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Abstract

Stochastic generators are essential to produce synthetic realizations that preserve target statistical properties. We
propose GenFormer, a stochastic generator for spatio-temporal multivariate stochastic processes. It is constructed
using a Transformer-based deep learning model that learns a mapping between a Markov state sequence and time
series values. The synthetic data generated by the GenFormer model preserve the target marginal distributions and
approximately capture other desired statistical properties even in challenging applications involving a large number of
spatial locations and a long simulation horizon. The GenFormer model is applied to simulate synthetic wind speed
data at various stations in Florida to calculate exceedance probabilities for risk management.

Impact Statement

This paper introduces a novel deep-learning-based stochastic generator for multivariate stochastic processes.
Unlike previous methods that typically struggle with the curse of dimensionality, this approach performs
satisfactorily in high-dimensional applications. The generator is applicable in various engineering fields
requiring data augmentation for multivariate time series.

1. Introduction

Stochastic generators are tools to produce synthetic data which preserve desired statistical properties.
They are crucial in situations wherein the number of available records is inadequate while a large amount
of data are required. This is especially the case in reliability analysis and risk management. For example,
performance-based engineering requires synthetic data that characterize excitations from natural hazards
to provide accurate reliability estimates of building systems (Radu and Grigoriu, 2018; Ouyang and
Spence, 2021). Robust risk assessments of parametric insurance products necessitate the generation of
supplemental synthetic loss events for various perils such as hurricane and excess rainfall (Zhou et al.,
2018; Ng et al., 2021). The underlying data in the aforementioned examples, for example, wind pressure
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fields and precipitation time series, are typically spatio-temporal in nature and can be represented as
multivariate stochastic processes.

While developing stochastic generators for multivariate Gaussian processes is a well-established
research area, constructing models which can be applied to generate time series with consistent non-
Gaussian features remains to be a challenge. One class of methods constitutes direct extensions of those
used for Gaussian processes which target certain statistical properties beyond the second moment. The
third-order spectral representation method introduced in (Vandanapu and Shields, 2021) appends add-
itional terms to the traditional spectral representation which is typically employed to simulate Gaussian
processes. This enables it to capture the third-moment properties. The polynomial chaos (Yang et al.,
2013) and translation processes (Zhao et al., 2019) are nonlinear transformations of Gaussian processes.
The former utilizes truncated Hermite polynomials while the latter applies a transformation based on
marginal distributions to approximately match the finite dimensional distributions and exactly match the
marginal distributions, respectively. Recently, a mix of the above two models has been proposed in
(Xu et al., 2023). In addition, stochastic generators based on the Markov assumption have been
formulated to produce synthetic time series approximating finite dimensional distributions. These
incorporate a variety of techniques such as the resampling procedure (Breinl et al., 2013), K-nearest
neighbor algorithm (Apipattanavis et al., 2007), and copula models (Zhao, 2017). A prevalent challenge
in many of the aforementioned models is the curse of dimensionality in which increasing the number of
variates, that is spatial locations, and the simulation time horizon leads to substantial computational
demands or significant decline in model performance of approximating target statistical properties (Yao
et al., 2023).

Deep learning models, a subset of machine learning algorithms, have gained prominence in recent
years due to their capabilities in solving large-scale problems. These models excel in feature extraction
and pattern recognition involving medium to large datasets, making them well-suited for complex tasks
such as image and speech recognition (Deng et al., 2013; Islam et al., 2018), natural language processing
(Vaswani et al., 2017; Yin et al., 2017), and time series forecasting (Li et al., 2019; Salinas et al., 2020).
Time series forecasting is concerned with predicting future time series values based on the historical
records. Recent deep forecasting models, particularly those based on the Transformer architecture, have
achieved great progress in predicting multivariate processes with a large number of locations over a long
time horizon (Lai et al., 2018; Liu et al., 2020). Due to the attention mechanism, Transformers are capable
of modeling long-term dependencies and complex patterns in sequential data. This leads to markedly
improved prediction accuracy over traditional methods like ARIMA and deep learning models based on
recurrent neural networks (RNN) ormultilayer perceptrons (MLP), across various applications in weather
and environmental forecasting (Wu et al., 2021; Zhou et al., 2021).

Inspired by the use of deep learning models in forecasting applications, we propose GenFormer, a
deep-learning-based stochastic generator for stationary and ergodic multivariate processes with continu-
ous marginal distributions which aims to tackle the challenges of simulation in high dimensions.
GenFormer is constructed under the Markov assumption and can be regarded as an extension of
(Breinl et al., 2013). It is composed of two models. The first is a univariate discrete-time Markov process
in which each type of spatial variation across locations is represented by a Markov state. The second is a
Transformer-based deep learningmodel which establishes amapping from theMarkov states to the values
of time series. The generation of synthetic realizations of multivariate processes based on the GenFormer
begins with the simulation of a synthetic univariate Markov sequence which subsequently serves as input
for the deep-learning-based mapping. In practice, the synthetic data generated by the deep learning model
may not preserve essential statistical properties such as the spatial correlation and marginal distributions.
As such, the GenFormer model incorporates a model post-processing step involving a transformation of
the resulting samples based on the Cholesky decomposition as well as a sample reshuffling technique to
correct for key statistical properties. The final synthetic data produced by GenFormer is able to exactly
match the marginal distributions and approximately match other statistical properties, including higher-
order moments or probabilities of quantities of interest. Our numerical examples involving numerous
spatial locations and simulation over a long time horizon demonstrate that synthetic realizations produced
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by GenFormer can be reliably utilized in downstream applications due to the superior performance of
deep learning models for complex and high-dimensional tasks.

The paper is organized as follows. Section 2 outlines preliminaries of the GenFormer model. We
review the stochastic generator proposed in (Breinl et al., 2013) designed for precipitation data as well as
deep learning models used for time series forecasting. The construction and simulation algorithm of the
GenFormermodel are presented in Section 3. The performance ofGenFormer on approximating the target
statistical properties of interest is examined in Section 4 via numerical examples involving a synthetic
dataset generated from stochastic differential equations and a real dataset of wind speeds measured at
stations in Florida. Concluding remarks are offered in Section 5.

2. Preliminaries

Wepresent in Section 2.1 a stochastic generator tailored to precipitation data. Existing Transformer-based
deep learning models used for time series forecasting are then summarized in Section 2.2. These provide
the foundation for the proposed stochastic generator in this work.

2.1. Stochastic generator for m-station physical processes

Let X tð Þ¼ X1 tð Þ,…,Xm tð Þ½ �T , t∈ 0,T½ �, be a m-variate stationary and ergodic stochastic process with
continuous marginal distributions where Xi tð Þ is a univariate stochastic process modeling the temporal
evolution of a quantity of interest at spatial location i, i¼ 1,…,m. In practice, X tð Þ is measured at n
discrete time stamps t1,…, tn, 0¼ t1 <⋯< tn ¼ T , that evenly partition the time interval 0,T½ �. Stochastic
generators, fitted using the observed realizations x tð Þ¼ x1 tð Þ,…,xm tð Þ½ �T of X tð Þ, produce additional
synthetic realizations that preserve the statistical properties of X tð Þ. These synthetic realizations can then
be employed in downstream applications such as estimating exceedance probabilities of quantities of
interest derived from X tð Þ.

The stochastic generator proposed in (Breinl et al., 2013) is of interest in this subsection. It is designed
formulti-station precipitation data, that is,Xi tð Þ corresponds to a rainfall processmeasured at station iwith
xi tð Þ denoting the observed data. The construction of the stochastic generator involves three steps. First, a
univariate Markov sequence Y1,…,Yn that relates to the spatial rainfall pattern across stations is
constructed from X t1ð Þ,…,X tnð Þ. Second, a synthetic realization ~y1,…,~yn of the Markov state sequence
is generated which guides the simulation of the preliminary synthetic realization ~x t1ð Þ,…,~x tnð Þ of the
rainfall sequence via resampling. Third, the final synthetic sequence bx t1ð Þ,…,bx tnð Þ is obtained using the
reshuffling technique according to the ranks of the realization in the previous step. We discuss these steps
further in the subsections below.

2.1.1. Univariate Markov sequences for m-variate stochastic processes
The approach proceeds by fitting a univariate Markov process Y1,Y2,…,Yn corresponding to X tj

� �
at

time stamps tj, j¼ 1,…,n. The stochastic process Y1,Y2,…,Yn is a pth-order discrete-time Markov
process if the conditional random variables YjjYj�1,…,Yj�p

� �
and Yj�p�1,…,Y1jYj�1,…,Yj�p

� �
are

independent for j > pþ1 (Ibragimov, 2009). Under the assumption that Yj is discrete-valued, the above
definition readily implies the well-known Markov property.

P Yj ¼ yjjYj�1 ¼ yj�1,…,Y1 ¼ y1
� �¼P Yj ¼ yjjYj�1 ¼ yj�1,…,Yj�p ¼ yj�p

� �
, j≥ pþ1: (2.1)

The state Yj at time stamp t¼ tj thus depends only upon the states at the past p time stamps tj�1,…, tj�p.
The probability P Yj ¼ yjjYj�1 ¼ yj�1,…,Yj�p ¼ yj�p

� �
is also known as the transition probability,

denoted by P yjjyj�1,…,yj�p

� �
in the following context.

For rainfall processes, the countable state space of Yj consists of 2m states, corresponding to all the
combinations of the wet (rain) and dry (no rain) scenarios atm stations. To illustrate the construction of a
Markov state sequence, consider the rainfall data atm¼ 2 locations recorded in Table 1. Also shown is the
Markov state to which the observations at each time stamp aremapped. There are a total of four states, that
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is, Yj ∈ 0,1,2,3f g. We set Yj ¼ 0 if no rain is observed at both locations, Yj ¼ 1 if only the first location
experiences rainfall, Yj ¼ 2 if only the second location experiences rainfall, and Yj ¼ 3 if both locations
receive rain.

The Markov state sequence Yj, j¼ 1,…,n, can be fully characterized by the order p and the transition
probability P yjjyj�1,…,yj�p

� �
, j≥ pþ1. Likelihood measures such as the Akaike information criterion

(AIC) (Katz, 1981) or the Bayesian information criteria (BIC) (Schwarz, 1978) can be employed to
estimate p. The corresponding transition probability, represented in matrix form, can then be estimated
given the realizations of Y1,…,Yn (Brémaud, 1999). Based on (2.1), a sample sequence of Yj is simulated
in a sequential manner for time stamps tpþ1,…, tn. Given a realization y1,…,yp of Y1,…,Yp, we initialize
~y1,…,~yp by using y1,…,yp. Subsequently, we simulate a realization ~ypþ1 from the transition probability
P yjy1,…,yp
� �

. This is then used to simulate a realization ~ypþ2 from the transition probability
P yjy2,…,yp,~ypþ1

� �
. This procedure is repeated to produce ~ypþ1,…,~yn.

