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Critical balance and scaling of strongly stratified
turbulence at low Prandtl number
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We extend the scaling relations of strongly (stably) stratified turbulence from the
geophysical regime of unity Prandtl number to the astrophysical regime of extremely small
Prandtl number applicable to stably stratified regions of stars and gas giants. A transition
to a new turbulent regime is found to occur when the Prandtl number drops below the
inverse of the buoyancy Reynolds number, i.e. Pr Rb < 1, which signals a shift of the
dominant balance in the buoyancy equation. Application of critical balance arguments
then derives new predictions for the anisotropic energy spectrum and dominant balance of
the Boussinesq equations in the Pr Rb � 1 regime. We find that all the standard scaling
relations from the unity Pr limit of strongly stratified turbulence simply carry over if the
Froude number, Fr, is replaced by a modified Froude number, FrM ≡ Fr/(Pr Rb)1/4. The
geophysical and astrophysical regimes are thus smoothly connected across the Pr Rb = 1
transition. Applications to vertical transport in stellar radiative zones and modification to
the instability criterion for the small-scale dynamo are discussed.
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1. Introduction

Turbulence in the strongly stratified regions of planetary oceans, atmospheres and the
interiors of stars and gas giants provides an important source of vertical transport of
chemicals and momentum, thereby playing a critical role in their long-term evolution
(Zahn 1974, 1992; Fernando 1991; Pinsonneault 1997; Maeder & Meynet 2000; Ivey,
Winters & Koseff 2008; Ferrari & Wunsch 2009; Aerts, Mathis & Rogers 2019; Garaud
2021). However, current understanding of the extremely low thermal-Prandtl-number
regime of astrophysical turbulence remains disjoint from the order-unity Prandtl-number
regime of geophysical turbulence. This is despite identical asymptotic limits for the
Reynolds number (Re � 1), Froude number (Fr � 1) and buoyancy Reynolds number
(Rb = Re Fr2 � 1). The Prandtl number Pr = ν/κ measures the ratio of the microscopic
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viscosity ν to the thermal diffusivity κ , and is extremely small in stellar plasma, in
particular. Photons rapidly diffuse heat compared to the much slower momentum diffusion
by ion–ion collisions, leading to κ � ν. For reference, stellar radiative zones have Prandtl
numbers that can range from Pr = O(10−9) to at most Pr = O(10−5), in contrast to
Earth’s fluids, which range from Pr � 0.7 in the atmosphere to Pr � 10 in the ocean
(Garaud 2021). A Prandtl number as high as Pr � 700 can be reached in parts of the
ocean dominated by salt stratification (Thorpe 2005; Gregg et al. 2018; Gregg 2021) –
where the salt diffusivity replaces thermal diffusivity. Compared to the Pr = 1 case, a
small Pr can have significant effects on large-scale hydrodynamic instabilities and the
resulting turbulence (Garaud 2021), while a large Pr influences scales comparable to and
smaller than the viscous scale and can have significant effects on the buoyancy flux, mixing
efficiency and properties of shear-induced turbulence (Salehipour, Peltier & Mashayek
2015; Legaspi & Waite 2020; Okino & Hanazaki 2020).

Many important features of the unity Prandtl-number regime are becoming better
understood from a combination of numerical experiments (Waite & Bartello 2004;
Brethouwer et al. 2007; Riley & Lindborg 2010; Maffioli & Davidson 2016; Lucas,
Caulfield & Kerswell 2017; de Bruyn Kops & Riley 2019), observational data (Lindborg
& Brethouwer 2007; Riley & Lindborg 2008; Falder, White & Caulfield 2016; Lefauve
& Linden 2022) and theoretical developments (Billant & Chomaz 2001; Lindborg 2006;
Chini et al. 2022). Strongly stratified turbulence with Pr = O(1) forced at some horizontal
length scale leads to emergent vertical scales set by the stratification and exhibits two
distinct inertial ranges that transfer energy from the large forcing scales to the small
viscous and thermal scales where it is dissipated. The transition length scale between the
two ranges is known as the Ozmidov scale (Ozmidov 1992). The turbulence is highly
anisotropic from the outer forcing scale down to the Ozmidov scale, with the down-scale
energy transfer likely containing contributions from both a local energy cascade and
non-local energy transfer mechanisms, e.g. shear instabilities, wave–wave interactions
(Waite 2011; Augier, Billant & Chomaz 2015; Maffioli & Davidson 2016; Khani 2018).
Below the Ozmidov scale, the turbulence is isotropic down to the diffusive scales. The
properties of the energy cascade, relevant dimensionless parameters and scaling relations
for the emergent vertical scales are now fairly well understood, although many further
questions remain, such as on the efficiency of mixing (Gregg et al. 2018; Monismith,
Koseff & White 2018; Legg 2021) and the origin of self-organized criticality (Smyth &
Moum 2013; Salehipour, Peltier & Caulfield 2018; Smyth, Nash & Moum 2019; Chini
et al. 2022; Lefauve & Linden 2022).

The main aim of this study is to extend the theoretical arguments used in the Pr = O(1)

regime to make analogous predictions for the emergent vertical scales and energy cascades
in the asymptotically low Pr regime. If only the thermal diffusivity is increased while
keeping all other parameters constant (thereby decreasing Pr), one should expect a smooth
transition to occur between two asymptotic regimes when thermal diffusion shifts from
being important only on the smallest viscous scales to playing an important role on the
mesoscales, i.e. on scales comparable to or larger than the Ozmidov scale.

To understand this transition, we use the critical balance framework proposed
by Nazarenko & Schekochihin (2011) for anisotropic wave systems. Critical balance
argues that linear wave ω−1 and nonlinear interaction τNL time scales are comparable,
ω−1 ∼ τNL, on a scale-by-scale basis throughout a local energy cascade, giving a
prediction for the anisotropy of the turbulence as a function of scale. Originally applied
in mean-field magnetohydrodynamic (MHD) turbulence (Goldreich & Sridhar 1995)
(see also Schekochihin (2022) and references therein), critical balance successfully
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Strongly stratified turbulence at low Prandtl number

predicts power laws of the anisotropic energy spectra and associated transition scales in
rotating turbulence and unity Prandtl-number strongly stratified turbulence (Nazarenko &
Schekochihin 2011).

We propose that critical balance should naturally extend to low thermal-Prandtl-number
strongly stratified turbulence with a modification in its physical interpretation. As Pr is
decreased (by increasing κ while keeping ν small and fixed), the full internal gravity wave
(IGW) dispersion ω smoothly transitions from the asymptotic dispersion for adiabatic,
inviscid, propagating IGWs when Pr = O(1) (i.e. ω ∼ ωN) to an asymptotic dispersion
for overdamped, inviscid, IGWs modified by the interaction of buoyancy and fast
thermal diffusion when Pr � 1 (i.e. ω ∼ ωlPe, where ‘lPe’ refers to the ‘low turbulent
Péclet-number’ limit, as discussed in more detail in §§ 2 and 4). As a result, scaling laws
for the emergent vertical scales and two cascades predicted by critical balance will likewise
smoothly change as Pr is decreased. We note that, because critical balance assumes a local
energy cascade, the relative role of non-local energy transfer mechanisms in the low Pr
limit remains to be understood.

The paper layout is as follows. The Boussinesq equations used to model stably stratified
turbulence are defined in § 2, followed by an argument for when a transition of turbulence
regimes should occur. Critical balance arguments in the unity Pr regime are reviewed in
§ 3, which can then be compared with the new critical balance arguments in the low Pr
regime given in § 4. Astrophysical applications of the new scaling laws are discussed in
§ 5.

