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HIGHER MONOTONICITY PROPERTIES OF CERTAIN
STURM-LIOUVILLE FUNCTIONS. III

LEE LORCH, M. E. MULDOON, AND PETER SZEGO

1. Introduction. A Sturm-Liouville function is simply a non-trivial
solution of the Sturm-Liouville differential equation

(1.1) ¥+ fx)y =0,

considered, together with everything else in this study, in the real domain.
The associated quantities whose higher monotonicity properties are determined
here are defined, for fixed A > —1, to be

12) M(WiN) = M, = f W)y de  (k=12...),

where y(x) is an arbitrary (non-trivial) solution of (1.1) and x4, xs, . . . is any
finite or infinite sequence of consecutive zeros of any non-trivial solution z(x)
of (1.1) which may or may not be linearly independent of y (x). The condition
A > —1isrequired to assure convergence of the integral defining M}, and the
function W (x) is taken subject to the same restriction.

This study continues the type of analysis of higher monotonicity properties
initiated in [12]. Earlier work concerned itself with simple monotonicity and,
for oscillatory Sturm-Liouville equations, was confined to particular cases of
(1.2). Leaving aside the specializations W(x) = 1, z(x) = y(x), made in [12]
as well as elsewhere, previous studies (originating in 1836 with Sturm [22])
provided information on the increase or decrease of the sequence

{Xp41 — i} (k=1,2,...).

This corresponds to the case A = 0. Occasionally, monotonic properties of
areas were discussed. This corresponds to the case A = 1. None dealt with
higher monotonicity in this context.

The interested reader should consult [12, Introduction] for further back-
ground, motivation, and references. To the comments made there, it should
be added that Watson established [26, p. 518], and Hartman and Wintner
utilized [7; 6, p. 511], a result which also corresponds to the case A = 1 and
simple monotonicity. Watson’s result has implications also for the case X > 0.

Roughly speaking, it is shown here that the conditions imposed on the
equation (1.1) in [12; 13] imply that the sequence { M, (W;\)} (k=1,2,...)
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possesses the same order of higher monotonicity (including complete mono-
tonicity) as that exhibited by W (x). In the previous studies, W(x) = 1 and
z(x) = y(x).

A similar extension (Theorem 3.4) is provided for results of Vosmansky [25]
involving 9’ (x) and its zeros rather than y(x) and its zeros.

The desirability of introducing the function W(x) into the definition (1.2)
of M (W;\) was suggested principally by two considerations. Both can be
illustrated in the Bessel function case.

In applying the general results to the Bessel equation in the self-adjoint
form (1.1), f(x) becomes 1 — (»® — 1)x=2 and the general solution is
y(x) = 2%, (x) = x}[4JT,(x) + BY,(x)], where J,(x) and Y,(x) are the
usual Bessel functions of the first and second kind, respectively, of order v,
and 4 and B are arbitrary constants.

When W(x) = 1,z(x) = y(x),and X = 1, an earlier result [12, Theorem 3.1]
implies, in particular, that the sequence of areas

Cyik +1 1
(1.3) J x?

Cylk

€. (x)| dx k=12...)

between successive positive zeros ¢, €yxr1 of %.,(x) under the graph of
[x*%,(x)| form a completely monotonic sequence when |»| > 3. But this
neither implies nor is implied by the corresponding property for the graph
of the Bessel function |4, (x)| itself. However, the results presented here cover
both cases, since taking in (1.2) W(x) = x~%, a completely monotonic function,
deletes the adventitious factor x* from (1.3), while putting W(x) = 1, also a
completely monotonic function, yields again the previous information about
(1.3).

Thus, the factor W(x) in (1.2) permits extending to complete monotonicity
the theorems of Cooke [2] and Makai [17] on the monotonicity of the areas
of the successive arches between non-negative zeros of Bessel functions for
lv| > % (in fact, even for |»| = }; cf. Theorem 5.4 below). (Cooke showed [2]
that, for » > —1, the areas under the arches of the graph of |J,(x)| are
decreasing, starting with an arch between x = 0 and x = j,;, even though
J»(0) # 0 when —1 < » = 0. Our result excludes this arch unless» = %.)

The other initial motivation was a search for a proof of Theorem 6.1 below,
establishing an inequality involving Bessel functions. This inequality arose in
a problem of numerical analysis [28]. A proof valid for » = 3/2 was found [15],
but seemed excessively dependent on manipulations. The proof provided in
§ 6 below, due to the flexibility provided by the presence of W(x) in (1.2),
requires little calculation and, moreover, has a greater range of validity,
namely » = 3.

Still other applications come to hand. In a subsequent paper [16] there is
an extension to higher monotonicity of Sonin’s theorem (which establishes
that the squares of the extrema of a Sturm-Liouville function form a decreasing
sequence when f(x) is positive and increasing). For this application, A\ = 2
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and W (x) must be chosen suitably. (The value A = 2 can also be applied to
probability densities if z(x) = y(x) is normalized appropriately.)

The scope afforded by W (x) yields results concerning %, (x) not only for
|[»] > 3%, the only range accessible to the earlier work [12; 13; 25], but also for
other values of », chiefly || = 1. Thus, this is a beginning into the problem
of proving higher monotonicity properties of % ,(x) for |»| < % analogous to
(although often not identical with) those it possesses when |y| > 3. Additional
such results will be presented in [16].

The difficulties in the range |»| < } are intrinsically greater than those
arising when |»| > 3. When |¢| < 3, the function f(x) = 1 — (»* — )x 2 in
(L.1) is decreasing in x; when |»| > 3%, f(x) is an increasing function of x.
Hence, as has been well known since Sturm’s work in 1836 [22], the distances
between consecutive zeros of % ,(x) increase when |y| < % and decrease when
lv| > %. But, as Cooke showed [2], there is no such change in behaviour for
the areas of the arches, at least when %,(x) = J,(x), » > —1. Thus, when
|v| > 1, both the areas and bases of the arches of %, (x) decrease, but when
|v| < % the bases increase, while, at least for § < |»| < %, the areas decrease.

Theorem 5.4 below shows that this completely monotonic (defined after
(1.5)) behaviour of the areas does not change with » for general %, (x), at
least in the range |v| = 3. In this theorem there arises our first need to restrict
the range of \; its assertion is not valid for all A > —1, but only for a sub-
interval including N = 1, enough to give the areas.

Our information concerning Bessel functions in the range 1 < |v| < 3 is
derived, on appropriate choice of W (x), from Theorem 5.3 below on generalized
Airy functions which are related to Bessel functions.

Finally (§8), we construct (and apply to Bessel functions) still other
sequences possessing higher monotonicity properties. These arise from
A+ MM (W;\) on letting N — —14. Consideration of this case was
suggested by 1.M. Gel’fand when some of the other results of this study were
presented to his Seminar at the University of Moscow in 1966.

The notation used throughout is standard.

A function ¢(x) is said to be N-times monotonic (or monotonic of order V)
on an interval I if

(1.4) (=1)"e™(x) =0 (m=0,1,...,N;x € I).

If (1.4) holds for V =0, ¢(x) is said to be completely monotonic on I. A
sequence { Mg, My, ...} is said to be N-ttmes monotonic (or monotonic of
order N), if

(1.5)  (=1y'A"M, = 0 m=0,1,...,N;k=0,1,...).
Here Aoﬂfk = J’[k, AJI]\, = ﬂ[k—}-l —_ lwk, “ ey Anﬂ/[k = A(Anﬁljfk), Lo It (1:))

holds for N = o0, the sequence { My, My, . . .} is said to be completely monotonic.
Our general theorems are stated so as to apply to N-times monotonic functions
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and sequences. Results on complete monotonicity follow from these, on
putting N =o0.

2. Preliminary results. Two lemmas on N-times monotonic functions are
required. The first of these is useful in [16], where some of the results of the
present paper are extended to solutions of the more general self-adjoint

equation
(h(x)y") + flx)y = 0.

