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Abstract

In this paper we obtain a duality result for the exponential utility maximization problem
where trading is subject to quadratic transaction costs and the investor is required to
liquidate her position at the maturity date. As an application of the duality, we treat
utility-based hedging in the Bachelier model. For European contingent claims with a
quadratic payoff, we compute the optimal trading strategy explicitly.
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1. Introduction

In financial markets, trading moves prices against the trader: buying faster increases exe-
cution prices, and selling faster decreases them. This aspect of liquidity is known as market
depth [5] or price impact. In this paper we consider the problem of optimal liquidation for the
exponential utility function in the Almgren–Chriss model [1] with linear temporary impact for
the underlying asset.

This problem goes back to Schied et al. [15], who considered a market model given by a
Lévy process. They proved that the optimal trading strategy is deterministic and hence reduced
the primal problem to a deterministic variational problem that can be solved explicitly. A sim-
ilar phenomenon occurs in [2], where Bank and Voß consider an optimal liquidation problem
with transient price impact in the Bachelier model. Namely, the fact that the utility function
is exponential and the risky asset has independent increments allows us to reduce the primal
hedging problem to a deterministic control problem.

For the case where the market model is not given by a process with independent incre-
ments, the exponential utility maximization problem in the Almgren–Chriss model is much
more complicated and typically does not have an explicit solution. Gatheral and Schied [12]
found a closed-form solution for the optimal trade execution strategy in the Almgren–Chriss
framework assuming that the risky asset is given by the Black–Scholes model. However, the
risk criterion they used was given by the expected value of the terminal wealth, and hence it
is analytically simpler than the exponential utility maximization problem. In general, although
the current paper is focused on the Almgren–Chriss model, there are other models for optimal
liquidation problems. For instance, one common approach is via limit order books (see [4],
[11], and the references therein).
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Duality for utility-based hedging in the Almgren–Chriss model 421

Our first result is Theorem 2.1, which provides a dual representation for the optimal portfo-
lio and the corresponding value of the exponential utility maximization problem. Our duality
result is obtained under quite general assumptions on the market model. As usual, for the case
of exponential utility, by applying a change of measure one can reduce the problem of utility-
based hedging of a European contingent claim to the standard utility maximization problem.
This brings us to our second result.

Our second result (Theorem 3.1) deals with explicit computations for the case where the
risky asset is given by a linear Brownian motion, i.e. the Bachelier model. We consider a
European contingent claim with the payoff given by κS2

T , where κ > 0 is a constant and ST

is the stock price at the maturity date. We apply the Girsanov theorem and the Itô isometry
in order to derive a particularly convenient representation of the dual target functional which
leads to deterministic variational problems. These problems can be solved explicitly and allow
us both to construct the solution to the dual problem and to compute the primal optimal strategy.
We show that the optimal strategy is given by a feedback form which we compute explicitly.
For the case κ = 0, i.e. there is no option, Theorem 3.1 recovers the optimal portfolio found in
[15] for the Bachelier model.

The problem of utility-based hedging for the Almgren–Chriss model in the Bachelier setup
was studied recently by Ekren and Nadtochiy [9]: they apply the Hamilton–Jacobi–Bellman
(HJB) methodology and obtain a representation of the value function and the optimal strategy.
Still, they do not require the liquidation of the portfolio at the maturity date. Moreover, they
assume that the payoff function is globally Lipschitz.

A natural question that for now remains open is whether Theorem 2.1 can be applied beyond
the Bachelier model. In particular, it is not clear whether by applying this duality result one can
recover the optimal portfolio from [15] for a general Lévy process (beyond Brownian motion).

The rest of the paper is organized as follows. In Section 2 we introduce the model and
formulate a general duality result (Theorem 2.1). In Section 3 we consider the Bachelier model
and we explicitly solve the problem of utility-based hedging for European contingent claims
with a quadratic payoff (Theorem 3.1). In Section 4 we derive an auxiliary result from the field
of deterministic variational analysis.

2. Preliminaries and the duality result

Let (�,F , (Ft)t∈[0,T], P) be a filtered probability space equipped with the completed and
right-continuous filtration (Ft)t∈[0,T], and without loss of generality we assume that F =FT .
We do not make any assumptions on F0. Consider a simple financial market with a riskless
savings account bearing zero interest (for simplicity) and with an RCLL (right-continuous with
left limits) risky asset S = (St)t∈[0,T] which is adapted to the filtration (Ft)t∈[0,T]. We assume
the following growth condition.

Assumption 2.1. There exists a > 0 such that EP

[
exp

(
a sup0≤t≤T S2

t

)]
< ∞.

Following [1], we model the investor’s market impact in a temporary linear form, and thus,
when at time t the investor turns over her position �t at the rate φt = �̇t, the execution price is
St + (�/2)φt for some constant � > 0. In our setup the investor has to liquidate her position,
namely �T = �0 + ∫ T

0 φt dt = 0.
As a result, the profits and losses from trading are given by

V�0,φ
T := −�0S0 −

∫ T

0
φtSt dt − �

2

∫ T

0
φ2

t dt, (2.1)
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where �0 is the initial number (deterministic) of shares. Observe that all the above integrals
are defined pathwise. In particular, we do not assume that S is a semi-martingale.

Remark 2.1. Let us explain formula (2.1) in more detail. At time 0 the investor has �0 stocks
and the sum −�0S0 on her savings account. At time t ∈ [0, T) the investor buys φt dt, an
infinitesimal number of stocks, or more intuitively sells −φt dt shares, so the (infinitesimal)
change in the savings account is given by −φt(St + (�/2)φt) dt. Since we liquidate the port-
folio at the maturity date, the terminal portfolio value is equal to the terminal amount on the
savings account and given by

−�0S0 −
∫ T

0
φt

(
St + �

2
φt

)
dt.