2. The Boussinesq approximation and the Pr Rb = 1 transition

2.1. The Boussinesq approximation
Stably stratified regions of stars and gas giants below their surfaces typically sustain
turbulent motions with vertical length scales that are small compared with the local scale
height and velocity fluctuations that are small compared to the local sound speed. (The
local scale height is the local e-folding scale of a background thermodynamic variable. For
example, the pressure scale height in a stellar interior is HP ≡ (∂r ln P)−1.) In this limit, the
Spiegel–Veronis–Boussinesq equations are a rigorous approximation for the fluctuations
of the velocity field and thermodynamic variables of a compressible fluid on top of a stably
stratified background (Spiegel & Veronis 1960). The approximation effectively filters out
the high frequencies of sound waves compared to the lower frequencies of IGWs and fluid
motions of interest.

The governing equations for the velocity field u′ and the buoyancy variable θ ′ = αgT ′ =
−ρ′g/ρm are

∂tu′ + u′ · ∇u′ = − 1
ρm

∇p′ + θ ′ẑ + ν∇2u′, (2.1a)

∂tθ
′ + u′ · ∇θ ′ = −N2u′

z + κ∇2θ ′, (2.1b)

∇ · u′ = 0. (2.1c)

Here α is the coefficient of thermal expansion, g is the local gravitational constant, T ′
is the temperature perturbation, ρ′ is the density perturbation, ρm is the mean density of
the region, p′ is the pressure perturbation and N is the local Brunt–Väisälä frequency.
Primed variables here denote dimensional quantities and unprimed variables will later
denote dimensionless quantities. Note that the Brunt–Väisälä frequency captures all the
relevant local thermodynamics of the medium in the Boussinesq approximation of any
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fluid (Bois 1991). As a result, the above equations are formally equivalent to those used
in geophysical fluid studies of the Earth’s oceans, but with a different definition of N. For
example, in the case of an ideal gas one has N2 = αg(∂zT̄ − ∂zTad), while in the case of
a liquid, one has N2 = −g∂zρ̄/ρm, where ∂zρ̄, ∂zT̄ and ∂zTad are the background density,
background temperature and adiabatic temperature gradients, respectively.

2.2. Geophysical regime
A stably stratified fluid forced on a horizontal length L and velocity scale U leads to
turbulence with an emergent outer vertical length lz and velocity scale uz set by the physical
parameters of the fluid {N, ν, κ}. From dimensional analysis, only three dimensionless
parameters characterize the fluid: the Reynolds number Re = UL/ν, the Froude number
Fr = U/NL and the Prandtl number Pr = ν/κ . Understanding the scaling of the emergent
outer vertical scales as well as the structure of the subsequent (anisotropic) energy cascade
are important theoretical and experimental goals.

In the geophysical fluid regime where Pr = O(1), evidence from theoretical arguments,
simulations and experimental data strongly suggests that the outer vertical length and
vertical scales are directly set by the Froude number when the viscosity is sufficiently
small: lz ∼ Fr L and uz ∼ Fr U, where lz is often called the buoyancy length scale. Strong
stratification (Fr � 1) thus leads to highly anisotropic structures of the large-scale eddies
characterized by long horizontal scales and short vertical scales as well as significantly
more energy in the horizontal compared to the vertical velocity components. The injected
energy undergoes an anisotropic forward energy cascade at large length scales until the
Ozmidov scale, an intermediate scale given by lO = Fr3/2L (Brethouwer et al. 2007). For
scales smaller than lO, the effects of buoyancy are negligible on the fast turnover times
of the eddies, and an isotropic Kolmogorov cascade operates down to the dissipation
scales, which are the viscous (lν = Re−3/4L) and thermal (lκ � lν) scales. The range
of the isotropic cascade is set by the buoyancy Reynolds number Rb = Re Fr2 (i.e.
lO/lν = Rb3/4) and needs to be sufficiently large in order to support the two cascades
characteristic of strongly stratified turbulence (Bartello & Tobias 2013).

The horizontal and vertical scales from above in the limits Fr � 1 and Rb � 1 suggest
a consistent rescaling of the Boussinesq equations using the following dimensionalization
(identical to that of Billant & Chomaz (2001)):

u′
h = Uuh, u′

z = Fr Uuz, θ ′ = 1
Fr

U2

L
θ, p′ = ρmU2p, (2.2a)

x′ = Lx, y′ = Ly, z′ = Fr Lz, t′ = L
U

t, (2.2b)

where the scaling of θ ′ is determined by a balance of u′ · ∇θ ′ ∼ N2u′
z, since thermal

diffusivity is considered to be sufficiently small. Substituting the above, the Boussinesq
equations become

∂tuh + u · ∇uh = −∇hp +
[

1
Re

∇2
h + 1

Rb
∇2

z

]
uh, (2.3a)

Fr2[∂tuz + u · ∇uz] = −∇zp + θ + Fr2
[

1
Re

∇2
h + 1

Rb
∇2

z

]
uz, (2.3b)
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Strongly stratified turbulence at low Prandtl number

∂tθ + u · ∇θ = −uz +
[

1
Pr Re

∇2
h + 1

Pr Rb
∇2

z

]
θ, (2.3c)

∇ · u = 0, (2.3d)

where uh and ∇h denote the horizontal components of the velocity and gradient. Note
that Rb and Pr Rb act as effective Reynolds numbers in the vertical part of the momentum
and thermal diffusion terms, respectively. Examination of the dominant balance to lowest
order is helpful:

∂tuh + u · ∇uh = −∇hp, (2.4a)

0 = −∇zp + θ, (2.4b)

∂tθ + u · ∇θ = −uz, (2.4c)

∇ · u = 0. (2.4d)

Advection in the horizontal momentum equation (2.4a) is balanced by horizontal
pressure gradients, while the dominant balance in the vertical momentum equation (2.4b)
is instead between the vertical pressure gradient and buoyancy fluctuations. These balances
will change if the viscosity is increased and the vertical gradients of the momentum
diffusion term become important. Further, the buoyancy equation (2.4c) is a balance
between temperature advection and displacement of the fluid against the background
stratification gradient. It is this latter balance that will change if thermal diffusion is
increased and the vertical gradients of the thermal diffusion term become important, as
we show in the next section.

2.3. Transitions from the geophysical regime
We now aim to understand when transitions occur from the regime of geophysical
fluid turbulence where Fr � 1, Rb � 1 and Pr = O(1). First, let us consider the better
understood transition to the viscosity-affected stratified flow regime as Re is decreased
with fixed Fr and Pr = O(1) (Godoy-Diana, Chomaz & Billant 2004). The case of
decreasing Pr turns out to behave in an analogous manner. From the perspective of
the turbulent cascades, as viscosity is increased, the viscous scale will grow until it is
comparable to the Ozmidov scale, lν ∼ lO, at which point Rb ∼ 1 and the isotropic cascade
at small scales disappears (Brethouwer et al. 2007). This appears as a shift of the dominant
balance in the horizontal momentum equation (2.3a) between advection and the vertical
gradient of the momentum diffusivity,

u′ · ∇u′
h

ν∇2
z u′

h
∼ uzlz

ν
∼ Re Fr2 = Rb, (2.5)

where vertical and horizontal advection are comparable due to the incompressibility
constraint (i.e. uz/lz ∼ U/L) and lz/L ∼ uz/U ∼ Fr is used to estimate the vertical scales
near Rb ∼ 1. Heuristically, Rb is the ratio of the eddy turnover rate to the viscous diffusion
rate at the outer vertical scales, i.e. Rb ∼ (uz/lz)/(ν/l2z ). For Rb < 1, a change of dominant
balance (u′ · ∇u′

h ∼ ν∇2
z u′

h) leads to an alternative scaling lz/L = Fr/Rb1/2 (usually
written as lz/L ∼ Re−1/2) where viscosity dominates the coupling of adjacent vertical
layers. The same shift occurs in the buoyancy equation (N2u′

z ∼ κ∇2
z θ ′), and the new

vertical velocity scale becomes uz/U ∼ Fr Rb1/2 (derived with θ ′ ∼ ∇zp′/ρm from the
unchanged dominant balance in the vertical momentum equation). This regime is often
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reached by simulations because computational constraints limit how small the viscosity
can be set. Note that the vertical scales smoothly transition from lz/L ∼ uz/L ∼ Fr at
Rb = 1 as Rb is decreased.