2.1.2. Resampling m-variate stochastic processes based on univariate Markov sequences
In the next step, preliminary synthetic realizations of the rainfall sequence ~x t1ð Þ,…,~x tnð Þ are generated by
resampling subsequences of rainy sequences present in the series ~y1,…,~yn. A rainy sequence is defined as
the sequence of Markov states such that at least one station experiences rain for consecutive time stamps.
For the casewherem¼ 2, the rainy sequence takes values from set 1,2,3f gwhich excludes 0 because it is a
dry scenario. In Table 1, the subsequence 1,2,3 at time stamps t¼ t2, t3, t4 is a rainy sequence.

The resampling procedure is based on the bootstrap algorithm (Horowitz, 2001). Suppose we have
a synthetic realization ~y1,…,~yn from Section 2.1.1. For each rainy sequence present in this series, we
seek an identical rainy sequence among the Markov state sequences of the observed data. The
corresponding rainfall measurements of the identical rainy sequence are then used as the synthetic
rainfall values. For example, suppose we have a synthetic Markov state sequence of 1,2,3 at the
consecutive time stamps tj, tjþ1, tjþ2, j∈ 1,…,n�2f g. Because it matches the existing rainy sequence
shown in Table 1, we have the synthetic realization ~x tj

� �¼ ~x1 tj
� �

,~x2 tj
� �� �T ¼ 10:54,0½ �T , ~x tjþ1

� �¼
0,1:32½ �T , and ~x tjþ2

� �¼ 2:28,1:63½ �T . When there are multiple matches, we randomly choose one in a
uniform manner. The resampling procedure is repeated for all the synthetic rainy sequences present
in ~y1,…,~yn. This results in the synthetic realization ~x t1ð Þ,…,~x tnð Þ of length n.

There are two limitations of resampling. First, we may not find a rainy sequence from the existing
realizations that matches the synthetic Markov state sequence. This is especially the case whenm is large
which then implies that theMarkov state space dimension is large. Special techniques such as divide-and-
conquer need to be applied, where the synthetic rainy sequence is divided into subsequences to be
matched. However, this results in inconsistencies in the statistical properties, for example, auto-
correlation functions, of the resulting realizations. Second, resampling is unable to generate unobserved

Table 1. Illustrated mapping between the observed rainfall data and the corresponding Markov states
for m¼ 2 locations. Observations are mapped to the Markov states depending on which location

experiences rainfall

Time stamp Markov state x1 tð Þ x2 tð Þ
t1 0 0 0
t2 1 10.54 0
t3 2 0 1.32
t4 3 2.28 1.63
t5 0 0 0
⋮ ⋮ ⋮ ⋮
tn 1 12.21 0
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values of X tð Þ as it is performed via bootstrapping. This becomes a problem if interest is on extreme
events, for example. The latter limitation is addressed by the reshuffling technique described in the
following subsection. However, the former still remains a limitation that hinders the scalability of this
stochastic generator for large m.

2.1.3. Reshuffling realizations of m-variate stochastic processes
To ensure the inclusion of the unobserved values of X tð Þ, especially the unprecedented extremes, we
perform a reshuffling procedure for each station. First, new samples are simulated from the marginal
distribution for each station. These are then reshuffled according to the ranks of the realizations resulting
from the resampling step in Section 2.1.2.

In (Breinl et al., 2013), the authors suggest to characterize the marginal distributions of X tð Þ with
parametric forms, for example,Weibull distribution for the positive parts of the distributions, calibrated to
the existing rainfall observations. For each spatial location i¼ 1,…,m, denote by ~xi ¼ ~xi t1ð Þ,…,~xi tnð Þ½ �
the sequence of a resulting realization from the resampling procedure described in Section 2.1.2 and let
~ri ¼ ~ri t1ð Þ,…,~ri tnð Þ½ � be the corresponding ranks of the components of ~xi, sorted in descending order. Let
tj1 ,…, tjn be the time indices, j1,…, jn ∈ 1,…,nf g, such that ~xi tj1

� �
≥…≥~xi tjn

� �
. Thus, ~ri tj1

� �¼ 1 for the
time stamp tj1 while~ri tjn

� �¼ n for the time stamp tjn . Denote by zi ¼ z1i ,…,zni
� �

, z1i ≥ z2i ≥⋯≥ zni , a sorted
sequence of n new samples simulated from the marginal distribution of Xi tð Þ. The reshuffled sequencebxi ¼ bxi t1ð Þ,…,bxi tnð Þ½ � is then defined by.

bxi tj� �¼ z
~ri tjð Þ
i , j¼ 1,…,n: (2.2)

To illustrate, consider a two-station rainfall process from the resampling stepwith a time horizon of five
steps as shown in Table 2, where the rainfall sequences at the two stations are denoted by ~x1 and ~x2. The
time sequence at the first location ~x1 ¼ 2:14,6:36,0:64,4:05,1:31½ � results in a rank sequence
~r1 ¼ 3,1,5,2,4½ � while the time sequence at the second location ~x2 ¼ 0:51,3:24,2:46,0:60,2:00½ � results
in ~r2 ¼ 5,1,2,4,3½ �. If the sorted simulated sequences for the locations are z1 ¼ 4:68,4:34,2:58,1:76,1:26½ �
and z2 ¼ 5:53,5:27,4:34,2:75,1:52½ �, respectively, the reshuffled sequences are then bx1 ¼
2:58,4:68,1:26,4:34,1:76½ � and bx2 ¼ 1:52,5:53,5:27,2:75,4:34½ � following (2.2).
Although we introduce and illustrate the reshuffling above on a single realization of rainfall process of

length n, it is suggested that the reshuffling procedure at each location be conducted over a relatively long
time duration (Breinl et al., 2013), for example, over concatenated multiple synthetic realizations. This is
because longer time series after reshuffling better resemble the original time series. The reshuffling
approach matches the marginal distributions exactly and provides a satisfactory approximation for other
statistical properties (Breinl et al., 2013).

2.2. Deep learning models for time series forecasting

Deep learning models for time series forecasting mirror models developed in the natural language
processing (NLP) domain due to the sequential nature of both tasks. We focus on the Transformer
architecture with an encoder–decoder structure, which has recently become prevalent in time series
forecasting due to its superior performance over RNN- and MLP-based models (Bahdanau et al., 2014;
Sutskever et al., 2014; Lai et al., 2018; Raffel et al., 2019; Zhou et al., 2021). The model architecture is
shown in Figure 1. Within this structure, the encoder captures the dependencies and patterns inherent in
the input sequence, subsequently conveying the extracted information to the decoder, which is taskedwith
generating predictions.

Let Tenc ¼ t1,…, tqencin

h i
be a vector of increasing time stamps of length qencin < n and Xenc ∈ℝm× qencin be

the time series matrix where each row represents the stochastic process Xi tð Þ for the ith location,
i¼ 1,…,m, at the time stamps indicated in Tenc. Given Xenc and Tenc, the deep learning model predicts

the subsequent sequence Xout ∈ℝm× qout at qout time stamps specified in Tout ¼ tqencin þ1,…, tqencin þqout

h i
. The

Data-Centric Engineering e17-5

https://doi.org/10.1017/dce.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.6


model proceeds by passing the inputs Xenc, Tenc through the embedding layer (red block) to obtain the
hidden representation Zenc. The hidden representation refers to the output matrices of the hidden layers,
which all have dimension dmodel, a hyperparameter determining the length of the hidden elements. The
hidden representation is then updated through the layers of the encoder (gray block). Based on the
resulting representation matrix Zenc and Tout, the decoder (green block) combined with a linear layer
(purple block) performs generative inference to produce the output sequenceXout (highlighted in yellow).

In the following two subsections, we detail the embedding layer and the encoder-decoder structure,
which are the two major components of this Transformer-based model.

2.2.1. Embedding layer
The embedding layer serves to convert the inputs into a hidden representation which is then utilized by the
encoder and decoder. It consists of two components, namely, the value embedding and time embedding,
corresponding to the time series input X∈ℝm× q and the time sequence T of length q, respectively.

The value embedding, inspired by dilated convolution networks (Li et al., 2024), is a 1D-convolutional
layer with circular padding to map the spatial dimension m to the hidden dimension dmodel, preserving
temporal resolution (Albawi et al., 2017). A kernel size of 3 is typically chosen to effectively capture
short-term dependencies. We denote the operation of the value embedding applied to an input X by
ValueEmbedding(X) which produces a hidden representation of dimension dmodel × q.

Table 2. Reshuffling of a hypothetical two-station example with five time stamps. (a) Samples of ~x tð Þ at
t1,…, t5 are generated from the resampling step described in Section 2.1.2, with ~r1 and ~r2 being the
corresponding ranks; (b) Synthetic samples z1 and z2 are simulated from the marginal distribution at

each location; (c) Samples are reshuffled according to the ranks ~r1 and ~r2

(a) Samples from resampling

Time stamp ~x1 ~x2 ~r1 ~r2

t1 2.14 0.51 3 5
t2 6.36 3.24 1 1
t3 0.64 2.46 5 2
t4 4.05 0.60 2 4
t5 1.31 2.00 4 3

(b) Sorted simulated samples

z1 z2

4.68 5.53
4.34 5.27
2.58 4.34
1.76 2.75
1.26 1.52

(c) Samples after reshuffling

Time stamp bx1 bx2 ~r1 ~r2

t1 2.58 1.52 3 5
t2 4.68 5.53 1 1
t3 1.26 5.27 5 2
t4 4.34 2.75 2 4
t5 1.76 4.34 4 3
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The time embedding, on the other hand, depends on whether or not the time argument is unitless.
If the time argument is unitless, only the order of the sequence matters. Therefore, the positional
embedding introduced in (Vaswani et al., 2017) is adopted as the time embedding. Given a time
sequence of length q, the positional embedding returns a matrix of dimension dmodel × q, where the 2k, jð Þ
and 2kþ1, jð Þ entries, k¼ 0,…,⌊dmodel=2⌋�1, j¼ 0,…,q�1, are defined as sin j= 100002k=dmodel

� �� �
and

cos j= 100002k=dmodel
� �� �

, respectively. In contrast, if the time argument contains unit information, that is,
the data is in the format of year-month-day-hour-minute-second or a subset of any of these units, (Zhou
et al., 2021) uses the time feature embedding instead to take the temporal information into consideration.
To illustrate, if the time sequence is of length q and data is recorded in the year-month-day-hour format, we
reshape the q-dimensional time sequence into a 4× q matrix where each row records the standardized
values for each unit of measure. A linear layer without bias is then applied to map the 4× q matrix to a
dmodel × q matrix. We denote the operation of the time embedding applied to an input T by Time-
Embedding(T) which produces a matrix of dimension dmodel × q.

The output representation Z from the embedding layer is thus defined as.