We arrive at the right-hand side of (2.1). For the case where S is a semi-martingale, by applying
the integration by parts formula we get that the right-hand side of (2.1) is equal to∫ T

0
�t dSt − �

2

∫ T

0
φ2

t dt.

For a given �0, the natural class of admissible strategies is

A�0 :=
{
φ : φ is (Ft)t∈[0,T]-optional with

∫ T

0
φ2

t dt < ∞ and �0 +
∫ T

0
φt dt = 0

}
.

As usual, all the equalities and the inequalities are understood in the almost sure sense.
The investor’s preferences are described by an exponential utility function u(x) =

− exp(−αx), x ∈R, with constant absolute risk aversion parameter α > 0, and for a given �0
her goal is to

maximize EP

[− exp
(−αV�0,φ

T

)]
over φ ∈A�0 . (2.2)

Next we introduce some notation. Let Q denote the set of all equivalent probability
measures Q∼ P with finite entropy

EQ

[
log

(
dQ

dP

)]
< ∞

relative to P. For any Q ∈Q, let MQ
[0,T] be the set of all square-integrable Q-martingales M =

(Mt)0≤t≤T . Moreover, let MQ
[0,T) be the set of all Q-martingales M = (Mt)0≤t<T that are defined

on the half-open interval [0, T) and satisfy

‖M‖L2(dt⊗Q) := EQ

[∫ T

0
M2

t dt

]
< ∞.

We arrive at the duality result.

Theorem 2.1. Let Assumption 2.1 be in force. Then, for any �0 ∈R,

max
φ∈A�0

{
− 1

α
log EP

[
exp

(−αV�0,φ
T

)]}

= inf
Q∈Q

inf
M∈MQ

[0,T)

{
EQ

[
1

α
log

(
dQ

dP

)
+ �0(M0 − S0) + 1

2�

∫ T

0
|Mt − St|2 dt

]}
. (2.3)
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Furthermore, there is a unique minimizer
(
Q̂, M̂ ∈MQ̂

[0,T)

)
for the dual problem (right-hand

side of (2.3)) and the process given by

φ̂t := M̂t − St

�
, t ∈ [0, T) (2.4)

is the unique optimal portfolio (dt ⊗ P a.s.) for the primal problem (2.2).

Remark 2.2. Note that it is sufficient to define the optimal portfolio on the half-open interval
[0, T). We can just set φT := 0.

Remark 2.3. Theorem 2.1 can be viewed as an extension of Proposition A.2 in [3] for the case
where the investor liquidates her portfolio at the maturity date. The liquidation requirement
adds additional difficulty to the dual representation. In particular, the maximization in the dual
representation is over all equivalent probability measures and the corresponding martingales,
in contrast to Proposition A.2 in [3] where the dual objects are just equivalent probability
measures.

The duality result in [3] was used to solve the problem of exponential utility maximization
in the Bachelier setting for the case where the investor can peek some time units into the
future (frontrunner). Theorem 2.1 allows us to solve the same problem with the additional
requirement that the portfolio has to be liquidated at the maturity date. Since the corresponding
computations are not straightforward, we leave this problem for future research.

In the proof of the duality we assume that � > 0. However, if we formally take � = 0 in
the right-hand side of (2.3) and use the convention 0/0 := 0, we get the relation

max
φ

{− log EP

[
exp

(−αV�0,φ
T

)]} = inf
Q

EQ

[
log

(
dQ

dP

)]
,

where the infimum is taken over all martingale measures. This is (roughly speaking) the clas-
sical duality result for exponential hedging in the frictionless setup (see [7], [10]). Of course,
in the frictionless setup there is no meaning to the initial number of shares �0 and there is no
real restriction in the requirement �T = 0.

We will prove Theorem 2.1 at the end of this section, after suitable preparations. We start
by proving the superhedging theorem.

Lemma 2.1. Let X be a random variable. Assume that there exists α > 0 for which

EP[exp(α max (−X, 0))] < ∞. (2.5)

There exists φ ∈A�0 such that V�0,φ
T ≥ X if and only if

sup
Q∈Q

sup
M∈MQ

[0,T]

EQ

[
X − �0(M0 − S0) − 1

2�

∫ T

0
|Mt − St|2 dt

]
≤ 0. (2.6)

Proof. We start with the ‘only if’ part of the claim. Let φ ∈A�0 such that V�0,φ
T ≥ X. Choose

Q ∈Q and M ∈MQ
[0,T]. From (2.1) and the Cauchy–Schwarz inequality, it follows that

√∫ T

0
S2

t dt

√∫ T

0
φ2

t dt − �

2

∫ T

0
φ2

t dt ≥ X + �0S0,
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and hence, by exploiting the behaviour of the (random) parabola

x → x

√∫ T

0
S2

t dt − �

2
x2,

we get ∫ T

0
φ2

t dt ≤ c

(
1 + max (−X, 0) +

∫ T

0
S2

t dt

)

for some constant c > 0. This, together with Assumption 2.1, (2.5), and the well-known
inequality ex + y log y ≥ xy, x ∈R, y > 0, yields

EQ

[∫ T

0
φ2

t dt

]
< ∞.

Hence

EQ

[
�0M0 +

∫ T

0
Mtφt dt

]
= 0,

so from (2.1) and the simple inequality

xy − �

2
x2 ≤ y2

2�
, x, y ∈R

we obtain

EQ[X] ≤EQ

[
�0(M0 − S0) +

∫ T

0
φt(Mt − St) dt − �

2

∫ T

0
φ2

t dt

]

≤EQ

[
�0(M0 − S0) + 1

2�

∫ T

0
|Mt − St|2 dt

]
,

and the result follows.
Next, we prove the ‘if’ part of the claim. Assume by contradiction that this part does not

hold true. Namely, there exists X which satisfies (2.5)–(2.6) and there is no φ ∈A�0 such that

V�0,φ
T ≥ X.