Returning to the physically interesting limit Fr � 1 and Rb � 1 of strongly stratified
turbulence, we now consider the effect of decreasing Pr at fixed Re and Fr, equivalent to
increasing the thermal diffusivity while keeping the viscosity fixed. From the perspective
of the turbulent cascades, as thermal diffusivity is increased, the thermal scale lκ ∼
(Pr Re)−3/4L will grow until it is comparable to the Ozmidov scale lκ ∼ lO, at which point
Pr Rb ∼ 1 and thermal diffusion becomes important on mesoscales that are influenced by
buoyancy forces (Lignières 2019). This appears as a shift of the dominant balance only
in the buoyancy equation (2.3c) between advection and the vertical gradient of thermal
diffusion:

u′ · ∇θ ′

κ∇2
z θ ′ ∼ uzlz

κ
≡ Pet. (2.6)

Here Pet is the turbulent Péclet number, which can be interpreted heuristically in a similar
way to Rb as the ratio of the eddy turnover rate to the thermal diffusion rate at the outer
vertical scales, i.e. Pet = (uz/lz)/(κ/l2z ). If we use the scalings lz/L ∼ uz/U ∼ Fr from the
Pr = O(1) regime to estimate Pet in the geophysical regime, we see that Pet ∼ Pr Rb and
so the transition from Pet > 1 to Pet < 1 occurs around Pr Rb ∼ 1, exactly like the lκ ∼ lO
transition discussed above. Thus, thermal diffusion will cause a transition in turbulent
regimes if Pr Rb < 1. The scalings for uz and lz from the Pr Rb > 1 regime will then
change (the scaling for Pet will correspondingly change as well).

The emergent turbulent Péclet number is a more important parameter than the standard
Péclet number Pe = Pr Re (Zahn 1992; Lignières 2019; Cope, Garaud & Caulfield 2020),
which measures the ratio of advection to the horizontal gradient of thermal diffusion:
(u′ · ∇θ ′)/(κ∇2

hθ ′) ∼ UL/κ . This is because Pet � Pe – thermal diffusion will always
be more important in the vertical than the horizontal direction. In astrophysical systems,
the extremely large Reynolds numbers often keep Pe � 1 despite small Prandtl numbers.
As a canonical example, turbulence from horizontal shear instabilities in the solar
tachocline approximately sustain Re = O(1014) and Pe = O(108) using Pr = O(10−6)
(Garaud 2020). Thus horizontal thermal diffusion is likely to be less important on outer
scales in other stars as well. On the other hand, we find Pr Rb = O(101) (and hence
Pet = O(101)) by using Fr ∼ 3 × 10−4 and Rb ∼ O(107). The near unity value of Pet
shows that vertical thermal diffusion can easily become relevant in the astrophysical case
(Garaud 2021), in particular, in stars with much lower Pr (down to Pr = O(10−9) in
some stars), stronger background stratification (higher N) or weaker driving (lower U or
larger L). Interestingly, these values of Re, Fr and Rb are similar to those found in Earth’s
atmosphere (Lilly 1983; Waite, von Larcher & Williams 2014).

An important asymptotic model known as the low Péclet-number approximation is often
used to study the Pet < 1 regime (Lignières 1999). It can be derived from the shift in
dominant balance in the buoyancy equation. If Pet � 1, then the −N2u′

z term balances
κ∇2θ ′ instead of u′ · ∇θ ′. In other words, to lowest order, buoyancy fluctuations are
generated by vertical advection of the mean background profile while advection of the
buoyancy fluctuations is unimportant because of rapid thermal diffusion. As a result, the
buoyancy fluctuations can be solved for directly, θ ′ = (N2/κ)∇−2u′

z. This is substituted
back into (2.1a) to get a closed momentum equation:

∂tu′ + u′ · ∇u′ = − 1
ρm

∇p′ + N2

κ
∇−2u′

zẑ + ν∇2u′, ∇ · u′ = 0. (2.7)
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There are now only two dimensional parameters, N2/κ and ν, which, alongside the
imposed U and L, imply that the scaling in this limit can only be a function of the
dimensionless parameters Pe Fr−2 = Pr Rb/Fr4 and Re (Lignières 2019; Cope et al. 2020).

The discussion so far has argued that the geophysical regime with Fr � 1, Rb � 1 and
Pr Rb > 1 can transition either to a flow dominated by viscous effects when Rb < 1 or
to stratified turbulence modified by thermal diffusion when Pr Rb < 1. These transitions
correspond to the effective Reynolds numbers of the vertical part of the momentum and
thermal diffusion terms becoming smaller than unity, respectively. Our aim now is to
derive a formal scaling for the astrophysically motivated Pr Rb < 1 regime with the help
of the critical balance hypothesis, but first we review critical balance arguments for the
geophysical Pr Rb > 1 regime.

3. Critical balance and scaling for Pr Rb > 1

We derive here the standard scaling relations for the limit of Fr � 1, Rb � 1 and
Pr Rb > 1 using critical balance arguments. Consider a stably stratified fluid where energy
is injected with power P at a low wavenumber kf = 2π/L and sustains turbulence with
a kinetic energy dissipation rate ε ∼ P ∼ U3/L, where U and L are the outer horizontal
velocity and length scales. Viewing anisotropic structures in the turbulence as a function of
horizontal scale k−1

⊥ , the goal is to find the characteristic vertical scale k−1
‖ associated with

each k⊥. Here k‖ and k⊥ are wavenumbers parallel and perpendicular to the direction of
gravity, respectively. Such a structure will have an associated linear time scale ω−1 related
to the wave dispersion and a nonlinear time scale τNL related to the self-straining time
scale. We discuss estimation of both time scales for the Pr Rb > 1 case before applying
critical balance arguments that connect k⊥ and k‖.

The Boussinesq system supports linear motions with a dispersion relation given by
ω(k‖, k⊥). In the limit of arbitrarily small viscosity and thermal diffusivity, wave damping
is negligible (νk2, κk2 � ω) and the linear motions are propagating waves closely
approximated by adiabatic, inviscid IGWs with dispersion ω ≈ ωN = Nk⊥/k. Because
large-scale vertical motion is strongly restricted, the vertical scales are much finer than
the horizontal scales, with an anisotropy at large scales quantified by k⊥/k‖ � 1. The
linear wave frequency is then approximately

ωN ≈ Nk⊥
k‖

. (3.1)

On the other hand, nonlinear interactions break up eddies and transfer energy from
larger to smaller scales, setting up a cascade from the forcing to the diffusive scales
where the energy is dissipated. Nonlinear interactions occur via the advection term u · ∇u.
Incompressibility, ∇ · u = 0, requires ∇‖u‖ ∼ ∇⊥u⊥ and allows the estimate u · ∇u �
u⊥ · ∇u⊥ � u‖ · ∇u⊥, where u‖ and u⊥ are the scale-dependent vertical and horizontal
velocities, respectively. The nonlinear interaction time scale using the perpendicular
nonlinearity is given by

τ−1
NL ∼ k⊥u⊥(k⊥). (3.2)

The scaling of τNL with k⊥ can be found if a separate relation can connect u⊥ and
τNL. This comes from assuming that a local (in scale) cascade brings energy down from
larger to smaller scales with a ‘cascade time’ τcas(k⊥) that determines the energy spectrum
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E(k⊥):

k⊥E(k⊥) ∼ u2
⊥(k⊥) ∼ ετcas(k⊥). (3.3)

A relation between τcas and τNL would provide the desired τNL(k⊥). Note that the effects of
non-local energy transfer mechanisms as well as energy irreversibly lost to the buoyancy
flux are not included in this cascade, but would be needed for a more detailed theory.
We expect that the presented arguments should be reasonable as long as the local kinetic
energy cascade comprises an O(1) fraction of the total energy cascade.