LemMA 2.1. Let g(x) be an N-times differentiable function on an interval I,

satisfying

2.1) (—1)y1g™(x) 2 0 m=12,...,N;x €1I).
Let ¢(x) be an N-times differentiable function on g(I) satisfying
(2.2) (—1)"e™ (x) = 0 mn=1,2...,N;x € g(I)).
Then

(2.3) (—=1)"DSelg(x)] = 0 n=12...,N;x€1I).

If, in addition, g’ (x) > 0 and strict inequality holds throughout (2.2), or if
o' (x) < 0 and strict inequality holds throughout (2.1), then strict inequality holds
throughout (2.3).

Proof. Using the formula of Faa di Bruno (see e.g. [9, § 81, pp. 92-93]) for
the nth derivative of a function of a function, we find, for each #,

24)  (=1)'DSlgx)] = (=1)" ; 2l @1 g @M e® (),

where p, > 0 (all ), and the summation inside the braces is taken over all
non-negative integers ay, . . ., a, such that

al—l—...—l—an:k, a1—|—2a2—|—...—|—nan=n.

Now, the sign of ¥ (g(x)) times each term of the sum inside the braces in (2.4)
is, on account of (2.1) and (2.2),
(_1)2a1(_1)3a2 v (—1)@HDan (— 1)k
= (_ 1)a1+2az+-.-+"0‘n(_ 1)a1+az+~~-+an(_ I)L
— (_1)n+2k — (_1)n.
Thus, the conclusion (2.3) holds.
If we assume, in addition, that g’(x) > 0 and that strict inequality holds
throughout (2.2), we find that the right-hand side of (2.4) includes the
(strictly) positive term

(=1)"lg" )]"e™ (g (x))

(obtained by taking # = #; a1 =%, a2 = a3 = ... = a, = 0). Hence there
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is strict inequality in (2.3). To see that the same situation prevails when
¢ (x) < 0 and strict inequality holds throughout (2.1), we need only notice
that in this case the right-hand side of (2.4) includes the (strictly) positive
term

(=1)"g™ (x)¢' (g(x))

(obtained by taking 2 = 1,01 = a2 = ... = a1 = 0,0, = 1).
This completes the proof of Lemma 2.1.

Remarks. In the precise form given, Lemma 2.1 appears to be new. The proof
is modelled on that used in a slightly different situation [14, p. 95]. (In [14,
p. 95 (15)] there is a misprint: g® (¢) should be g®{c, (¢)}.) Duff [4, p. 472] has
recently proved the result in the case where N = o0 and ¢(x) = 0. His method
is similar to that given here, but does not make explicit use of the formula of
Faa di Bruno. Under the additional assumption that g(0) = 0 and that
I =[0,0), the lemma (again with N =) was proved by Bochner
[1, pp. 498-499], using a more complicated method. Subsequently, Schoenberg
[21, p. 833, Theorem 8] extended Bochner’s result and proved a converse.

Next we need a generalization of [12, Lemma 2.2], where the special case
W(x) = 1 was considered. In the proof we use both [12, Lemma 2.2] and
Lemma 2.1 above. An alternative but longer proof, following the lines of the
proof of [12, Lemma 2.2], but avoiding the use of our present Lemma 2.1,
could also be given.

LemMmA 2.2. Let p(x) and W(x) be N-times diferentiable functions on an
interval I. Suppose that, for x € I,

(2.5) (=1)yp®(x) >0 (n =0,1),
(—1)"p® (x) = 0 (n=23,...,N),
(2.6) W) >0, (—1)"W®(x)=0 (n=1,2,...,N).

Map I onto an interval of a variable t, through the relation x'(¢) = p(x). Then
on this t-interval, we have for any o > 0,

2.7 (=)D (W ){p )] >0 (m=0,1,...,N).

If strict imequality holds throughout (2.6), the condition p'(x) < 0 may be
weakened to p' (x) < 0.

Proof. We know, from an extension found in [18] of [12, Lemma 2.2], that,
under the hypothesis (2.5),

(2.8) (=)D [{p=)}71 > 0 (mn=20,1,...,N).
In particular, for ¢ = 1,
(2.9) (=1)y**+ix®™ () > 0 m=12...,N4+1).
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Thus, using Lemma 2.1, we have

(2.10) (=1)*DFWx)] =0 k=0,1,...,N).
Leibniz’s formula for the nth derivative of a product shows that for each
n=201...,N,

@1) (—1DIWE(p@))
- 3 (1) v,

It is clear from (2.8) and (2.10) that the right-hand side of (2.11) consists
entirely of non-negative terms and includes the positive term

(=)W @)D {{p )]

Hence (2.7) holds.
Suppose now that we replace the hypothesis p’(x) < 0 by p’(x) £ 0, and
that we replace (2.6) by

(2.6") (=1)y"W™(x) > 0 m=0,1,...,N).

The result of [18] is not applicable and so we cannot make the assertion (2.8).
However,

(2.8") (=)D {p@)}] =0 (n=0,1,...,N),

from [12, Lemma 2.2, and p. 70, Remarks (i) and (ii)]. Hence,

2.9) @) >0, (—1)"*x™() =0 nm=23,...,N+1).

Using Lemma 2.1, modified as in its last sentence, we have
(2.10") (—1)*D W) >0 (k=1,2,...,N).

From (2.8) and (2.10"), we see that the right-hand side of (2.11) is again a
sum of non-negative terms and that in the present circumstances it includes
the positive term (—1)"D/*[W (x)]{p (x)}°. Thus (2.7) again holds and the
proof is complete.

3. The principal results. Throughout this section we suppose that y;(x)
and y,(x) are linearly independent solutions of

(3.1) Y+ flx)y =0
in some open interval I. We define
px) = )] + D))

and suppose that for some positive integer N, p®™ (x) exists in the open
interval I. We use y(x) to denote an arbitrary non-trivial solution of (3.1)
on I, and denote by {xi, xs, . . .} any finite or infinite increasing sequence of
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consecutive zeros on I of a non-trivial solution z(x) of (3.1). In most applica-
tions of our results, z(x) will be taken to be y(x), as is the case in the earlier
papers [12;13]. Also, {x//, xs’, ...} denotes any finite or infinite increasing
sequence of consecutive zeros of 2’ (x) on I. The function W(x), defined on I,
is assumed to be differentiable as many times as may be necessary in the
context in which it is used. For fixed X > —1 (this restriction is to assure
convergence of the integrals) we define (for suitable W(x))

3.2) M, = MJ(W;)\) = f" W)y de  (=1,2,...).

The symbol M, also occurs frequently in the following; its meaning will
be analogous to that of My (¢ = 1,2,...) and obvious from the context.
In case f(x) > 0 on I, we define, again for fixed A\ > —1 and suitable W (x),
(3.3) M, = M, (W;\)
1?;: +1 1
- [T wey@Urerita k=120,
zp’

We then have the following result.

TuaeoreM 3.1. (1) Suppose that, for x € 1,

3.4) (=1)yp®(x) >0 n=0,1);
(=1)p™(x) = 0 n=23,...,N),
(3.5) Wi(x) > 0, (—1)"W™(x) 20 m=12,...,N).
Then
(3.6) (—1)*A"M, > 0 m=0,1,...,N;k=1,2,...).

The conclusion (3.6) remains true if the hypotheses (3.4) and (3.5) are replaced
stmultaneously by

3.4) p(x) >0, (=1)"p™(x) =20 =12 ...,N),
(3.5") (1) W™ (x) >0 n=0,1,...,N).

Finally, all of the above remains true if the factors (—1)* are deleted simul-
taneously from (3.4), (3.5) (or (3.4'), (3.5")) and (3.6).