Using the same arguments as in the proof of Proposition 3.5 in [14], it follows that the set

ϒ := ({
V�0,φ

T : φ ∈A�0

} − L0+(P)
) ∩ L1(P)

is convex and closed in L1(P). Observe that from Assumption 2.1 and (2.5)–(2.6) (take Q= P

and M ≡ 0 in (2.6)) it follows that X ∈ L1(P). Since there is no φ ∈A�0 such that V�0,φ
T ≥ X,

we get X ∈ L1(P) \ ϒ .
Thus, by the Hahn–Banach separation theorem, we can find Z ∈ L∞ \ {0} such that

EP[ZX] > sup
υ∈ϒ

EP[Zυ].

Since (
V�0,φ̂

T − L0+(P)
) ∩ L1(P) ⊂ ϒ for φ̂ ≡ −�0

T
,
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we must have Z ≥ 0. Moreover, from (2.1) we have

V�0,φ
T ≤ −�0S0 + 1

2�

∫ T

0
S2

t dt for all φ,

so from Assumption 2.1 it follows that there exists ε > 0 such that

EP[(ε + Z)X] > sup
υ∈ϒ

EP[(ε + Z)υ].

We conclude that for the probability measure Q given by

dQ

dP
:= ε + Z

ε +EP[Z]

we have Q ∈Q and
EQ[X] > sup

φ∈A�0

EQ

[
V�0,φ

T

]
, (2.7)

where we set
EQ

[
V�0,φ

T

]
:= −∞

if V�0,φ
T /∈ L1(Q).

Next, fix n ∈N and introduce the set

Bn := {
φ ∈ L2(dt ⊗Q) : ‖φ‖L2(dt⊗Q) ≤ n

}
.

We argue that for any n ∈N

sup
φ∈A�0

EQ

[
V�0,φ

T

] ≥ sup
φ∈A�0 ∩Bn

EQ

[
V�0,φ

T

]

= sup
φ∈Bn

inf
M∈MQ

[0,T]

EQ

[
V�0,φ

T + MT

(
�0 +

∫ T

0
φt dt

)]

= inf
M∈MQ

[0,T]

sup
φ∈Bn

EQ

[
V�0,φ

T + MT

(
�0 +

∫ T

0
φt dt

)]
. (2.8)

Indeed, the inequality is obvious. The first equality follows from the fact that if φ ∈Bn \A�0 ,
then

inf
M∈MQ

[0,T]

EQ

[
MT

(
�0 +

∫ T

0
φt dt

)]
= −∞.

For the last equality in (2.8) we apply a minimax theorem. Consider the vector space MQ
[0,T]

with the L2(dt ⊗Q) norm and the set Bn with the weak topology which corresponds to
L2(dt ⊗Q). Then both of these sets are convex subsets of topological vector spaces and the
latter set is even compact. Moreover,

(φ, M) →EQ

[
V�0,φ

T + MT

(
�0 +

∫ T

0
φt dt

)]

is upper semi-continuous and concave in φ and convex (indeed affine) in M. We can thus apply
Theorem 4.2 in [16] to obtain the second equality.
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Next, choose M ∈MQ
[0,T] and introduce the process φ (which depends on n and M):

φt := n(Mt − St)

max
(
�n, ‖M − S‖L2(dt⊗Q)

) , t ∈ [0, T].

Observe that φ ∈Bn and simple computations give

EQ

[
V�0,φ

T + MT

(
�0 +

∫ T

0
φt dt

)]

=EQ

[
�0(M0 − S0) +

∫ T

0
φt(Mt − St) dt − �

2

∫ T

0
φ2

t dt

]
=EQ[�0(M0 − S0)] + Gn

(‖M − S‖L2(dt⊗Q)

)
,

where

Gn(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2

2�
if x < �n,

nx − �

2
n2 otherwise.

Since n ∈N and M ∈MQ
[0,T] were arbitrary, from (2.7)–(2.8) we conclude that there exists a

sequence of martingales Mn ∈MQ
[0,T], n ∈N such that

EQ[X] > sup
n∈N

{
EQ

[
�0

(
Mn

0 − S0
)] + Gn

(‖Mn − S‖L2(dt⊗Q)

)}
. (2.9)

From the fact that dQ/dP is bounded we have EQ[X] < ∞, so supn∈N ‖Mn − S‖L2(dt⊗Q) < ∞.
Thus from (2.9) we obtain that for any k > (1/�) supn∈N ‖Mn − S‖L2(dt⊗Q),

EQ[X] >EQ

[
�0

(
Mk

0 − S0
) + 1

2�

∫ T

0
|Mk

t − St|2 dt

]
,

which is a contradiction to (2.6). This completes the proof. �

Lemma 2.2. There exists a unique minimizer(
Q̂, M̂ ∈MQ̂

[0,T)

)
for the optimization problem given by the right-hand side of (2.3).

Proof. Let C denote the set of all pairs (Z, Y) such that Z > 0 is a random variable satisfying
EP[Z] = 1, EP[Z log Z] < ∞, and Y = (Yt)0≤t<T is a P-martingale satisfying

EP

[∫ T

0

Y2
t

EP[Z |Ft]
dt

]
< ∞.

Note that the function (z, y) → y2/z is convex on R++ ×R, so C is a convex set. Define a map
� : C →R by

�(Z, Y) := EP

[
1

α
Z log Z + �0(Y0 − S0Z) + Z

2�

∫ T

0

(
Yt

EP[Z |Ft]
− St

)2

dt

]
.
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Observe that there is a bijection

(Y, Z) ∈ C ↔
(
Q ∈Q, M ∈MQ

[0,T)

)
given by

Z := dQ

dP
and Mt := Yt

EP[Z |Ft]
, t ∈ [0, T),

and for this bijection we have

�(Z, Y) =EQ

[
1

α
log

(
dQ

dP

)
+ �0(M0 − S0) + 1

2�

∫ T

0
|Mt − St|2 dt

]
.

