NON-LOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS
BUI AN TON

Let G be a bounded open set of R* with a smooth boundary dG. We consider
the following elliptic boundary-value problem:

Au =f onG; Bu= Y, LpCa on oG, j=1,..,m,
k=1

where A and Bj are, respectively singular integro-differential operators on G
and on 9G, of orders 2m and 7; with 7; < 2m; C) are boundary differential
operators, and L, are linear operators, bounded in a sense to be specified.
Let A, be the realization of A4 as an operator on L2?(G) with the above
boundary conditions. When the symbols ¢ 4, ¢; of 4 and B; satisfy a strength-
ened Shapiro-Lopatinskii condition, we show, in § 2, that 4, is a Fredholm
operator, the generalized eigenfunctions of A4, are complete in L2(G) and
(As + N)7! exists for large |\|, arg N = 0. We also prove the existence of a

solution of (4s + N)u = f(x, Tw, ..., Tep_1u), where T'; are bounded,
linear operators from W72(G) into L%*(G), f(x, ¢1, ..., {2m—1) has a linear
growth in (¢1, ..., {on1).

The proofs depend on a result on elliptic boundary-value problems {4 ; B}
containing a large parameter A\, which is given in § 3. The notation, the defini-
tions, and the results are given in § 1.

Non-local elliptic boundary-value problems have been studied by
Agranovi¢ (2), Beals (4), Browder (6), Schechter (8), and others.

1. Let G be a bounded open set of R"*, regular of class C* with boundary

dG. The generic point x of G is x = (%1, ..., %,). Set D; = 1719/dx,, j = 1,
., n. For each n-tuple a = (ay, ..., a,) of non-negative integers, we write:
n . n
D* = DS and |of = D a,
j=1 7=1

Let s be a non-negative integer; we denote by W*2(G) the space
We2(G) = {u: uin L*(G), Do in L*(G); |a| < s}

(the derivatives are taken in the sense of the theory of distributions). W*2(G)
is a Hilbert space with the norm
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and the obvious inner product. Set

el o2 = Cllel 182 4 N[l (5.2},
then

1

Hallls 5 (5 MEmllulins) = cllllls

(cf. Agranovic and Visik (3, p. 64)).

Let ¢x, k=1, ..., N, be those functions of the finite partition of unity
whose supports intersect the boundary dG. For s = 0, we define W*2(dG) as
the completion of C*(dG) with respect to the norm

N
[u]lt,e = (;1 H¢ku[[%w:2(m—l)>

where ||¢yu|| we.2(gn-1y is taken in local coordinates and is defined by means of
the Fourier transforms:

1
2
’

lmwwmm={LHa+m%wmmwF

The space W*2(dG) is a Hilbert space. It neither depends on the choice of
local coordinates nor on the choice of the partition of unity. We set

el e = (el 4 N e [522) 2,
We have that

el -3,z = Cllle][]s2-

Let #(x) be in C¥(Ry™), Ry® = {x: x, > 0}. Then the Hestenes formula
defines a smooth continuation L of # to Lu in C*(R*). If u is in W*2(R,"),
then HLMHW“z(R") = Cllul[Wsz(R+n), S = 0, e ey k.

DEFINITION 1.1. (i) A s said to be an operator of order k in W5 2(G) if A is
a bounded linear mapping from W2(G) into W**2(G). s and k are two non-
negative integers with s = k.

(ii) 4 s said to be an operator almost of order k — 1 on W*2(G) if A may be
decomposed into A = A + A/, where A/ is an operator of order k in W*2(G)
with norm less than e and A’ is an operator of order k — 1 in W*2(G). € is any
given positive number.

Consider the singular integral operators

Amin(x) = lim Vo — 9)|x — 9| "u@y) dy, u€ L*(RY),

-0 lz—y|>e

where Y,,;(x) are the spherical functions on the unit sphere in R".
Let o (x, £) be a positive homogeneous function of ¢ of degree 0. We expand
o(x, £) as follows:

a(x, 5) = Z;C 'Ymamk(x)ymk(g)y vo = 1.
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The operator 4 = Y ,.x Gmi(x) A associated with ¢ is a homogeneous
singular integral operator on R® with symbol . It is of class (p, q) if

o(x, £) € C(RY; W2 (2)),

where C?(R";W*2(Z)) is the space of functions f(x, ) on R" with values in
W2(2) and having x-continuous derivatives of order = p in W22(2). 2 is
the unit sphere in R".