Proof. The proof is similar to that of the first part of [12, Theorem 2.1],
which deals with the special case where W(x) = 1 and z(x) = y(x). We
normalize the solutions v;(x) and v, (x) so that their Wronskian is 1 and then

tThe quantities My and M/, discussed in Theorems 3.1, 3.3, and 3.4, are defined by (3.2)
and (3.3), respectively. These involve the functions y(x), explicitly, and z(x), implicitly. These
functions, it should be recalled, are arbitrary non-trivial solutions of (3.1) and may or may
not coincide with one another, at the convenience of the user. Moreover, neither one need
have any particular connection with the functions y;(x) and y»(x) used in the definition of p(x).
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apply [12, Lemma 2.3] to show that the change of variables y (x) = [p (x)]*u (),
p(x) = «'(t), transforms the differential equation (3.1) into

W () + u(t) = 0.

Since p(x) = «’'(¢t) > 0 on I, there is a one-to-one correspondence between
the zeros of z(x) and those of v(t) = [p(x)]%z(x). But v(t) = A cos(t — b),
where 4 and b are constants, so that the consecutive zeros f;, of v(¢) are equi-
distant from one another with Af, = = (k = 1, 2,...), where ¢, is the zero of
2(¢) corresponding to xp. If y(x) = 2(x), then u(¢) = v(¢).

Thus, (3.2) becomes

Mk _ J‘ttku [W{x(t)}][x,(t)]u%)\!u(t)l)\ dt,

k

and, as in [12, p. 60], it follows that

RISt N )
o, = [T AN WO O @) a,
1
where A, F(t) = F(t + ) — F(t). A mean-value theorem for higher differences
and derivatives [20, p. 55, no. 98; 9, p. 74] implies that

A'My = =" ftkﬂ (D MWt + onm)]lx' (¢ + onm) P ()t

k

where 0 < 6(¢) < 1. Lemma 2.2 shows now that
(=1D)"a"M;, > 0 m=0,1,...,N;k=1,2,...).

If the hypotheses (3.4) and (3.5) are replaced by (3.4") and (3.5"), the
same result follows on using the modified form of Lemma 2.2 described in its
last sentence.

The final assertion of the theorem follows on making obvious changes in
the above proof; modified forms of Lemmas 2.1 and 2.2 in which the factors
(—1)* are deleted and p’(x) < 0 (=£0) is replaced by p'(x) > 0 (Z0) can
be employed.

This completes the proof of Theorem 3.1.

Taking A = 0 and W(x) = @’ (x), Theorem 3.1 can be stated as follows.
COROLLARY 3.1. Let p(x) satisfy (3.4) on I and suppose that

B.7) w'x) >0, (=)™ (x) = 0 m=12,...,N;x €1I).
Then
(3.8) (—=1)*A"w(x;) > 0 m=0,1,..., N;k=1,2,...).

The result remains valid when (3.4) is replaced by (3.4), provided strict
inequality holds throughout (3.7).
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The following analogous result holds as well.

COROLLARY 3.2. Let p(x) satisfy (3.4) on I and let w(x) be a function on I

for which
(3.9) (—=1)"w®+D (x) > 0 (n=0,1),
(=)™ (x) = 0 n=223...,N).
Then
(3.10) (—1)"A"'(x) > 0O mn=0,1,...,N;k=1,2,...).

The result remains valid when (3.4) is replaced by (3.4'), provided strict
inequality holds throughout (3.9).

Proof. We have A%’ (x;) > 0, by hypothesis (3.9). Moreover,

—aw) = [ e @) i,
and, since ’

—w' (x) > 0, (—1)"D[—w"(x)] 2 0 nm=12...,N—1),
we see, from Theorem 3.1, that
(=1)"A*(— Aw' (x)) > 0 mn=01...,N—1).
Thus (3.10) holds and the proof is complete.

Corollary 3.2 generalizes a result given by Widder [27, p. 158, Theorem 11d]
to the effect that if W(x) = @’ (x) is completely monotonic on a < x < 0
and if 6 is any positive number, then the sequence { W (a 4 %)} (n = 0,1,...)
is completely monotonic. To obtain Widder’s result we need only apply
Corollary 3.2 to the differential equation (3.1) in the case in which
f(x) = =%/8%, where p(x) = 1, since (when N = c0) strict inequality prevails
throughout (3.9) for non-constant W (x) [3, p. 98; 12, p. 72].

For these corollaries, companion results can be formulated arising from the
final sentence of Theorem 3.1.

Next we extend [12, (2.9)] which becomes the case w(x) = x of the following
theorem.

TraEOREM 3.2. Let p(x) and W (x) satisfy conditions (3.4) and (3.5) (or,
alternatively, (3.4') and (3.5")) for x € I and suppose that y(x) and y(x) are
non-trivial solutions of (3.1) having respective sequences of consecutive zeros
{x1, %2, . . .} and {&y1, %o, . . .} on I with x1 > %1. If W(x) = w'(x), then

(3.11) (—1)"A"w(xx) — w(&)} > 0 m=0,1,...,N;E=1,2,...).

The result remains valid if all factors (—1)* are deleted from (3.4), (3.5),
(or (3.4), (3.5")) and (3.11).

Proof. Making the same changes of variable as in the proof of Theorem 3.1,
letting 4y, t; + m, t1 + 2, . . . be the sequence of {-values corresponding to the
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Zeros i, X2, X3, . . ., and letting 7, &1 + 7, &1 + 2, ... be the sequence of
t-values corresponding to &1, &2, &3,..., we have # — f = 5, a number
independent of k. Moreover,

(=1)raw(x) — wE)
= (=DaMw(x () — wle(te — 7))}
= (=)D Mw(x (e + Onm)) — wx (b — 1 + 6nr)))

for some 6, 0 < 8§ < 1, on using the same mean-value theorem as in the proof
of Theorem 3.1. This can be rewritten as

A t+Onm
(1 8w) —w@)) =« [ (~1D M 0)] de

t+OnmT—n

It

ty+0nm
e U@ .

r+0nT—n

As in [12, p. 61], we see that n = # — #; > 0, and since the last integrand is
positive by Lemma 2.2, the result (3.11) follows.

Again the last sentence of the theorem follows by making obvious changes
in the above proof.

COROLLARY 3.3. The hypotheses of Theorem 3.2 imply, for w(x) > 0, that
(—1)"A [w () /w (®)]g > 0 (@>0;,n=0,1,..., N;k=1,2,...),
so that, in particular, with &, = X1,
(= 1)"A" [w (xq1)/w ()]} > 0 a@>0n=01...,N;kE=12...).

Proof. Under these conditions, w(x) may be replaced in (3.11) by « log w (x),
as may be seen from Lemma 2.1. Moreover,

(—1)"A% () > 0 (mn=01,...,N;k=12...)

for ¢(x) absolutely monotonic (i.e., its successive derivatives are all non-
negative) on a suitable interval, whenever

(—1)* A", > 0 (n=01...,N;k=1,2...).
(Thiscan be established by minor extensionsof known results [27, Chapter IV].)
Here ¢(x) = ¢*.
Remark. For the case a = 1, the inequalities of Corollary 3.3 can be

demonstrated particularly simply. Here

w(xy) ~ 1
W) [w(xr) — w(xk)]m

Now, Lemma 2.1, with ¢(x) = 1/x, in conjunction with Corollary 3.2, shows
that (—1)"A"1/w(x)} >0 (w=0,1,...,N; k=1,2,...). The result
follows since multiplication and addition preserve these properties.

+ 1.
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If the interval I is (¢, ), the principal result of [13] may be extended so
as to give an analogue of Theorem 3.1, in which higher monotonic properties
of the sequence {M}} are deduced from properties of the function f(x) rather
than from properties of p (x). The precise statement follows.

TurorEM 3.3. Let the interval I be (a,0)(—w0 < a <o), and let N = 2.
Let the function f(x) in equation (3.1) satisfy 0 < f(©) < o0, and let

(3.12)  f(x)>0, (=1)fei(x) = 0 n=1,2...,N)

for x € (a,00). Let

(3.13) W) >0, (—1yWOx) =0 @m=12...,Na<x<w®).
Then

(3.14)  (—1)*A*M, > 0 m=01,...,N;k=12...).

