
NON-LOCAL ELLIPTIC BOUNDARY-VALUE PROBLEMS 

BUI AN TON 

Let G be a bounded open set of Rn with a smooth boundary dG. We consider 
the following elliptic boundary-value problem: 

m 

Au = / on G; BjU = ^ LjkCku on dG} j = 1, . . , m, 

where 4̂ and 1^ are, respectively singular integro-differential operators on G 
and on dG, of orders 2m and r̂  with r ; < 2m; Ĉ  are boundary differential 
operators, and LJ]C are linear operators, bounded in a sense to be specified. 

Let A 2 be the realization of A as an operator on L2(G) with the above 
boundary conditions. When the symbols aA, crj of A and Bj satisfy a strength­
ened Shapiro-Lopatinskiï condition, we show, in § 2, that A2 is a Fredholm 
operator, the generalized eigenfunctions of A2 are complete in L2(G) and 
(^42 + A/ ) - 1 exists for large |X|, arg X = 6. We also prove the existence of a 
solution of (A2 + X/)w = / ( # , T^w, . . . , T2m-iu), where T;- are bounded, 
linear operators from PP"'2(G) into L2(G), f(x} fi, . . . , fom-i) has a linear 
growth in (fi, . . . , f2w»-i). 

The proofs depend on a result on elliptic boundary-value problems {A ; 2?y} 
containing a large parameter X, which is given in § 3. The notation, the defini­
tions, and the results are given in § 1. 

Non-local elliptic boundary-value problems have been studied by 
Agranovic (2), Beals (4), Browder (6), Schechter (8), and others. 

1. Let G be a bounded open set of Rn, regular of class C°° with boundary 
dG. The generic point x of G is x = (xi, . . . , xn). Set Dj = i~ld/dx^ j = 1, 
...,71. For each w-tuple a = (a±, . . . , an) of non-negative integers, we write: 

Da = n D*' and I«I = é «i-
Let 5 be a non-negative integer; we denote by WS,2{G) the space 

TP.2(G) = {u: u in L2(G), D«u in L2(G); |a| ^ s] 

(the derivatives are taken in the sense of the theory of distributions). WS'2(G) 
is a Hilbert space with the norm 

IML2 = ) Z) I I ^ I I W H 
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1366 BUI AN TON 

and the obvious inner product. Set 

l l l«IIL* = {IMI?.* + |xr/mIM|„2,2}è, 
then 

lll«lll..*^(Z ixMMlUiV ^c|||«|||,.2 
(cf. Agranovic and Visik (3, p. 64)). 

Let <j>k, k = 1, . . . , N, be those functions of the finite partition of unity 
whose supports intersect the boundary dG. For s ^ 0, we define Ws,2(dG) as 
the completion of Cœ(dG) with respect to the norm 

(N ^ Y 

where \\<t>itu\\ws>i{Rn-i) is taken in local coordinates and is defined by means of 
the Fourier transforms: 

11 <M| | F..»(«»-i) = { j E n x (1 + \Z\2l\F(4>*u)\2dl;f. 

The space Ws,2(dG) is a Hilbert space. I t neither depends on the choice of 
local coordinates nor on the choice of the partition of unity. We set 

| |MII1.2= (IMISÎ2+ |xr/w|M|'o?2)*. 
We have that 

iii«iir«-4,2 ^ ciiiwiiis,2. 
Let u{x) be in C^iR^1), R+

n = {x: xn > 0}. Then the Hestenes formula 
defines a smooth continuation L of u to Lu in Ck(R?1). If u is in Wk'2(R+n), 
then ||Lw||Wr«'2(Bn) ^ C| M |TFS>2 (#.«)> s = 0, . . . , k. 

DEFINITION 1.1. (i) A is said to be an operator of order k in WS'2(G) if A is 
a bounded linear mapping from WS,2(G) into Ws~k'2(G). s and k are two non-
negative integers with s ^ k. 

(ii) A is said to be an operator almost of order k — 1 on WS,2(G) if A may be 
decomposed into A — A J + Ae", where Ae' is an operator of order k in WS,2(G) 
with norm less than e and Ae" is an operator of order k — 1 in WS,2(G). e is any 
given positive number. 