DEFINITION 1.2. A singular integro-differential operator of class (p, q) of
order s in W*2(R"), s 2 k, is an operator of the form:

A=Y AD*+ T,
laj=s
where A, are homogeneous singular integral operators in R, of class (p, q), and
T is an arbitrary linear operator almost of order s — 1 in W*2(R"). A is homo-
geneous if T = 0.
The symbol of 4,

O'A(x! E) = ‘Z aa(x, E)Ea)

al=s

is a positive homogeneous function of order s with respect to £, on.(x, £) is the
symbol of A,.

DErFINITION 1.3. (i) A4 = RAL (where A is a homogeneous singular integro-
differential operator of class (p, q) of order s in W*2(R"), s = k, R 1is the
restriction operator of functions from R to R,", and L is the extension operator of
Sfunctions from R,™ to R™) is a singular integro-differential operator of class (p, q)
and of order s in W*2(R,").

(ii) A <s called an admissible singular integro-differential operator on R™ if

for x, = 0 we have that
S

T4 (CXJ', 07 E’r sn) = Z Uk(x’y E')Enk

k=0
and os(x’, &) does not depend on &,.

Hence, if ¢ is the symbol of an admissible singular integro-differential
operator of class (p, ¢) of order s in W*2(R,"), then oy (x’, §') are positively
homogeneous of degree s — % and are in C?(R*; W**:2(3")), where 3’ is the
unit sphere in R*~1,

Let {N,} be a finite open covering of cl(G) and {¢;} a finite partition of
unity corresponding to Ny. Denote by y; an infinitely differentiable function
with compact support in Ny and ¢, = 1 on the support of ¢;.

We shall consider singular integro-differential operators on G of the form

(1'1) A= ; ¢'1cAk1//k + T,

where T is an operator almost of order 2m — 1in W*2(G) (s = 2m) and 4; is
an admissible singular integro-differential operator of order 2m on R,™ if N,
is a boundary neighbourhood, and on R", otherwise.
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We consider also operators on dG of the form
(1.2) B; = Zk' By + Ty, j=1...,m,

where the summation is taken over all the k2 corresponding to boundary
neighbourhoods Ny. Bj; are given by

)

B]‘Ic = ;} Bjlenly

where B ;! are singular integro-differential operators on R*~1, homogeneous of
orders 7; — . T; is an operator almost of order —1 from W?*2(G) into
We=ri—42(3G).The symbol o4 of A is defined as follows: it is a function
o4 (P, £) such that for points P in N,, x in local coordinates, it coincides with
the symbol o4, (x, &) of Ay. Similarly for op;.

DEFINITION 1.4. An admissible singular integro-differential operator A on G
of the form (1.1) is said to be elliptic at a point P of G if
G'Ak(xvg)#o fOTE#O, PENka,
and elliptic on G if 1t is elliptic at each point of G.

The definition is invariant with respect to the choice of coordinate neigh-
bourhoods and local coordinates.

Ay is said to be properly elliptic at xo = (x/,0) if 04, (%', ¢, ) = 0, considered
as a polynomial in the complex variable ¢, has m roots in the upper half {-plane
and m roots in the lower half-plane. Throughout the paper, we shall assume
that the 4, are properly elliptic on R".

DEeFINITION 1.5. The elliptic boundary-value problem {A; B;, 7 = 1,..., m}
on G, where A and B are of the form (1.1) and (1.2), is said to be regular if for
each k corresponding to boundary neighbourhoods N, we have that

Det< ‘L fT_IUBjk(x', EI, g.) [UAI;(x,y E/, g.)]—l d§'> = 0’

wherer, j =1, ..., m and C is a closed Jordan rectifiable curve in the upper
half ¢-plane containing all the m roots of o 4, (x', &, ¢) = O.

AssumpTiON (1). Let {A; B;, j =1, ..., m} be a regular elliptic boundary
problem on G. A and B; are of the form (1.1) and (1.2).

We assume that there exists a 0,0 =< 0 < 2w, such that for every k corresponding
to boundary neighbourhoods N; we have that

Det( J; g‘r_lo-BJ'k (x’y E” g‘) [G-Ak(x,y E’y §') + )\]_:l dg‘) # 0’
wherer,j = 1,...,myarg A = 0, |]\| = N\¢ > 0, and C is as in Definition 1.5.

We now state the main results of the paper.
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THEOREM 1.1. Let {A; B, j = 1,..., m} be a regular elliptic boundary-value
problem on G. The admissible singular integro-differential operator A 1is of the
form (1.1), of class (s — 2m, q), and of order 2m. s = 2m and ¢ > (n — 1)/2.
The B; are of the form (1.2), of class (s — r;, ¢ — %), and of orders r; with
r; < 2m — 1.