Z¼ValueEmbedding Xð ÞþTimeEmbedding Tð Þ: (2.3)

Figure 1. Deep learning model architecture based on the encoder-decoder framework. The model
processes inputs through an embedding layer (red block), generating the hidden representation which
undergoes further updates in the encoder layers (gray block). The decoder (green block), in conjunction
with a linear layer (purple block), utilizes the hidden representation from the encoder for generative

inference, yielding the predicted sequence (highlighted in yellow).
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2.2.2. Encoder–decoder framework
The encoder–decoder framework is commonly used for sequence-to-sequence tasks, for example, time
series forecasting andmachine translation in the NLP domain. The work (Vaswani et al., 2017) has shown
the effectiveness of adopting the self-attention mechanism as the primary building block in the encoder-
decoder framework. Self-attention processes a sequence by replacing each element by a weighted average
of the rest of the sequence so that the dependencies of each element with respect to the others in the
sequence are learned. The encoder encapsulates all the information about the input sequence through
multiple layers of self-attention and its output is fed to the decoder for generating predictions.

Self-attention, first proposed in Vaswani et al. (2017)), maps a query and a set of key-value pairs to
obtain an output representation where the query, key, and value matrices stem from the input represen-
tation Z∈ℝdmodel × q. Mathematically, self-attention is defined as.

Self ‐Attention Zð Þ¼VSoftmax
QTKffiffiffiffiffiffiffiffiffiffiffiffi
dmodel

p
� �

, (2.4)

Q¼WQZ,

K ¼WKZ,

V ¼W VZ,

whereWQ,WK ,W V ∈ℝdmodel × dmodel are the query, key, and value conversionmatrices, Softmax �ð Þ denotes
the softmax function defined in Goodfellow et al. (2016)), andQ,K ,V ∈ℝdmodel × q are the resulting query,
key, and value matrices. As seen in (2.4), the output representation of the self-attention layer can be
regarded as the weighted sum of the input values. For simplicity, we set the first dimension of the query
and key matrices to be dmodel, but in general, they only need to be compatible with each other.

The attention mechanism introduced above is single-headed as it only performs the mapping from the
dmodel-dimensional query to the dmodel-dimensional key-value pairs once. As suggested in Vaswani et al.
(2017)), it is beneficial to adopt a multi-head mechanism, that is, we perform nhead such mappings in
parallel with dmodel=nhead-dimensional query and key-value pairs. The resulting output representations
from all independent mappings are concatenated and further linearly projected to match the output
dimension dmodel. More advanced attention mechanisms have been developed in the deep learning
community to improve the performance. For example, the prob-sparse attention mechanism, developed
for Informer (Zhou et al., 2021), enhances computational efficiency through distillation so that each key
attends only to dominant queries, reducing the quadratic computational complexity O q2ð Þ of standard
attention toO qlogqð Þ. The Autoformer (Wu et al., 2021) utilizes auto-correlation-attention instead of the
standard attention mechanism. It introduces the notion of sub-series similarity based on the series
periodicity and aggregates similar sub-series from underlying periods.

The encoder is designed to learn and extract the dependencies and patterns of the input sequence
X¼Xenc across the temporal and spatial dimensions. It is composed of a stack of nenc identical blocks,
generally consisting of two sub-layers each. The first is amulti-head attention layer described abovewhile
the second is a fully-connected feed-forward network with relu activation function (Hendrycks and
Gimpel, 2016) and can be mathematically expressed as.

FFN Zð Þ¼W 2max 0,W 1Zþb1ð Þþb2, (2.5)

where Z is the input hidden representation with q¼ qencin ,W 1 ∈ℝdff × dmodel andW 2 ∈ℝdmodel × dff are weight
matrices with dff being the dimension of the feed-forward layer, and b1 ∈ℝdff × q and b2 ∈ℝdmodel × q are the
bias matrices. Each sub-layer is succeeded by a layer normalization (Ba et al., 2016). Special techniques
such as distillment, decomposition, etc, may be applied in between sub-layers depending on the choice of
the attention mechanism. The final hidden representation of the encoder is then fed to the decoder.

On the other hand, the aim of the decoder is to perform generative inference on the output sequence
Xout based on the time sequences Tout. Similar to NLP applications wherein we apply a start token for
dynamic decoding (Devlin et al., 2018), we initiate the inference with Xdec

start ∈ℝm× qdecin and Tdec
start ∈ℝqdecin
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which are subsets ofXenc andTenc, respectively, representing the last qdecin columns of the aforementioned
matrices. The input of the decoder is the embedding (2.3) applied to the following matrices:

X¼Xdec ¼Concat Xdec
start,0

� �
, (2.6)

T¼Tdec ¼Concat Tdec
start,T

out
� �

,

where Concat �ð Þ denotes the matrix concatenation operation, 0∈ℝm× qout is a zero matrix which serves as
the placeholder of the output sequenceXout,Xdec ∈ℝm× qdecin þqoutð Þ, andTdec ∈ℝ qdecin þqoutð Þ. The structure of
the decoder is similar to that of the encoder, which is composed of a stack of ndec identical blocks. In
addition to the two sub-layers in each block, namely the attention layer and the feed-forward layer, the
decoder includes a third sub-layer which performs multi-head cross-attention on the output of the
encoder stacks to incorporate the learned dependencies and patterns of the input sequence. The cross-
attention mechanism is a variant of the self-attention mechanism described above. It has the same
structure as self-attention, except that the input representation to the key and value matrices is the
output from the encoder instead of the output from the previous block in the decoder. Therefore, we
have Q¼WQZdec ∈ℝdmodel × qdecin þqoutð Þ, K ¼WKZenc ∈ℝdmodel × qencin , and V ¼W VZenc ∈ℝdmodel × qencin . The
output representation from the cross-attention layer and that of the decoder has dimension
dmodel × qdecin þqout

� �
. It is then transformed to have size m × qdecin þqout

� �
via a linear layer with bias.

Only the last qout positions of the output sequence are of interest. Note that the inference procedure
under the decoder is conducted in a single forward step instead of in an auto-regressive manner.

2.3. Problem formulation

Given the realizations x tð Þ of the stationary and ergodic process X tð Þ, t∈ 0,Tobs½ �, with continuous
marginal distributions, we aim to construct a stochastic generator to generate additional samples bx tð Þ of
X tð Þ for t∈ 0,T sim½ � that preserve statistical properties of the existing realizations x tð Þ. These synthetic
realizations can then be employed in various downstream applications.

In this work, we consider the case where the marginal distributions of the components of X tð Þ are
Gaussian without loss of generality. If the observed data x tð Þ ofX tð Þ have components with non-Gaussian
marginals, a transformation can be applied to the data during pre-processing. For each location i with
marginal cumulative distribution function (CDF) Fi, the transformed observations xi tð Þ are given by the
invertible mapping Φ�1 Fi xi tð Þð Þ½ �, where Φ is the standard Gaussian CDF. The marginal distribution Fi

can be characterized by parametric distributions as in Breinl et al. (2013)), by its empirical distribution, or
by a mixture of both (Zhao et al., 2019).

We propose a stochastic generator that combines and extends the two models introduced in Sections
2.1 and 2.2. In particular, the Transformer-based deep learning model for time series forecasting is
adopted as a critical component of this generator, facilitating scalability in scenarios where the number of
spatial locations is large and the simulation horizon is long.

3. Stochastic generators for m-variate stochastic processes using deep learning models

We present GenFormer, a stochastic generator for m-variate stochastic processes using deep learning
models. It extends the stochastic generator described in Section 2.1 in the following three aspects. First,
we provide a generalized approach to define the state space of the univariateMarkov sequence Yj by using
K-means clustering, thereby extending the applicability of the model in Section 2.1.1 beyond precipi-
tation data. Second, we replace the resampling procedure in Section 2.1.2 by a deep learningmodel which
constitutes the mapping from the Markov states to the inferred values of the m-variate process. The deep
learning model has the same encoder-decoder framework used for time series forecasting in Section 2.2
but with an additional embedding for the Markov states in the embedding layer. The deep learning model
serves to improve the scalability of the resampling procedure. However, the fidelity of the resulting
mapping in approximating statistical properties of interest depends on the performance of the deep
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learning model. Thus, to preserve statistical properties such as the spatial correlation and marginal
distributions, we include a model post-processing step based on Cholesky decomposition and the
reshuffling technique in Section 2.1.3 as the third extension. It is also worth-noting that since simulating
univariate Markov sequences can become challenging for highMarkov orders, an additional light-weight
deep learning model is proposed to address this limitation.

The resulting synthetic data produced by GenFormer are able to exactly match the target marginal
distributions and approximately match the second-moment properties. Moreover, it can also capture the
higher-order statistical properties of quantities of interest derived from X tð Þ. Most importantly, GenFor-
mer can be applied to stochastic processes in which the number of locations is large and the simulation
horizon is long.

The proposed approach is composed of two stages, namely model construction and model simulation,
described in Sections 3.1 and 3.2, respectively. In Section 3.1, we focus on model training and
computational aspects of the univariate Markov sequence generator based on K-means clustering and
the deep learning model with Markov state embedding. In Section 3.2, we discuss how synthetic
realizations can be generated using the aforementioned models coupled with the post-processing
procedure. Section 3.3 summarizes the proposed GenFormer algorithm.

3.1. Model construction

3.1.1. Construction of univariate Markov sequence via clustering
Suppose we have nobs time stamps t1,…, tnobs that evenly partition the duration 0,Tobs½ � of the observed
data. The countable state space of the univariate Markov sequence Y1,…,Ynobs of the stochastic generator
proposed in (Breinl et al., 2013) contains all the combinations of the wet and dry scenarios of the m
stations, resulting in 2m Markov states. In general, there is no established rule to define the state space.We
thus propose to partition the realizations x tð Þ of X tð Þ into subsets of interest, each indexed by a positive
integer, which represents certain spatial variation of X tð Þ.

We achieve this through K-means clustering (Hartigan and Wong, 1979) which is a commonly-used
unsupervised learning algorithm to efficiently partition a set of vectors into distinct and non-overlapping
clusters based on inherent similarities. It can thus be employed to segregate the set x t1ð Þ,…,x tnobsð Þf g of
realizations at nobs time stamps into nclusters clusters, where nclusters is a prescribed hyperparameter. Each
cluster is represented by a centroid. The clustering algorithm is an iterative process of sample reassign-
ment and centroid recalculation with the goal of minimizing within-cluster variance while maximizing
between-cluster distance. The algorithm is sensitive to the initial choice of centroids and has to be
performed with multiple sets of starting points. It results in each observation being allocated to a centroid
which then corresponds to a state of the univariate Markov sequence.

We illustrate the application of K-means clustering in Table 3. Consider a 3-variate stochastic process
X tð Þ with 5 time stamps. The components X1 tð Þ, X2 tð Þ, and X3 tð Þ are highly-correlated with each other
and all follow a bimodal distribution centered at 12 and 2. We set nclusters ¼ 2. By applying K-means
clustering, the Markov state yj is assigned to 1 and 2 at time stamps tj when the realizations x tj

� �
are near

the modes 12 and 2, respectively.
Given the mappedMarkov state sequence y1,…,ynobs , the estimation of the Markov order p along with

the transition matrix is akin to the approach outlined in Section 2.1.1. Utilizing these estimates, the
synthetic realizations of the Markov state sequence can be subsequently generated.