Consider the singular integral operators 

Amku(x) = Km I Ymk(x - y)\x - y\~nu(y) dy, u G L2(Rn), 
e_>0 •/\x-y\>e 

where Ymk(x) are the spherical functions on the unit sphere in Rn. 
Let a(x, £) be a positive homogeneous function of £ of degree 0. We expand 

a(x, £) as follows: 

*(*f£) = X) ym(hnk(x)Ymk(è), TO = 1. 
m, k 
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The operator A = Y^m,k amk(%)Amk associated with a- is a homogeneous 
singular integral operator on Rn with symbol o\ I t is of class (p, q) if 

a(x, £)€ C*(Rn; I ^ ' 2 ( 2 ) ) , 

where Cp(Rn;WQ,2(2)) is the space of functions f(x, •) on Rn with values in 
WQ'2(2,) and having x-continuous derivatives of order ^ p in Wq'2(2,). 2 is 
the unit sphere in Rn. 

DEFINITION 1.2. A singular integro-differential operator of class (p, q) of 
order s in Wk'2(Rn), s ^ k, is an operator of the form: 

A = £ AaD
a + T, 

\a\=s 

where Aa are homogeneous singular integral operators in Rn, of class (p, g), and 
T is an arbitrary linear operator almost of order s — 1 in Wk,2(Rn). A is homo­
geneous if T = 0. 

The symbol of A, 

|a |=s 

w a positive homogeneous function of order s with respect to £, a-a(x, £) is £&e 
symbol of Aa. 

DEFINITION 1.3. (i) 4̂ = RÂL (where A is a homogeneous singular integro-
differential operator of class (p, q) of order s in Wk'2(Rn)y s ^ k, R is the 
restriction operator of functions from Rn to R+

n, and Lis the extension operator of 
functions from R+

n to Rn) is a singular integro-differential operator of class (p, q) 
and of order s in Wk'2(R+

n). 
(ii) A is called an admissible singular integro-differential operator on R+

n if 
for xn = 0 we have that 

«TA(*',<>,£',&) = E tr t(x ' ,£%* 
k=0 

and <r8(x', £') does not depend on £n. 

Hence, if a is the symbol of an admissible singular integro-differential 
operator of class (p, q) of order 5 in Wk,2(R+n), then ak(x', £') are positively 
homogeneous of degree s — k and are in Cp(Rn~1; Wq~1,2(?ï')), where 2 ' is the 
unit sphere in jRw_1. 

Let {Nk} be a finite open covering of cl(G) and {<pk} a finite partition of 
unity corresponding to Nk. Denote by \pk an infinitely differentiable function 
with compact support in Nk and \pk = 1 on the support of <j>k. 

We shall consider singular integro-differential operators on G of the form 

(1.1) A = £ M * f c + T, 
k 

where T is an operator almost of order 2m — 1 in W*t2(G) (s ^ 2m) and Ak is 
an admissible singular integro-differential operator of order 2m on R+

n if Nk 

is a boundary neighbourhood, and on Rn, otherwise. 
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We consider also operators on dG of the form 

(1.2) B, = £ ' <f>kB^k +Tj, j=l,...,m, 
k 

where the summation is taken over all the k corresponding to boundary 
neighbourhoods Nk. Bjk are given by 

-Bjk = 2^/ Bjk Dn , 

where B jk
l are singular integro-differential operators on Rn~1

f homogeneous of 
orders r ; — I. Tj is an operator almost of order —1 from WS'2(G) into 
W8~r>~2,2(dG).The symbol aA of A is defined as follows: it is a function 
&A(P, £) such that for points P in Nk, x in local coordinates, it coincides with 
the symbol aAk(x, £) of Ak. Similarly for aBj. 

DEFINITION 1.4. An admissible singular integro-differential operator A on G 
of the form (1.1) is said to be elliptic at a point P of G if 

*Ak(x, £) 9*0 for £9*0; P G Nk H G, 

and elliptic on G if it is elliptic at each point of G. 

The definition is invariant with respect to the choice of coordinate neigh­
bourhoods and local coordinates. 

Ak is said to be properly elliptic at x0 = (#', 0) if <rAh{x', £', f ) = 0, considered 
as a polynomial in the complex variable f, has m roots in the upper half f-plane 
and m roots in the lower half-plane. Throughout the paper, we shall assume 
that the Ak are properly elliptic on Rn. 

DEFINITION 1.5. The elliptic boundary-value problem {A; Bj,j = 1, . . . , m) 
on G, where A and Bj are of the form (1.1) and (1.2), is said to be regular if for 
each k corresponding to boundary neighbourhoods Nk we have that 

Det( jc r^B^', r, r)ku(*', r, D F 1 ^ ) * o, 
where r, j = 1, . . . , m and C is a closed Jordan rectifiable curve in the upper 
half Ç-plane containing all the m roots of aAk(x

r, £', f) = 0. 