Thus, in order to prove the lemma, it is sufficient to show that there exists a unique mini-
mizer for � : C →R. Note that the convexity of the map (z, y) → y2/z implies the convexity of
�. From the strict convexity of the functions z → z log z and the map y → y2, it follows that �

is strictly convex, and hence the uniqueness of a minimizer is immediate. It remains to prove
the existence of a minimizer.

Let (Zn, Yn) ∈ C, n ∈N be a sequence such that

lim
n→∞ �(Zn, Yn) = inf

(Z,Y)∈C
�(Z, Y). (2.10)

Assumption 2.1 and (2.10) yield that without loss of generality we can assume that

sup
n∈N

EP[Zn log Zn] < ∞ and sup
n∈N

EP

[∫ T

0

|Yn
t |2

EP[Zn |Ft]
dt

]
< ∞.

Thus the de la Vallée–Poussin criterion ensures that Zn, n ∈N are uniformly integrable. Let us
argue that for any s < T the random variables Yn

s , n ∈N are uniformly integrable
Fix s < T . From the Jensen inequality and fact that Yn is a martingale, it follows that for any

given n the function

t →EP

[ |Yn
t |2

EP[Zn |Ft]

]

is non-decreasing, and hence

sup
n∈N

EP

[ |Yn
s |2

EP[Zn |Fs]

]
< ∞.

This, together with the inequality supn∈N EP[Zn log Zn] < ∞, gives supn∈N EP[g|Yn
s |] < ∞,

where

g(y) := inf
z>0

{
y2

z
+ z log z

}
, y > 0.

For a given y > 0, the function z → y2/z + z log z is convex and attains its minimum at
the unique z = z(y) which satisfies 1 + log z = y2/z2. Obviously limy→∞ z(y) = ∞ and y =
z(y)

√
1 + log(z(y)). Thus

lim
y→∞

g(y)

y
≥ lim

z→∞
z log z

z
√

1 + log z
= ∞.
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Hence, from the de la Vallée–Poussin criterion, we conclude that Yn
s , n ∈N are uniformly

integrable.
Next, define the sequence of random variables (Hn)n∈N ∈ L1(dt ⊗ P, [0, 2T] × �) by

Hn(t, ω) :=
{

Yn
t (ω) if t < T ,

Zn(ω) otherwise.

Observe that the relations

sup
n∈N

EP[Zn log Zn] < ∞, sup
n∈N

EP

[∫ T

0

|Yn
t |2

EP[Zn |Ft]
dt

]
< ∞, lim

y→∞
g(y)

y
= ∞

yield that (Hn)n∈N is a bounded sequence in L1(dt ⊗ P, [0, 2T] × �). Hence, from the
well-known Komlós argument (see Theorem 1.3 in [6]), there exists a sequence (Ĥn) ∈
conv (Hn, Hn+1 · · · ), n ∈N such that (Ĥn)n∈N converge in probability (dt ⊗ P) to some Ĥ ∈
L1(dt ⊗ P, [0, 2T] × �). From the bounded convergence theorem, arctan (Ĥn) → arctan (H) in
L1(dt ⊗ P, [0, 2T] × �). Thus, from Fubini’s theorem, we obtain that there exists a dense set
I ⊂ [0, 2T] such that for any t ∈ I, (Ĥn

t )n∈N converge in probability to Ĥt. Choose a countable
subset J ⊂ I ∩ [0, T) of the form J = {t1 < t2 < · · · } such that limn→∞ tn = T .

We conclude that there exist convex combinations (the same combinations as for Hn)
(Ẑn, Ŷn) ∈ conv ((Zn, Yn), (Zn+1, Yn+1) · · · ), n ∈N, such that the sequence (Ẑn)n∈N converges
in probability to some Ẑ, and for any m ∈N the sequence (Ŷn

tm)n∈N converges in probability to
some Um. From the uniform integrability of the sequences (Zn)n∈N and (Yn

tm)n∈N, m ∈N, we
conclude that

Ẑn → Ẑ in L1(P), (2.11)

and for any m ∈N

Ŷn
tm → Um in L1(P). (2.12)

Notice that (2.11) implies EP[Ẑ] = 1. Moreover, the function x → x log x, x > 0 is bounded
from below, so from the Fatou lemma and the convexity of the function x → x log x we get
EP[Ẑ log Ẑ] ≤ supn∈N EP[Zn log Zn] < ∞.

Next, define the process Ŷ = (Ŷt)0≤t<T by

Ŷt :=
∞∑

m=1

1{t∈[tm−1,tm)}EP[Um |Ft],

where we set t0 := 0. Clearly, for any n the process Ŷn = Ŷn
[0,T) is a martingale (convex

combination of martingales), so from (2.12) we obtain that Ŷ = Ŷ[0,T) is a martingale and

Ŷn
t → Ŷt in L1(P) for all t ∈ [0, T]. (2.13)

From (2.11) we get

EP[Ẑn |Ft] →EP[Ẑ |Ft] in L1(P) for all t ∈ [0, T]. (2.14)

By combining the Fatou lemma, the convexity of �, (2.10), and (2.13)–(2.14), we obtain

�(Ẑ, Ŷ) ≤ lim
n→∞ �(Ẑn, Ŷn) = inf

(Z,Y)∈C
�(Z, Y).
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A priori it might happen that dt ⊗ P(EP[Ẑ |Ft] = 0) > 0, so we need to be careful with the
definition of �(Ẑ, Ŷ). From (2.13)–(2.14) it follows that we have the convergence in prob-
ability EP[Ẑn |F·] →EP[Ẑ |F·] and Ŷn → Ŷ with respect to the product measure dt ⊗ P.
Hence, by taking a subsequence (which for simplicity we still denote by n), we can assume
that EP[Ẑn |F·] →EP[Ẑ |F·] and Ŷn → Ŷ dt ⊗ P a.s. Since limn→∞ �(Ẑn, Ŷn) < ∞, from
the Fatou lemma it follows that

EP

[∫ T

0

(
lim inf

n→∞
|Ŷn

t |2
EP[Ẑn |Ft]

)
dt

]
< ∞.