In homogeneous isotropic turbulence, the only dimensional option is to set τcas ∼
τNL, which results in the standard Kolmogorov scalings u⊥(k⊥) ∼ (ε/k⊥)1/3, τNL ∼
(L/U)(k⊥L)−2/3 and E(k⊥) ∼ ε2/3k−5/3

⊥ . In anisotropic turbulence, the two additional
dimensionless parameters k‖/k⊥ and ωτNL no longer constrain the system, and the energy
spectrum and cascade time can be an arbitrary functions of these dimensionless groups.
A further physically motivated constraint is needed.

Nazarenko & Schekochihin (2011) propose critical balance as a universal scaling
conjecture for strong turbulence in anisotropic wave systems. Critical balance states that
the linear propagation ω−1 and the nonlinear interaction time scales τNL are approximately
equal, ωτNL ∼ 1, on a scale-by-scale basis at all scales where the source of anisotropy
is important. Physically, in essence, this is a causality argument in a system where the
perpendicular nonlinearity dominates (e.g. rotating turbulence, MHD with a mean field):
a fluctuation with some k⊥ cannot maintain an extent longer than k−1

‖ set by requiring the
linear propagation time in the parallel direction to be comparable to the nonlinear breakup
time in the horizontal direction. However, the causality argument is more complicated
in stably stratified turbulence (Nazarenko & Schekochihin 2011) because the nonlinearity
has equal strength in the parallel and perpendicular directions, τNL ∼ k⊥u⊥ ∼ k‖u‖, so
one could equally argue a balance between linear propagation time in the perpendicular
direction and nonlinear breakup time in the vertical direction. In either case, since the
group velocity sets the propagation speed of information, the linear time scale across
either the parallel or perpendicular extent of a fluctuation is (k⊥vg,⊥)−1 ∼ (k‖vg,‖)−1 ∼
ω−1

N . Several physical mechanisms are known to be consistent with critical balance,
including zigzag (Billant & Chomaz 2000a,b) and shear instabilities (see § 4.1); however,
a complete physical picture is still an area of investigation (see further discussions in
Lindborg (2006)). Going forward, we assume the critical balance hypothesis and that
IGWs effectively set the linear propagation time scale in the Pr Rb > 1 limit.

Critical balance removes the ambiguity in determining the cascade time scale (i.e. τcas ∼
τNL), which results in a Kolmogorov spectrum for the horizontal spectrum at all scales. The
vertical spectrum can then be easily determined from E(k‖)k‖ ∼ E(k⊥)k⊥ once k⊥ and
k‖ are related. Applying critical balance ωNτNL ∼ 1 and rearranging gives the following
relation between k⊥ and k‖:

k⊥ ∼
( ε

N3

)
k3
‖ = l2Ok3

‖, (3.4)

where lO = (ε/N3)1/2 = k−1
O is the Ozmidov scale. The anisotropy k⊥/k‖ ∼ (lOk‖)2

decreases at smaller scales until the Ozmidov scale k−1 ∼ lO, where the turbulence returns
to isotropy, k⊥ ∼ k‖ and τ−1

NL ∼ N. The Ozmidov scale is thus the largest horizontal
scale that can overturn before restoration by buoyancy forces becomes significant. The
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Strongly stratified turbulence at low Prandtl number

kf

ε

ε

kO

Pr Rb > 1

Rb3/4

k⊥ ∼ (lO k‖)
2

k‖

E(
k ⊥

)

kν

k⊥

k⊥ ∼ 1
k‖

1

Fr3/2

Figure 1. Energy cascade in strongly stratified turbulence for Pr Rb � 1 relevant to the Pr = O(1) regime
of Earth’s atmosphere and ocean. Here E(k⊥) is the horizontal energy spectrum of the velocity field. Energy
is injected at low wavenumber kf (large scales) with power P ∼ ε and undergoes a forward cascade down
to dissipation scales. An anisotropic cascade results across horizontal wavenumbers in the range kf � k⊥ �
kO, with associated vertical wavenumbers in the range 2π/lz � k‖ � kO. An isotropic cascade follows for
wavenumbers larger than kO up to the dissipation wavenumber kν . The strength of the anisotropy is quantified
by k⊥/k‖.

horizontal and vertical spectra for k < kO are then

E(k⊥)

U2L
∼ (k⊥L)−5/3,

E(k‖)
U2L

∼ Fr(k‖lz)−3. (3.5a,b)

These energy spectra agree with the theoretical scaling predictions in the geophysical
literature (Dewan 1997; Billant & Chomaz 2001; Lindborg 2006), where the parallel
energy spectrum is often written in a dimensional form as E(k‖) ∼ N2k−3

‖ .
The turbulence no longer feels the large-scale stratification gradients below the Ozmidov

scale since ωNτNL � 1 for k � kO. Consequently, an isotropic Kolmogorov cascade
results at small scales because τNL becomes the only dimensionally available time
scale (i.e. the slow buoyancy restoration time scale is irrelevant). The isotropic cascade
extends from kO to the viscous wavenumber kν , where τ−1

NL ∼ νk2 → lν ∼ (ν/ε1/3)3/4.
As a result, the vertical spectrum has a break at k ∼ kO from k−3

‖ to k−5/3
‖ , while the

horizontal spectrum remains k−5/3
⊥ throughout. The temperature thus plays an important

role providing buoyancy for scales k < kO but is simply advected as a passive scalar for
scales k > kO until it is dissipated at thermal diffusion scales.

For clarity, it is useful to summarize the energy cascade in terms of the dimensionless
parameters Fr and Re. Energy injected at large horizontal scales L undergoes an
anisotropic cascade until the Ozmidov scale, lO = Fr3/2L. Following the anisotropic
cascade is an isotropic cascade down to the viscous scale, which can be written as
lν = Re−3/4L. The size of the isotropic cascade is lO/lν = Rb3/4. Here Rb essentially plays
the role of the effective Reynolds number for the isotropic cascade with outer length scale
lO and velocity scale u‖(kO) = (εlO)1/3 = Fr1/2U (i.e. Rb = u‖(kO)lO/ν). A schematic of
the energy cascade in terms of dimensionless parameters is shown in figure 1.
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Critical balance has provided a prediction for the anisotropy in the energy cascade
for Rb � 1 and can therefore also predict the scaling of the outer vertical length
and velocity scales of the system by considering the largest scales of the cascade.
Substituting k⊥ ∼ 1/L and k‖ ∼ 1/lz into (3.4) predicts that lz ∼ Fr L for the outer vertical
length scales. Enforcing incompressibility, u‖ ∼ (k⊥/k‖)u⊥, subsequently predicts that
uz = u‖(2π/L) ∼ Fr U for the outer vertical velocity scale. These are exactly the scaling
relations discussed in § 2.2 – critical balance successfully reproduces the known scaling
relations in the Pr Rb > 1 regime.