1,
The hypothesis f'(x) > 0 may be weakened to f'(x) = 0, provided strict
inequality holds throughout (3.13).

Proof. As in the proof for the case W(x) = 1, « = 0 [13], we use results of
Hartman [5, Theorem 18.1, when f(00) < o0 ; Theorem 20.1, when f(c0) = 0],
with # = N, to show that, under hypothesis (3.12) (even with f'(x) = 0),
equation (3.1) has linearly independent solutions y;1(x) and ys(x) on (¢,0)
such that for p(x) = [y1(x)]* + [va2(x)]?,

(3.15) p(x) > 0, (—D)"p™(x) =0 m=1,...,N).

(Hartman’s work refers to the interval (0,00), but a translation of the
variable x shows it to be valid for the interval (¢, ), for ¢ finite.) Hence the
last sentence of the theorem follows from the modified form of Theorem 3.1,
in which the hypotheses (3.4") and (3.5") are assumed.

The principal assertion of the theorem follows from the principal assertion
of Theorem 3.1, on noting that, under hypothesis (3.12), p'(x) < 0 in (3.15).
For, suppose that there were a point x, such that p’(xy) = 0. Then, since
" (x) =2 0, we would find that p'(x) = 0 on [x¢,20) and so p(x) would be
constant on this interval. IFrom [12, Appendix 2, p. 72] it follows that f(x)
would be constant on {x¢,00 ), contradicting the assumption that f’(x) > 0 on
(a,00). This completes the proof of Theorem 3.3.

Corresponding analogues of Corollaries 3.1 and 3.2 and Theorem 3.2, in
which hypotheses on f(x) replace those on p(x), can also be formulated and
proved.

Vosmansky [25] proved a theorem relating the higher monotonic behaviour
of the sequence { M;} (as defined by (3.3)) in the special case where W (x) = 1,
and y (x) = z(x) to the higher monotonic behaviour of f(x). His result can be
extended to the following.

https://doi.org/10.4153/CJM-1970-142-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-142-1

STURM-LIOUVILLE FUNCTIONS. III 1249

THEOREM 3.4. Let the interval I be (¢,00) and let N = 4. For the function f(x)
m equation (3.1), suppose that

(3.16)  f(x) > 0,f (x) > 0, (—=1)"f"*+V(x) 2 0

n=1,2,...,N), a<x <o,
Let
B.17) W) >0, (=1 W®(kx) =0
m=12...,N—2),a<x <.
Then
(3.18) (—=1)A"M, >0 m=0,1,...,N—2;k=1,2,...).

The hypothesis f'(x) > 0 may be weakened to f'(x) = 0, provided strict
inequality prevails throughout (3.17).

Proof. We use Vosmansky’s method but are able to avoid his complicated
lemmas [25, pp. 105-107, Lemmas 1, 2] by using general results on N-times
monotonic functions (in particular, Lemma 2.1).

As shown by Vosmansky [25], the function ¥ (x) = 3’ (x)[f(x)]~? satisfies,

on (a,0),

(3.19) V" 4+ Q)Y =0,

where

(3.20) Qx) = flx) — &[f )/ f)]* + 3f" (%) /f (x).

Lemma 2.1, with its g (x) replaced by f(x) and its ¢ (x) replaced by 1/x, shows
that 1/f(x) is (V + 1)-times monotonic on (¢, ). Hence [f' (x)/f(x)]? is
N-times monotonic, since the product of N-times monotonic functions is
N-times monotonic. Thus D,[—2{f (x)/f(x)}?] is (N — 1)-times monotonic.
Similarly, we find that D.[3f" (x)/f(x)] is (N — 2)-times monotonic. Thus,
(3.16) implies that

3.21) Qx)>0, (=1)'Q"+b(x) =0 n=12...,N—2)

fora < x <o0.

It is clear from (3.16) that f(c0) > 0, and since Vosmansky has shown that
Qo) = flo), we have 0 < Qo) £ 0.

The result (3.18) now follows on applying Theorem 3.3 to solutions of
equation (3.19). Similarly, the last sentence of the present theorem follows
from the last sentence of Theorem 3.3.

An analogue of Theorem 3.2 for zeros of ¥’ (x) and %' (x) can be formulated
readily, and proved as was Theorem 3.2.

4. Remarks. (i) The results in § 3 have either *“ > " or ‘“ = " in their
hypotheses and ‘“>"" in their conclusions. It is possible to obtain similar
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2]

results with ““Z” in the conclusions if we have only “2=" throughout the
hypotheses. However, we must retain strict positivity of $ (x) in Theorems 3.1
and 3.2. (See [12, p. 70, Remark (i)].)

(ii) In Theorem 3.1 we dealt with only those zeros of solutions of (3.1)
which lie in the open interval I. This was primarily for ease of statement. As
remarked in [12, p. 70, Remark (ii)], we may extend our results to zeros
which lie at an end-point of the closure I* of I, provided p (x) is bounded away
from 0 as x approaches the end-point. This is to ensure that there is a one-
to-one correspondence between the zeros of z(x) and those of 2(¢). The function
W(x) must be chosen in such a way that the integral defining M;(W;\)
converges, in case one of its limits of integration is an end-point zero. An
examination of the proof of Theorem 3.1 shows that no other extra hypotheses
are needed to extend the results to end-point zeros. For example, in the proof
of Theorem 3.1, we use a mean-value theorem for higher derivatives and
differences to show that the integrand in

t
[ Ol OF ) de

%
is positive throughout the interval of integration. It is sufficient that it be
positive throughout the interior of this interval. Hence, there is no need to
apply the mean-value theorem in the case where (say) ¢t = #, and no difhculty
arises when f;; corresponds to an end-point of the interval I*. In particular, it
is not necessary that p(x) or W (x) be continuous at such a point.

(iii) Theorems 3.1 and 3.2 are valid for each N = 0,1,2,... . On the
other hand, we assume in Theorem 3.3 that N = 2. This is because the proof
uses the fact that p’’ (x) = 0, a consequence of f""(x) = 0. It is not necessary
to use this fact to prove the modification of the theorem noted in its last
sentence, so that this form of our result is still valid in case N = 1. Thus, if we
assume that f/(x) = 0, f"(x) =0, W(x) > 0, W(x) < 0,0 < fleo) =0, we
obtain AM; < 0. A similar remark applies to the case N = 3 in Theorem 3.4.

(iv) Theorem 3.3 implies that the sequence {M,;} is completely monotonic
when the function f’(x) is positive and completely monotonic on I, provided
0 < f(@) = oo, and when W(x) satisfies (3.13) with NV = oo. The converse is
not valid. To see this we consider the equation

Y (e =)y =0 (-0 <x<0); y(x) = €.(e)
[26, p. 99, (21)], in the notation of §5. Here, f/(x) = 2¢*® is absolutely

monotonic on (—00,00), so that the hypotheses on f(x) in Theorem 3.3 are
far from being satisfied. On the other hand, if

Mk=fk+l W) | €. ()| dx A>—-1;k=1,2,...,
Tk
where x;, = log ¢, B = 1,2, ..., are consecutive zeros of & ,(¢*), then
Crik +1 1 N
(4.1) M, = f Wlog ) MNEE, ()| dt.

Ccyk
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If W(x) is positive and completely monotonic on (x; — ¢,©), € > 0,
Lemma 2.1 implies that W(log ¢)t-*"® is completely monotonic on
(¢ — €,00), for some ¢ > 0. Thus, if || > 3, Corollary 5.1 (to be proved
in the next section) may be applied to the expression (4.1) for M, to show that

(=1D)"a"M; > 0 n=01...;k=1,2,...),
although f(x) = €** — »? does not satisfy the hypotheses of Theorem 3.3.