3.1.2. Deep learning model with Markov state embedding
The resampling procedure introduced in Breinl et al. (2013) is specifically designed for rainy sequences
and suffers from the curse of dimensionality. We therefore propose to train a Transformer-based deep
learning model with Markov state embedding that maps the Markov state sequence y1,…,ynobs to the
realization of the m-variate process x t1ð Þ,…,x tnobsð Þ. Let Yenc ∈ℝqencin be a vector of the Markov state
sequence corresponding to the vector of increasing time stampsTenc and thematrix of observationsXenc at
the specified time stamps. Given Xenc, Tenc, and Yenc, the deep learning model aims to infer the
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subsequent sequence Xout based on the corresponding Markov state sequence Yout specified at time
stamps inTout. The inputs of the model to perform inference starting from time stamp jþ1 are as follows:

• Tenc ¼ tj�qencin þ1,…, tj
h i

∈ℝqencin , a sequence of time stamps with recorded observations;

• Xenc ¼ x tj�qencin þ1

	 

,…,x tj

� �h i
∈ℝm× qencin , a matrix of observations of X tð Þ at time stamps in Tenc;

• Yenc ¼ yj�qencin þ1,…,yj
h i

∈ℝqencin , a Markov state sequence corresponding to Xenc;

• Tout ¼ tjþ1,…, tjþqout

� �
∈ℝqout , a sequence of time stamps for the inference stage;

• Yout ¼ yjþ1,…,yjþqout

h i
∈ℝqout , a Markov state sequence for the inference stage.

The output of themodel isXout ¼ x tjþ1
� �

,…,x tjþqout

� �� �
∈ℝm× qout , a time series matrix corresponding

to the Markov state sequence Yout and time stamps in Tout.
In contrast to the deep learning model described in Section 2.2, the embedding layer also needs to

incorporate information from the Markov state sequence Y in the hidden representation. We propose to
include a Markov state embedding, wherein each Markov state is represented by a embedding vector of
size dmodel learned in the training stage. The operation MarkovStateEmbedding(Y) retrieves the respect-
ive embedding vectors in the same order as the Markov states inY via a dictionary mapping, culminating
in a matrix of dmodel × q. Figure 2 updates the architecture shown in Figure 1 to include the proposed
embedding for the Markov states. Given the time series input X, the Markov state sequence Y, and the
time sequence T, the output representation Z ∈ℝdmodel × q from the embedding layer then becomes

Z¼ValueEmbedding Xð ÞþMarkovStateEmbedding Yð ÞþTimeEmbedding Tð Þ: (3.1)

As in Section 2.2, the deep learning model adopts the encoder–decoder framework with self-attention
mechanism or more advanced variants such as those employed in the Informer and Autoformer. The
encoder is designed to extract the spatial and temporal patterns ofXenc and its relationship toYenc andTenc

from the previous qencin time stamps. The decoder then uses the extracted representation from the encoder to
perform inference on Xout at subsequent time stamps with the decoder inputs.

Xdec ¼Concat Xdec
start,0

� �
,

Ydec ¼Concat Ydec
start,Y

out
� �

,

Tdec ¼Concat Tdec
start,T

out
� �

,

(3.2)

where Xdec
start, Y

dec
start, and T

dec
start are sub-matrices pertaining to the last qdecin columns of Xenc, Yenc, and Tenc,

respectively. The 0 matrix is a placeholder for the output sequence Xout which is later replaced by the
outputs from the decoder.

Table 3. Illustrated mapping of Markov states to a 3-variate process based on K-means clustering. We
have yj ¼ 1 when x1 tj

� �
, x2 tj

� �
, x3 tj

� �
are near 12, and yj ¼ 2 when x1 tj

� �
, x2 tj

� �
, x3 tj

� �
are near 2

Time stamp y x1 tð Þ x2 tð Þ x3 tð Þ
t1 1 11.32 10.12 12.56
t2 1 10.54 11.98 14.12
t3 2 0.5 1.32 2.63
t4 2 1.8 3.24 2.12
t5 1 12.21 12.34 11.79
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Note that the hyperparameter qencin is not required to be the same as the Markov order p. We can
determine qencin through hyperparameter tuning or by adhering to standard practice in time series analysis,
where qencin is set as the empirical memory length of X tð Þ approximated by the time lag at which auto-
correlations for all components ofX tð Þ fall below a specified threshold. The resulting qencin is greater than p
in general. Similarly, setting qout ¼ 1 is not obligatory. A larger qout can significantly accelerate the
inference by generating samples at qout time stamps at once instead of repeating the inference qout times.
On the other hand, qout cannot be too large since this may potentially hinder the accuracy of the model, as
will be discussed in Section 3.1.4. For simplicity, qout is typically set to qencin or qencin =2> 1 when not
employing hyperparameter tuning. The proposed deep learning model is trained using the available
realizations x tð Þ of X tð Þ.

3.1.3. Deep learning model for Markov state sequence generation
In order to infer the m-variate process, the decoder in Section 3.1.2 requires a synthetic realization of the
Markov state sequenceYout. Synthetic realizations of theMarkov state sequence can be obtained based on
the specified transitionmatrixwithMarkov order p, which can be estimated from the available realizations
of the mapped Markov state sequence y1,y2,…,ynobs . While this is feasible for p¼ 1, the estimation of the
transition matrix when p≥ 2 may be challenging due to the exponential growth of the transition matrix
dimension given by npclusters × nclusters. When nclusters and p are large, an accurate estimation of the transition
matrix can be computationally intensive, or even prohibitive, and requires a significant amount of data to
avoid obtaining a sparse matrix which can restrict the generation of unprecedented sequences.We address
this limitation by using a light-weight deep learning model, referred to as the deep learning model for
Markov state sequence generation. Such model takes the Markov states at the previous p time stamps as
the input, calculates the probability of each of the nclusters states, and samples a realization of the Markov
state according to these probabilities for the next time stamp.

The architecture of the light-weight model is shown in Figure 3. The model only adopts a decoder
structure which takes as input the Markov states in the previous p time stamps that is concatenated by a
placeholder represented by a vector of length 1. This is followed by a Markov state embedding and time
embedding (red block). The resulting hidden representation is then fed into nMarkov blocks of the decoder
(green block), wherein each block contains a multi-headed attention layer and a feed-forward layer
without the cross attention. This process yields a vector of size nclusters (white block), with each component
representing the weight of the respective Markov state in the state space. These weights are then

Figure 2. Transformer-based deep learning model with Markov state embedding. The proposed
approach includes a Markov state embedding in addition to the value and time embedding present in the

embedding layer. The remainder of the model architecture is the same as in Figure 1.
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normalized using a softmax layer (purple block) to obtain the probability for eachMarkov state. Finally, a
Markov state is simulated from amultinomial random variable generator based on these probabilities. The
training of this model is based on the realizations of y1,…,ynobs .

3.1.4. Computational aspects of training deep learning models
Sections 3.1.2 and 3.1.3 discussed the architectures of the deep learning models we utilize in this work. In
this subsection, we focus on the computational aspects for the practical implementation of these models.

Training and validation datasets. Given the realizations at nobs time stamps x t1ð Þ,…,x tnobsð Þ, the
training and validation datasets are partitioned as follows. Let η be the proportion of data to be allocated to
the training set. For each sequence of the given realizations, the values at the first ⌊ηnobs⌋ time stamps will
be assigned to the training set, with the remainder forming the validation set. To construct the input–output
data pairs for each dataset, we consider a sliding window of length qencin þqout, applied to the time series
matrixX as well as the vectorsY andT of the Markov state and time sequences, as shown in Figure 4. To

illustrate, applying this procedure toX, we obtain x t1ð Þ,…,x tqencin þqout

	 
h i
, x t2ð Þ,…,x tqencin þqoutþ1

	 
h i
,…,

Figure 3.Deep learningmodel forMarkov state sequence generation whenMarkov order p≥ 2. We adopt
a decoder-only structure without cross attention mechanism. The input of the model is the Markov states
in the previous p time stamps concatenated by a vector of length 1. This is passed to an embedding layer
and multiple decoder blocks. The Softmax layer normalizes the weights of Markov states to obtain

probabilities which the multinomial random variable generator utilizes to generate synthetic Markov
states.
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x t⌊ηnobs⌋�qencin �qoutþ1

	 

,…,x t⌊ηnobs⌋

� �h i
for training and x t⌊ηnobs⌋þ1

� �
,…,x t⌊ηnobs⌋þqencin þqout

	 
h i
, …,

x tnobs�qencin �qoutþ1

	 

,…,x tnobsð Þ

h i
for validation. The first qencin m-dimensional vectors are inputs to the

deep learning model, while the subsequent qout vectors constitute the target output sequence for the
model. For Y and T, the qencin þqout components all become the model inputs. There are in total
⌊ηnobs⌋�qencin �qoutþ1 and nobs�⌊ηnobs⌋ð Þ�qencin �qoutþ1 input–output pairs obtained from each
sequence of realizations for the training and validation datasets. Note that by splitting the data first and
then constructing the input–output pairs, it is ensured that there is no data leakage between training and
validation datasets. We also observe that the choice of qencin and qout leads to a trade-off between model
accuracy and the computational efficiency of the inference procedure. Larger values of qencin and qout allow
for reduced iterations in the auto-regressive inference of x tð Þ, leading to less computational effort.
However, there are fewer input–output pairs in the training dataset which may potentially hinder the
model accuracy. Conversely, smaller values of these hyperparameters increase the number of iterations in
inference, while providing a greater number of input–output pairs for model training. At every training
iteration, a batch of data pairs are used to update the model weights. The training and validation datasets
for the deep learning model for Markov state sequence generation in Section 3.1.3 are constructed in a
similar manner, but they only consist of the data pairs of the Markov state and time sequences.

Loss function. For the model in Section 3.1.2, we use the L1 or L2 loss function, also known as the
mean absolute error (MAE) or mean square error (MSE), to penalize the discrepancy between the target
sequence and inference of the time series by the deep learning model. For the model in Section 3.1.3, we
use the focal loss function (Lin et al., 2017), which is an extension of the cross entropy loss and applies a
modulating term in order to focus learning on hard misclassified samples.

Figure 4. Construction of input–output data pairs. For each sequence of realizations, we apply a sliding
window of length qencin þqout to the time series matrixX and the vectorsY andT of Markov state and time
sequences. The first qencin components of the window are inputs to the deep learning model while the

subsequent qout components constitute the target output sequence for the model.
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Masking. In the training stage, (Vaswani et al., 2017) suggests to apply triangular masks in the
attention layers. This prevents each element of the sequence from attending to the elements at future times.
The masking aims to mimic real scenarios in which information at future times is not available.

Optimizer. We use the ADAM optimizer (Kingma and Ba, 2015) because of its competitive
performance in deep learning applications. The learning rate is set to decay after every few epochs.

Regularization. Regularization serves to prevent the deep learning model from overfitting. We utilize
the dropout technique in training the model weights across all layers such that a proportion of these
weights are not updated in every training batch. In addition, we adopt early stopping so that the training is
automatically terminated if the validation loss is not decreasing over a certain number of epochs. This
ensures that the training and validation losses are comparable which promotes the generalizability of the
model to new data.

