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Abstract

Given f ∈ Z[t] of positive degree, we investigate the existence of auxiliary polynomials g ∈ Z[t] for which
f (g(t)) factors as a product of polynomials of small relative degree. One consequence of this work shows
that for any quadratic polynomial f ∈ Z[t] and any ε > 0, there are infinitely many n ∈ N for which the
largest prime factor of f (n) is no larger than nε.
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1. Introduction

In this paper we study the smoothness of polynomials. Recall that an integer is
called y-smooth (or y-friable) when each of its prime divisors is less than or equal
to y. Given a polynomial f ∈ Z[t] of positive degree and a nonnegative number θ,
we say that f admits smoothness θ when there are infinitely many integers n for
which the polynomial value N = | f (n)| is Nθ-smooth. Similarly, we say that f admits
polysmoothness θ when there exists a nonconstant polynomial g ∈ Z[t] having the
property that each irreducible factor of f (g(t)) has degree at most θ(deg f )(deg g).
In the latter circumstances, by inspecting the values f (g(m)) for large integers m, it is
apparent that when f admits polysmoothness θ, then it admits smoothness η for any
η > θ. Motivated by the widely held conjecture that for each ε > 0, every f ∈ Z[t]
of positive degree should admit smoothness ε, the latter considerations prompt the
following question.

Question. Given f ∈ Z[t] of positive degree d, is it the case that f admits
polysmoothness ε for every ε > 0? In other words, for each ε > 0, does there exist
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g ∈ Z[t] of some degree k = k(ε) ≥ 1 having the property that each irreducible factor
of f (g(t)) has degree at most εkd?

If the answer to this question is in the affirmative, then the aforementioned
smoothness conjecture on polynomial values would follow at once. Regrettably, with
the exception of polynomials of special shape, an affirmative answer has been available
only in the case d = 1. Our primary goal in this paper is to answer this question in the
affirmative in the case d = 2.

Theorem 1.1. Let f ∈ Z[t] be quadratic. Then for some c > 0 there are polynomials
g ∈ Z[t] of arbitrarily large odd degree k for which f (g(t)) factors as a product of
polynomials of degree at most ck/

√
log log k. Thus f admits polysmoothness ε for any

ε > 0.

Corollary 1.2. When ε > 0 and f ∈ Z[t] is a quadratic polynomial, there are infinitely
many n ∈ N for which f (n) is nε-smooth. Thus f admits smoothness ε.

The sharpest conclusion available for quadratic polynomials hitherto is due to
Schinzel [9, Theorem 15]. This work, half a century old, shows that when f ∈ Z[t]
is quadratic, then it admits smoothness θ, where

θ = 1
2 (1 − 1

3 )(1 − 1
7 )(1 − 1

47 )(1 − 1
2207 ) · · · = 0.27950849 . . . .

For certain classes of quadratic polynomials one can do better. For example, Schinzel
[9, Theorem 14] shows that if f (t) = a(rt + s)2 ± b with a, r, s ∈ Z, ar , 0 and
b ∈ {1, 2, 4}, then f admits smoothness ε for any ε > 0. However, as is implicit in the
concluding remarks of Schinzel [9], polynomials such as 4t2 + 4t + 9 = (2t + 1)2 + 8
remain inaccessible to these methods. It is for awkward polynomials of this type that
Corollary 1.2 for the first time confirms the longstanding smoothness conjecture.

The state of knowledge for polynomials of degree exceeding two is in general
far less satisfactory. Discussion here requires that we return to the topic of well-
factorable polynomial compositions. Consider a polynomial f ∈ Z[t] of degree d ≥ 2.
Then the simplest approach that is generally applicable stems from the trivial identity
f (t) ≡ 0 (mod f (t)), which yields the only slightly less trivial congruential relation
f (t + f (t)) ≡ 0 (mod f (t)). The latter is of course merely another means of expressing
the factorisation f (t + f (t)) = f (t)h(t), where h ∈ Z[t] is some polynomial of degree
d2 − d. This instantly shows that f admits polysmoothness 1 − 1/d, but more can
be extracted by iterating this construction. Thus, in the next step, one substitutes
t = x + h(x) into the polynomial f (t + f (t)) and so on. In this way one sees that
a polynomial g ∈ Z[t] may be found having the property that f (g(t)) has as many
irreducible factors as desired, and moreover that f admits polysmoothness θ(d), with

θ(d) = 1 −
1

d − 1
+ O

( 1
d3

)
.

Schinzel [9, Lemma 10] offers a more elaborate construction, which we will revisit
in Section 3, showing that for a degree d polynomial f ∈ Z[t], there exists a degree
d − 1 polynomial g ∈ Z[t] having the property that f (g(t)) has a degree d factor.
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This construction may also be iterated. In order to describe the limit of Schinzel’s
circle of ideas, we introduce some notation. When d ≥ 2, we define the sequence
(ui)∞i=1 by putting u1 = d − 1 and then setting ui+1 = u2

i − 2 (i ≥ 1). We may now define
the exponent θ(d) by taking

θ(d) =

 1
2 P(2d) when d = 2, 3,
P(d) when d > 3,

where

P(d) =

∞∏
i=1

(1 − 1/ui). (1.1)

Then Schinzel [9, Theorem 15] shows that every polynomial f ∈ Z[t] of degree d
admits polysmoothness η for any η > θ(d). A modest computation reveals that

θ(2) = 0.27950849 . . . , θ(3) = 0.38188130 . . . , θ(4) = 0.55901699 . . .

and that, for large d, one has

θ(d) = 1 −
1

d − 2
+ O

( 1
d3

)
.