Suppose that there exists a 0 such that Assumption (1) is satisfied. Then

(1) For all u in W*2(G), we have that

el []5.2 = C{HI(A + MDull]s-2m,2 + g IllBjulllé—r,-—%.z}»

where arg A = 0, |\| = N\o > 0, and C is independent of \ and u.
(2) Forany (f, g1, ..., gn) 0

m

wemAG) x ] wite6), sz om,
j=1

there exists a unique solution u in W*2(G) of
A+ N)u=fonG, Bu=g;ondG, i=1...,m.

The proof of the theorem is long and will be given in § 3. The theorem has
been proved by Agranovic¢ and Visik (3) for the case when the operators A
and B; are differential operators (cf., also, Agmon (1)).

THEOREM 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Let
C,, k=1,...,m, be a set of boundary differential operators of orders v; with
v < 2m. Let Ly, j, k=1, ..., m, be a set of compact (or bounded) linear
operators from W=42(3G) into W*i~42 (3G) (or into W—7i=3+<2(3G) for
some ¢ > 0). Then

(1) there exists a positive constant M, independent of N (arg N = 0) and u, such

that, for all u in W*2(G),
<Bj - Zl ijCIc>u s—rj—%,2} ,
k=

s = 2m, [\ = N> 0;

(ii) let A be the realization of A as an operator on L2(G) with null boundary
conditions

[Hll]s.2 = M{l“(A + MDul|[s-2m,2 + ]Z:

B,-u—ZL,-kau=00n(~)G, i=1,...,m.
k=1
Then (A + N)~! exists and is defined on all of L*(G). It is a compact operator
on L2(G) with ||Az + NI)7Y| < M/|\| for [\ = X\ > 0.

THEOREM 1.3. Suppose that the hypotheses of Theorem 1.2 are satisfied. Then
(i) there exists a positive constant M such that, for all u in W*2(G),

s = 3 sl Vlos + 35 (5= 5 2}

s = 2m;
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(i1) A, s a Fredholm operator and ind(4,) = 0 (cf. Schechter (8).

THEOREM 1.4. Suppose that the hypotheses of Theorem 1.2 are satisfied for
s = 2m. Suppose, further, that there exist 6, k =1, ..., N, 0 = 0, < 2m, for
which assumption (1) is satisfied and such that the plane is divided by these rays
arg N = 0, into angles which are less than 2mm/n. Then the generalized eigen-
functions of A, are complete in L*(G).

The theorem extends for the case p = 2, a result of Agmon (1).

THEOREM 1.5. Suppose that the hypotheses of Theorem 1.2 are satisfied for
s = 2m. Let f(x, 1, . . ., {om) be a function measurable in x on G, continuous in
€1y + .., Com) with f(x, 0, ..., 0) 5= 0. Suppose, further, that there exists a
positive constant M such that

176 b1 vy Gon)| S M{1 + 2?2; lsvl} .

Let T, ..., Toy_1 be bounded linear operators from W 2(G) into L*(G) and let
Ty be a bouuded linear operator from W2m—<2(G) into L*(G), 0 < e. Then

(i) for [N = No > 0, there exists a non-trivial solution u in W™ 2(G) of the
elliptic boundary-value problem

A+ NDu=fx, Tw,...,TTou)onG,
Bu = Z L Cu on 9G, ji=1,...,m;
k=1
(1) let (g1, ..., gn) bein

Hl Wi (36).
-

There exists a solution u in W*2(G) of (A + N)u = f(x, T1u, ..., Tontt) on
G; Bu = g, on 4G.

2. In this section we shall give the proofs of Theorems 1.2-1.5, assuming
Theorem 1.1.

Proof of Theorem 1.2. (1) We establish the a-priori estimate. Suppose that
part (i) of the theorem is not true. Then for any XA with arg X\ = 6, [\| = X > 0,
there would exist {«,} with

leallls,2 = 1
and

I”(A + )‘)”nllls—m.? + HunHO.2 + ;1

’

<Bj —_ kz_l ijCk>u,L

From the weak compactness of the unit ball in a Hilbert space, we obtain a
subsequence, which we may assume to be the original one, such that «, — u
weakly in W*2(G) as # — «. Since u, — 0 in L2(G), we have that u = 0.
Since G is a bounded open set of R", regular of class C*, it follows from the

s—rj—%,2 0.
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Sobolev imbedding theorem that %, — 0 in W*~12(G) and u, — 0 weakly in
We42(8G) as n — . The operator YL ;Cy is a compact linear mapping
from W+%2(3G) into W*—"i—#2(9G), being the composition of a linear map-
ping from W+%2(8G) into W***2(9G) and a compact mapping from
W42 into W*="i-42(3G).