4. Critical balance and scaling for Pr Rb < 1

We turn to deriving scaling relations in the Pr Rb < 1 regime by extending the critical
balance arguments presented in the previous section. The idea is to replace the adiabatic,
inviscid IGW frequency ωN with the corresponding frequency in the low (turbulent)
Péclet-number limit ωlPe for the estimate of the linear time scale. A linear analysis of
the Boussinesq equations with ν = 0 and κ /= 0 modelling the Pr � 1 limit gives the
dispersion relation

ω2 − iωγκ − ω2
N = 0, γκ = κk2, ω2

N = N2 k2
⊥

k2 . (4.1a–c)

In the limit Pr Rb � 1 (i.e. lκ � lO), thermal diffusion is faster than the restoring
buoyancy time scale, so γκ � ωN and the two roots of (4.1a–c) become ω ∼ iω2

N/γκ

and ω ∼ iγκ . The latter is an uninteresting rapid thermal diffusion rate, while the former
is an effective damping rate, ωlPe = iω2

N/γκ = iN2k2
⊥/κk4 (Lignières 1999, 2019). Thus,

the linear response frequency is no longer a real frequency of a restoring oscillation, but
instead a damping rate γlPe (i.e. ωlPe = iγlPe) corresponding to the effective rate at which
restoring buoyancy and strong thermal diffusion operate. A direct linear analysis of the low
turbulent Péclet-number equations (2.7) also gives the eponymous damping rate ω = iγlPe
– the two approaches nicely agree. Using the expectation of strong anisotropy at large
scales k⊥/k‖ � 1, the linear damping time scale can be estimated as

γlPe ∼ N2k2
⊥

κk4
‖

. (4.2)

Before the critical balance hypothesis can be applied, a new justification is needed
because the causality argument in the Pr Rb > 1 regime no longer applies: waves are
overdamped rather than propagate. The instantaneous propagation of information is a
peculiarity of the low Péclet-number equations (2.7), since the temperature and vertical
velocity fields are coupled by an elliptic equation to lowest order. Critical balance instead
becomes an argument for selective decay. The dependence between the damping rate of a
fluctuation and its vertical extent, γlPe ∼ l4‖ according to (4.2), means that longer vertical
structures overdamp faster. As a result, any fluctuation at some k⊥ with parallel extent
longer than the l‖ ∼ k−1

‖ set by γlPeτNL ∼ 1 will rapidly decay away before nonlinear
effects can become significant. Critical balance in the thermally diffusive regime thus
determines the longest parallel structure for a given k⊥ that can sustain before nonlinear
breakup. A sketch of the physical argument is shown in figure 2, alongside a comparison
with the causality argument in the Pr Rb > 1 regime.
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Geophysical regime(a) (b) Thermally diffusive regime

Nonlinear breakup Nonlinear breakup

t � τNL

l‖ > l‖,CBl‖ > l‖,CB

l‖ < l‖,CBl‖ < l‖,CB l‖,CBl‖,CB

t � τNL t � τNLt � τNL

l⊥l⊥

Rapid overdampingCausally

disconnected

Overdamping
IGW

propagation
vg

Figure 2. A sketch of the physical arguments used for critical balance for eddies with perpendicular extent
l⊥ ∼ k−1

⊥ . The notation l‖,CB refers to the l‖ ∼ k−1
‖ that satisfies critical balance in each regime. Panel (a)

shows the causality argument for the geophysical regime (Pr Rb > 1). Since the group velocity, vg, of the
associated IGW sets the speed at which information can propagate, any eddy with l‖ > l‖,CB would be causally
disconnected before it nonlinearly breaks up within time t ∼ τNL. Panel (b) shows the selective decay argument
for the thermally diffusive regime (Pr Rb < 1). Since the damping rate increases with γlPe ∼ l4‖, any eddy with
l‖ > l‖,CB would rapidly decay away before it could evolve.

With the modified physical interpretation, application of critical balance γlPeτNL ∼ 1
and rearrangement gives the new relationship between k⊥ and k‖ as

k⊥
k‖

∼
(

κε1/3

N2

)3/4

k2
‖ = l2OMk2

‖, (4.3)

where the modified Ozmidov scale is defined as lOM = (κε1/3/N2)3/8. One can check
that the critical balance prediction self-consistently maintains ωN/γκ � 1 all the way to
the largest scales since ωN/γκ ∼ Nk⊥/κk3

‖ ∼ (Pr Rb)1/4 � 1. The turbulence now returns
to isotropy at the modified Ozmidov scale where the overdamping rate for a fluctuation
with k⊥ ∼ k‖ is comparable to its eddy turnover time, N2l2OM/κ ∼ τ−1

NL . In analogy to the
Ozmidov scale, the modified Ozmidov scale is the largest horizontal scale that can overturn
before overdamping becomes significant. Note that the modified Ozmidov is larger than
the Ozmidov scale, as would be expected:

lOM = Fr3/2

(Pr Rb)3/8 L,
lOM

lO
= (Pr Rb)−3/8 > 1. (4.4a,b)

The outer vertical scale (k‖ ∼ l−1
z ) at the largest horizontal scale where k⊥ ∼ L−1 can

again be found. Subsequent enforcement of incompressibility (∇ · u′ = 0) then gives uz ∼
lzU/L. The result is shown below:

lz ∼ Fr
(Pr Rb)1/4 L, uz ∼ Fr

(Pr Rb)1/4 U. (4.5a,b)

These scalings self-consistently predict a small turbulent Péclet number Pet ∼
(Pr Rb)1/2 � 1. At this point it becomes suggestive to define a modified Froude number
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kf

ε

ε

kOkOM

Pr Rb < 1

E(
k ⊥

)

kν

k⊥

k⊥ ∼ (lOM k‖)
2

k‖

k⊥ ∼ 1k‖

(Pr Rb)3/8

Fr3/2

Rb3/4

(Pr Rb)3/8

Figure 3. Energy cascade for strongly stratified turbulence for Pr Rb � 1 relevant to the Pr � 1 regime of
stellar radiative zones. Similar to figure 1, an anisotropic cascade results in the range kf � k⊥ � kOM followed
by an isotropic cascade from kOM to kν . Note that the beginning of the isotropic subrange has moved to larger
scales kOM < kO.

as FrM ≡ Fr/(Pr Rb)1/4 so that

lz = FrML, lOM = Fr3/2
M L. (4.6a,b)

These are the same exponents as in the geophysical regime. Using the new definition, the
corresponding horizontal and vertical spectra for k < kOM are

E(k⊥)

U2L
∼ (k⊥L)−5/3,

E(k‖)
U2L

∼ FrM(k‖lz)−3. (4.7a,b)

The dimensional form of the parallel energy spectrum, E(k‖) ∼ N(ε/κ)1/2k−3
‖ , now

depends on the dissipation and thermal diffusivity, unlike in the geophysical regime,
where E(k‖) ∼ N2k−3

‖ . A schematic of the energy cascade is shown in figure 3, and a
comparison of the cascade path in the k⊥–k‖ plane with the Pr Rb > 1 regime is shown
in figure 4.