Although the conclusion of Theorem 1.1 supersedes this result in the case d = 2,
further progress for larger degrees remains elusive. This absence of progress for
larger degrees motivates the exploration of families of polynomials f admitting sharper
smoothness than attained via Schinzel’s construction. In Section 3 we reinterpret
Schinzel’s method in terms of field structures associated with the splitting field for
f over Q. Thereby, we obtain some enhancements applicable for special families of
polynomials summarised in the following result.

Theorem 1.3. Let f ∈ Z[t] be irreducible and let α be a root of f lying in its splitting
field. Suppose that for some γ ∈ Q(α) and g ∈ Z[t] of degree k ≥ 2, one has α = g(γ).
Then f (g(t)) is divisible by the minimal polynomial of γ over Q and hence f admits
polysmoothness 1 − 1/k.

Suppose that f ∈ Z[t] is irreducible of degree d and that α is a root of f lying in its
splitting field. Then, given any γ ∈ Q(α) withQ(γ) = Q(α), since α ∈ Q(γ), we find that
there exists a polynomial g ∈ Q[t] of degree at most d − 1 with α = g(γ). Thus, save
for establishing that deg(g) > 1 and further that the coefficients of g may be taken to be
integers, Theorem 1.3 recovers the conclusion of Schinzel. It is apparent, moreover,
that there is the potential for this polynomial g to have degree significantly smaller
than that of f and in such circumstances one does better than Schinzel.

Corollary 1.4. Suppose that f ∈ Z[t] is irreducible and let α be a root of f lying in
its splitting field. Suppose that f (t) = g(h(t)) − t, with g, h ∈ Z[t] of degree exceeding
one. Then f (g(t)) is divisible by the minimal polynomial of h(α) over Q and hence f
admits polysmoothness 1 − 1/deg(g).
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The point here is that, since f (α) = 0, one has α = g(h(α)) and so one can apply
Theorem 1.3 with γ = h(α). Thus, for example, the polynomial f (t) = t4 + 4t2 − t + 1
satisfies the relation

f (t) = (t2 + 1)2 + 2(t2 + 1) − t − 2 = g(h(t)) − t

with g(t) = t2 + 2t − 2 and h(t) = t2 + 1. One may verify that f is irreducible over
Q. Hence, if α is a root of f lying in its splitting field, one deduces from the
corollary that f (t2 + 2t − 2) is divisible by the minimal polynomial of h(α) over Q.
Note that since α = g(h(α)), it is not possible that h(α) lies in a proper subfield of
Q(α) and hence its minimal polynomial has degree four. In this way, one finds that
f (t2 + 2t − 2) = m1(t)m2(t) for polynomials mi ∈ Z[t] each having degree four. Indeed,
one has

f (t2 + 2t − 2) = (t4 + 4t3 − 9t + 5)(t4 + 4t3 − 7t + 7).

Thus f admits polysmoothness 1
2 , which is already sharper than the conclusion of

Schinzel, which shows f to admit polysmoothness at best 0.559 . . . . From here, one
can continue by iterating Schinzel’s construction on m1m2, thereby showing that f
admits polysmoothness η for any η > 1

2 P(8), where P(8) is defined as in (1.1). In this
way, one may verify that f admits polysmoothness 0.41926274 . . . .

The method underlying the proof of Theorem 1.1 may be seen as a hybrid of the
cyclotomic construction of Section 2 with the field-theoretic approach described in
Section 3. This we describe in Section 4. Another class of polynomials is susceptible
to a decomposition in some ways reminiscent of the Aurifeuillian factorisations
discussed by Granville and Pleasants in [5]. We illustrate our ideas in Section 5 with
the simplest classes of trinomials. Here and throughout, we write φ(n) for the Euler
totient of the natural number n.

Theorem 1.5. Suppose that k is a natural number with k ≥ 2.

(i) Let f (t) = tk + atk−1 − b with a, b ∈ Z and b , 0. Then f admits polysmoothness
φ(k − 1)/(k − 1).

(ii) Let f (t) = atk − t + b with a, b ∈ Z and ab , 0. Then f admits polysmoothness
φ(k)/k.

To illustrate the potential effectiveness of this theorem, consider the polynomial
fk(t) = tk − t − 1. It was shown by Selmer [11] that fk is irreducible over Q for each
k ≥ 2. Meanwhile, Theorem 1.5 shows that f admits polysmoothness φ(k)/k, and this
can be made arbitrarily close to 0 by taking a sequence of exponents k equal to the
product of the first n prime numbers, and letting n→ ∞. In this special case, the
method of proof is simple to describe. We take a polynomial g of large degree and put
t = g(x)k − 1. Thus, we find that

fk(g(x)k − 1) = (g(x)k − 1)k − g(x)k

and so, as a difference of two kth powers, we may employ a decomposition via
cyclotomic polynomials to factorise fk(g(x)k − 1).
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In our discussion of smooth values of polynomials, we have emphasised the
application of polysmoothness to establish smoothness. An alternative approach to
the problem of showing that polynomials take smooth values at integral arguments is
via sieve theory. Typical of the kind of result that may be established is a conclusion of
Dartyge, Tenenbaum and the third author [4]. Let f ∈ Z[t] be an irreducible polynomial
of degree d ≥ 1 and let ε > 0. Then, in particular, these authors show that for a
positive proportion of integers n, the integer N = | f (n)| is N1−1/d+ε-smooth. Thus,
f admits smoothness 1 − 1/d + ε. Although weaker than the conclusions described
above, this smoothness result has the merit that it applies for a positive proportion
of the values represented by f . In the same vein, subject to the truth of a certain
uniform quantitative form of the Schinzel–Sierpiński hypothesis, the third author [8]
has obtained an asymptotic formula for the number of integers n with 1 ≤ n ≤ x for
which N = | f (n)| is N1−1/(d−1)+ε-smooth when f is irreducible.