In particular,

lim inf
n→∞

|Ŷn
t |2

EP[Ẑn |Ft]
< ∞ dt ⊗ P a.s.

This together with the above convergence of the sequences (EP[Ẑn |F·])n∈N and (Ŷn)n∈N yields
the implication EP[Ẑ |Ft] = 0 ⇒ Ŷt = 0 dt ⊗ P a.s. Thus we set

Ŷt

EP[Ẑ |Ft]
:= 0

if EP[Ẑ |Ft] = 0.
Finally, in order to complete the proof it remains to show that Ẑ > 0 a.s. To this end, define

the function f : [0, 1] →R by f (α) := �(α + (1 − α)Ẑ, Ŷ), α ∈ [0, 1]. From the convexity of
� it follows that f is convex. The inequality �(Ẑ, Ŷ) ≤ inf(Z,Y)∈C �(Z, Y) yields that the right-
hand derivative f ′(0+) ≥ 0. Moreover, from the monotone (derivative of a convex function)
convergence theorem it follows that we can interchange derivative and expectation. Thus

0 ≤ f ′(0+)

=EP

[
1

α
(1 − Ẑ) log Ẑ − �0S0(1 − Ẑ)

]

+ 1

2�
EP

[
(1 − Ẑ)

∫ T

0
S2

t dt +
∫ T

0
1{EP[Ẑ|Ft]>0}

(
Ŷ2

t

EP[Ẑ |Ft]
− Ŷ2

t

E2
P

[Ẑ |Ft]

)
dt

]
.

We conclude that EP[log Ẑ] > −∞ and complete the proof. �

Now we have all the ingredients for the proof of Theorem 2.1.

Proof. Let
(
Q̂ ∈Q, M̂ ∈MQ̂

[0,T]

)
be the minimizer from Lemma 2.2. Denote

D := E
Q̂

[
1

α
log

(
dQ̂

dP

)
+ �0(M̂0 − S0) + 1

2�

∫ T

0
|M̂t − St|2 dt

]
.

Let us show that there exists φ̂ ∈A�0 such that

V�0,φ̂
T ≥ D − 1

α
log

(
dQ̂

dP

)
. (2.15)

We apply Lemma 2.1 for

X := D − 1

α
log

(
dQ̂

dP

)
.
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Clearly X satisfies (2.5), so we need to show that for any Q ∈Q and M ∈MQ
[0,T] we have

EQ

[
1

α
log

(
dQ̂

dP

)
+ �0(M0 − S0) + 1

2�

∫ T

0
|Mt − St|2 dt

]
≥ D. (2.16)

Choose Q ∈Q and M ∈MQ
[0,T]. Define (Z, Y), (Ẑ, Ŷ) ∈ C by

Z = dQ

dP
, Ẑ = dQ̂

dP
, Yt = MtEP[Z |Ft] and Ŷt = M̂tEP[Ẑ |Ft], t < T .

Define the convex function h : [0, 1] →R+ by

h(α) := �(αZ + (1 − α)Ẑ, αY + (1 − α)Ŷ), α ∈ [0, 1].

The function h attains its minimum at α = 0, so h′(0+) ≥ 0. Again, the monotone convergence
theorem allows us to interchange derivative and expectation. Thus

0 ≤ h′(0+)

=EP

[
1

α
(Z − Ẑ) log Ẑ + �0(Y0 − Ŷ0) − �0S0(Z0 − Ẑ0)

]

+ 1

2�
EP

[∫ T

0
((Z − Ẑ)S2

t − 2(Yt − Ŷt)St) dt

]

+ 1

2�
EP

[
1

2�

∫ T

0

2Ŷt(Yt − Ŷt)EP[Ẑ |Ft] −EP[Z − Ẑ |Ft]Ŷ2
t

E2
P

[Ẑ |Ft]

]
. (2.17)

Observe that for any t < T

2YtŶtEP[Ẑ |Ft] ≤EP[Z |Ft]Ŷ
2
t + Y2

t E
2
P

[Ẑ |Ft]

EP[Z |Ft]
.

This together with (2.17) gives

0 ≤EP

[
1

α
(Z − Ẑ) log Ẑ + �0(Y0 − Ŷ0) − �0S0(Z0 − Ẑ0)

]

+ 1

2�
EP

[∫ T

0
((Z − Ẑ)S2

t − 2(Yt − Ŷt)St) dt

]

+ 1

2�
EP

[∫ T

0

(
Y2

t

EP[Z |Ft]
− Ŷ2

t

EP[Ẑ |Ft]

)
dt

]
,

which is exactly (2.16). We conclude that (2.15) holds true, and thus

EP

[
e−αV

�0,φ̂

T
] ≤ e−αD. (2.18)

We arrive at the final step of the proof. Choose φ ∈A�0 . Without loss of generality, assume
that

EP

[
e−αV

�0,φ

T
]
< ∞,
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and hence arguments similar to those in the proof of Lemma 2.1 yield

E
Q̂

[∫ T

0
φ2

t dt

]
< ∞.