Hyperparameter tuning. The aforementioned architecture hyperparameters such as nenc, ndec and the
hyperparameters used in the training such as the dropout rate and learning rate can be selected by
hyperparameter tuning based on a test dataset. This can be achieved by grid search, greedy search, or more
advanced Bayesian algorithms (Frazier, 2018).

Table 4 lists the standard hyperparameters of the proposed GenFormer model that are subject to
hyperparameter tunning.

3.2. Model simulation

In the previous subsection, we discussed constructing a univariate Markov sequence via clustering and
training a deep learning model with Markov state embedding based on the available observations. Here,
we present the simulation methodology of GenFormer with the aim of generating new synthetic
realizations of the m-variate process over t∈ 0,T sim½ � for nsim time stamps. It consists of three steps.
First, a synthetic realization ~y1,…,~ynsim of the univariate Markov sequence Y1,…,Ynsim is produced.
Subsequently, the realization ~y1,…,~ynsim is mapped to the preliminary synthetic realization
~x t1ð Þ,…,~x tnsimð Þ of the m-variate stochastic process by utilizing the deep learning model with Markov
state embedding. Since we want to preserve statistics of interest such as the spatial correlation matrix and
marginal distributions, the final step involves model post-processing via Cholesky decomposition and the
reshuffling technique.

Simulating from the univariateMarkov sequence and the deep learning model requires initial data. For
Markov state sequence generation, the Markov states at the first p time stamps have to be specified. The
deployment of the deep learning model requires the initial data Xenc, Yenc, and Tenc measured at the first
qencin time points. Set qmax ¼ max p,qencin

� �
. We therefore assume that data on the m-variate process

~x t1ð Þ,…,~x tqmax

� �
along with the corresponding Markov state sequence ~y1,…,~yqmax

at time stamps
t1,…, tqmax

are available. To obtain such data, we randomly select a subsequence x t1ð Þ,…,x tqmax

� �
of

length qmax and its corresponding Markov states y1,…,yqmax
from the given observations.

Table 4. Standard hyperparameters of the GenFormer model for tunning

Notation Description

dmodel Dimension of the hidden embedding and attention layers
dff Dimension of the hidden feed-forward network
nhead Number of heads in the attention mechanism
nenc Number of encoder blocks in the deep learning model for inference of m-variate processes
ndec Number of decoder blocks in the deep learning model for inference of m-variate processes
nMarkov Number of decoder blocks in the deep learning model for Markov state sequence generation

Data-Centric Engineering e17-15

https://doi.org/10.1017/dce.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.6


3.2.1. Simulation of m-variate stochastic processes
Simulation of a univariate Markov sequence. Given the data ~x t1ð Þ,…,~x tqmax

� �
with the corresponding

Markov states ~y1,…,~yqmax
at time stamps t1,…, tqmax

, sampling the univariate Markov sequence is
initialized using the last p Markov states ~yqmax�pþ1,…,~yqmax

. For Markov order p¼ 1, we utilize the
estimated transition matrix to simulate a sample ~yqmaxþ1, which is repeated recursively to produce
~yqmaxþ2,…,~ynsim . For p≥ 2, we adopt the trained deep learningmodel forMarkov state sequence generation
in Section 3.1.3. In the first iteration, the model takes ~yqmax�pþ1,…,~yqmax

and tqmax�pþ1,…, tqmax
as inputs to

produce the sample ~yqmaxþ1 using the multinomial layer. At iteration l, the sequences ~yqmax�pþl,…,~yqmaxþl�1
and tqmax�pþl,…, tqmaxþl�1 are then fed to the model to simulate ~yqmaxþl. This process is repeated to generate
~yqmaxþ1,~yqmaxþ2,…,~ynsim .

Inference from the deep learning model withMarkov state embedding. The second step is to infer
the m-variate stochastic process ~x tqmaxþ1

� �
,…,~x tnsimð Þ corresponding to the synthetic realization

~yqmaxþ1,…,~ynsim using the deep learning model in Section 3.1.2. Typically, we have qout ≪ nsim�qmax

which implies that the inference needs to be performed in an auto-regressivemanner. In the lth iteration, we
infer ~x tqmaxþ l�1ð Þqoutþ1

� �
,…,~x tqmaxþlqout

� �
. This auto-regressive procedure is repeated ⌊ nsim�qmaxð Þ=qout⌋

times.

3.2.2. Model post-processing
The deep learning model alone cannot fully preserve statistics of interest. We therefore introduce a model
post-processing procedure. It is composed of a transformation based on Cholesky decomposition and the
reshuffling technique to correct the spatial correlation matrix and marginal distributions, respectively, of
the simulated realizations.

Let ~X¼ ~x t1ð Þ,…,~x tnsimð Þ½ �∈ℝm× nsim be the time series matrix of preliminary synthetic realizations of

X tð Þ produced by the deep learning model during inference. The spatial correlation matrix ~C of the

inference from the deep learning model can be estimated by ~C¼ ~X~X
T
=nsim ∈ℝm×m due to stationarity

and ergodicity. Similarly, let X¼ x t1ð Þ,…,x tnobsð Þ½ �∈ℝm× nobs be the matrix of observations of X tð Þ. The
target spatial correlationC ofX tð Þ is approximated viaC¼XXT=nobs. The accuracy of the approximation
~C with respect to the target C is contingent upon the accuracy of the trained deep learning model.
Consequently, we apply a transformation based on Cholesky decomposition to reduce the discrepancy

between ~C and C.
Since the spatial correlation matrix ~C is positive semi-definite, the Cholesky decomposition of ~C is

given by ~C¼ ~L~L
T
, where ~L∈ℝm×m is a unique lower triangular matrix (Nicholas, 1990). Likewise,

C¼LLT for some lower triangular matrix L. To correct the spatial correlation matrix, we apply the
transformation ~U ¼L~L

T ~X. The updated matrix ~U has the spatial correlation matrix C since.

~U ~U
T
=nsim ¼L~L

T ~X~X
T ~LLT=nsim ¼L~L

T ~C~LLT ¼LILT ¼C

where I ∈ℝm×m is the identity matrix.
The reshuffling technique discussed in Section 2.1.3 is then employed to rectify the marginal

distributions. It is applied to the matrix ~U ∈ℝm× nsim . We update each row ~ui ∈ℝnsim , i¼ 1,…,m, of ~U
by first simulating nsim samples from the standard Gaussian distribution, then reshuffling these samples
according to the ranks of ~ui, resulting in the final realization bxi ∈ℝnsim for location i. It can be shown that
the synthetic realization bxi at location i has the standard Gaussian distribution. However, this does not
guarantee that the spatial correlation matrix resulting from the transformation based on Cholesky
decomposition is preserved. Nevertheless, if nsim is sufficiently large, the reshuffled time series closely
approximates the original, thereby minimizing the discrepancy in the spatial correlation matrix. The jth

column of the matrix bxT1 ,…,bxTmh iT
∈ℝm× nsim is the final realization bx tj

� �
.
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Algorithm 1 GenFormer model.

Model construction phase

1: Transform the data x t1ð Þ,…,x tnobsð Þ to have standard Gaussian marginal distributions
2: Partition the data into nclusters clusters via K-means clustering in Section 3.1.1 to obtain the Markov

state sequencey1,…,ynobs
3: if Markov order p¼ 1 then
4: Estimate the Markov transition matrix from the realizations ofy1,…,ynobs
5: else if Markov order p≥ 2 then
6: Train the deep learning model for Markov state sequence generation in Section 3.1.3
7: Train the deep learning model with Markov state embedding in Section 3.1.2 using the data

x t1ð Þ,…,x tnobsð Þ andy1,…,ynobs
Model simulation phase

8: Set qmax ¼ max p,qencin

� �
. Initialize the simulation by setting ~x t1ð Þ,…,~x tqmax

� �
and ~y1,…,~yqmax

to a
randomly chosen subsequence from the given data and its respective Markov state sequence

9: if Markov order p¼ 1 then
10: Simulate ~yqmaxþ1,…,~ynsim using the estimated transition matrix
11: else if Markov order p≥ 2 then
12: Simulate ~yqmaxþ1,…,~ynsim using the trained deep learning model for Markov state sequence generation

according to Section 3.2.1
13: Apply the trained deep learning model with Markov state embedding on ~yqmaxþ1,…,~ynsim to infer-

~x tqmaxþ1
� �

,…,~x tnsimð Þ
14: Correct spatial correlation by applying transformation based on Cholesky decomposition in

Section 3.2.2 to the synthetic realizations
15: Correct the marginal distributions using the reshuffling technique in Section 2.1.3

3.3. Summary of the proposed GenFormer algorithm

We summarize the proposed GenFormer algorithm for generating synthetic realizations of a multivariate
stochastic process in Algorithm 1. It is composed of the training stage and the simulation procedure. To
construct the GenFormer model, the data x t1ð Þ,…,x tnobsð Þ is first transformed to have standard Gaussian
marginal distributions. The K-means clustering algorithm in Section 3.1.1 is then employed to partition
the data into nclusters clusters fromwhichwe deduce theMarkov state sequence y1,…,ynobs . To fit aMarkov
process to the resulting state sequence, the Markov order is determined. If the order is p¼ 1, we estimate
the transition matrix whereas if p≥ 2, we train the deep learning model for Markov state sequence
generation in Section 3.1.3. Finally, the deep learning model with Markov state embedding is trained
using x t1ð Þ,…,x tnobsð Þ and y1,…,ynobs following Section 3.1.2.

To produce synthetic realizations using GenFormer, we initialize the simulation procedure by setting
~x t1ð Þ,…,~x tqmax

� �
and ~y1,…,~yqmax

to a randomly-chosen subsequence from the given observations. We
then simulate the Markov state sequence at future times ~yqmaxþ1,…,~ynsim using the estimated Markov
transition matrix if p¼ 1 or using the trained deep learning model forMarkov state sequence generation if
p≥ 2, following Section 3.2.1. Preliminary synthetic realizations ~x tqmaxþ1

� �
,…,~x tnsimð Þ of the stochastic

process are then obtained by applying the trained deep learning model with Markov state embedding on
~yqmaxþ1,…,~ynsim . Synthetic realizations of X tð Þ then result from post-processing the preliminary synthetic
realizations to correct the spatial correlation and the marginal distributions as discussed in Section 3.2.2.

The synthetic realizations generated byGenFormer match exactly the target marginal distributions and
match approximately the second-moment properties. Furthermore, the estimates based on these
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realizations provide satisfactory approximations to the higher-order statistical properties derived from
X tð Þ, even when m and nsim are large. We demonstrate these properties in Section 4.

4. Numerical examples

We apply the proposed GenFormer model to two examples. We first consider a synthetic dataset
describing the dynamics of a 3-variate process generated from stochastic differential equations (SDE)
in Section 4.1. Analytical expressions for the statistical properties of the solutions to the SDE can be
derived. We then consider a real dataset on wind speeds at 6 stations in Florida in Section 4.2. The
numerical results illustrate the following points:

• The GenFormer model is scalable as the produced synthetic data can be used to obtain satisfactory
approximations of the statistical properties of interest such as exceedance probabilities of functionals
of X tð Þ, even when the numbers of locations and time stamps are large.