2. A cyclotomic construction

The polysmoothness question described in the introduction can be answered for
polynomials f ∈ Z[t] equal to any product of binomials. Consider then integers a j, b j,
k j with k j ≥ 1 (1 ≤ j ≤ l) and the polynomial

f (t) =

l∏
j=1

(a jtk j − b j). (2.1)

The argument employed by Balog and the fourth author in their proof of [1,
Lemma 2.2] is easily modified to confirm that f admits polysmoothness ε for any
ε > 0, as we now show.

Theorem 2.1. Let f ∈ Z[t] be a polynomial of the shape (2.1) with a1 . . . al , 0. Then,
for some c = c(k) > 0, there are polynomials g ∈ Z[t] of arbitrarily large degree d for
which f (g(t)) factors as a product of polynomials of degree at most cd/(log log d)1/l.
Thus f admits polysmoothness ε for any ε > 0.

Proof. Write k = k1 . . . kl and let y be a natural number sufficiently large in terms of
k. Then it follows from [1, Lemma 2.1] that the prime numbers not exceeding y and
coprime to k can be partitioned into l sets P1, . . . ,Pl with the property that for each i,
one has ∏

p∈Pi

(1 − 1/p) < 2
( k
φ(k) log y

)1/l
and

∏
p∈Pi

p < y2e5y/(4l). (2.2)

Put
γi =

∏
p∈Pi

p and Γi =
∏

1≤ j≤l
j,i

γ j,

and write Γ = γ1 . . . γl. It follows from standard prime number estimates that k−1e3y/4 <
Γ < e5y/4. Since (k jΓ j, γ j) = 1 (1 ≤ j ≤ l), we find that for each index j there exist
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integers λ̃ j, µ̃ j with 1 ≤ λ̃ j, µ̃ j < γ j, and satisfying

k jΓ jλ̃ j ≡ −1 (mod γ j) and k jΓ jµ̃ j ≡ 1 (mod γ j).

We put λ j = Γ jλ̃ j and µ j = Γ jµ̃ j (1 ≤ j ≤ l). Also, when 1 ≤ i, j ≤ l and i , j, we define
the integers Λi j and Mi j via the relations

Λi j = k jλi/γ j and Mi j = k jµi/γ j,

and
Λ j j = (k jλ j + 1)/γ j and M j j = (k jµ j − 1)/γ j.

We are now equipped to define the auxiliary polynomial

g(t) = tΓ
l∏

j=1

aλ j

j bµ j

j .

This polynomial has degree Γ satisfying k−1e3y/4 < Γ < e5y/4, whence

y � log Γ. (2.3)

Moreover, when 1 ≤ j ≤ l, one has a jg(t)k j − b j = b j(z
γ j

j − 1), where

z j = tk jΓ j

l∏
i=1

aΛi j

i bMi j

i .

But zγ j

j − 1 =
∏

e|γ j
Φe(z j), where Φe denotes the eth cyclotomic polynomial. It

therefore follows that

f (g(t)) =

l∏
j=1

b j(z
γ j

j − 1)

factors as a product of polynomials of degree at most

max
1≤ j≤l

max
e|γ j

φ(e)deg(z j) = max
1≤ j≤l

k jΓ jφ(γ j) = Γ max
1≤ j≤l

k jφ(γ j)
γ j

.

But, in view of (2.2) and (2.3), one has
k jφ(γ j)
γ j

= k j

∏
p∈P j

(1 − 1/p) < 2k j

( k
φ(k) log y

)1/l
� (log log Γ)−1/l.

Then we are forced to conclude that there is a number c = c(k) > 0 for which f (g(t))
factors as a product of polynomials of degree at most cΓ/(log log Γ)1/l, where Γ =

deg(g). This completes the proof of the theorem. �

The special case of Theorem 2.1 corresponding to the polynomial

f (t) = (a1t − b1)(a2t − b2),

with l = 2, k1 = k2 = 1, confirms the conclusion of Theorem 1.1 in the special case
of quadratic polynomials that factor as a product of two linear factors. We may
consequently restrict attention in our proof of Theorem 1.1 in Section 4 to irreducible
quadratic polynomials.
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3. Field-theoretic constructions

We begin in this section by describing the proof of Theorem 1.3. This permits
an abstract explanation of the construction of Schinzel described in the introduction,
though for the sake of simplicity we restrict ourselves in such matters to monic
polynomials.