Let us argue that for any γ > 0

EP

[
e−αV

�0,φ

T

]
≥ αγE

Q̂

[
�0S0 +

∫ T

0
Stφt dt + �

2

∫ T

0
φ2

t dt

]
−EP

[
γ Ẑ(log(γ Ẑ) − 1)

]
= αγE

Q̂

[
�0(S0 − M̂0) +

∫ T

0
(St − M̂t)φt dt + �

2

∫ T

0
φ2

t dt

]
− γ (log γ − 1) − γE

Q̂
[log Ẑ]

≥ αγE
Q̂

[
�0(S0 − M̂0) − 1

2�

∫ T

0
|M̂t − St|2 dt

]
− γ (log γ − 1) − γE

Q̂
[log Ẑ]. (2.19)

Indeed, the first inequality follows from the simple inequality ex ≥ xy − y(log y − 1), x ∈R,
y > 0. The equality is due to

E ˆ̂
Q

[
�0M̂0 +

∫ T

0
M̂tφt dt

]
= 0;

for this we need the bound E
Q̂

[∫ T
0 φ2

t dt
]
< ∞. The last inequality follows from the maximiza-

tion of the quadratic pattern in φ.
Optimizing (2.19) in γ > 0, we arrive at

EP

[
e−αV

�0,φ

T
] ≥ e−αD. (2.20)

Since φ ∈A�0 was arbitrary, from (2.18), (2.20) and the fact that
(
Q̂ ∈Q, M̂ ∈MQ̂

[0,T]

)
is the

minimizer from Lemma 2.2, we obtain (2.3). Moreover, note that there is an equality in (2.19)
if and only if

φ = M̂ − S

�
dt ⊗ P a.s.

This yields (2.4) and completes the proof. �

3. Explicit computations in the Bachelier model

In this section we assume that the probability space (�,F , P) carrying a one-dimensional
Wiener process W = (Wt)t∈[0,T] and the filtration (Ft)t∈[0,T] is the natural augmented filtration
generated by W. The risky asset S is given by

St = S0 + σWt + μt, t ∈ [0, T], (3.1)

where S0 ∈R is the initial asset price, σ > 0 is the constant volatility, and μ ∈R is the constant
drift.

Consider a European contingent claim with the quadratic payoff X = κS2
T , where κ ∈

(0, 1/(2ασ 2T)) is a constant. We say that φ̂ ∈A�0 is a utility-based optimal hedging strategy
if

EP

[
eα

(
X−V

�0,φ̂

T

)]
= inf

φ∈A�0

EP

[
eα

(
X−V

�0,φ

T

)]
.
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Theorem 3.1. Let ρ := ασ 2/� be the risk–liquidity ratio. The utility-based optimal hedging
strategy φ̂t, t ∈ [0, T) is unique and given by the feedback form

φ̂t =
(
2κSt + μ/

(
ασ 2

))
tanh

(√
ρ(T − t)/2

) − (
coth

(√
ρ(T − t)

) − 2�
√

ρκ
)
�̂t

1√
ρ

− 4κ� tanh
(√

ρ(T − t)/2
) , (3.2)

where

�̂t := �0 +
∫ t

0
φ̂s ds, t ∈ [0, T].

Our feedback description (3.2) can be interpreted as follows. From the simple inequality
tanh (z) < z, for all z > 0 and the assumption κ ∈ (0, 1/(2ασ 2T)), it follows that the denomina-
tor in (3.2) is positive and coth (

√
ρ(T − t)) − 2�

√
ρκ > 0. Thus the optimal trading strategy

is a mean reverting strategy towards the process(
2κSt + μ/

(
ασ 2

))
tanh

(√
ρ(T − t)/2

)
coth

(√
ρ(T − t)

) − 2�
√

ρκ
, t ∈ [0, T].

This process can be viewed as a tradeoff between the optimal trading strategy in the frictionless
case 2κSt + μ/

(
ασ 2

)
, t ∈ [0, T] and the liquidation requirement.

Next, we prove Theorem 3.1.

Proof. First, from the assumption κ ∈ (0, 1/(2ασ 2T)), it follows that EP

[
eαX ]

< ∞. Thus

we define the probability measure P̃ by

dP̃

dP
:= eαX

EP

[
eαX ] .

Observe that for any probability measure Q∼ P we have

EQ

[
log

(
dQ

dP̃

)]
=EQ

[
log

(
dQ

dP

)
− αX

]
+ α log

(
EP

[
eαX ])

.

From Hölder’s inequality and Assumption 2.1 it follows that there exists b > 0 such that

E
P̃

[
exp

(
b sup

0≤t≤T
S2

t

)]
< ∞.

Hence, using Theorem 2.1 for the probability measure P̃, we obtain

min
φ∈A�0

{
1

α
log EP

[
exp

(
α
(X − V�0,φ

T

))]}

= sup
Q∈Q

sup
M∈MQ

[0,T)

EQ

[
X − 1

α
log

(
dQ

dP

)
− �0(M0 − S0) − 1

2�

∫ T

0
|Mt − St|2 dt

]
. (3.3)

Moreover, there exists a unique maximizer
(
Q̂ ∈Q, M̂ ∈MQ̂

[0,T)

)
for the right-hand side of

(3.3), and the process given by (2.4) is the unique utility-based optimal hedging strategy.
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Observe that by the Markov property of Brownian motion, in order to prove Theorem 3.1 it
is sufficient to establish (3.2) for t = 0. Thus, in view of (2.4), it remains to establish that

M̂0 − S0

�
=

(
2κS0 + μ/

(
ασ 2

))
tanh

(√
ρT/2

) − (
coth

(√
ρT

) − 2�
√

ρκ
)
�0

1√
ρ

− 4κ� tanh
(√

ρT/2
) . (3.4)

To this end, let Q ∈Q and M ∈MQ
[0,T). From the Girsanov theorem it follows that there

exists a progressively measurable process θ ∈ L2(dt ⊗Q) such that

EQ[log(dQ/dP)] =EQ

[∫ T

0
θ2

s ds

]
/2 < ∞ and WQ

t := Wt −
∫ t

0
θs ds, t ∈ [0, T]

is a Q-Brownian motion. By applying the martingale representation theorem, there exists a
process γ = (γt)0≤t<T such that

Mt = M0 + σ

∫ t

0
γs dWQ

s , dt ⊗ P a.s. (3.5)

Moreover, by applying the martingale representation theorem for θt, t ∈ [0, T], we conclude
that there exist a deterministic function at, t ∈ [0, T] and a jointly measurable process βt,s,
0 ≤ s ≤ t ≤ T such that βt,s is Ft∧s measurable and

θt = at +
∫ t

0
βt,s dWQ

s , dt ⊗ P a.s. (3.6)

Set

νt := μt + σ

∫ t

0
as ds, t ∈ [0, T] and lt,s :=

∫ t

s
βu,s du, 0 ≤ s ≤ t ≤ T .