• The post-processing procedure of the GenFormer results in a model that exactly matches the target
marginal distributions and reasonably approximates the spatial correlation matrix.

• For large Markov order p, the deep learning model for Markov state sequence generation is able to
simulate syntheticMarkov state sequences with comparable frequencies to the observed ones which
is a challenge using traditional methods.

• TheMarkov state embedding incorporated in the deep learningmodel produces an accuratemapping
to infer m-variate processes from Markov state sequences.

In this work, we conduct a limited hyperparameter search for the hyperparameters listed in Table 4.We set
candidate values of 512, 1024, 2048 for dmodel and dff , and 3,4 for nenc, ndec, and nMarkov. The configur-
ations yielding the lowest validation losses are selected. Other hyperparameters such as p, qencin are set
based on empirical judgments or standard practices detailed in Section 3.1.2. This approach is adopted in
response to the satisfactory performance already observed with the trained model. However, if adequate
computational resources are available, more extensive hyperparameter tuning is recommended to achieve
better results. The deep learning models for Markov state sequence generation and inference of the m-
variate processes are trained based on the focal and L1 losses, respectively, with batch size 128. The
ADAMoptimizer (Kingma andBa, 2015) is usedwith an initial learning rate of 10�4 which is set to decay
during training. The maximum number of training epochs is 20, where the learning rate is set to be 1e�5,
5e�6, 1e�6, 5e�7 at epochs 6, 8, 10, 12, respectively. The training process is stopped early if the validation
loss does not decrease over three consecutive iterations. We also employ a 5% dropout to prevent
overfitting. A Python1 implementation of the code using PyTorch (Paszke et al., 2019) is available. Both
experiments were run on a single A100 GPU. The run time for model construction is approximately
30 minutes and the simulation of synthetic realizations can be completed within 1 minute.

To evaluate the efficacy of the Transformer-based architecture for mapping Markov state sequences to
time series values, as detailed in Section 3.1.2, we also train an MLP and an RNN-based model, that is,
Long Short-TermMemory (LSTM), to benchmark the performance of the Transformer architecture. For a
fair comparison and ensuring no information loss, the inputs of the MLP comprise the concatenated time
sequence Concat Tenc,Toutð Þ, Markov state sequence Concat Yenc,Yout

� �
, and time series matrix

Concat Xenc,0ð Þ, where 0∈ℝm× qout is a zero matrix. The MLP architecture comprises an embedding
layer followed by fully-connected linear layers, which are flattened across time and hidden neuron
dimensions, with GeLU activations. We employ this MLP architecture to transform the zero matrix in
Concat Xenc,0ð Þ into final outputs. Hyperparameter tuning forMLP is performed for the number of hidden
neurons given by 32, 64, 128, 256, the number of hidden layers given by 2, 3, 4, and dropout rates given by
5%,10%,20%, selecting hypeparameters with the best L1 loss. For the LSTM model, we adopt the

1 https://github.com/Zhaohr1990/GenFormer.
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architecture described in (Bahdanau et al., 2014), consisting of an encoder and a decoder with the same
inputs as the Transformer architecture. Both the encoder and decoder employ embedding layers followed
by a number of LSTM layers, with a feed-forward layer following the decoder to produce the outputs. We
tune the hyperparameters of LSTM by experimenting with different configurations of the number of
hidden neurons given by 256, 512, 1024, the number of LSTM layers given by 1, 2, 3, and dropout rates
given by 5%,20%.

4.1. Synthetic data generated from stochastic differential equations

4.1.1. Problem setup
Consider the system of stochastic differential equations driven by Brownian motion with drift
a xð Þ¼ θ α=β� xð Þ and diffusion term b xð Þ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

2θx=β
p

,x∈ℝ, given by.

dQi tð Þ¼ θ
α
β
�Qi tð Þ

� �
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2θQi tð Þ

β

s
dBi tð Þ, i¼ 0,…,m, (4.1)

where t∈ 0,Tobs½ Þ, Qi tð Þ∈ℝ, θ > 0,α≥ 1,β > 0 are prescribed coefficients, and Bi tð Þ, i¼ 0,…,m, are
mutually independent copies of Brownianmotion. It can be shown based on Itô’s formula that the second-
moment properties of the stationary component of Qi tð Þ, i¼ 0,…,m, depend only upon the coefficient θ
[14, 435]. More specifically, the mean and variance of the stationary process Qi tð Þ are α=β and α=β2,
respectively. The auto-correlation function of Qi tð Þ has exponential decay with rate θ and is given by
exp �θτð Þ, where τ is the time lag.

The marginal distribution of Qi tð Þ follows the Gamma distribution with shape parameter α and rate
parameter β (Bibby et al., 2005), which can be derived through the stationary Fokker-Planck equation
defined in [14, 482].

Set Vi tð Þ¼Q0 tð ÞþQi tð Þ, i¼ 1,…,m. It can be shown that Vi tð Þ�Gamma 2α,βð Þ, that is, Vi tð Þ has a
Gamma marginal distribution with mean γ1 ¼ 2α=β and variance γ2 ¼ 2α=β2. The cross correlation
function between Vk tð Þ and Vi tð Þ, 1≤ k, i≤m, is given by.

rki τð Þ¼E Vk tþ τð Þ� γ1ð Þ Vi tð Þ� γ1ð Þ½ �=γ2 ¼ 1�1
2
1 k ≠ ið Þ

� �
exp �θτð Þ, (4.2)

where 1 k ≠ ið Þ is the indicator function which is equal to 1 if k ≠ i and 0 otherwise. The normalized spatial
correlation matrix of V tð Þ is given by rki 0ð Þð Þ1≤ k,i≤m.

In this example, we set m¼ 3,θ¼ 40,α¼ β¼ 1. A total of 1000 realizations of Vi tð Þ are obtained by
simulating sequences of Qi tð Þ under the Milstein scheme (Bayram et al., 2018) with duration Tobs ¼ 0:2
and time increment Δt¼ 0:001, resulting in nobs ¼ 200 time steps. Since it is known that
Qi tð Þ�Gamma 1,1ð Þ, i¼ 0,1,2,3, the numerical simulation of Qi tð Þ is initialized using samples from
Gamma 1,1ð Þ to ensure the stationarity ofQi tð Þ. To pre-process the observations ofVi tð Þ, i¼ 1,2,3, we first
transform Vi tð Þ into the standard Gaussian space via Xi tð Þ¼Φ�1 F Vi tð Þð Þ½ �, where F is the CDF of
Gamma 2,1ð Þ and Φ�1 denotes the inverse CDF of the standard Gaussian distribution.

4.1.2. Model considerations
The K-means clustering with nclusters ¼ 300 is applied to partition the realizations
x tð Þ¼ x1 tð Þ,x2 tð Þ,x3 tð Þ½ �T of X tð Þ¼ X1 tð Þ,X2 tð Þ,X3 tð Þ½ �T across time in order to construct the state space
for the discrete-time Markov process. Denote by x1,x2,x3ð Þ :�∞< x1,x2,x3 <∞f g the sample space of
X tð Þ at a fixed time t. We consider the tail region of X tð Þ to be x1,x2,x3ð Þ :∃i, i∈ 1,2,3f g,s:t:xi > q0:96f g,
where q0:96 ≈ 1:75 is the 96%-quantile of the standard Gaussian distribution. To ensure that there is a
sufficient number of cluster centroids concentrated in the tail region, we segregate the realizations into
those that lie within and outside the tail region. The K-means clustering is then performed on each region
separately, with nclusters ¼ 100 in the tail region and nclusters ¼ 200 clusters outside the tail region. We
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repeat the clustering process 20 times with different starting centroids and select the clustering with
the lowest within-cluster distance.

We set the Markov order to be p¼ 10 and adopt a deep learning model for Markov state sequence
generation with nMarkov ¼ 3 decoder blocks. The attention mechanism of the model follows the Informer
(Zhou et al., 2021). The dimension of the hidden attention layers is dmodel ¼ 1024 which is split among
nhead ¼ 8 headswhile the dimension of the feed-forward layers is dff ¼ 2048. Because the time argument is
unitless in this case, only the positional embedding is adopted as the time embedding in the embedding
layer. Because the number of Markov states outside the tail region outnumbers that inside the tail region,
we assign a weight of 1:3 to the loss values induced by states in the minority class to mitigate the class
imbalance issue in focal loss calculation.

For the deep learning model for inferring the m-variate process in Section 3.1.2, we investigate two
types of architectures. Our proposed GenFormer model utilizes the Transformer architecture with the
attention mechanism of the Informer. The lengths of the input sequence of the encoder and the start
sequence of the decoder are set to qencin ¼ 40 and qdecin ¼ 20, respectively. The inference length is set to be
qout ¼ 20. Both the encoder and decoder have nenc ¼ ndec ¼ 3 blocks while the other hyperparameters, for
example, nhead, dmodel, are the same as above. We use η¼ 0:9 to partition the training and validation
datasets. However, the approach described in Section 3.1.4 yields insufficient data to construct the
validation set. Consequently, we apply a train-validation split across realizations of sequences rather than
time stamps, allocating the first 900 realizations for training and the subsequent 100 realizations for
validation. From each sequence, nobs�qencin �qoutþ1¼ 200�40�20þ1¼ 141 data pairs can be
formed, resulting in 126900¼ 900× 141 pairs in the training set and 14100¼ 100× 141 pairs in the
validation set. In addition to the Transformer architecture, we also investigate using a MLP to construct
the mapping from the Markov state yj to the time series x tj

� �
, for comparison.

The trained GenFormer model is employed to simulate synthetic realizations on the duration of the
observed data such that T sim ¼ Tobs ¼ 0:2 and nsim ¼ nobs ¼ 200. For each of the 1000 observed time series
that comprise the training and validation sets, we utilize the data in the first 40 time stamps, that is,
t∈ 0,0:04½ Þ, and their corresponding Markov state sequences, to initialize the simulation of five synthetic
sequences, resulting in synthetic dataset of 5000 sequences. The trained Transformer-based deep learning
model is then applied to generate the sequence ~x tj

� �
, j¼ 41,…,200, from the simulated Markov states

~y41,…,~y200. Subsequently, we stack all the synthetic realizations over the time dimension and obtain a
time series matrix of dimension 3× 106. The model post processing procedures in Section 3.2.2 are then
applied to this concatenated matrix to obtain the final synthetic realizations bx tð Þ.

4.1.3. Results
We first examine the performance of the deep learning model for Markov state sequence generation.
Using the observed Markov state sequences, we compute the normalized frequency of each of the
300 Markov states in the state space. We repeat the same procedure using the simulated Markov state
sequences. In Figure 5, we show a scatter plot of the normalized frequency for eachMarkov state obtained
from the observed sequences (x-axis) and the simulated sequences (y-axis). The approximate alignment of
the scatter points along the diagonal line (red line) indicates that the frequencies of theMarkov states in the
observed and simulated sequences are similar.