The proof of Theorem 1.3. Let f ∈ Z[t] be irreducible of degree d ≥ 2 and let α be a
root of f lying in its splitting field. Suppose that γ ∈ Q(α) and that for some g ∈ Z[t] of
degree k ≥ 2, one has α = g(γ). Since f (g(γ)) = f (α) = 0, it follows that the minimal
polynomial m of γ over Q divides f (g). By Gauss’ lemma, we infer that f (g) is
divisible by an integral multiple m̃ of m lying in Z[t]. One has

Q(γ) ⊆ Q(α) = Q(g(γ)) ⊆ Q(γ)

and hence
deg(m̃) = [Q(γ) : Q] = [Q(α) : Q] = deg( f ) = d.

Then, for some polynomial h ∈ Z[t], one has f (g) = m̃h with deg(m̃) = d, deg( f (g)) =

kd and deg(h) = kd − d. We thus conclude that every polynomial factor of f (g) has
degree at most d(k − 1), whence f admits polysmoothness 1 − 1/k. This completes the
proof of Theorem 1.3. �

The factorisation of f (g(x)) is in general closely related to the factorisation
of g(x) − α, as various authors have noticed. The conclusion of Theorem 1.3
is closely related to the following proposition, which Schinzel [10, Theorem 22]
attributes to Capelli. (This proposition also appears, in a slightly infelicitous form, as
[5, Lemma 1].)

Proposition 3.1. Let f ∈ Q[t] be monic and irreducible, let α be any root of f in its
splitting field and put K = Q(α). Then, for any g ∈ Q[t], if the factorisation of g(t) − α
as a product of irreducibles over K[t] is

g(t) − α = a1(t;α)r1 . . . ak(t;α)rk ,

then the factorisation of f (g(t)) as a product of irreducibles over Q[t] is

f (g(t)) = A1(t)r1 . . . Ak(t)rk

with
A j(t) =

∏
f ( β)=0

a j(t; β) (1 ≤ j ≤ k).

Theorem 1.3 follows from Proposition 3.1 as the special case in which one of the
irreducible factors ai(t;α) is linear. It is apparent that, in the setting of Proposition 3.1,
the wider generality that it has the potential to offer may be exploited to improve
polysmoothness bounds for f whenever one has corresponding polysmoothness
bounds for polynomials g(t) − α over Q(α).
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The idea underlying the construction of Schinzel described in [9, Lemma 10] can
be interpreted in the guise of Theorem 1.3 as follows. We restrict attention to monic
irreducible polynomials

f (t) = td + ad−1td−1 + · · · + a1t + a0.

Let α be a root of f lying in its splitting field and put β = 1/α. Then, since f (α) = 0, it
follows that

α = −(ad−1 + ad−2β + · · · + a0β
d−1).

We take g(t) = −(a0td−1 + · · · + ad−1). Then α = g( β) with g ∈ Z[t] a polynomial
of degree d − 1. Theorem 1.3 consequently delivers the conclusion that f admits
polysmoothness 1 − 1/(d − 1).

Two comments are in order here. First, the restriction that f be irreducible is easily
negotiated away with a little careful thought. Second, the condition that f be monic in
the above argument can be surmounted with the application of carefully chosen shifts,
as Schinzel demonstrates. This is a little delicate, and we have chosen to avoid such
technical issues with the hope that the underlying ideas may be more clearly visible
from our simplified discussion.

Incidentally, the strategy employed in the above argument is relevant to the question
raised by Granville and Pleasants following [5, Corollary 1].

Question (Granville and Pleasants). Suppose that f (t) ∈ Q[t] is irreducible. Can one
find infinitely many g(y) ∈ Q[y] with deg(g) < deg( f ) for which f (g(y)) is reducible in
Q[y], where the g(y) are distinct under transformations replacing y by a polynomial
in y?

When f ∈ Q[t] is irreducible of degree two and g ∈ Q[y] has degree smaller than
that of f , it is apparent that g is linear and hence the answer to this question is
negative. Suppose then that f has degree d ≥ 3 and let α be a root of f in its
splitting field. Thus [Q(α) : Q] = d. We take β to be any element of Q(α) not lying
in spanQ{1, α} with [Q( β) : Q] = d. There are infinitely many such elements β. Then,
since Q( β) ⊆ Q(α) and [Q( β) : Q] = [Q(α) : Q], one has Q( β) = Q(α). But α ∈ Q( β),
so there exists a polynomial g ∈ Q[y] of degree at most d − 1 with the property that
α = g( β). Furthermore, since β < spanQ{1, α}, one sees that deg(g) > 1. We have
f (g( β)) = f (α) = 0, so that f (g(y)) is divisible by the minimal polynomial of β over
Q. Since the latter has degree [Q( β) : Q] = d, it follows that f (g(y)) is reducible and
yet deg(g) ≤ d − 1 < deg( f ). What is unclear is whether or not the polynomials g
generated by this process are distinct under polynomial transformations, although it
seems unlikely that all of these polynomials could be generated by a finite set by such
substitutions. In the cubic case, however, we are able to resolve this issue.