Therefore 37_1L ;Cytt, — 0 in W—7i—%2(3G) asn — .

Hence, Bu, — 0 in Ws—1i=32(8G) as n — o, j=1,..., m In a similar
fashion, we show that
As=ri=hmB g 0in L2(dG), j=1,...,m

On the other hand, from Theorem 1.1, we obtain the following:

s % 381168 + Wl + 35 1Bl i}

Thus [||#,]||s,2 — 0 as n — o, which is a contradiction. Now take |\| suffi-
ciently large and we obtain the a-priori estimate.
(2) Let A, be a linear operator on L2(G) defined as follows:

D(4,) = {u: win W™*G), Au in L*(G);

Bu = Z L,kauonaG,jzl,...,m},

k=1

A = Au if uisin D(4.).

A, is densely defined. Indeed, we have that C.,”(G) C D(4.). From the
a-priori estimate and Proposition 16.1 of Agranovic (2, p. 99), we deduce that
(A 4+ N) is a closed operator on L?(G) with N(4. + \) = {0}. We show
that R(4; + M) = L?(G). Let f be any element of L%(G), v an element of
wW2m2(G), and suppose that 0 < =< 1. Consider the following elliptic
boundary-value problem

A+ NDu=f ongG, BjuthijCkv on dG, i=1...,m.
k=1

From Theorem 1.1, we know that there exists a unique solution # in W2"2(G)
of the above problem. Define the following non-linear mapping 7°(¢) from
[0, 1] X W*:2(G) into W?:2(G):
Ty = u,
where # is the unique solution of the above boundary-value problem. If we
can show that 7"(1)u = u, i.e. T(1) has a fixed point, then % is in D(4.) and
is in R(A, + M\I). Since f is an arbitrary element of L2(G), we have that

R(A, + N) = L2(G). We verify that T'(¢) satisfies the hypotheses of the
Leray-Schauder fixed-point theorem.

ProrosiTioN 2.1. T'(¢t) 4s a completely continuous operator from
[0, 1] X W2™2(G) into W*™2(G).
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Proof. T(¢) is continuous. Let £, — ¢, v, — v in W?*2(G). From Theorem 1.1
we obtain the following:

|| |2m,2 = M{Hfllo.z + l|leka(tnvn)IIl'zm-n—%,z}-

m
Jik=1

Thus
[l = wellam2 < M 20 [[ILaCiltitn — ) ||z,
Jk=

We immediately have that u, —« in W?*2(G). T(¢) is compact. Indeed,
suppose that ||v,||om,2 = M. Then from the weak compactness of the unit ball
in a Hilbert space, we have that v, — v weakly in W2*:2(G), hence also weakly
in Wm—4.2(9G). But 51 L;,C; is a compact operator from W2m—%2(3G) into
Wem—ri-%.2(5G), thus

m m

Z ijCk‘v,L—é Z ijCkv in W2mvrj—%,2(aG)

k=1 k=1

as well as in L2(dG). Therefore u, — u in W 2(G).

ProposITION 2.2, I — T'(0) ¢s a homeomorphism of W2™2(G) into itself. If
[I —T@®l =0,0<t =1, then ||[9]|ame £ M, where M is independent of t.

Proof. The first assertion follows directly from Theorem 1.1. Suppose that
T(t)v = v; then v is the solution of the boundary-value problem

A+ A)v=f ongG, Bp= >, LypC(tv) ondG, j=1,...,m
k=1

In the first part of the proof of the theorem, we may, instead of considering
the operator L, take the operator ¢{L;;; then we have that

[[o]l2m,2 = M [|fl]o,2

where M is independent of \, v, and &.

Proof of Theorem 1.2 (coniinued). The operator 1'(¢) satisfies all the
conditions of the Leray-Schauder fixed-point theorem (the uniform continuity
condition of the theorem is not necessary as observed by Browder in (7)).
Therefore, T(1)# = u. Thus R(4s + N) = L2(G) and hence, (4, + AI)!
exists and is defined on all of L2(G). Since the injection mapping from W™ 2(G)
into L2(G) is compact, (4 + AI)~1is a compact linear mapping of L?(G) into
itself and, moreover, from the a-priori estimate, it follows that

[[(Az + N7 £ M/|A| for [N = No > 0.

The theorem is proved.

Proof of Theorem 1.3. (1) We establish the a-priori estimate by contra-
diction. It is similar to the first part of the proof of Theorem 1.2. We obtain a
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contradiction by using the following estimate of Proposition 16.3 of Agranovic
(2, p. 101):

lls2 = M{HAuHs—m,z + fulfo.2 + Zl IlBﬂtH's—n—w}-
=

(2) By standard arguments, we deduce from the a-priori estimate that 4, is
closed, N(4,) is of finite dimension, and that R(A4:) is closed in L2(G). Hence
A, is a semi-Fredholm operator.