It is now clear that the transition from the Pr Rb > 1 to the Pr Rb < 1 regime simply
corresponds to a replacement Fr → FrM . How can this modified Froude number be
physically understood? If the Froude number is reinterpreted to define the ratio of the
emergent vertical length scale to the imposed horizontal scale (i.e. lz/L ≡ Fr), then critical
balance at the largest scales simply sets the Froude number. By substituting k⊥ ∼ L−1

and k‖ ∼ l−1
z into the linear wave frequencies ωN ∼ Nlz/L and γlPe ∼ N2l4z /κL2 and then

comparing both with the corresponding nonlinear frequency scale τ−1
NL ∼ U/L, the two

Froude numbers emerge:

Pr Rb > 1:
lz
L

∼ U
LN

≡ Fr, (4.8a)

Pr Rb < 1:
lz
L

∼
(

κU
N2L3

)1/4

≡ FrM. (4.8b)
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Strongly stratified turbulence at low Prandtl number

kO

kO

kOM

kOML–1

Viscous scales

Isotropic scales
Isotropic scales

Critical balance PrRb  > 1

Critical balance PrRb < 1

(FrL)–1

(FrML)–1

k‖

k‖ ∼ k⊥
1/3

kν

kν

k⊥
Figure 4. Comparison of the cascade path in the k⊥–k‖ plane between the geophysical (teal) and thermally
diffusive (orange) regimes. Energy is injected at low perpendicular wavenumber k⊥ ∼ L−1, follows the critical
balance path until the respective Ozmidov scale (kO or kOM), enters the isotropic cascade and then is dissipated
at the viscous scales.

As should be expected, the outer vertical scales smoothly transition from lz/L = Fr
to lz/L = Fr/(Pr Rb)1/4 at Pr Rb = 1 when Pr is decreased. This is analogous to the
smooth transition from lz/L = Fr to lz/L = Fr/Rb1/2 at Rb = 1 when Re is decreased,
as discussed in § 2.3. Additionally, we note that FrM can be rewritten in terms of Pe Fr−2

and Re (i.e. FrM = (Pe Fr−2)−1/4), as was required by the low turbulent Péclet-number
approximation.

With the acquired scaling relations from critical balance above, we suggest the following
dimensionalization for rescaling the Boussinesq equations in the Pr Rb � 1 limit:

u′
h = Uuh, u′

z = FrMUuz, θ ′ = 1
FrM

U2

L
θ, p′ = ρmU2p, (4.9a)

x′ = Lx, y′ = Ly, z′ = FrMLz, t′ = L
U

t. (4.9b)

Aside from z′ and u′
z, the only other variable whose scaling changed is θ ′, which is now

determined by the new dominant balance between N2u′
z ∼ κ∇2

z θ ′ as discussed in § 2.3.
The Boussinesq equations become

∂tuh + u · ∇uh = −∇hp +
[

1
Re

∇2
h + 1

RbM
∇2

z

]
uh, (4.10a)

Fr2
M[∂tuz + u · ∇uz] = −∇zp + θ + Fr2

M

[
1

Re
∇2

h + 1
RbM

∇2
z

]
uz, (4.10b)
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(Pr Rb)1/2[∂tθ + u · ∇θ ] = −uz +
[
(Pr Rb)1/2

Pr Re
∇2

h + ∇2
z

]
θ, (4.10c)

∇ · u = 0, (4.10d)

We see that RbM ≡ Re Fr2
M = Rb/(Pr Rb)1/2 acts as the new effective Reynolds number

and nicely matches with the scale separation between the modified Ozmidov and the
viscous scale, lOM/lν = (RbM)3/4. To lowest order,

∂tuh + u · ∇uh = −∇hp, (4.11a)

0 = −∇zp + θ, (4.11b)

0 = −uz + ∇2
z θ, (4.11c)

∇ · u = 0, (4.11d)

Comparing with the Pr Rb > 1 equation set (2.4), the only difference appears in the
dominant balance of the buoyancy equation, where uz ∼ ∇2

z θ instead of uz ∼ u · ∇θ , as
expected. The vertical momentum equation remains a balance of buoyancy fluctuations
with the vertical pressure gradient. Advection of the vertical momentum is now suppressed
by a factor of Fr2

M instead of Fr2. In principle, this term can become of order unity
at sufficiently low Pr if Pr < Fr2/Re; or, equivalently, when thermal diffusion is so
efficient that kOM < kf (or κ > N2L3/U), at which point the turbulence is simply
isotropic.

Looking back at all the arguments so far in both the Pr Rb < 1 and Pr Rb > 1 regimes,
we note the parallelism between the critical balance arguments for ωτNL and the dominant
balance arguments for the Boussinesq equations. The time scale τNL represented the
nonlinear advection terms (i.e. u · ∇uh), while ω captured the combined effects of all
the remaining linear terms. As dominant balance shifted between linear terms in various
equations, ω shifted correspondingly to the dominant root of the full IGW dispersion
relation (and vice versa). For example, ωN → iγν ≡ iνk2

z as Re was decreased in § 2, and
ωN → ωlPe as Pr was decreased in § 4. Critical balance and the corresponding dominant
balance arguments are therefore one and the same.

4.1. Role of vertical shear instabilities
Examining the role of vertical shear instabilities in the turbulence offers an alternative
physical interpretation of the scaling results. Many experimental and numerical studies in
the geophysical regime find evidence suggesting that turbulent structures are organized to
be marginally unstable to local vertical shear instabilities, a behaviour thought to be closely
related to self-organized criticality (Smyth & Moum 2013; Salehipour et al. 2018; Smyth
et al. 2019; Chini et al. 2022; Lefauve & Linden 2022). A heuristic argument for such
behaviour is that the vertical shear of a turbulent eddy will generally be driven towards
the marginal value of the shear for instability. An eddy with a strong vertical shear will
go unstable within a dynamical time and reduce its shear to the marginal value, while one
with a weak shear can become amplified to the marginal value before going unstable. As
a result, vertical gradients of the horizontal velocity of eddies may be maintained at the
marginal condition for vertical shear instability. As a concrete example, vertically adjacent
quasi-horizontal eddy motions (e.g. ‘pancake’ eddies or modes) have been suggested and
observed to exhibit such behaviour in early studies, such as Lin & Pao (1979), Lilly (1983),
Spedding, Browand & Fincham (1996) and Riley & de BruynKops (2003) (and references
therein). We now examine how the critical balance scalings in both the geophysical and
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thermally diffusive regimes marginally satisfy the corresponding vertical shear instability
criteria.

In the Pr Rb > 1 (i.e. Pet ∼ Pr Rb > 1) regime, the nonlinear criterion to sustain
turbulence in a vertical shear instability requires J = N2/S2 � 1 (Richardson 1920;
Howard & Maslowe 1973) (i.e. Richardson’s criterion), which is essentially based on an
energy argument requiring more kinetic energy release than potential energy cost upon
instability of the flow. To satisfy marginal stability, eddies with horizontal velocity scale
u⊥(k⊥) would need to maintain a vertical separation l‖ such that J(k⊥) = N2/S2 ∼ 1
holds with S ∼ u⊥/l‖. Indeed, substituting the critical balance results (i.e. k⊥E(k⊥) ∼
u2
⊥(k⊥) alongside (3.4)) into J(k⊥) ∼ N2l2‖/u2

⊥(k⊥) shows that J(k⊥) ∼ 1 is satisfied on a
scale-by-scale basis from kf ≤ k⊥ ≤ kO. Interpretation of strongly stratified turbulence in
terms of marginal instability of local vertical shear instabilities is therefore consistent with
critical balance scalings in the geophysical regime.