Theorem 3.2. Suppose that f (t) ∈ Q[t] is irreducible of degree three. Then there are
infinitely many quadratic polynomials g(y) ∈ Q[y] for which f (g(y)) is reducible in
Q[y], where the g(y) are distinct under transformations replacing y by a polynomial
in y.

https://doi.org/10.1017/S1446788718000320 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000320


[9] Smooth values of polynomials 253

Proof. We follow the construction described above, employing the same notation, and
initially seek a more detailed description of the factorisations of the compositions in
question. Thus, for a quadratic polynomial g ∈ Q[y], one finds that f (g(y)) is divisible
by the minimal polynomial mβ of β overQ, and deg(mβ) = 3. Thus, f (g(y)) = mβ(y)l(y)
for some polynomial l ∈ Q[y] of degree three. Note that β ∈ Q(α) is one root of the
quadratic polynomial g(y) − α. The second root γ must also lie in Q(α). We observe
that γ cannot be a root of mβ, for then one would have that g(y) − α divides mβ(y). The
quotient q(y) here is linear, and cannot lie in Q[y], since mβ(y) is irreducible over Q[y].
But the leading coefficient of q(y) is rational, so the coefficient of y2 in mβ(y) cannot
be rational, leading to a contradiction. Thus, indeed, we have mβ(γ) , 0, confirming
our earlier assertion.

The polynomial l cannot have linear or quadratic factors over Q[y], for any root θ
of such a factor would supply a root g(θ) of f lying in a field extension of Q of degree
one or two, contradicting the irreducibility of f . Then l(y) is a scalar multiple of a
cubic polynomial irreducible over Q[y]. But γ is a root of this polynomial, so that l is
a scalar multiple of its minimal polynomial mγ, and we have f (g) = κmβmγ, for some
nonzero rational number κ. Moreover, since g ∈ Q[y] and both β and γ are roots of the
quadratic polynomial g(y) − α, then an examination of the coefficient of y in the latter
polynomial reveals that β + γ ∈ Q. There is therefore a rational number r for which
γ = r − β and we have f (g(y)) = κmβ(y)mr−β(y).

We next attend to the matter of confirming that infinitely many of these polynomials
g are distinct under transformations replacing y by a polynomial in y. It is apparent that
the only possibility for such a transformation is a linear one taking y to ay + b for some
rational numbers a and b with a , 0. Motivated by this observation, when F,G ∈ Q[y],
we write F ∼ G when there exist a, b ∈ Q with a , 0 for which F(y) = G(ay + b). It
is readily confirmed that this relation defines an equivalence relation on elements of
Q[y]. Returning now to the discussion of the previous paragraph, one may check that

f
(
g
(y − b

a

))
= κmaβ+b(y)ma(r−β)+b(y).

Hence, whenever G ∼ g, then f (G(y)) = κh1(y)h2(y) for some monic polynomials
h1, h2 ∈ Q[y] with hi ∼ mβ (i = 1, 2).

Suppose that β = Aα2 + Bα + C and β′ = A′α2 + B′α + C′, with A, B,C ∈ Q
satisfying A , 0, and likewise for the decorated analogues of these coefficients.
Consider the composition factorisations

f (g(y)) = κmβ(y)mr−β(y) and f (g′(y)) = κ′mβ′(y)mr′−β′(y)

induced from these elements by the process described above. If g ∼ g′, then the
conclusion of the previous paragraph shows that one must have mβ′ ∼ mβ. It is possible
that β is the only root of mβ lying in Q(α), in which case we see that for some a, b ∈ Q
with a , 0, one must have β′ = aβ + b. Thus, since [Q(α) : Q] = 3, it follows that
A′ = aA and B′ = aB, whence B′/A′ = B/A. In such circumstances, it follows that
the equivalence classes for g are classified by distinct ratios B/A, of which there are
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infinitely many, and the conclusion of the theorem follows. It is possible, meanwhile,
that mβ splits over Q(α)[y]. One then has mβ(y) = (y − β1)(y − β2)(y − β3), with
βi = Aiα

2 + Biα + Ci, for suitable rational coefficients Ai,Bi,Ci. In such circumstances,
a similar argument to that just employed reveals that for suitable rational numbers a
and b with a , 0, and for some i ∈ {1, 2, 3}, one has β′ = aβi + b. In particular, one
sees that Ai , 0 and B′/A′ = Bi/Ai. Consequently, were there to be at most N distinct
equivalence classes for the polynomials g generated by choices for β = Aα2 + Bα + C,
then the number of possible ratios Bi/Ai occurring amongst the associated roots
βi = Aiα

2 + Biα + Ci would be at most 3N . Since there are infinitely many such
ratios available to us, we derive a contradiction to the hypothesis that the number
of equivalence classes is finite. Once again, therefore, we obtain the conclusion of the
theorem. �

We are confident that a somewhat more elaborate argument would establish the
quartic analogue of this theorem. Degrees exceeding four, on the other hand, would
appear to be substantially more challenging. We finish this section by establishing
Corollary 1.4.

The proof of Corollary 1.4. Assume thehypothesesof the statementof Corollary 1.4,
so that f (t) = g(h(t)) − t. Let α be a root of f lying in its splitting field. Then α =

g(h(α)), so one can apply Theorem 1.3 with γ = h(α). All that remains is to observe
that the minimal polynomial of γ over Q must have degree deg( f ) = [Q(α) : Q], since
Q(α) = Q(g(γ)) ⊆ Q(γ). �

4. Smoothness of quadratic polynomials

Our goal in this section is the proof of Theorem 1.1 in the situation that f ∈ Z[t]
is quadratic and irreducible. As we have commented already at the end of Section 2,
this special case is all that we must now address in order to complete the proof of
Theorem 1.1. Our argument can be construed as a hybrid of the methods discussed in
Sections 2 and 3. We begin with an auxiliary lemma, the utility of which will become
apparent in due course.