We now show that if Assumption (1) is satisfied, then 4, is a Fredholm
operator and ind(4.) = dim N(4,) — codim R(4.) = 0. From Theorem 1.2,
we have that

(A2 + N) (42 + M)t =1,

where I is the identity operator on L2(G). Thus
AQ(AQ =+ )\I)_I =] — )\(A2+ )\I)_l.

Since (As + N)™, considered as a mapping from L*(G) into itself, is com-
pact, it follows from a well-known argument that 7 — A(4: + A)~! is a
Fredholm operator and ind(Z — N(A4: + A)™Y) = 0. Hence A2(42 + N)1is
a Fredholm operator and ind(A4s(A4s + AN)™') = 0. We can easily show that
R(A2) = R(A2(A: +A)™Y) and N(A4s) = N(A:(As + MN)™Y). Therefore,
ind(4s) = ind(4:(4: + N)™Y) = 0.

Proof of Theorem 1.4. Since (4, + M)~ is a compact linear mapping of
L2(G) into itself, the spectrum of A4, is discrete and the eigenspaces are of
finite dimension. With the hypotheses of the theorem, it follows from Theorem
3.2 of Agmon (1, pp. 128-129) that the generalized eigenfunctions of A4, are
complete in L2(G). Indeed, the proof in (1) depends only on the compactness
of (45 4+ M)~! and on an estimate on the growth of the resolvent operator as
in Theorem 1.2.

Proof of Theorem 1.5. Let v be an element of W?"2(G) and suppose that
0 <t £ 1. Consider the following elliptic boundary-value problem:

A+ NDu = f(x, tTw, ...,tTew) onG,

Bju = Z L;kau on 6G, ] = 1, e, M.
k=1

Since

2m—1
lf(xr {1) ce ey {2771)] é M{l + Zl R‘]l} )

=

flx, tTyw, ..., tTeyw) is in L2(G). Define the non-linear mapping T (¢) from

[0, 1] X W?™2(G) into W?™2(G) as follows:

Ty = u,

where % is the unique solution of the above boundary-value problem. It
follows from Theorem 1.2 that < (¢) is well-defined.
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To prove the theorem, we show that T () satisfies the hypotheses of the
Leray-Schauder fixed-point theorem. The proof is essentially the same as that
given in (10). It suffices to note that since 7'y, is a bounded linear mapping
from W2—«2(G) into L%(G), it is a compact linear mapping from W2™2(G)
into L2(G).

A similar argument (taking into account Theorem 1.1) gives the existence
of a solution in W#2(G) of

A+ N)u=fl, Twty...,Toqu) onG, Bu =gjondG, j=1,...,m.

Finally, we note that with the estimate on |[(42 + N)~1|| of Theorem 1.2
for all A with |arg A\| = 7/2, we may show the existence of a solution of a non-
local parabolic boundary-value problem of the form

% + Au = f(x, ) on G X [0, T7;
Bu= Y, LyCae ondG X [0,7], j=1,...,m;
k=1
u(x,0) = uo(x) on G,

by using a result of Sobolevskii (9) (cf. 10).

‘3. We proceed to prove Theorem 1.1. As usual, we consider first the case of
a half-space with 4 and B, having constant symbols, then the case when 4
and B; have symbols depending on x, but close (in a sense to be specified) to
constant symbols, and finally, the case of a bounded open set G of R™

THEOREM 3.1. Let {A; B;,j =1, ..., m} be a regular elliptic boundary-value
problem on R." = {x: x, > O}. The homogeneous singular integro-differential
operators A and B;are of orders 2m,r; (r; < 2m — 1) with constant symbols o ,(£)
in We2(2); o,(8) in We42(Z'), ¢ > (n — 1)/2. Suppose that there exists a
0,0 £ 6 < 2m, for which Assumption (1) is verified. Then

) Hlulllse = M{IH(A + Mul|[s-2m,2 + ]é IHB]‘MHK—U—%-?}

for all w in W*2(Ry*) and for all [\ = \o > 0, arg X\ = 6. M s independent of
A\ % and s = 2m.
(ii) The mapping Lu = {(4 4+ N)u, By, ..., B,u} of W*2(R,*) into

W RY) X T whwe)
j=1
is 1-1 and onto for large |\|. ’

Proof. We follow (3) closely (cf. also 2 and 5).