5. Applications to Bessel and generalized Airy functions. Throughout
this section %, (x) is a cylinder (Bessel) function of order », whose positive
zeros, in increasing order, are ¢,1, €2, ... . Lhe symbols d,1, d,2, ... denote
the positive zeros in increasing order of any cylinder function of order »,

possibly % ,(x) again. As usual, j,; is the kth positive zero of J,(x).
The principal result of this section is the following.

THEOREM 5.1. Suppose that |v| > % and that
(5.1) W) >0, (—1)"W™®x)=0 r=12,...,N),6<x <00,
where 0 £ 6 < d,;.

Let
dy.k +1
(5.2) M, = M.(W;\) =f W) E @) de  (R=1,2,...)
dyl:
for some fixed N\ > —1. Then
(5.3) (—1)"A"M, > 0 n=01,...,N;k=1,2...).
The result (5.3) remains true in case |v| = %, provided strict inequality holds

throughout (5.1).

Proof. The proof is based on [12, proof of the first part of Theorem 3.1] to
which it reduces in case W) =1, dy=c¢x (k=1,2,...) and N =o0.
As in [12], we consider the differential equation satisfied by x*% , (x) and take

(5.4) px) = 3mx{[J,(x)]* + [V.(x)]3.
It is shown in [12, p. 62] that if |»| > 3, then
(=1)"p™(x) >0 n=01,...,N,...).

Hence, in this case (5.3) follows on applying Theorem 3.1. In case |[v| = 3 we
have p(x) = 1, so that (5.3) follows again from Theorem 3.1, under the
hypotheses (3.4') and (3.5").

If N = 2, an alternative and shorter proof can be based on Theorem 3.3.

COROLLARY 5.1. Let |v| > % and let W(x) be a positive, completely monotonic
Sfunction on (8,00), where 0 = 6 < dy1. Let { My} be defined by (5.2). Then

(5.5) (—1)"A" My > 0 (n=0,1...;k=12...).
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The result (5.5) remains true in case |v| = %, provided W (x) is not constunt
on (§,00).

Proof. In case |v] > 3, the corollary is the case N = o0 in Theorem 5.1. The
same is true in case || = %, but in this case it is necessary to use the remark
that if W(x) is a non-constant completely monotonic function on (0,00 ),
then in fact

(=)W (x) >0 (n=01,2...), 0<x<oo.

This property of completely monotonic functions is proved in [12, p. 72]. It
had been established earlier by Dubourdieu [3, p. 98].

Remark (ii) of § 4 on end-point zeros may be applied to the case % ,(x) =
J,(x) when v = %. For such », p(x), as defined by (5.4), is bounded away
from 0 as x — 0+. Moreover, for these », x%J,,(x) has a zero at xy = 0.
Denoting this zero by j,, we have the following supplement to Theorem 5.1.

THEOREM 5.2. Suppose that v > %, and that X > —1. Let W (x) be a function
on (0,00) which satisfies (5.1) with 6§ = 0, and also W(x) = O(x*),
e> —1— (G4 v\, asx—0+. Let

Jvik +1 N

(5.6) M, = f W(x)x™| T, (x) | dx (k=0,1,..)).
Jvk

Then

(5.7 (=1)"A"M; > 0 mn=0,1,...,N;k=0,1,...).

The result (5.7) is valid for v = %, provided strict inequality prevails throughout
(5.1), again with § = 0.

Next we apply Theorem 3.3 to certain generalized Airy functions, i.e.,
solutions of

(5.8) y'" 4+ By = 0,

where 1 < 8 £ 3/2 [12, p. 63]. The solutions y (x) of (5.8) are expressible in
terms of cylinder functions:

y(x) = x%(gll(w) (x#).

Theorem 3.3 implies an extension of [12, Theorem 4.1] which, in part, can
be formulated as follows.

THEOREM 5.3. Suppose that 1 < 8 = 3/2 and that W(x) 1s positive and
completely monotonic on (§,00), 0 = § < xy. Let

M, = f W) | B ) d E=12..)
Zr

for X\ > —1, where x5, denotes the kth positive zero of some solution of (5.8)
(e.g., xr, = (C) /8, where 28 = 1/v). Then

(=1 A M, > 0 (n=0,1,...:k=1,2_..).
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Remarks. (i) It is possible to formulate an analogous result in which W (x)
is assumed to be N-times monotonic.

(ii) In case €1, (x) = J1,e8 (x), Theorem 5.3 may be extended (by
considering the corresponding p(x) and using the remark (ii) of §4), to
include the zero of Ji,cs (x) which occurs at x = 0.

(iii) The remaining part of [12, Theorem 4.1; namely formula (4.3)] can
be generalized by using Theorem 3.2 above.

By combining Theorems 5.1, 5.2, and 5.3 we obtain the following result for

Bessel functions of order », || = 3.

THEOREM 5.4. Suppose that |v| = % and that \ satisfies both N = 0 and
N2 |y|"t — 2, with N\ > O when |v| = §. Then

(5.9) (—1)"A"{ f %(x)i*dx} S0 m=01,.. :k=12..)

If, in addition, v = %, then

(5.10) (—1)"A"{ fjkh ]J,(x)lxdx} >0 (m=0,1,...;k=0,1,...).

Proof. For |v| = 3, (5.9) follows from Corollary 5.1 on taking
A = Cuy (B=1,2,...)

and W(x) = x~*, which is completely monotonic since A = 0. Similarly, for
v = %, (5.10) follows from Theorem 5.2. For the range 3 < » < %, (5.9) is a

consequence of Theorem 5.3, with » = 1/(28) and W (x) = 8~ which is
completely monotonic since X = |»|7! — 2. In the range —3% <»v £ —13,
C,(x) = AJ,(x) + BJ_,(x) = BJ_,(x) + AJ,(x), i.e. €,(x) is some € _,(x)
with different (in fact, interchanged) constants 4, B. But 3 < —v < 3, so that
%,(x), with —% < » £ —1, becomes a function for which (5.9) has been
established. Thus, (5.9) holds also for 3 £ |[v| < 3. Incase 1 £ » < 4, (5.10)

follows from remark (ii) following Theorem 5.3. B

Remarks. Theorem 5.4 (with X = 1) shows that the sequence of areas under
the arches enclosed between the non-negative zeros of |%,(x)| is completely
monotonic, in case |v| = 3. In particular, the sequence of these areas is
decreasing. This last fact was proved for |»| > % by Makai [17] and, earlier,
in the special case € ,(x) = J,(x) by Cooke [2] for the overlapping range
v > —1; (cf. also [6, pp. 511-512] and [7]).

It is worth noting that (5.9) and (5.10) cannot be extended by considering
the respective integrands |4, (x)|* and |J,(x)* for our usual range X\ > —1.
In fact, if ¥ < |y| < %, these results are false for N = 0, since by the Sturm
comparison theorem [22, pp. 173-175], A%, > 0 for || < 5, k= 1,2,....

When |v| = 1, our hypotheses require X = 1. Thus, the question arises as
to the greatest lower bound of the set of values of X\ for which (5.9) and (5.10)
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remain valid for given ». Correspondingly, it would be of interest to determine
the greatest lower bound of the set of values of |»| for which these inequalities
hold for given \. This is of particular concern for A = 1, involving the areas
of the successive arches of %, (x), since it would indicate how far the results
of Cooke [2] and Makai [17] can be extended.

Finally, we exhibit several additional completely monotonic sequences
involving Bessel functions. They are interesting partly because of their
simplicity and, in most cases, even more because their range of validity is
not the customary range |»| = 3. For the first four such sequences, the range
is |v] = 3.

(x) Each of the sequences whose kih term is given by (5.11), (5.12), (5.13), and
(5.14), respectively, is completely monotonic for |v| = %:

(5.11) (cor)™ (@ > 0),

(5.12) (log cp)™® (o > 0), provided c,; > 1,
(5.13) (v p41)* — (Con)® (0 < a = min{1, 2|»]}),
(5.14) log (cyp41/Cot),

E=1,2,....