We then compare the performance of the deep learning architectures we considered for constructing the
mapping from the Markov state yj to the time series x tj

� �
. The MLP architecture consists of 3 hidden

layers with 128 hidden neurons each while the LSTM architecture consists of 3 LSTM layers with hidden
size 512, based on hyperparameter search. The training and validation L1 losses and parameter counts for
the selected Transformer, MLP, and LSTM architectures are shown in Table 5. The Transformer-based
model achieves 40% and 8% lower L1 loss than the MLP and LSTMmodels. We now visually assess the
accuracy of the trained GenFormer model by comparing a single observation trajectory x t1ð Þ,…,x t200ð Þ
with its inferred one ~x t1ð Þ,…,~x t200ð Þ based on the same Markov state sequence y1,…,y200. The target
trajectory is randomly selected from the validation set while the synthetic time series is produced with an
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initialization using the data x t1ð Þ,…,x t40ð Þ and y1,…,y40 since q
enc
in ¼ 40. As qout ¼ 20, the inference is

performed in an autoregressive manner comprised of 8 iterations based on the remaining sequence
y41,…,y200. Figure 6 compares the target x tj

� �
, j¼ 1,…,200, and the synthetic time series

~x tj
� �

, j¼ 1,…,200. Data to the left of the dotted red line were used to initialize the model. It can be seen
that the synthetic time series accurately approximates the target.

Table 5. Comparison among Transformer-based deep learning model, LSTM, and MLP for Section
3.1.2. The Transformer-based model achieves the lowest loss value in this example

Architecture Training L1 loss Validation L1 loss Parameter count

Transformer 0.1145 0.1199 64 × 106

LSTM 0.1247 0.1297 15 × 106

MLP 0.1415 0.1668 177 × 106

Figure 6. Target versus synthetic time series produced by the deep learning model for inference of
m-variate processes. The Transformer-based model produces accurate inference of the target based on

the same Markov state sequence.

Figure 5. Scatter plot of the normalized frequencies of Markov states in the observed and simulated
sequences. Generating Markov state sequences by estimating the transition matrix from data is com-
putationally challenging for large Markov order p. This example shows that for large p, the trained deep
learning model for Markov state sequence generation can closely reproduce the frequencies of Markov

states in the observed Markov state sequence data.
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We now examine the performance of the proposed GenFormer model in capturing desired statistical
properties of the observed time series data. Figure 7 displays various approximations to the target spatial
correlation matrix C in Figure 7(a), estimated from the 1000 given realizations of x tð Þ in the training and
validation set. The estimate in Figure 7(b) is obtained using the 5000 synthetic realizations produced by
the trained deep learning model in Section 3.1.2. Figure 7(c) and Figure 7(d) shows estimates resulting
from samples obtainedwith themodel post-processing steps discussed in Section 3.2.2.More specifically,
Figure 7(c) is based on the samples obtained after applying the transformation based on Cholesky
decomposition while Figure 7(d) is the approximation by the GenFormer model which subsequently
applies the reshuffling procedure. For reference, Figure 7(e) provides the analytical correlation matrix of
V tð Þ, derived from (4.2). According to (Grigoriu, 2013), X tð Þ and V tð Þ possess roughly the same spatial
correlations.

We compute the relative error between the target C and an approximation ~C via.

∥C� ~C∥F
∥C∥F

, (4.3)

where ∥ �∥F is the Frobenius norm. The relative errors between the matrices in (a) and (b), (a) and (c),
(a) and (d) are given by 0.0411, 0.0008, 0.0045. Notice that the estimate using the samples obtained by
applying a transformation based on Cholesky decomposition is able to match the target while the estimate
using the samples obtained from the reshuffling procedure only induces minimal deviation. Conse-
quently, the proposed GenFormer model produces an estimate of the spatial correlation that closely
approximates the Monte Carlo estimate computed from the given realizations.

In Figure 8, we examine the auto-correlation functions of the components of X tð Þ and its various
approximations. In each of the panels, the target is represented by the black solid line which is the estimate
from the 1000 given realizations x tð Þ. The blue dashdotted and red dashed lines are the estimates based
on 5000 synthetic realizations ~x tð Þ and bx tð Þ generated from the deep learning model in Section 3.1.2 and
the proposed GenFormer model, respectively. For comparison, the green dotted line is the analytical auto-
correlation function of V tð Þwhich closely resembles the target following (Grigoriu, 2013). The resulting
estimate from theGenFormermodel provides a satisfactory approximation to the target. It can also be seen
that the model post-processing procedure has negligible impact on the auto-correlation functions.

In Figure 9, we study the advantages of applying the reshuffling technique in the model post-
processing procedure by visualizing estimate of the density function for each component of V tð Þ. The
blue dashdotted line in each panel corresponds to the inferred values of ~x tð Þ from the deep learning model
without the model post-processing steps applied, mapped to the original Gamma space. The red dashed

Figure 7. Target spatial correlation matrix of X tð Þ (a), various approximations (b), (c), (d), and
analytical spatial correlation matrix of V tð Þ (e). The estimate produced by the GenFormer model has
relative error that is 9 times more accurate than the estimate obtained by the deep learning model alone

without the post-processing steps in this example. This highlights the need for the post-processing
procedure as a supplement to the deep learningmodel in order to capture key statistical properties such as

the spatial correlation matrix.
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line is computed from samples simulated from theGenFormermodel which are subsequently transformed
to have Gamma marginal distributions. The black solid line is the density of Gamma 2,1ð Þ which is the
target. We calculate the L1 relative errors of the density estimates with respect to the target, averaged
across the 3 dimensions. The error of the density estimate computed from samples without post-
processing applied is 0.1173. In contrast, the error of the density estimate resulting from samples
simulated from the GenFormer model is 0.0194. This demonstrates that the GenFormer model decreases
the error in the approximation of the marginal distributions by 1 order of magnitude in this example.

Finally, we consider a downstream application of the GenFormer model in risk management. A metric
of interest is the exceedance probability at a specified time t defined as p sð Þ¼P S tð Þ> sð Þ, where
S tð Þ¼Pm

i¼1Vi tð Þ. A commonly-used model for computing such probability is the translation process
(Zhao et al., 2019), which is computationally feasible in high dimensions and serves as our baselinemodel
for comparison. A translation process VT tð Þ¼ VT ,1 tð Þ,…,VT ,m tð Þ½ �T is a nonlinear memoryless trans-
formation of a standard Gaussian process whose ith component is expressed as VT ,i tð Þ¼F�1

i Φ X∗
i tð Þ� �� �

,
where Fi is the marginal distribution of Vi tð Þ and X∗ tð Þ¼ X∗

1 tð Þ,…,X∗
m tð Þ� �T

is the m-variate Gaussian
process which has the same second-moment properties (i.e., spatial correlations, auto-correlation func-
tions, etc.) as X tð Þ. However, in general, the statistical properties of X∗ tð Þ and X tð Þ differ beyond the
second moment. To generate synthetic realizations of VT tð Þ, the second-moment properties of X tð Þ are
first estimated from the Gaussian-transformed observations of V tð Þ. Subsequently, samples of X∗ tð Þ are
generated from a multivariate Gaussian distribution with the aforementioned second-moment properties.
The mapping F�1

i Φ X∗
i tð Þ� �� �

is then applied to each component of these samples to obtain samples of
VT tð Þ. In addition to the translation process, we consider two other models, substituting the Transformer

Figure 9. Marginal densities of V tð Þ and various approximations. The reshuffling technique in the
GenFormer model reduces the L1 relative error by 1 order of magnitude in this example. This is because

the target marginal distributions are directly sampled from in the reshuffling procedure.

Figure 8. Auto-correlation functions of X tð Þ and various approximations. The proposed GenFormer
model adequately preserves the second-moment properties of the given realizations.
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architecture in the GenFormer model with either MLP or LSTM. These baseline models are denoted by
MLP and LSTM, respectively.

In this example, Fi �Gamma 2,1ð Þ, i¼ 1,2,3. In Figure 10, we plot the exceedance probability p sð Þ for
s∈ 0,32½ � estimated using the given observations (black solid line), the synthetic realizations produced by
the translationmodel (blue dotted line), theMLP (green dotted line), the LSTM (magenta dotted line), and
the GenFormer model (red dashed line). In risk management, the inverse of the exceedance probability is
the return period which quantifies the average time interval between events S tð Þ> sf g. The L1 relative
errors based on the return periods obtained from the translation model, the MLP, the LSTM, and the
GenFormer model are 0:3825, 0:2746, 0:1971, and 0:0680, respectively. We notice that the exceedance
probability curve due to the proposed GenFormer closely follows the target while the curves produced by
the other three models deviate from the target as s increases, resulting in underestimation of the
exceedance probability and a significant error in estimating the return period for large values of s. The
discrepancy between the approximations to the target is due to the fact that the proposed GenFormer
model is able to capture the higher-order statistical properties of X tð Þ beyond the second moment.

4.2. Simulation of station-wise wind speeds in Florida

4.2.1. Problem setup
We apply the proposed GenFormer model to the hourly station-wise wind speed data2 from the National
Oceanic and Atmospheric Administration (NOAA). We select six weather stations around Coral Gables,
Florida, an area that is frequently affected by hurricanes and high wind speeds. A detailed list of station
information can be found in Table. 6. The hourly wind speed data ranging from January 1, 2006 to
December 31, 2021 is collected which amounts to nobs ¼ 140256 data points per station over Tobs ¼ 5844
days (equivalent to 16 years).

Thewind speed data are preprocessed to remove the trend and any periodicities, rendering it stationary.
Missing wind speeds are set to 0. Station-wise hourly periodicity in a day is removed by subtracting the
hourly average, computed across all days. This is followed by applying a moving average to the resulting
wind speed data per station with circular padding and kernel size 720 that is equivalent to a monthly
average. This moving average is then subtracted from the data obtained from the previous step, resulting
in stationary wind speed data. The marginal distribution per station is estimated empirically and the data
are transformed to the Gaussian space.

Figure 10.Exceedance probability of S tð Þ. The relative error in the return period attained by the proposed
GenFormer model is approximately an order of magnitude lower than those of the translation model, the
MLP, and the LSTM. The GenFormer model can capture higher-order statistical properties of X tð Þ

beyond the second moment in this example.

2 https://observablehq.com/@observablehq/noaa-weather-data-by-major-u-s-city.
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4.2.2. Model considerations
As in the previous example, we designate a tail region that is defined identically as before. We then
perform K-means clustering with nclusters ¼ 100 in the tail region and nclusters ¼ 200 outside the tail region
to capture the patterns of the extremes.

We set the Markov order to be p¼ 36, and use a deep learning model for Markov state sequence
generation with nMarkov ¼ 3 decoder blocks. The attention mechanism utilized in this example is the
Informer. The attention layers in the model have dimension dmodel ¼ 512 which is divided into nhead ¼ 8
heads while the feed-forward layers have dimension dff ¼ 2048. Given the hourly granularity of the time
argument which is provided in year-month-day-hour format, the time feature embedding described in
Section 2.2 is incorporated in the embedding layer. For the focal loss computation, a weight of 1.2 is
applied to the Markov states in the tail region.