(i) To prove the a-priori estimate, it suffices to show it for u in
C” (R4 \J R*1). Since 4 is an admissible singular integro-differential operator
on R,", we have that

2m

k=0
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similarly,
75
B; = Z Bjank»
k=0

where A, and By are singular integro-differential operators on R*~!, homo-
geneous of orders 2m — k and r; — k, respectively, with constant symbols.

(a) Consider (4 + MN)u = Lf = fy(x) on R", where L is the extension of
f to R* By taking the Fourier transform, we obtain

2m

(0 + 21 =50 = ( 3 antere +2)a

A computation as in (3) yields |[|#]|]s,2 £ Cl||fI||s—2m,2-
(b) Consider the boundary-value problem:

(4 4+ N)w = 0 on R,", Bw=g,—BuonR", j=1...,m.
By taking the Fourier transform with respect to the tangential variables
£ = (xy, ..., %_1), we obtain
2m
2 DS AE, %) + M(E, %) =0, x>0,
%=0

Tj L)

ZO onE)DSD(E,0) = hy(¥) = 8, — 2, on)DSAE,0), j=1,...,m,

where @ and 2; denote the Fourier transforms of w and g, with respect to £.
We seek a solution of the form

D, %) = Zl (&) J; ¢ exp (i) loa ', §) 4+ N7,
= N E

where C\,¢ is a closed Jordan rectifiable curve in the upper half ¢-plane,
containing in its interior all the m roots of

2m
A+ ; o (£ =0,

considered as a polynomial in {. We are reduced to showing the solvability of
a system of m equations with m unknowns, p,(¢). Since Assumption (1) is
verified, the system may be solved in a unique fashion. If we set

a0 = f. 57 Dl ) + N

AE
and if Q,;(£, \) are the elements of the inverse of the transpose of the matrix
(¢r5), then
D) = 3 0@ VEE N [ eplitmlea e, ) + N7
r,j= N E

To take the inverse Fourier transform of @ (¢, x,,), we need the following lemma.
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LemMma 3.1. (i) Let

s (£, %) = f ¢ expigan) ot £) + N7,
Then
b6, ) = O(E] + ) s8+-mmexp (— day (2 + [N[1m)),

where d = min{Im¢: ¢ € C} > 0.
(i) Q.;(& N) = O(Jg] + \[2m)2m=r="i, 7, j =1, ..., m.

Proof. Set X = p?™ and make the following change of variables:
=g+ ) W =R+ D =+ D
(1) We have that
Ga (&, ) = (g2 + [w[2) @rfH1=2m g, (¢, 2, (€] + [ufD)D),

where
bas(t, 52) = f £ exp i) o4 (& ¢) + w7

(i) As |§] > =, || = L and |u’'| = 0. Thus, the roots with positive imagin-
ary parts of

(u)™ + kgo a(#)" =0

tend continuously to those of
2m
Z Uk(I)fk = 0.

k=0

Hence, there exists a closed curve C; independent of u and £ containing all the
m roots with positive imaginary parts of

2m
(n)™ 4+ I;) o (£)¢* = 0 for large |£].
Therefore, for large |£, we have that

|bap (&, %) S M exp(—da, (JE[* + |u|?)F) (|£]2 + |u]?)@tstimom)s2,

(ii) For small ||, as |¢] = 0, |&| — 0 and |u’'| — 1. Thus, all the roots with
positive imaginary parts of (u')* + o,(&, ¢) = 0 tend continuously to those
with positive imaginary parts of 1 4+ a4(0, {) = 0. Again, we have a curve Cs,
in the upper half {-plane, independent of both u and # containing all the m
roots of (u')?™ + o4 (&, ¢) = 0 for small |¢|. Thus,

bap (& %) = M exp(—du, ([£]* 4 [u]?)F) (|82 + |u[?)@rsri=om s,

Combining (i) and (ii) we obtain the first part of the lemma.
(2) Arguing as above, we have that

Qrs(& N) = O(JE] + |\|y/m)2m—r—ri,
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Proof of Theorem 3.1. (i) (continued). As in (3), using Lemma 3.1 and the
Parseval formula, we obtain:

el S € 35 11 llrs e
Thus ~

lollls S € MlLa+ 35 Medlonosal
Al s+ 55 Ml

Therefore, if v is such that (4 4+ N)v = fon R,*, By = g, on R*~1, we obtain

Upllls % C4UA s+ 35 s}

(ii) Let (f, g1, . . ., gn) be an element of

Ws—Zm,Z(R+n) < I_Il Ws—fj*%@(R"—l).
j=

Then the unique solution # in W*2(R,") of
4+ N)u =f on R, Bu=g; onR", j=1,...,m,
is given by

u() = F{[o0a(&) + NTF(Lf)} |zon

+ é (F’)”{ ; Q:; fcf"lexp(ifxn)[ms’, &)+ x]“dr}F'gf o

where F’ denotes the Fourier transform with respect to £.
Because of Lemma 3.1, the expression is well-defined.