Lemma 4.1. Let f (t) = at2 + bt + c ∈ Z[t] be irreducible with a , 0. Denote by α a root
of f in its splitting field. Then, for any k ∈ N, there exist integers m, n, A and B with
A , 0 and (A, B) = 1 such that (maα + n)k = Aα + B.

Proof. There exists some rational prime p not dividing a which splits in K = Q(α), so
(p) = p1p2 with p1 and p2 contained in the order Z[aα]. Denoting the class number of
K by h(K), one has that ph(K)

1 is principal and hence generated by maα + n for some
m, n ∈ Z with m , 0. Since maα + n is an algebraic integer of K, it follows that for any
k ∈ N, one has (maα + n)k = Aα + B for some A, B ∈ Z with A , 0 and a|A. It remains
now only to confirm that (A, B) = 1. But since maα + n generates ph(K)

1 and

NormK/Q((maα + n)k) = NormK/Q(Aα + B) = a−1(aB2 − bAB + cA2),
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we find that (A/a)Ac − (A/a)Bb + B2 is a power of p. Any prime which divides both
A and B must divide this norm and thus must be equal to p. However, one cannot
have both p|A and p|B, for then the ideal (Aα + B) = (maα + n)k would be divisible by
the ideal (p) = p1p2, contradicting our assumption that ph(K)

1 is generated by maα + n.
Thus, we conclude that (A, B) = 1. �

The proof of Theorem 1.1. Let f (t) = at2 + bt + c ∈ Z[t] be irreducible and let α and
α′ be the roots of f in its splitting field. We have in mind the application of Lemma 4.1
to seek a relation of the shape α = ( βk − B)/A that we hope to apply in a manner not
dissimilar to Theorem 1.3. First we describe the powers k in play. We take X to be
large and choose k to be the product of all the primes less than X not dividing 2aφ(a).
Since we are omitting only a finite set of primes, it follows that∏

p|k

(1 − 1/p) � 1/ log X � 1/ log log k. (4.1)

By applying Lemma 4.1, one finds that there exist integers m, n, A and B with
A , 0 and (A, B) = 1 for which (maα + n)k = Aα + B. We put β = Aα + B and note that
f (( β − B)/A) = f (α) = 0. Denote by Ωd the set of primitive dth roots of unity. Put
G(t) = (tk − B)/A and let ζ ∈ Ωd for some d|k. Then

f (G((maα + n)ζ)) = f (((maα + n)k − B)/A) = f (α) = 0

and
f (G((maα′ + n)ζ)) = f (((maα′ + n)k − B)/A) = f (α′) = 0.

Note here that when ζ and ζ′ are distinct kth roots of unity, then

(maα + n)ζ , (maα + n)ζ′ and (maα + n)ζ , (maα′ + n)ζ′.

The first relation is self-evident, whilst the second follows by taking kth powers and
observing that Aα + B , Aα′ + B. It therefore follows that all of the roots of f (G(t))
are accounted for by (maα + n)ζ and (maα′ + n)ζ with ζ ∈ Ωd for some d|k. Thus, one
may write f (G(t)) = C

∏
d|k hd(t) for a suitable rational number C, where

hd(t) =
∏
ζ∈Ωd

(t − (maα + n)ζ)(t − (maα′ + n)ζ).

Note here that, by considering conjugation in the field extensionQ(α, ζ)/Q, for ζ ∈ Ωd,
it is apparent that hd ∈ Q[t] whenever d|k. Moreover, the polynomial hd has degree
2φ(d).

The possibility remains of an obstruction to selecting a polynomial g having integral
coefficients for which f (g) is well factorable. In order to address this complication, we
consider the polynomial g(t) = G(At + z) and seek to select z in such a manner that
g ∈ Z[t]. Put K = Q(α) and consider the norm of the algebraic integer Aα + B, namely

NormK/Q(Aα + B) = a−1(aB2 − bAB + cA2) = (NormK/Q(maα + n))k.
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By construction, we have a|A and thus we see that B2 is a kth power modulo A/a. Since
k is odd, this observation implies that B is also a kth power modulo d for every divisor
d of A/a. Let a′ be the divisor of A given by a′ = limN→∞(A, aN). Then, in particular,
we find that B is a kth power modulo A/a′. But k is coprime to both a and φ(a), and
hence to the order of (Z/a′Z)×, and thus all integers coprime to a′ are necessarily kth
powers modulo a′. We may therefore conclude that B is a kth power modulo A/a′ and
modulo a′. Since A/a′ and a′ are coprime, we discern that B is a kth power modulo A,
say B ≡ zk (mod A).

We may now put

g(t) = G(At + z) = ((At + z)k − B)/A ∈ Z[t]

and we deduce that f (g(t)) = C
∏

d|k hd(At + z). Thus, on recalling (4.1), we infer that
f (g(t)) factors as a product of polynomials of degree at most

max
d|k

deg(hd) = max
d|k

2φ(d) = 2k
∏
p|k

(1 − 1/p) � 2k/ log log k.

