 97 [.97, .97] 626 .93 [.93, .94] 629 .98 [.97, .98] 626
Android .98 [.98, 0.98] 356 .94 [.93, .94] 335 .98 [0.97, .98] 305

Note. All correlations significant at p <.01 unless otherwise noted.
ANegative correlation expected due to the inverse relationship between scores (e.g., performance vs. age; speed vs. accuracy) All values, with the exception of Internal reliability report 95% Cls.

It is also notable that there were no differences in validity or
internal consistency reliability coefficients between the sample that
completed the MTB measures in person (Study 1) and those that
completed the measures remotely (Study 2). Despite potential
challenges facing remote assessment, the consistency in reliability
and validity estimates offers further confidence in the utility of this
tool as intended.

Finally in Study 3, we considered test-retest reliability on iOS
devices only, as participants in this sample completed each
measure twice, 14 days apart. All measures exhibited strong test-
retest reliability with generally stable performance after two weeks.
Nevertheless, we did see slight practice effects in the positive

direction for Number-Symbol Match, which is comparable to
practice effects on similar processing speed tests (Carlozzi et al.,
2014) and in the negative direction for Arrow Matching, which
differs from the positive practice effects previously found for
NIHTB Flanker (Zelazo et al., 2014). Although the practice effects
were minimal, they suggest that those interested in using the MTB
EF and PS measures for high-frequency testing or Ecological
Momentary Assessment designs use caution in interpreting
changes in scores over relatively short periods of time. One
challenge in developing cognitive assessments for remote
administration on individuals’ smartphones is that devices vary
in their timing precision, which is problematic for tests that depend
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Table 4. Regression results of device type predicting scores with and without age covariates from Study 2

Arrow Matching Shape-Color Sorting Numbers-Symbol Match

Model 1 p t p t p t
Device type 0.56%* 8.83 0.51%%* 7.79 0.38%* 5.51
F(df) 77.94 (1, 980) 60.63 (1, 962) 30.40 (1, 929)

R24 0.07%* 06+ 0.03:
Model 2 p t p t p T
Device type 0.23%%* 3.98%%* 0.21%%* 3.44 0.01 0.09
Age —0.02%* —18.59%* —0.02%* —15.69 —0.03** —21.35
F(df) 225.40 (2, 979) 161.10 (2, 961) 250.50 (2, 928)

R24 0.31%* 0.25%% 0.35%%
Model 3 p t p t p t
Device type 0.22%% 3.73 0.21%%* 3.39 0.00 0.05
Age —16.26%* —18.64 —14.30%* —15.67 —18.04%%* —21.35
Age? 1.17 1.40 0.07 0.08 0.23 0.78
F(df) 151.10 (3, 978) 107.3 (3, 960) 166.80 (3, 927)

R24 0.31%% 0.25%* 0.35%

Note. **p <.001.

on precise stimuli presentation and response timing (Germine
et al,, 2019; Passell et al., 2021). In comparing performance across
users who completed the measures on an iOS vs. Android device in
Study 2, we indeed found that operating system made a difference
on scores for the two measures that are highly time dependent
(Arrow Matching and Shape-Color Sorting), whereas it did not
impact Number-Symbol Match, for which precise timing matters
less. Given that the effect of operating system emerged only for the
two measures that rely on precise stimuli presentation timing and
response recording, these results suggest that the effect of operating
system is likely due to software or hardware differences rather than a
third, person-specific variable. Note also that there are differences
beyond operating system that exist across different devices - Android
devices in particular are manufactured by a wide range of companies
using different hardware components that could affect the
measurement of fine-grained timing events during tests. However,
the diversity of devices used precluded any formal study of the effect
of device hardware on results. Future work will determine whether
there is a subset of hardware devices, such as older or less expensive
models, that yield differing results. In the absence of this additional
research, for studies proposing multiple assessments of the same
individual on time-dependent tests, we strongly recommend
ensuring that they complete the measures on the same device over
time so that any device effect is consistent within an examinee, and
that operating system is included as a covariate in analyses.

Despite a small impact on scores for the timed measures (Arrow
Matching and Shape-Color Sorting), we found no differences in
the convergent validity, divergent validity, or internal consistency
across operating systems for any of the measures. This suggests
that MTB measures can be used reliably with both types of
operating systems. However, researchers should use caution when
comparing Arrow Matching or Shape-Color Soring scores from
different devices and may want to avoid combining different
operating systems in their samples when using these measures. In
contrast, this should not be a concern for Number-Symbol Match,
which saw no differences in reliability, validity, or mean scores
between operating systems.

Limitations

Despite their strengths, our studies have some limitations. First,
test-retest reliability and practice effects were only examined on
iOS devices due to a technical error in the Android sample. Further
research with Android phones should be conducted to understand

the influence of repeated administrations on the measures’
reliability before they are used with Android samples. Second,
although the demographics of our three samples were reasonably
diverse, they lacked representation from certain groups, for
example, those with less than a high school education. Future
validation studies with underrepresented groups are important for
the measures to be used in research with these populations. Third,
the current samples were not recruited specifically to include
individuals with cognitive impairments, and no cognitive assess-
ments were conducted prior to enrollment. As the MTB was
designed to track cognitive change across the lifespan and support
research in cognitive decline, it is imperative that future work
determine the feasibility, reliability and validity of the MTB in
samples with impairments, including cognitive impairments, and
other clinical groups.

The MTB is designed to be a remote assessment tool, which
comes with both strengths and limitations. Remote measures that
can be self-administered on a personal smartphone can reduce the
cost and participation burden of research (Naito et al., 2021).
However, it is difficult to monitor for cheating or poor effort, as
well as other environmental factors that may influence test
performance when measures are taken in remote settings. The
measures time out after 10 minutes of inactivity to protect against
low engagement; however, we were not able to monitor for other
types of performance validity within these measures. Although it is
difficult to cheat on these EF measures as participants cannot look
up answers, it is possible that some participants asked another
person to complete the test for them or did not try their best on the
measures. Future versions of the MTB will implement measures to
monitor and control for performance validity in remote settings, as
well as collect data on contextual factors such as background noise
or movement, to empirically test if and how these factors impact
test performance in the real world. Moreover, users can easily
include their own instructions to participants through the REDCap
system to address engagement concerns.

Finally, while the three samples, particularly those from Studies
1 and 2, were reasonably diverse, they do not reflect the
comprehensive demographic breakdown of populations in the
US. This does limit the generalizability of validity and reliability
across all populations and limits the use of these data for creating
normed scores. As of now, MTB can be considered useful for
research purposes in the tested populations but is not appropriate
for clinical use or high-stakes testing, and may not be as useful
when testing populations underrepresented in this study.
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Conclusion

MTB Arrow Matching, Shape-Color Sorting, and Number-Symbol
Match are shown here to be reliable and valid tools for remotely
assessing EF and PS in healthy adults. Future work should consider
their efficacy in additional contexts including with clinical
populations, however the work reported here provides a critical
foundation for the expansion of the MTB in future studies. Our
hope is that the MTB will enhance research on cognitive change
across the lifespan and advance our knowledge of both typical and
atypical cognitive decline.
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