THEOREM 3.2. Let {A; B;,j = 1,...,m} be a regular elliptic boundary-value
problem on R". The singular integro-differential operators A and B; are of orders
2m and r; (r; < 2m — 1), respectively. Suppose that there exists a 9,0 < 0 <
2w, for which Assumption (1) is satisfied. Suppose further that

maXHO'A(fy x) — oa(f, 0)”4.2 + Z; msx][a'jk(x', ¢ — ‘Tjk(oy 5’)114—%,2 =9

for x mear 0. Then
(1) There exists a constant M independent of N, arg N = 0, and of u such that

el S MLUICA + Nellcans + 35 1Bl g fs 2 2
(2) For every (f, g1, -« ., gn) 0

Ws—?m,2(R+n) X H WS_Tj_%'2(Rn—1)
=1
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there exists a unique solutton uwin W2 (Ry™) of (A + N)u =fon R."; B,u = g;
on R"1j=1,...,m.

Proof. We prove the a-priori estimate. We denote by 4, and Bj, the
principal parts of 4 and B, and by 4,(0) and B;,(0) the homogeneous singular
integro-differential operators with symbols ¢,4(0, £ and ¢;(0, §). From
Theorem 3.1, we obtain

el = 3 11C40) £ Nl + 35 1Bl g}
= M{HI(A + %)%Hls—zm,z + IH(AO(O) - Ao)%le—m,z
11 = Al 3 1Bl st + 11 B0 = Bl ey

+ [[[(Bjo — Ba’O(O))uH[’vu—%,z}-

(i) Since 4 is an admissible singular integro-differential operator on R,?, it
may be written as: A = RAL + T, where T is an operator almost of order
2m — 1 on W*2(R™).

Therefore, ||(4 — Ao)ut||s—2m,2 = €||ut]|s,2 + C(e)||u]]s—1,2 and

[Nemmeml[(A — Ao)ullo, = N2 |uflon,2 + C() N7 1] |op—y 2.

But
[[ll2m—1,2 = €/ C(&)||tt]|om,2 + K (€)]|ne]]0,2,

1A = do)ullls—om,2 = 2¢[|[ull]s,2 + Cole)NT2"{[u]|[s.2.
(i1) Similarly,

T T
Bj = ;) Bjank + 2‘3 Tjankv
= k=

where T'j; are linear operators almost of orders r; — & — 1 on Ws—%2(Rn-1),
Thus
1By — Byo)ulllsmrig.2 = ellulllig2 + Cs(NT22[[ue]|]s,2.

(ili) We consider ||| (Ao — A¢(0))#|||s—2m,2. If c4(x, &) is the symbol of 4,
then the symbol o (x, £) of A may be obtained from o4 (x, £) by the Hestenes
formula and, moreover,

mftx]lag(x, E) - UJ(Oy S)HQ,Z -.S— Cmfxl[UA(xr E) - O'A(Ov E)”ll.?y

where C does not depend on ¢ 4. Thus
(Ao — 40(0))2]|[s~2m.2 £ Col[[(Ao — A0(0)) L] =2,
Using Proposition 8.3 of Agranovic¢ (2, p. 47), we have that
(Ao — Ao(0)) Latef||s—2m,2 £ Codl|[ul[s,2 + Caloa) N7 [[ae] ] 5,2

https://doi.org/10.4153/CJM-1968-137-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-137-4

BOUNDARY-VALUE PROBLEMS 1379

(iv) A similar argument yields:
1B — B (0))ullli=rj—y.2 = Clllullls.2 + Cs(o) N2 [[u]]s,e.

Therefore, by taking 6 small and |\| sufficiently large, we obtain the a-priori
estimate of the theorem.

(2) We now show that.2/ has a right inverse. It follows from Theorem 3.1
that.%7(0) has a right inverse £, ; thus

ATy =L o(0)To + (Z — A )T + (o —Z(0))T,s

=1+ ( —AL)To+ o —0(0))Ze
Set

g=(en... gn) and [[[(flls2 = [lIfllls2m + g; gallls=rig.2-

Letu = To(f, g) withZ,(0)To(f, g) = (f, g) (Theorem 3.1). Then a computa-
tion, as in the first part, yields

110 = Lo ONTo(f, Dlls2 = 2T DI]s.e
for 8 small and |)| sufficiently large. Also,

& — )T, DIl = HIE D]z

since (& —/,) is an operator almost of order —1 from W*2(R,*) into
Ws—m2(R,") X H;{‘:IWs—rj—%ﬂ(Rn—l). Let

Q= (¢ —A)To+ o —H00))Z;

then |[|Q(f, )llls.2 = 3, 2)ll]s,2- Hence (I + Q)~! exists. Take T =
Tl + O)1, then T = I.