By Gauss’ lemma, moreover, there is no loss in supposing that these polynomial
factors lie in Z[t]. In particular, the polynomial f exhibits polysmoothness ε for any
ε > 0. By construction, moreover, the polynomial g has odd degree k and so the proof
of Theorem 1.1 is complete. �

Unfortunately, the construction applied here in the proof of Theorem 1.1 is less
successful for higher degree polynomials. When f = at3 + bt2 + ct + d ∈ Z[t] is cubic,
for example, and α is a root of f in its splitting field, then one cannot expect that there
is an integer k > 1 for which

(maα + n)k = Aα + B

for appropriate integers m, n, A and B with A , 0. Instead, one can find integers A, B
and C for which

(maα + n)k = Aα2 + Bα + C.

A plausible plan is then to obtain a relation of the type

λ(maα + n)2k + µ(maα + n)k = Aα + B

for suitable integers A, B, λ and µ. At best, such an approach would deliver a
polynomial g of the shape

g(t) = (λ(At + z)2k + µ(At + z)k − B)/A ∈ Z[t]

having the property that f (g(t)) factors as a product of the shape

Ch0(At + z)
∏
d|k

hd(At + z),

wherein h0 has degree 3k. A priori, this might ensure polysmoothness 1
2 at best and so

is not inherently stronger than the approach of Schinzel.
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5. Relatives of Aurifeuillian factorisations

We next describe the proof of Theorem 1.5. This will not detain us for long.
Suppose in the first instance that f (t) = tk + atk−1 − b with a, b ∈ Z and b , 0. We re-
arrange f in order to engineer a cyclotomic construction, writing f (t) = (t + a)tk−1 − b.
Thus, if we set g(t) = bktk−1 − a, we find that

f (g(t)) = b((btg(t))k−1 − 1) = b
∏

d|(k−1)

Φd(btg(t)).

The polynomial f (g) has degree K = k(k − 1), whilst each irreducible factor of f (g)
has degree at most

max
d|(k−1)

φ(d)k ≤ Kφ(k − 1)/(k − 1).

Then f admits polysmoothness φ(k − 1)/(k − 1). This establishes part (i) of
Theorem 1.5.

Suppose next that f (t) = atk − t + b with a, b ∈ Z and ab , 0. With the same plan in
mind as above, we set g(t) = ak+1tk + b and arrive at the relation

f (g(t)) = a(g(t)k − (at)k) = a
∏
d|k

(at)φ(d)Φd(g(t)/(at)).

The term in the product here indexed by d is a polynomial of degree kφ(d). Thus, the
polynomial f (g) has degree K = k2, whilst each irreducible factor of f (g) has degree at
most maxd|k φ(d)k ≤ Kφ(k)/k. Then f admits polysmoothness φ(k)/k. This establishes
part (ii) of Theorem 1.5 and completes the proof of the theorem.

We remark that Harrington [6, Theorem 1] has investigated the irreducibility of
polynomials f (t) of the shape tn ± ctn−1 ± d over Z[t]. Thus, such polynomials are
irreducible when n, c, d ∈ N satisfy

n ≥ 3, d , c, d ≤ 2(c − 1), (n, c) , (3, 3) and f (±1) , 0.

Moreover, Ljunggren [7, Theorem 3] has shown that all of the polynomials

t3n ± t ± 1, t3n+1 ± t ± 1, t6n+5 − t ± 1 and t6n+2 ± t − 1

are irreducible for all natural numbers n.

6. Polynomials resisting polysmoothness

We finish with an account of some examples demonstrating limitations to the most
ambitious results one might imagine concerning polysmoothness. We concentrate
on irreducible polynomials fd ∈ Z[t] of degree d. In view of the conclusion of
Theorem 1.1, it makes sense to restrict attention to degrees d exceeding two. One
might optimistically hope that for each such polynomial, there should exist a quadratic
polynomial g ∈ Z[t] having the property that fd(g(t)) = h1(t)h2(t) for some polynomials
hi ∈ Z[t] irreducible of degree d. Note here that fd(g(t)) cannot be divisible by a
polynomial h ∈ Z[t] of degree smaller than d, for then a root β of this polynomial in
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its splitting field would supply a root g( β) of fd with [Q(g( β)) : Q] < d, contradicting
the irreducibility of fd. Thus, if the polynomial fd(g(t)) is reducible, then necessarily
it factors in precisely the shape h1(t)h2(t) asserted.

As we have already discussed in the introduction, the construction of Schinzel [9,
Lemma 10] shows that in the cubic case d = 3, quadratic polynomials g ∈ Z[x] can be
found for which f3(g(x)) = h1(x)h2(x) with h1 and h2 both cubic. The corresponding
situation for quartic polynomials is rather less clear. Consider, for example, the
irreducible quartic polynomial

f4(t) = t4 + t2 + 2t + 3.

One may computationally confirm that for every nontrivial integral choice of
coefficients a, b, c ∈ Z with absolute value at most 1000, the degree 8 polynomial
f4(ax2 + bx + c) is irreducible, so that no decomposition of the form sought is
available in this range. This does not rule out the possibility, of course, that there
might be a quadratic with very large coefficients that does deliver the sought-after
polysmoothness. On the other hand, if instead one works over Q[t] instead of Z[t],
then obstructions are possible only for biquadratic quartics. Indeed, one has

f4
(
−

x2 + x + 3
2

)
=

1
16

(x4 + 2x3 + 7x2 + 2x + 9)(x4 + 2x3 + 7x2 + 10x + 13).

This example shows that the problem of finding integral polynomial substitutions
delivering well-factorability is in general very much more challenging than finding
corresponding rational polynomial substitutions.