In the Pr Rb < 1 (i.e. Pet ∼ (Pr Rb)1/2 < 1) regime, the nonlinear instability criterion
is relaxed due to the weakening of the potential energy cost by the significant thermal
diffusion rate at large vertical scales (uz/lz < κ/l2z since Pet < 1). The criterion proposed
on phenomenological grounds by Zahn (1992) requires JPet � 1 for instability, which
smoothly connects across the Pet = 1 transition and has been approximately verified (in
accessible parameter regimes) in recent numerical studies (Prat & Lignières 2013, 2014;
Garaud, Gallet & Bischoff 2015; Prat et al. 2016; Garaud, Gagnier & Verhoeven 2017).
To satisfy marginal stability, eddies with horizontal velocity scale u⊥(k⊥) would need to
maintain a vertical separation l‖ such that J(k⊥)Pet(k⊥) = N2u‖l‖/S2κ ∼ 1. Similar to
before, substituting the critical balance results (i.e. k⊥E(k⊥) ∼ u2

⊥(k⊥) alongside (4.3))
into J(k⊥)Pet(k⊥) shows that J(k⊥)Pet(k⊥) ∼ 1 is satisfied on a scale-by-scale basis from
kf ≤ k⊥ ≤ kOM . Thus the consistent interpretation between the marginal instability of
local vertical shear instabilities and critical balance scalings is maintained across the
Pet = 1 transition into the thermally diffusive regime.

We note that some studies add the additional requirement Ret = uzlz/ν > Recrit ∼
103 to ensure that viscous effects play no role in suppressing the nonlinear criterion
for instability. Combining this assumption with JPet � 1 gives a weaker condition for
instability, JPr � (JPr)crit (necessary, but not sufficient, since this is equivalent to JPet �
Ret/Recrit). Reporting simulations in terms of JPr can be useful since it may be a proxy of
Ret ∼ (JPr)−1 (Prat et al. 2016). However, requiring Ret � 1 as an additional assumption
is unnecessary for strongly stratified turbulence because Ret ∼ RbM � 1 is already built in
to the asymptotics. This is physically reasonable because the dynamics of scales larger than
the modified Ozmidov scale cannot be affected by viscous effects (i.e. since lν � lOM).

4.2. Comparison with previous work
This work follows in the light of a series of simulations and an evolving discussion in Cope
et al. (2020) and Garaud (2020) attempting to understand the complicated parameter space
of Pr < 1 stratified turbulence driven by horizontal shear instabilities. Cope et al. (2020)
examine the low Péclet-number limit where Pe < 1 and Pet � 1, which falls squarely
into our Pr Rb < 1 regime and allows for comparison. Predictions of the vertical outer
scales from critical balance (uz ∼ FrMU and lz ∼ FrML) are in conflict with the theoretical
predictions of Cope et al. (2020) shown below:

uz ∼ Fr2/3
M U, lz ∼ Fr4/3

M L, (4.12a,b)

where their notation has been translated using FrM = (BPe)−1/4.
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A major source of the discrepancy arises due to different assumptions in Cope et al.
(2020) for the dominant balance of the vertical momentum equation. Examining the
proposed balances directly on the low turbulent Péclet-number equations gives a clear
way to compare. The horizontal component of the momentum equation (2.7) requires
the pressure to be of order unity, p ∼ U2/L. For the vertical component, our arguments
in this work essentially balance ∇zp′ ∼ (N2/κ)∇−2u′

z, which directly implies lz ∼ FrML
by using ∇−2 ∼ l2z and enforcing incompressibility, uz/lz ∼ U/L, at the outer scales.
The vertical advection terms are then smaller by O(Fr2

M) (see (4.10b)) and result in
a consistent balance similar to the Pr Rb > 1 regime (see (2.3b)). Cope et al. (2020)
alternatively assume a balance of vertical advection and the thermally modified buoyancy
term: u′ · ∇u′

z ∼ (N2/κ)∇−2u′
z. This assumption leads to an inconsistency because it

results in a vertical pressure gradient that is too large (∇zp′ � u′ · ∇u′
z), as discussed

in § 5.2.2 of Cope et al. (2020). It is unclear how (4.12a,b) would smoothly transition
from the Pr Rb > 1 regime, perhaps requiring an additional intermediate turbulence
regime. We also note that (4.12a,b) do not satisfy the incompressibility constraint,
which stems from their assumption that the horizontal and vertical length scales of
the spatial derivatives are similar. This assumption may be justified in their case,
where turbulence is driven in a wide band of horizontal modes by the horizontal shear
instability, while our arguments suppose an idealized forcing at a single horizontal
scale.

The large set of Pe < 1 simulations in Cope et al. (2020) (e.g. their figure 8) should
allow differentiation between the two theoretical predictions in principle; however, the
comparison is difficult because of the small differences between the fractional exponents.
A detailed follow-up analysis of the simulations in light of the new critical balance
predictions hopefully should resolve the question of the correct scaling relations, and
will be explored in forthcoming work. It is promising that Garaud (2020) finds a sharp
transition at Pet ∼ 1 (as shown in her figure 3), which we interpret as the Pr Rb ∼ 1
transition.

We note that Garaud (2020) predicts an additional turbulent regime for Pr < 1, Pe � 1
and Pet > 1. According to the critical balance framework, this falls into the Pr Rb > 1
regime, and scaling from the geophysical literature (lz ∼ FrL) should simply apply. Garaud
(2020) instead theoretically proposes, and finds numerical evidence for, scaling relations
given by uz/U ∼ lz/L ∼ Fr2/3. Similar to our Pr Rb > 1 regime, Garaud (2020) argues
that ∇zp′ ∼ θ ′ and u′ · ∇θ ′ ∼ −N2u′

z, but, instead of assuming incompressibility to get
lz/L ∼ Fr, Garaud argues for a constant scaling of the time-dependent mixing efficiency
to arrive at lz/L ∼ Fr2/3, with motivation and support from her numerical results (see her
figure 4). As discussed in § 4.4.4 of Garaud (2020), several factors may be at play. First,
lz may be sensitive to the method used to extract the vertical scale from simulations. For
example, Lindborg (2006) use a weighted average of kz with the energy spectrum to find a
lz/L ∼ Fr scaling in Pr = 1 simulations, while Garaud (2020) uses the vertical correlation
length in her Pr = O(10−1) simulations. The different methods correspond to different
weighting functions when integrating with the energy spectrum. It would be useful to
compare both diagnostics at the same Pr to resolve this possible issue. Another issue is that
reaching asymptotic values of Rb � 1 while keeping Fr � 1 is computationally expensive
due to a requirement for two large-scale separations between L and lOM as well as lOM

and lν . Measuring scaling exponents in simulations with Fr = O(10−1) and Rb = O(101)
may lead to transitional scaling relations (Bartello & Tobias 2013). Indeed, the arguments
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presented in this paper and the theoretical literature, strictly speaking, only rigorously hold
for the asymptotic limits of Pr Rb � 1 or Pr Rb � 1.

5. Astrophysical applications

5.1. Diffusion coefficients
Mixing of chemical elements in stellar interiors by stratified turbulence can have
important consequences for stellar evolution, and quantifying its efficiency is essential for
comparison with stellar observations (see Maeder & Meynet 2000; Salaris & Cassisi 2017;
and references therein). One-dimensional stellar evolution models require an effective
vertical diffusion coefficient, Dv , that is typically estimated by the product of some
characteristic vertical velocity and length scales of the turbulence, i.e. Dv ∼ uzlz. Which
scales to choose remains an important problem and may depend on the instability that
drives the turbulence. Typical choices include using the outer vertical scales or the largest
isotropic scales. The scale-dependent anisotropy obtained from critical balance allows an
estimate of the contribution to Dv from eddies of different scales in stratified turbulence
with horizontal length scale L and vertical scale U set by some instability (e.g. shear
instabilities of differential rotation). We define the scale-dependent diffusion coefficient
D̃v(k‖) = u‖(k‖)k−1

‖ from eddies of vertical length scale k−1
‖ and corresponding vertical

velocity scale u‖(k‖). Using the incompressibility relation and the anisotropy relations for
k⊥/k‖ gives

k‖ ≤ kO(M):
D̃v(k‖)