As applied to (5.11) and (5.12) for the range |v| = 3, the statement (x)
follows from Corollary 3.2 with W(x) = @' (x) = x~* and W(x) = @' (x) =
(log x)~*, respectively. (That the second choice of W(x) is completely mono-
tonic is seen from Lemma 2.1, with g(x) = log x and o (x) = x™=.)

For the range 3 =< v < 3, the assertions concerning (5.11) and (5.12)
follow from applying to the differential equation (5.8) the corollary to
Theorem 3.3 which is analogous to Corollary 3.2. The function ' (x) is taken
to be x™® and (log x)~*, respectively, 8 > 1. The transition to the case
—% < v £ —% can be done as in the proof of Theorem 5.4 and as in the
remark (i) below.

To the cases (5.13) and (5.14), Corollary 3.1 can be applied when |»| = %,
with @' (x) = 2=, 0 <a =1, and @' (x) = 1/x, respectively. When
3 < v < 3, the analogous consequence of Theorem 3.3 suffices, with
w (x) = x4, 0 <a = 1/8 =2, for (5.13), and, again, »’'(x) = 1/x for
(5.14). Again, the range —% < » < — % can be handled as above.

Remarks. (i) The sequence
(5.12%) { (log ¢.x)™% (@>0;k=2,3,...)
is completely monotonic when |»| = %. A reading of the proof for (5.12) shows

that the present assertion holds if ¢,» > 1 for |»| = %. This inequality obtains,
in fact, for all ».
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For » 2 0, we have ¢,2 > j,1 2 jo1 > 2.4, from the interlacing theorem
[26, § 15.24, p. 481], since 7,1 is an increasing function of » [26, p. 508 (2)].

For |»| = %, the Sturm comparison theorem implies that c,, — ¢,; = ,
whence ¢,2 > .

There remains only to consider the range 0 > » > — 4. Here, an arbitrary
cylinder function % ,(x) = J,(x) can be expressed as

€, () = AT, (x) + BJ_,(x) = BJ_,(x) + AT, (x) = €_,(x), B #0,

where % _,(x) is a cylinder function of order —», 0 < —» < %. But for this
range it has already been shown that ¢, = ¢_, s > jo1 > 2.4. When
C,(x) = Ju(x), —3 < » <0, wehave j,2 > j1. = (3/2)r > 4.6.

Hence ¢,» > 2.4 > 1 for all », and the complete monotonicity of (5.12) is
established.

(ii) The sequence {(log j,x)™ (@ > 0;k = 1,2,...) is completely mono-
tonic for » = § and for —3 £ v £ — 3§, since j,1 = j_31 = 37 > 1forsuchy.
Similarly for { (log y,;)™ (@ > 0;k = 1,2,...) when » = %, where v,; is the
kth positive zero of V,(x).

(iii) In (5.13) taking @ > 1 would destroy the complete monotonicity of the
sequence, since (5.13) becomes infinite with & for @ > 1 (26, p. 506].

(iv) The sequence {exp(—acu)} (> 0;k=1,2,...) is completely
monotonic for |»| = %. This follows from Corollary 3.2 with @' (x) = e,

(v) The asymptotic expression for c,; (v fixed, # — ) suggests that the
statement (*) concerning (5.11)-(5.14) may hold for all », at least for
sufficiently large k.

(vi) Sequences similar to (5.13) and (5.14), but arising from the zeros of
two different Bessel functions of the same order, can be shown to be completely
monotonic by choosing w’ (x) appropriately in Theorem 3.2. This provides a

1

generalization of [12, p. 63, (3.9)]. Thus, e.g., for || =2 %, the following

sequences are completely monotonic (¢ = 1, 2,...):
{jvka — yyk“} O<a= min{l, 2]11“)
and
{log (ju/y )} -

This implies the complete monotonicity of { (ju/yw)4 (@ > 0), || = %, as
can be shown by an argument similar to the proof of Corollary 3.3. Here
o(x) = e

Similarly, it follows that the sequence { (¢, y11/¢)% (@ > 0) is completely
monotonic for |»| = %.

Other choices of W(x), coupled with special properties of particular
functions, generate additional completely monotonic sequences. Thus, with
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W) =a%7 2 -} \=1,

(5.15) My (W;1) = f T Wt € al)| d

v+1.k

Il

Sy +1,k +1
f x " C o) dx
Cy+1+k

f

Cy+1,k +1
f D {x7" €. (x)} dx
Cy+1+k

l(cv+1,k+l)_y (gv(cv+1,k+1) - (CH—I,I:)_” Cgv((;w{-l.k)ly
k=1,2,...,

yields a completely monotonic sequence. This sequence is of some interest in
that it involves values of v, namely § > » > — 3, excluded from most previous
results on complete monotonicity associated with Bessel functions. (We
remark, in passing, that standard asymptotic expansions suggest that even
more may be true, namely that the sequence

{1 Cor1.0)7"C s (Copr)} k=1,2...),

may be completely monotonic for » = —3.)

Two special cases present quite simply expressible completely monotonic

sequences.
For » = 0, (5.15) becomes the completely monotonic sequence
(516) {|(50(61,k+1) - %0(61);)”’ (k = ]., 2, .. )

For » = , we obtain the completely monotonic sequences whose respective

kth terms are
(5.17)  |cos(fss2 k1) — cos(fasoe)
= |1+ fipas)™F — (L4 fipa)7 (k=1,2,...)
and
(5.18)  [sin(¥s/2,641) — sin(ysjo1)]
= |1+ yg/z,k+1)_% - 1+ y§/2‘k)“%| (%
on taking %1 (x) to be Jy(x) and Y3 (x), respectively, since

It

—
o
N~

tan (f3/2,6) = Jason and —cotysex = Yo k-

6. A Bessel function inequality. As an application of Theorems 5.2 and
5.3, we obtain the following extension of an inequality, established in [15],
which arose in a problem of numerical analysis [28].

THEOREM 6.1. Let v = % and let q be a number such that g < v + 3/2. Suppose
also that g > Qin casev = %, and thatq = —3v + 3/2incase § < v < §. Then

oo 1 jy 1 Yo N
(6.1) f x T, (x) dx < f ' 7T, (x) dx < ZJ x0T, (x) dx.
0 0 0
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Proof. The hypothesis ¢ < » + 3/2 guarantees the existence of the integrals
involved in (6.1) at the end-point x = 0. Since ¢ > 0 for all » considered, the
infinite integrals converge.

We let

Ty k1 N
ar = f x7 T, (x)] dx k=0,1,...).
Jvk

Using Theorem 5.2, with A = 1, and W(x) = x~¢, we find that
(6.2) (=1)"A%a;, > 0 (n,k=0,1,...)

can be formulated more briefly by using (6.2) for all #.) Theorem 5.3, with

W(x) = x—3/2+3/Un—a/2n and A=1,

in case » =2 §. (Actually, (6.2) is needed only for #» = 0, 1, 2, but the proof

and the remark on end-point zeros which follows the statement of
Theorem 5.3, show that (6.2) holds also in case 3 < » < 1.
Moreover,
(6.3) lim ap = O,
k00
since x¥~¢J,(x) — 0, as x —00, and 7,41 — ju is bounded as & —o0, for
fixed ». Now

s= 2, (=D'a =f 0T, (%) da.
k=0 0
Obviously,
(6.4) s < ao.

As a consequence of a result given by Knopp [8, p. 270, Exercise 119], (6.2)
and (6.3) imply that

(65) Qo < 2s.

The inequalities (6.4) and (6.5) are equivalent to the desired (6.1), so that
the proof is complete.

In Knopp's exercise, it is necessary to make an additional assumption for
strict inequality to prevail in his result. It suffices in the present instance to
have Aaq < 0 and this follows from (6.2). It must be noted that Knopp uses
Aay to denote a; — @41, s0O that our notation differs from his.