From Fubini’s theorem, (3.1), and (3.6),

St = S0 + νt + σ

∫ t

0
(1 + lt,s) dWQ

s , t ∈ [0, T]. (3.7)

Given the probability measure Q, we are looking for a martingale M̃ ∈MQ
[0,T) which maxi-

mizes the right-hand side of (3.3). By combining (3.5), (3.7) and applying the Itô isometry and
Fubini’s theorem, we obtain

EQ

[
�0(M0 − S0) + 1

2�

∫ T

0
|Mt − St|2 dt

]

= �0(M0 − S0) + 1

2�

∫ T

0
(M0 − S0 − νt)

2 dt + σ 2

2�
EQ

[∫ T

0

∫ T

s
(γs − 1 − lt,s)

2 dt ds

]
.

Given a and β, we are looking for M̂0 and γ̂ which minimize the above right-hand side.
Observe that the right-hand side is a quadratic function in M0 and γs, s ∈ [0, T). Hence we
obtain that the minimizer is unique and given by

M̂0 = S0 + 1

T

∫ T

0
νt dt − �0�

T
(3.8)
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and

γ̂s = 1 + 1

T − s

∫ T

s
lt,s dt, s < T . (3.9)

Finally, we compute the optimal ν. From the Itô isometry, Fubini’s theorem, and (3.6)–(3.7),
we have

EQ[S2
T ] = (S0 + νT )2 + σ 2EQ

[∫ T

0

∫ T

s
(1 + lt,s)

2 dt ds

]
and

EQ

[
log

(
dQ

dP

)]
= 1

2
EQ

[∫ T

0
θ2

s ds

]
= 1

2

(∫ T

0
a2

t dt +EQ

[∫ T

0

∫ T

s
β2

t,s dt ds

])
.

These equalities together with (3.8)–(3.9) give

sup
M∈MQ

[0,T)

EQ

[
X − 1

α
log

(
dQ

dP

)
− �0(M0 − S0) − 1

2�

∫ T

0
|Mt − St|2 dt

]

=EQ

[
X − 1

α
log

(
dQ

dP

)
− �0(M̂0 − S0) − 1

2�

∫ T

0
|M̂t − St|2 dt

]

= I +EQ

[∫ T

0
Js ds

]
, (3.10)

where

I = κ(S0 + νT )2 − 1

2α

∫ T

0
a2

t dt + 1

2�

(
1

T

(
�0� −

∫ T

0
νt dt

)2

−
∫ T

0
ν2

t dt

)

and

Js = κσ 2
∫ T

s
(1 + lt,s)

2 dt − 1

2α

∫ T

s
β2

t,s dt + 1

2�

(
1

T − s

(∫ T

s
lt,s dt

)2

−
∫ T

s
l2t,s dt

)
.

From Proposition 4.1 we conclude that the optimal ν satisfies (4.2). Hence from (3.8) we obtain
(3.4) and complete the proof. �

Remark 3.1. By applying (3.10) we can also compute the the right-hand side of (3.3). This
requires computing the maximal I and for any s ∈ [0, T] computing the maximal Js. Observe
that the latter is a deterministic variational problem where the control is l·,s, · ∈ [s, T].
Computing both I and Js, s ∈ [0, T] can be done by computing the value which corresponds to
the optimization problem given by (4.1) (for Js replace T with T − s, S0, σ with 1, and μ, �0
with 0). The computations are quite cumbersome and hence omitted.

Remark 3.2. Note that the quadratic structure of the payoff X used in (3.10) is essential in
reducing the dual problem to a deterministic control problem. This is due to the Itô isometry.
Although for a general payoff the dual representation does not allow us to obtain an explicit
solution, it can still be used for utility-based hedging problems. For instance, the recent paper
[8] applies Theorem 2.1 and, for a general European contingent claim in the Bachelier model,
computes the scaling limit of the corresponding utility indifference prices for a vanishing price
impact which is inversely proportional to the risk aversion.

https://doi.org/10.1017/jpr.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.49


Duality for utility-based hedging in the Almgren–Chriss model 435

4. Auxiliary result

The following result deals with a purely deterministic setup.

Proposition 4.1. Let � be the space of all continuous functions δ : [0, T] →R that are differ-
entiable almost everywhere (with respect to the Lebesgue measure) and satisfy δ(0) = 0. Then
the maximizer δ̂ ∈ � of the optimization problem

max
δ∈�

{
κ(S0 + δT )2 − 1

2ασ 2

∫ T

0
(δ̇t − μ)2 dt + 1

2�

(
1

T

(
�0� −

∫ T

0
δt dt

)2

−
∫ T

0
δ2

t dt

)}
(4.1)

is unique and satisfies

1

T

∫ T

0
δ̂t dt =

(
2κS0 + μ/

(
ασ 2

))
tanh

(√
ρT/2

) − (
coth

(√
ρT

) − 2�
√

ρκ
)
�0

1√
ρ�

− 4κ tanh
(√

ρT/2
) + �0�

T
.

(4.2)

Proof. The proof will be done in two steps. First we will solve the optimization problem
(4.1) for the case where δT and

∫ T
0 δt dt are given. Then we will find the optimal δT and

∫ T
0 δt dt.