Proof of Theorem 1.1. (1) We establish the a-priori estimate. Since G is a
bounded open set of R, regular of class C* (cf. 5), there exist a finite open
covering of cl(G) and a finite partition of unity ¢, corresponding to N,. Let
¥ be an infinitely differentiable function with compact support in N, such
that ¥, = 1 on the support of ¢;. We have that

N
&%= Z ¢Iﬁ9{k¢k+Ty

k=1

where T is an operator almost of order —1 from W*2(G) into

WS—2m’2(G) X Hl WS—T]'—%:Z((:)G) and ‘Mk = (Ak + )\Iy Blkr ey Bmk)y
=

where A and B, are singular integro-differential operators on R,” and on
R*1, respectively. We also have that

Mk(d)ku) = Mk(d’k\(/ku) = ¢Ic=9/k(1//ku) + T (u),
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where T is an operator almost of order —1 from W#*2(R,™) into
WA (R X ﬁ W R
=
if Ny is a boundary neighbourhood and 7' is an operator almost of order —1

from W*2(R,") into Ws—22(R,") if N, is an interior neighbourhood (cf. 2).
From Theorem 3.2 and an easy computation we obtain

[ bwll]s,2 = M{H|¢k(z4k + M| [s-om,2 + ell[an]]s,

+ CEOMNT" [l |52 + é lll¢>kak(tl/ku)lll'~n%.2}-
The norms are taken in local coordinates. On the other hand, we have that
¢ (W) = ¢ (hiat) + ¢ Tu(ae),
where T is an operator of the same type as 7. Therefore
[ xell]s2 = M{lll(ﬁk(A + 2) () ||| s—2m.2 + e[ || 5.2
+ CEOMNT" [ [l ]2 + ]‘i HlmBj(%u)lll’—n—;-.ﬂ}‘
We may write ¢(4 + N) (n) = ¢4 + Nu + ¢.(4 + \) (¥ — Du and,

similarly, for ¢.B(¥su). The operator ¢/ (¥, — 1) is again an operator
almost of order —1 from W?*2(G) into

Ws—?m,Z(G) X H Ws—rj—%ﬂ(aG).
j=1
Hence we finally obtain
Hlelllse = M{HI(A + Nl [smom2 + €l ][5z + CENT"|[[u] ]2
+ ]2::1 IHB]'”IH's—ri—%-?}'

Taking e small and |\| sufficiently large, we obtain the a-priori estimate.
(2) We now construct the inverse of &7. We have that

N
Su = k; ¢l (W) + Tu.

For each &,/ has a right inverse R; (Theorem 3.2). To simplify the notation,
we write g = (g1, ..., gn). Consider

-R(f’ g) = TZ=:1 "err(d’rf» ¢rg)
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R is a bounded linear operator from We=2m2(G) X II"_;Ws="i-%2(3G) into
We2(G). We have that

N
SR 9) = 2 6 il¥ R (6, 6200 + TR(, ).
Set u, = ¢, R,(¢.f, $,£). We also have that

¢kﬂk[¢k‘//rur] = d)lﬁ%r[‘xbkwrur] + ¢/9Trkur
(cf. 2, pp. 102, 75) T, is an operator almost of order —1 from W*2(G) into

w6y x [1 w7 H2(a6).
j=1
Hence

AR(f, g) = ZL il R (¢.f, ¢:¢) + TR(f, g)
+ Tz]; ¢kTrk[‘err(¢rfy d’rg)]

+ Z ¢k{f%r[¢k’//1Rr(¢ffv ¢1g)] - ¢k¢rM7RT(¢va ¢Tg)}'

T,k

Consider the first sum. It is equal to (f, g). Set

NG D11 = lLame + 3 el ersose

Then
TR, Dlls = lll(y Dlls + CleMN=2[[[(f, D]

In a similar fashion, we obtain the same bound for the third sum. Since
A Wb ] — Yl [+ ] is an operator almost of order —1 from W*2(R,*) into

Ws—2m,2(]€+n) X H Ws—rj—-%,Q(Rn—l)’
j=1

we obtain the following upper bound for the last sum, namely,

elll (s Dl + CONT"IIF DIl

Thus ZR(f, g) = (f, g) + ZT(f, g) with ||Z|| £} for large |\]. Hence
(I 4+ ) exists and -1 = R(I + T)~
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