UL
= Fr2

(M), (5.1a)

k ≥ kO(M):
D̃v(k)

UL
=

Fr2
(M)

(klO(M))4/3 (k‖ ∼ k), (5.1b)

where kO(M) is defined to be kO for Pr Rb > 1 or kOM for Pr Rb < 1 (and similarly
for lO(M) and Fr(M)). The turbulent diffusion coefficient in principle has contributions
from turbulence at all scales, but is often argued to be dominated by either the outer
scales, Dv ∼ D̃v(l−1

z ), or the Ozmidov scales, Dv ∼ D̃v(l−1
O(M)). The constant value of

D̃v in the large-scale anisotropic subrange for k‖ < kO(M) means that one can equally
use either choice, i.e. Dv ∼ u‖(l−1

z )lz ∼ u‖(l−1
O(M))lO(M). Thus scaling relations based on

critical balance predict that Dv ∼ Fr2UL in the Pr Rb > 1 regime and Dv ∼ Fr2
MUL in

the Pr Rb < 1 regime. The estimated turbulent diffusion coefficient in the Pr Rb < 1 limit
is larger than in the Pr Rb > 1 limit by a factor of

D[Pr Rb < 1]
v

D[Pr Rb > 1]
v

∼
(

FrM

Fr

)2

= 1
(Pr Rb)1/2 , (5.2)

which is significant only if Pr Rb � 1.
The foundational work of Zahn (1992) (see also Lignières 2019) uses the modified

Ozmidov scales, Dv ∼ u‖(l−1
OM)lOM ∼ (εκ/N2)1/2, in agreement with the prediction

above. Our estimates for Dv , therefore, do not affect the results of previous astrophysical
studies based on the estimate for Dv by Zahn (1992). Lastly, we note that the diffusion
coefficient in the Pr Rb < 1 limit agrees with the prediction from Cope et al. (2020) (using
the outer vertical scales for estimation of Dv ∼ u‖(l−1

z )lz), although the agreement may be
coincidental given their different predictions for uz and lz as discussed in § 4.2.
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5.2. Small-scale dynamo instability criterion
Turbulence in the fully ionized and highly conductive plasma of a stellar radiative
zone may be able to generate and sustain magnetic fields on scales smaller than the
forcing scale through the small-scale dynamo (SSD). Anisotropy in the velocity field
caused by stable stratification makes dynamo action less efficient compared to isotropic
turbulence at the same magnetic Reynolds number, Rm = UL/η, where η is the resistivity.
Indeed, the limit of infinitely strong stratification leads to a planar velocity field (i.e.
u = (ux(x, y, z, t), uy(x, y, z, t), 0)), which is a known anti-dynamo flow (Zeldovich &
Ruzmaikin 1980). Using a large set of direct numerical simulations, Skoutnev, Squire
& Bhattacharjee (2021) found that the SSD is unstable in the Pr = O(1) regime if the
scale separation of the Ozmidov scale and the magnetic resistive scale is sufficiently
large. Quantitatively, this translates to requiring the magnetic buoyancy Reynolds number
Rbm = Pm Rb to be larger than a critical value (i.e. Rbm > Rbc

m), where Pm = ν/η is the
magnetic Prandtl number. The direct analogy to isotropic turbulence is the requirement
that Rm be larger than a critical value Rm > Rmc.

We propose that, in the Pr Rb < 1 regime, the SSD criterion switches to requiring a
sufficient scale separation between the modified Ozmidov scale and the resistive scale.
The criterion in the two regimes is then given by

Pr Rb > 1: Rbm = Pm Rb > Rbc
m (5.3a)

Pr Rb < 1: Rbm,M = Pm RbM = Pm Rb
(Pr Rb)1/2 > Rbc

m,M. (5.3b)

This extension naturally carries through the conjecture in Skoutnev et al. (2021) that the
SSD only operates within the isotropic portion of the turbulent cascade. The new criterion
predicts that the SSD will become more unstable as Pr is decreased at fixed Rb into the
Pr Rb < 1 regime since RbM > Rb. Qualitatively, dynamo action becomes more efficient
as the anisotropy caused by stratification is decreased by increased thermal diffusion.

We expect that both Rbc
m = Rbc

m(Pm) and Rbc
m,M = Rbc

m,M(Pm) should have a weak Pm
dependence that is strongest around Pm = O(1), similar to the dependence of Rmc(Pm) in
the case of isotropic turbulence (Iskakov et al. 2007; Schekochihin et al. 2007). It would
be reasonable that they are of comparable magnitudes, Rbc

m,M ∼ Rbc
m, since both act as

effective outer magnetic Reynolds numbers for their respective isotropic subranges.

6. Conclusion

Critical balance is a theory for strong turbulence in anisotropic wave systems that
argues for a balance of linear wave and nonlinear interaction time scales to predict
the scale-by-scale structure of the turbulent cascade. We have proposed that critical
balance can unify the unity Pr geophysical regime and the extremely low Pr astrophysical
regime of strongly stratified turbulence because both support anisotropic linear wave
motions in different asymptotic limits of the IGW dispersion relation. The dispersion
reduces to adiabatic inviscid IGWs in the Pr = O(1) limit and to IGWs overdamped
on buoyancy-modified time scales in the Pr � 1 limit. We find that a smooth transition
between the two regimes occurs at Pr Rb = O(1) as Pr is decreased, or equivalently when
the turbulent Péclet number Pet = uzlz/κ drops below order unity and shifts dominant
balance in the buoyancy equation. Application of critical balance in the Pr Rb < 1 regime
predicts an anisotropic cascade and scaling relations for the outer vertical scales that
are identical to the geophysical regime if the Froude number, Fr, is simply replaced by
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a modified Froude number, FrM ≡ Fr/(Pr Rb)1/4 (e.g. the outer vertical length scale is
lz ∼ FrML). Indeed, a smooth transition occurs at Pr Rb = 1 between the two regimes.

The scaling relations from critical balance offer a theoretical framework for
understanding the properties of strongly stratified turbulence in stellar radiative zones.
Application to estimating the vertical turbulent diffusion coefficient in the Pr Rb < 1
regime gives the same scaling result as the original estimates of Zahn (1992), thereby
validating their dimensional arguments. However, a complete understanding of strongly
stratified turbulence in stellar radiative zones would need also to take into account the
effects of non-local energy transfer, rotation and magnetic fields (large and small scale).
In analogy with the geophysical regime, energy at large scales in the thermally diffusive
regime is likely also transferred through non-local transfer mechanisms, not only through
a local energy cascade as assumed in our critical balance arguments. Rotation may have a
significant effect when the driving horizontal scales are sufficiently large to be influenced
by Coriolis forces, which is thought to be the case in the upper solar radiative zone (Garaud
2020), for example. Similarly, large-scale magnetic fields will modify the wave dispersion
relation and support magneto-internal waves, whose properties will change the nature of
the turbulence presented here depending on the magnitude and direction of the large-scale
field. Lastly, small-scale magnetic fields can grow in the isotropic portion of the turbulence
through the small-scale dynamo if the stratification is not too strong in the Pr Rb > 1
regime (Skoutnev et al. 2021). We proposed a modified instability criterion for the SSD
in the Pr Rb < 1 limit based on the new scaling laws. The modified instability criterion
predicts a more easily excited dynamo, since thermal diffusion ameliorates the effect of
stratification. Stellar stratified turbulence is, therefore, at the very least, in a saturated state
of the SSD, containing small-scale magnetic fields in near equipartition with the isotropic
scales of the velocity field. The effects of a saturated SSD on mixing and transport are
unknown.
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