Thus, for any x, y, let �x,y ⊂ � be the set of all functions δ ∈ � that satisfy δT = x and∫ T
0 δt dt = y. Consider the minimization problem

min
δ∈�x,y

∫ T

0
H(δ̇t, δt) dt,

where

H(u, v) := 1

2ασ 2
(u − μ)2 + 1

2�
v2 for u, v ∈R.

This optimization problem is convex, and thus it has a unique solution which has to satisfy the
Euler–Lagrange equation (for details see [13])

d

dt

∂H

∂δ̇t
= λ + d

dt

∂H

∂δt

for some constant λ > 0 (Lagrange multiplier due to the constraint
∫ T

0 δt dt = y). Thus the
optimizer solves the ODE δ̈t − ρδ ≡ const. (recall the risk–liquidity ratio ρ = ασ 2/�). From
the standard theory it follows that

δt = c1 sinh
(√

ρt
) + c2 sinh

(√
ρ(T − t)

) + c3 (4.3)

for some constants c1, c2, c3. From the three constraints δ0 = 0, δT = x, and
∫ T

0 δt dt = y we
obtain

c1 = x − c3

sinh
(√

ρT
) , c2 = − c3

sinh
(√

ρT
) , c3 =

√
ρy − x tanh

(√
ρT/2

)
√

ρT − 2 tanh
(√

ρT/2
) . (4.4)
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We argue that

ρ

∫ T

0
δ2

t dt +
∫ T

0
δ̇2

t dt

= ρ

∫ T

0
((δt − c3) + c3)2 dt +

∫ T

0
δ̇2

t dt

=
√

ρ

2

(
c2

1 + c2
2

)
sinh

(
2
√

ρT
) − 2c1c2

√
ρ sinh

(√
ρT

) − ρc2
3T + 2ρc3y

= √
ρx2 coth

(√
ρT

) + 2
√

ρc1c2 sinh
(√

ρT
)(

cosh
(√

ρT
) − 1

) − ρc2
3T + 2ρc3y

= √
ρx2 coth

(√
ρT

) + (
2
√

ρ tanh
(√

ρT/2
) − ρT

)
c2

3 + 2
(
ρy − √

ρ tanh
(√

ρT/2
)
x
)
c3

= √
ρ

(
x2 coth

(√
ρT

) +
(
x tanh

(√
ρT/2

) − √
ρy

)2

√
ρT − 2 tanh

(√
ρT/2

) )
. (4.5)

Indeed, the first equality is obvious. The second equality follows from (4.3) and simple
computations. The third equality is due to

c1 − c2 = x

sinh
(√

ρT
) .

The fourth equality is due to

c1c2 = c2
3 − xc3

sinh2(√ρT
) .

The last equality follows from substituting c3.
By combining (4.5) and the simple equality

1

2ασ 2

∫ T

0
(δ̇t − μ)2 dt + 1

2�

∫ T

0
δ̇2

t dt = μ2T

2ασ 2
− μx

ασ 2
+ 1

2ασ 2

(
ρ

∫ T

0
δ2

t dt +
∫ T

0
δ̇2

t dt

)
,

we obtain

min
δ∈�x,y

∫ T

0
H(δ̇t, δt) dt

= μ2T

2ασ 2
− μx

ασ 2
+ 1

2�
√

ρ

(
x2 coth

(√
ρT

) +
(
x tanh

(√
ρT/2

) − √
ρy

)2

√
ρT − 2 tanh

(√
ρT/2

) )
. (4.6)

We arrive at the final step of the proof. In view of (4.6), the optimization problem (4.1) is
reduced to finding x := δT and y := ∫ T

0 δt dt, which maximize the quadratic form

Ax2 + By2 + 2Cxy + ηx + θy,
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where

A := κ − 1

2�
√

ρ

(
coth

(√
ρT

) + tanh2 (√
ρT/2

)
√

ρT − 2 tanh
(√

ρT/2
))

= −
√

ρT coth
(√

ρT
) + 4�

√
ρκ tanh

(√
ρT/2

) − 1 − 2�ρTκ

2�
√

ρ
(√

ρT − 2 tanh
(√

ρT/2
)) ,

B := 1

2�T
−

√
ρ

2�
(√

ρT − 2 tanh
(√

ρT/2
)) = − tanh

(√
ρT/2

)
�T

(√
ρT − 2 tanh

(√
ρT/2

)) ,

C := tanh
(√

ρT/2
)

2�
(√

ρT − 2 tanh
(√

ρT/2
)) , η := 2κS0 + μ

ασ 2
and θ := −�0

T
.

Simple computations give

AB − C2 = − κ tanh
(√

ρT/2
)

�T
(√

ρT − 2 tanh
(√

ρT/2
))

+ coth
(√

ρT
)

tanh
(√

ρT/2
)

2
√

ρ�2T
(√

ρT − 2 tanh
(√

ρT/2
)) − tanh2 (√

ρT/2
)

4
√

ρ�2T
(√

ρT − 2 tanh
(√

ρT/2
))

= 1/(4
√

ρ�) − κ tanh
(√

ρT/2
)

�T
(√

ρT − 2 tanh
(√

ρT/2
)) .

From the inequality z > tanh(z)z, z > 0 and the assumption κ ∈ (0, 1/(2ασ 2T)), we obtain
B < 0 and AB − C2 > 0. Thus the above quadratic form has a unique maximizer

(x̄, ȳ) := 1

2(AB − C2)
(Cθ − Bη, Cη − Aθ ).

We conclude that the optimization problem (4.1) has a unique solution which is given by
(4.3)–(4.4) for (x, y) := (x̄, ȳ). Moreover, direct computations yield

ȳ

T
=

(
2κS0 + μ/

(
ασ 2

))
tanh

(√
ρT/2

) − (
coth

(√
ρT

) − 2�
√

ρκ
)
�0

1√
ρ�

− 4κ tanh
(√

ρT/2
) + �0�

T
,

and (4.2) follows. �
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