In this example, we aim to infer hourly wind speed data. In the Transformer architecture of the deep
learning model for inference of the m-variate process using the GenFormer, we set qencin ¼ 48, qdecin ¼ 48,
and qout ¼ 48. This implies that we infer wind speeds for the next 2 days based on the observed wind
speeds in the previous 2 days. Both the encoder and decoder consists of four blocks each, that is,
nenc ¼ ndec ¼ 4, while dmodel, nhead, and dff are identical as above. In training the deep learning models for
Markov state sequence generation and the inference of the m-variate process, the training and validation
datasets are constructed following the approach in Section 3.1.4 with η¼ 0:9. We also investigate the use
of an MLP architecture instead of the Transformer architecture.

We then simulate hourly wind speeds for 1 month using the convention that a month consists of
28 days. This means that the simulation period is Tsim ¼ 28 days which implies that the number of
simulation time stamps is nsim ¼ 672¼ 28× 24. The simulation of synthetic realizations begins by
extracting the observed data at qmax ¼ 48 time stamps from each of the 192¼ 16× 12 sequences of
monthly data over 16 years. Each initialization sequence from the observed data is used 10 times to
generate 10 sequences, resulting in 1920 synthetic realizations of sequences of length 28 days.

4.2.3. Results
We first evaluate the performance of the deep learning model for Markov state sequence generation in
Figure 11. A scatter plot showing the normalized frequency of each Markov state computed from the
observed Markov state sequences versus the simulated Markov state sequences from the deep learning
model is presented. Despite a large p in this example, the majority of the points in the scatter plot are
aligned with the red diagonal line with only a few outliers. This indicates that the trained deep learning
model can closely replicate the distribution ofMarkov state occurrences in the observed data, evenwhen p
is large.

Among the hyperparameters, the MLP model with four hidden layers and 128 hidden neurons is
selected, while the LSTM configuration with two LSTM layers, each containing 512 hidden neurons,
achieves the lowest L1 loss. A comparison of the Transformer architecture with the MLP and LSTM is
shown in Table 7. We see that the Transformer architecture achieves a 60% and 10% lower L1 loss in

Table 6. Weather stations in Florida selected in this work

Station ID Station name State Latitude Longitude

747,830 FT LAUD/HOLLYWOOD INTL APT FL, US 26.079 �80.162
722,037 NORTH PERRYAIRPORT FL, US 26.000 �80.241
722,024 OPA LOCKA AIRPORT FL, US 25.910 �80.283
722,020 MIAMI INTERNATIONAL AIRPORT FL, US 25.788 �80.317
722,029 KENDALL-TAMIAMI EXEC ARPT FL, US 25.642 �80.435
722,026 HOMESTEAD AFB AIRPORT FL, US 25.483 �80.383
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inferring the 6-variate wind speed time series compared to the MLP and LSTM.We then visually inspect
the accuracy of the trained model by utilizing it to reproduce a randomly-chosen time series in the
validation set provided that the exact Markov state sequence is known, as carried out in the previous
example. The inference is initialized with data from the first 2 days (48 hours), corresponding to 48 time
stamps, while the inference horizon consists of the subsequent 26 days. Synthetic realizations of the wind
speeds are generated using the deep learning model in an auto-regressive manner for 13 iterations since
qout ¼ 2 days. Figure 12 plots the wind speeds simulated by the deep learning model as well as the observed
wind speeds forX1 tð Þ,X3 tð Þ,X6 tð Þ. Data to the left of the dotted red line are used to initialize the deep learning
model. Although the time series data encompassesmore spatial locations and the inference is carried out over
a longer simulation period with increased volatility compared to the previous example, the plots demonstrate
that the trained deep learning model is still able to closely approximate the target time series.

We now assess how well the proposed GenFormer model captures statistical properties of interest.
Figure 13 compares the target spatial correlation matrix (Figure 13(a)) computed from the collected wind
speed observations with various approximations. Figure 13(b) shows the estimate computed from
samples generated by the trained deep learning model. Figure 13(c) is the estimate from samples to
which a transformation based on Cholesky decomposition has been applied while Figure 13(d) is the
resulting estimate provided by the GenFormer model. The relative errors (4.3) between the matrices in
(a) and (b), (a) and (c), (a) and (d) are given by 0.0862, 0.0031, and 0.0072, respectively. It can be seen that
the Figure 13(c) best aligns with the target since the applied transformation corrects for discrepancies in
the spatial correlation. In addition, the estimate due to the GenFormer model is still comparable to the

Table 7. Comparison among Transformer-based deep learning model, LSTM, and MLP for Section
3.1.2. The Transformer architecture most effectively captures the temporal patterns in the time series

data in this example

Architecture Training L1 loss Validation L1 loss Parameter count

Transformer 0.2296 0.2504 30 × 106

LSTM 0.2443 0.2758 9 × 106

MLP 0.3846 0.4015 604 × 106

Figure 11. Scatter plot of the normalized frequencies of Markov states in the observed and simulated
sequences. Estimating the transition matrix for large p is prohibitive since the transition matrix would
have dimension 30036 × 300. In this example, the trained deep learning model for Markov state sequence
generation offers a computationally feasible alternative for producing synthetic Markov state sequences

with the occurrence frequency of each Markov state being similar to the observed one.
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target which highlights that the reshuffling procedure in this example mostly preserves the effect of
correcting the spatial correlation in the post-processing step.

Figure 14 plots the auto-correlation functions of X1 tð Þ, X3 tð Þ, and X6 tð Þ obtained from the collected
wind speed data (black solid line), samples simulated from the trained deep learning model (blue
dashdotted line), and samples generated using the GenFormer model (red dashed line). The estimate
due to the proposed approach offers a satisfactory approximation to the Monte Carlo estimate from the
given observations.

In Figure 15, we show estimates of the marginal densities of X1 tð Þ, X3 tð Þ, and X6 tð Þ in the Gaussian
space. The black solid line marks the target standard Gaussian density. The blue dashdotted line is the
estimate computed using inferences from the deep learningmodel prior to themodel post-processing steps
with average L1 relative error across the 6 spatial locations being 0.1756. The red dashed line represents
the estimate due to the GenFormer model which attains an average L1 relative error of 0.0157. Thus, the
model post-processing procedure in the proposedGenFormermodel serves to correct themarginal density

Figure 13. Target spatial correlation matrix of collected wind speeds (a) and various approximations (b),
(c), (d). The estimate of the spatial correlation matrix due to the GenFormer model is 12 times more

accurate than the estimate produced by the deep learning model without post-processing. On the other
hand, the transformation based on Cholesky decomposition preserves the spatial correlation matrix

irrespective of the number of locations m.

Figure 12. Target versus synthetic time series produced by the deep learning model for inference of
transformed wind speed time series. Even though the time series data in this example is higher-

dimensional and exhibits more volatility, the autoregressive inference from the Transformer-based deep
learning model can still effectively approximate the target time series using a modest computational time.

The inferred time series does not diverge from the target despite the long simulation horizon.
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of the synthetic realizations which the deep learning model alone does not account for in its training
process.

Figure 16 shows the records of the synthetic wind speed data in the Gaussian space produced by the
GenFormermodel at selected stations. Avisual inspection of these time series, compared to the collectedwind
speed data shown in Figure 12, demonstrates that the synthetic samples appear realistic and look similar to the
given observations. These synthetic samples can thus be used for various downstream applications.

The downstream application we pursue in this example is defined as the maximum of the monthly

averaged hourly wind speeds across stations given by S¼ max
1≤ i≤ 6

R T sim

0 Xi tð Þdt=T sim

n o
. Such a metric can

be used as a measure of the local hurricane intensity which is of interest in parametric insurance (Ng et al.,
2021). In Figure 17, we plot the exceedance probabilities of the metric of interest p sð Þ¼P S> sð Þ
computed using the observed data and synthetic realizations generated by the GenFormer model. As in
the previous example, the translation process, MLP, and LSTM are adopted as the baseline models for
comparison.We see that the approximations due to all baseline models deteriorate as s increases while the
proposed GenFormer model is able to provide an accurate estimate. This is further evidenced by the
return-period-based relative L1 errors of the translation process, MLP, and LSTM model which are
0.9713, 0.5061, and 0.2972 compared to that of the GenFormer which is 0.1281. The GenFormer offers a
7.6, 4.0, and 2.3 times improvement, respectively, over the aforementioned models. This improvement

Figure 15.Marginal density estimates of X1 tð Þ,X3 tð Þ,X6 tð Þ. The model post-processing procedure in the
GenFormer model, specifically the reshuffling technique, reduces the L1 relative error by a factor of 11.
The deep learning model alone is unable to produce samples with accurate marginal distributions

because the training procedure only penalizes the discrepancy in the inferred values.

Figure 14. Auto-correlation functions of X1 tð Þ,X3 tð Þ,X6 tð Þ and various approximations. The trained
deep learningmodel provides satisfactory approximations to the auto-correlation functions with the post-

processing procedure introducing only minimal and visually-indiscernible deviations.
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can become more substantial at specific values of s. For example, at s¼ 2:7 with a target return period of
1684 months, the estimates from the GenFormer, the translation model, MLP, and LSTM are 1376, 6088,
376, and 758 months, reflecting an at most 14-fold enhancement in the relative error. This improved
accuracy is attributed to the capability of GenFormer in capturing higher-order statistical properties, even
when m is large and the simulation horizon is long.

5. Conclusion

We presented GenFormer, a novel stochastic generator for producing synthetic realizations of spatio-
temporal multivariate stochastic processes. The model integrates a univariate discrete-time Markov
process capturing spatial variation with a Transformer-based deep learning model mapping the Markov
states to time series values. GenFormer offers a scalable alternative for simulating multivariate processes
in high dimensions and long horizons as well as Markov state sequences of large Markov orders. It
exploits the predictive power of deep learning models coupled with modern computing capabilities while
leveraging statistical post-processing techniques to guarantee that key statistical behavior is preserved.
Numerical experiments applying the GenFormer model to simulate wind speeds in Florida demonstrated
its ability to produce samples that approximate statistical properties beyond the second moment, unlike
traditional methods. The GenFormer model can thus be reliably employed in various downstream
applications in engineering. Future work includes incorporating additional spatial modeling techniques,
such as those described in (Wu et al., 2023), to more effectively capture spatial dependencies, imple-
menting novel attention mechanisms in the Transformer architecture to further improve its performance,
and extending the proposed approach to non-stationary multivariate stochastic processes.

Figure 17.Exceedance probability of S. The estimate obtained from theGenFormermodel is 7:6, 4:0, and
2:3 times more accurate than the translation, MLP, and LSTM models. The predictive capabilities of the
Transformer-based deep learning model coupled with the statistical post-processing techniques enable

the GenFormer model to capture high-order statistical properties.

Figure 16. Synthetic realizations of X1 tð Þ,X3 tð Þ,X6 tð Þ produced by the GenFormer model. The synthetic
transformed wind speed records appear realistic and can therefore be used for downstream applications

of interest.
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