The right-hand inequality in (6.1) extends the result of [15], where it was
proved for ¢ = 1 and » = 3/2.

The inequality arose in a problem on stability of least square smoothing
considered by Wilf {28]. An alternative approach to this problem, using
Legendre polynomials rather than Bessel functions, has been provided by
Trench [23; 24]. A conjecture (and numerical supporting evidence) concerning
a complete monotonicity property connected with (6.1) is contained in

(15, § 2].
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7. Other applications. We may apply Theorems 3.1 and 3.2, in the
modified forms where (—1)" is deleted, to solutions of the Euler-Cauchy
equation

¥+ (a?/x%)y = 0, 0<x <00,

for a? > I and to solutions of the equation
Y+ [Pt — (n? = 1)/ (4x%)]y = 0, 0<x<oo,

where # is a positive integer. These equations were considered in [18], as
applications of less general results than those of the present work. The present
introduction of the function W(x) into the definition (3.2) of M, permits the
obvious generalizations of these earlier applications.

Theorem 3.3 can be applied to give more information than is found in [13]
on zeros of solutions of the confluent hypergeometric equation

y' 4 (a4 bx~t 4 cx2)y = 0, 0<x <o0,

still provideda > 0,6 £0,¢ 20,04 ¢ < 0.
In Theorem 3.4, it must be assumed that f(x) > 0 throughout (¢, ) in
contrast to Theorem 3.3 where no such assumption is made. Thus, for the

equation
2

y"+{1—” 3'}y=0, l»| > 3,

e

x
Theorem 3.3 gives information on all positive zeros of x*%,(x), whereas
Theorem 3.4, like Vosmansky’s result [25], gives information only on those
zeros of D,{x*% ,(x)} which fall in the interval ((»* — %)% 00).

However, this interval contains all, except possibly the first, of the positive
zeros of D,{x*% ,(x)} [10, p. 144]. When the first zero of this (differentiated)
function is preceded by a zero of & ,(x), the interval contains @/l the positive
zeros of D,{x*% ,(x)}, without exception [10, p. 144]. This has been shown to
be the case when %, (x) = J,(x) and » = 0 [10, p. 143], but it was pointed out
there that it is indeed possible for the first positive zero of D,{x*% ,(x)} to be
less than (»* — 1) It is pertinent to observe, however, that this does not
occur for €,(x) = Y,(x) when » = 1, i.e.:

(xx) All positive zeros of DAx*Y,(x)} exceed v > (v — 1) when v = 3, so
that all positive zeros of this function are covered by Theorem 3.4.

This assertion follows from the more precise inequalities

(7-1) Myl > my1 > jrll > v > (V2 - %)%r 14 > %!

where u,; is the first positive zero of Dr{x%Y,,(x)}, m,1, as in [10], the first
positive zero of D,{x}J,(x)} and, as usual, 7,,/, the first positive zero of J,’ (x).

All except the first of these inequalities, i.e., u,1 > 2,1, have been established
(10, p. 143 (4)]. This remaining inequality can be inferred from Nicholson’s
integral, a much deeper result than the ones required in [10]. Using this
integral, Watson has shown [26, p. 446] that [x%],(x)]? + [x*Y,(x)]? is a
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decreasing function of x when » > 3 (in fact, that its derivative is strictly
negative), for x > 0. On the other hand, [x%J,(x)]? is an increasing function
ofx,0 £ x £ m,.

Thus, [x*Y,(x)]? is a decreasing function of x, with non-vanishing derivative,
for 0 < x £ m,;, when » > %. Hence, its first positive extremum (occurring
a priori either at x = v,; or at x = m,1) cannot precede m,;. Thus, u,1 = m,;.

If 4,1 = m,1, then the Wronskian of x*J,(x) and x*¥, (x) would equal zero,
and this is false.

Therefore, u,; > m,; and (7.1) is proved.

As by-products of (7.1), there follow the inequalities

(72) Ve > Myl > yvll > Y1 > v, v > %)

also implying (#x).

That y,2 > w1 is clear. Also, u,1 # ¥,1, as can be seen from the differential
equation for y(x) = x*Y,(x). If w,u < v,1, it would follow that y(u,1), a
negative quantity, would be a relative maximum, so that the differential
equation would imply u,; < (»* — 1)} contradicting (7.1). Thus, p,1 > V1.

Now, x¥V,(x) is a positive, increasing function for y,; < ¥ < v,,. Hence,
o1 = v, If w1 = v,1, then y,; would equal this common value, as can be
seen on differentiating x*Y, (x). But y,.' > v,1 > » [26, p. 521] and so (7.2)
is proved.

8. The limiting case of M (W ;\) as A\ — —1+. In the definition (3.2) of
M, (W; \) it is necessary to require that X > —1, so as to assure convergence of
the integral. However, as [. M. Gel’fand pointed out, it is worthwhile to consider
the limiting case, A — —14-. His suggestion leads directly, as shown in this
section, to the discovery of interesting new sequences possessing higher
monotonicity properties.

The calculation of the relevant limit is facilitated by the following lemma.
In it, there is no requirement that y (x) be a solution of a differential equation.

LeMMA 8.1. Suppose that y(x) is defined over the closed interval [a, b], that it
vanishes only for x = x; and changes sigh at x = xy, ¢ < x; < b, that y'(x) exists
for a £ x £ b, that ¥'(x) and y'(x)g(x) are Lebesgue integrable over [a, b], that
g'(x) 1s Lebesgue integrable over [xy — 8, x; -+ 8] for some § > 0. Then

s.1) im [ ey @ @)P dr = elsn y0)),
(5.2) tim [ ug )y’ 615 v = g Tgn 501,
so that

(83) tim [ ug )y )56 d = 2w s 30
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Proof. We shall confine ourselves to the proof of (8.1), that of (8.2) being
quite similar, and shall consider only the case in which y(x) > 0, ¢ = x < x,;
the other case follows readily from this. Here sgn y(b) = —1, and so the right
member of (8.1) is —g(x;).

It is helpful to decompose the integral in (8.1) as follows:

Zk 4 Ik
f =f —l—f where ¢ = x;, — 6.
a a c

(i) First, concerning the first integral on the right, we note that
im [ s b@ s = {im wf{im [ @ber e
>0+ a w04+ \ps04 a

= {0}{ j:g(x)y’(x)[y(x)]ldx} = 0.

The passage to the limit is justified by the Lebesgue dominated con-
vergence theorem, since the integrand g(x)y’ (x)[y(x)]* ! is less, in absolute
value, than a constant multiple of the integrable function |g(x)y’(x)| when
a £ x £ ¢, y(x) being positive and continuous for these x.

(ii) In the second integral in the right member, the integrand can be
rewritten as g (x) D,{[y(x)]* and integration by parts utilized. Hence

S = [T ewman@ra
= @O - | BErye) d

- g0 — | g ar

= —g(xk) aSN‘*O‘l"y

since y(c) > 0 and y(x) is continuous throughout [c. x;], vanishing only at
x = x;. Again, the Lebesgue dominated convergence theorem justifies the
interchange of limit and integral.

This completes the proof of Lemma 8&.1.

Lemma 8.1 leads directly to the construction of new higher monotonic
sequences. However, it is convenient to modify slightly our earlier notation.
Throughout this section, we shall take M, (TW; \) to be

$k+1
(8.4) M(W;\) = W(x) |y ) dx N> —1;k=1,2,...),
$k
where {1, {9, . . . are consecutive zeros (in the open interval I) of a solution z(x)

of (3.1) linearly wndependent of y(x). The consecutive zeros of y(x) in I are
X1, X2, . . . wWith {1 < %7 < {o.
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In this notation we can state now the main lemma of this section.