More generally, by completing the fourth power in the usual manner, it is apparent
that decompositions similar to that of the last paragraph may be obtained for arbitrary
quartic polynomials provided such is the case for irreducible quartics of the shape
f4(t) = At4 + Bt2 + Ct + D. If, in addition, one has C , 0, then we may put

g(x) = −
Ax2 + Bx + D

C
and we deduce that

f4(g(x)) = h1(x)h2(x)

for suitable quartic irreducible polynomials h1, h2 ∈ Q[x]. The point here is that, if α is
a root of f in its splitting field, then α = g(α2) and so α2 is a root of f4(g(x)). Thus, the
minimal polynomial of α2 overQ divides f4(g(x)). A straightforward exercise confirms
that this minimal polynomial is not quadratic, whence [Q(α2) : Q] = [Q(α) : Q] = 4 and
the assertion that h1 and h2 are quartic follows.

For degrees d exceeding four, obstructions to these quadratic-based decompositions
appear, as can be seen from the following criterion.

Theorem 6.1. Let fd ∈ Z[t] be an irreducible polynomial of degree d with leading
coefficient A and define φd(x, y) = yd fd(x/y). Suppose that there exists a quadratic
polynomial g ∈ Q[t] having the property that fd(g(t)) is reducible. Then the equation
Az2 = φd(x, y) possesses a solution (x, y, z) ∈ Q3 with yz , 0.
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Proof. By a now familiar argument, it is apparent that if fd(g(t)) = h1(t)h2(t) is a
factorisation of fd(g(t)) with hi ∈ Q[t] and deg(hi) ≥ 1 (i = 1, 2), then one must have
deg(hi) ≥ d. It follows, in particular, that h1 and h2 are both constant multiples of
irreducible polynomials of degree d. Let α be a root of fd in its splitting field and let β
be a root of the polynomial g(t) − α in its splitting field. Then, since f (g( β)) = 0, one
must have hi( β) = 0 for either i = 1 or i = 2. Also, one has Q(α) = Q(g( β)) ⊆ Q( β)
and yet [Q( β) : Q] = deg(hi) = d = [Q(α) : Q], so that Q( β) = Q(α).

We may write g(t) = at2 + bt + c for some a, b, c ∈ Q with a , 0. Thus, we have

(2aβ + b)2 = 4ag( β) + b2 − 4ac = b2 − 4ac + 4aα.

Writing K = Q(α), and putting m = 4a and n = b2 − 4ac, we obtain the relation

(NormK/Q(2aβ + b))2 = NormK/Q(mα + n) = A−1φd(n,−m).

Thus, on recalling that β ∈ Q(α), we find that the equation Az2 = φd(x, y) has the
rational solution

z = NormK/Q(2aβ + b), x = n, y = −m , 0.

This completes the proof of the theorem. �

Note that since A = φd(1, 0), the equation Az2 = φd(x, y) has the trivial solution
(x, y, z) = (1, 0, 1) and hence is automatically locally soluble everywhere. Of
importance for the discussion of this section is the connection with hyperelliptic
curves. When d is even, say d = 2k, any solution (x, y, z) ∈ Q3 of this equation
with yz , 0 gives a rational point on the hyperelliptic curve defined by the equation
AY2 = φ2k(X, 1), namely

(X,Y) =

( x
y
,

z
yk

)
.

However, as has been shown by Bhargava (see [2] and also [3] for subsequent
developments), most hyperelliptic curves over Q have no rational points. Thus, we
must expect that for most irreducible polynomials fd ∈ Q[x] of even degree d ≥ 6,
the composition fd(g(x)) should be irreducible for all quadratic polynomials g ∈ Q[x].
Specific examples can be obtained with some computational effort. For example, one
may check that the polynomials

F1(x) = x6 − x4 − 21x2 − 31 and F2(x) = x6 + x4 − 18x2 − 43

are irreducible over Q[x]. We verified this assertion ourselves by applying the
PARI/GP software package. Next, by reference to the tables of elliptic curves provided
by the L-functions and Modular Forms Database (available at www.lmfdb.org), one
finds that the elliptic curves with Weierstrass forms

y2 = x3 − x2 − 21x − 31 and y2 = x3 + x2 − 18x − 43, (6.1)

with respective Cremona labels 76a1 and 92a2, both have rank 0 and trivial torsion.
These elliptic curves consequently have only the single rational point at infinity.
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In particular, it follows that there is no rational solution to either of the equations
obtained by substituting (x, y) = (X2,Y) into the equations (6.1), namely

Y2 = X6 − X4 − 21X2 − 31 and Y2 = X6 + X4 − 18X2 − 43.

Thus, the above discussion shows that for i = 1 and 2, the polynomial Fi(g(x)) is
irreducible for all quadratic polynomials g ∈ Q[x]. One might complain that these two
examples are rather special, since the Galois group associated with these polynomials
is not the full symmetric group S6. We are grateful to Michael Stoll for supplying the
additional example

F3(X) = X6 − 3X5 − 4X4 + X3 − 2X2 − 2.

This polynomial is ‘generic’, in the sense that it is irreducible with Galois group
S6, and moreover the equation Y2 = F3(X) has no rational solutions. Thus, we may
conclude as above that for all quadratic polynomials g ∈ Q[x], the polynomial F3(g(x))
is irreducible.
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