LEMMA 8.2. Let M (W ) be defined by (8.4) and let W' (x) be integrable. Then

: . _ _W(xk)
(8.5) xililrllJr L4+ NM(W;x) =2 BeNR

Proof. In (8.3), putu = 1 4+ A, g(x) = W(x)/y' (x),a = {r,and b = §141. To
establish the existence of § > 0 such that g’(x) is integrable over [x;, — 6, x; -+ 6],
it is sufficient to note the existence of § > 0 such that y'(x) # 0 in this closed
interval. This is obvious, because y'(x) is continuous in [y, ¢1] C I, and
y'(x;) # 0, since the derivative of a non-trivial solution of (3.1) cannot vanish
at interior zeros of the solution.

The difference operator being a finite linear combination, Lemma 8.2 implies
the following result.

TraEOREM 8.1. If (—1)"A*M, =20 (n =0,1,...,N;k=1,2,...), where
My is defined by (8.4), with W’ (x) integrable and W(x) = 0, then

(8.6) (—1)"A"{ g’/((;:)) } 20 (m=1,2...,N;k=1,2,...).

If the factor (—1)" is deleted from the hypothesis, then (8.6) holds with the same
deletion. In particular, the hypothesis holds (and with it (8.6)) e.g., if the
hypotheses of Theorems 3.1 or 3.3 are satisfied.

Remark. 1t should be noted that strengthening the hypothesis by replacing
“=0" by “>0" does not appear to permit, in general, a corresponding
strengthening of the conclusion (8.6), due to the limit process. However, this
improvement can be made for an important class of differential equations of
type (3.1), satisfied, e.g., by Bessel functions of order more than %, Airy
functions, Coulomb wave functions, and the confluent hypergeometric function
for appropriate values of the parameter. A case in point deals with complete
monotonicity, where N =o0, for Sturm-Liouville functions defined over a
half-line.

The general result can be put as follows.

TuEOREM 8.2. If the differential equation (3.1) is oscillatory, with b = o, ' (x)
continuous and non-negative, Wix) >0, W (x) =0, 0 <x <0, and if
(=1)*A" M, =20 (k,n = 1,2,...), then

wand | W)
(8.7) (1A o

}>O nk=1,2,..,

unless f(x) is constant.

In particular, if (—1)f™D(x) =20, W) >0, (—1)"W®(k) = 0,
n=01..., a<x <o, and if 0 < fl@) =0, then (8.7) holds, again
provided f(x) is not constant.
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Proof. To prove this theorem, it suffices to show that its hypotheses, a
strengthening of those of Theorem 8.1, imply that equality can never occur
in (8.6) when IV =oc0. It has been shown [11] that if there should exist a
single pair of values of # and %k for which equality occurs in (8.6), when
N = o0, then

y/(xlc)

_ Ml/(xk-!—l)
¥ (%r41)

forallk =2,3,....
Clearly, ' (xz) and 9’ (xx41) are of opposite sign (¢ = 1,2,...), while
W(x) > 0, so that the above equality reduces to

W) _ W (x112)
7 - 7
v (k) ¥ (Xky2)
[t remains to show that the equality (8.8) implies, in the light of our other
assumptions, that f(x) is constant.
This follows from a formula of Wiman [29, p. 125 (15)] which states, in
our notation,

(8.8) (B=23,...).

Tk +2
[ (o)) — [y (x0)]* = J; [y () Tf’ () dx.
k
The left member cannot be positive, in view of (8.8), since W (x) is positive
and non-increasing. But the right member cannot be negative, since f'(x) = 0.
Hence, they must both be zero. Therefore, f'(x) = 0, x; < x < Xx42. Thus,
the function f(x) is a constant, as asserted.

Remarks. (i) The Wiman formula yields, in this way, a trivial inverse
theorem for Sturm-Liouville equations: If in (3.1), f(x) is a continuously
differentiable and monotonic funclion, a < x < 8, and there exists a solution
v (x) such that y(@) = y(8) = 0, |y (@)] = |y (B)| # 0, then f(x) s a constant,

a = x = 8.

(ii) In case the hypotheses of Theorem 8.2 are satisfied only for
n=12...,N, with N finite, 2 = 1,2,..., the conclusion holds for
n=12 ..., N —1, except that the word ‘“‘constant” needs to be replaced

by the phrase ‘‘eventually constant’” in both occurrences [19].

Similarly, under certain circumstances equality can be deleted from (8.6)
when NV is finite. It has been shown [19] that if equality occurs in (8.6) for
some pair of indices », k, wheren = N — 1,k = 1,2, ..., that |W(x) /3" (xx)]|
is eventually constant, i.e., constant for all sufficiently large k. This implies that

T/Tl/'(xk) — I/I’/(xlc+2m)
¥ () ¥ (Xrt2m)
for a fixed such k2 and all m = 1,2,... . A knowledge of the asymptotics of

the situation will often show this to be impossible. This would imply strict
inequality in (8.6), except possibly for n = N.
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Applications of Theorem 8.2 follow.
@) flx) =1—= 0= Dx % P[> 3 y@k) =2F,K).
When W(x) = 1, (8.7) becomes, for |»| > %,

. S
Cu}:% (gv,(cvk)

(8.9) (—1)"A”H }> 0 (k=1,2,...;pp > 1).

With W(x) = x—%, this result becomes

N AT 1 — . 1
(=1) A{ TR }> 0 mk=1,2,...;v > 1).

A familiar recursion formula [26, p. 83, (3)] permits recasting this last
inequality as

1
Cvk(gvvl(cvlc)

(8.10) (—1)"A"{ }> 0 mk=1,2,...; > ).

One point of interest attaching to this last inequality is that it discloses
higher monotonicity properties for Bessel functions of order between —1
and 3%, in contrast with most of our results which exclude precisely this range
of ».

(b) Further results of this character can be found, but for them it is con-
venient to revert to Lemma 8.1. To this end, let M, (W;\) for the Bessel
equation be considered for —1 < X\ < 0 and rewritten as

@Yk +1 1 A
(8.11) MW ) = f 7 )bt l(gx(ii i

dyy
with d,; < 6 < dyiy1 < €ypr1. For v < —3 and —1 < A < 0, the function
x— G+ is completely monotonic and so may be taken as the definition of the
function W(x) for our purposes. The resulting sequence

Aysk +1 A
Zlfk(W;)\)zf %Sﬂ dx (1l <A< Oyv< =LE=1,2,..)
dyk
is, then, completely monotonic, from Theorem 5.1. Hence, so too is the sequence
1
lim (1 4+ NM,(W;\) =2\ ———> k=1,2,...),
oLt ( ) k( ) Dz[x-vg”(x)] mcn ( )
where the limit has been evaluated by putting
p=1+2 y(@) = a7, (x), gx) = 1/y'(x)

in (8.3). But [26, p. 83 (4) or (6)], D,[x*%F ,(x)] = —x"F ,41(x).
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Thus, the sequence

Cvky
(8.12) {———} < —1:ik=1,2..)
@ rer(cm) ’
is completely monotonic.
For » = —1 this yields the special case v = 1 of (8.10) since

Cg—l(x) = —%I(X)
Finally, we apply Lemma 8.2, mutatis mutandis, to a modified form of
(3.3), namely
(;c+1 1y
s13) v = [ W@y @it k=120,
IC,

where ¢ < xi’ (< ¢he1 < x541) are zeros in [ of 2'(x) and y’(x), respectively,
z(x) and y(x) being linearly independent solutions of (3.1), and f(x) > 0. This
yields, with W(x) = 0,

(S.14)  lim (14 MM/ (W;))
Ao—14

mwwmwj y W ()

=2 77 7 = AT 7 k=1,2,...,
» ) ECYI )
where the last expression equals its predecessor since ¥ = —f(x)y.

Theorems 8.1 and 8.2, suitably construed, apply to the sequence in (8.14).
Proper choices of appropriate functions f(x) and W(x) then lead to further
sequences exhibiting higher monotonicity properties.
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