ASSUMPTION (1). Let {A; Bjy j = 1, . . . , m\ be a regular elliptic boundary 
problem on G. A and B3 are of the form (1.1) and (1.2). 

We assume that there exists a 6, 0 ^ 6 < 2ir, such that for every k corresponding 
to boundary neighbourhoods Nk we have that 

Det( Jc r^BJk(x\ r, r)ku(*', r, r) + xr1* 
where r, j = 1, . . . , m, arg X = 6, |X| ^ X0 > 0, and C is as in Definition 1.5. 

We now state the main results of the paper. 
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THEOREM 1.1. Let {A; Bj,j = 1, . . . , m\ be a regular elliptic boundary-value 
problem on G. The admissible singular integro-differential operator A is of the 
form (1.1), of class (s — 2m, q), and of order 2m. s ^ 2m and q> (n — l ) / 2 . 
The Bj are of the form (1.2), of class (s — r j , q — §), and °f orders r j with 
r j < 2m — 1. 

Suppose that there exists a 6 such that Assumption (1) is satisfied. Then 
(1) For all u in WS'2(G), we have that 

\\\u\\\St2^c{\\\(A + \I)u\\\s„2mt2+ f ) | | | ^ | | | ' s _ r y _ x , 2 | , 

where arg X = 6, |X| ^ X0 > 0, and C is independent of X and u. 
(2) For any (f, gh . . . , gm) in 

Ws' \G) X H Ws-ri-h\dG), s ^ 2m, 

there exists a unique solution u in WS,2(G) of 

(A + \I)u = f on G, BjU = gj on dG, j = 1, . . . , m. 

The proof of the theorem is long and will be given in § 3. The theorem has 
been proved by Agranovic and Visik (3) for the case when the operators A 
and Bj are differential operators (cf., also, Agmon (1)). 

THEOREM 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied. Let 
Ck, k = 1, . . . , m, be a set of boundary differential operators of orders vk with 
vk < 2m. Let Ljk, j , k = 1, . . . , m, be a set of compact {or bounded) linear 
operators from Ws-vk~h2(dG) into Ws~r^'2 (dG) (or into Ws~r^+€'2(dG) for 
some e > 0). Then 

(i) there exists a positive constant M, independent of X (arg X = 6) and u, such 
that j for all u in W8,2(G), 

,2^MJ\\\(A + \I)u\ -2m, 2 + ^ 

1/ m \ 
\\Bj — 2^1 LjkCk] 
W k=i / 

s ^ 2m, |X| ^ Xo > 0; 

(ii) let A2 be the realization of A as an operator on L2(G) with null boundary 
conditions 

m 
BjU — J 3 LjkCku = 0 on dG, j = 1, . . . , m. 

k=l 

Then (A 2 + XI)_1 exists and is defined on all of L2 (G). It is a compact operator 
on L2(G) with \\A2 + XI)"1!! g M/\\\for |X| è X0 > 0. 

THEOREM 1.3. Suppose that the hypotheses of Theorem 1.2 are satisfied. Then 
(i) there exists a positive constant M such that, for all u in WS,2(G), 

C m 

\\u\\s,2SM\\\Au\\s-2m,2+\\u\\»,2+ D 
V 3=1 

[ Bj — ZJ LjkCk ) d | s _ r i _ i , 2 | , 

5 ^ 2 m ; 
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(ii) A 2 is a Fredholm operator and ind(^42) = 0 (cf. Schechter (8). 

THEOREM 1.4. Suppose that the hypotheses of Theorem 1.2 are satisfied for 
s = 2m. Suppose, further, that there exist 6k, k = 1, . . . , N, 0 ^ 6k < 2T, for 
which assumption (1) is satisfied and such that the plane is divided by these rays 
arg X = 6k into angles which are less than 2m7r/n. Then the generalized eigen-
functions of A2 are complete in L2{G). 

The theorem extends for the case p = 2, a result of Agmon (1). 

THEOREM 1.5. Suppose that the hypotheses of Theorem 1.2 are satisfied for 
s = 2m. Letf(x, fi, . . . , f2w) oe a function measurable in x on G, continuous in 
(f i, • • • , f2m) with f(x, 0, . . . , 0) 9e 0. Suppose, further, that there exists a 
positive constant M such that 

i 2m-l 

| / (* ,f i , . . . , f 2J | ÛM<1 + £ If, 

Let Ti, . . . , r2 w_i be bounded linear operators from Wj,2{G) into L2(G) and let 
T2m be a bouuded linear operator from W2m~e'2(G) into L2(G), 0 < e. Then 

(i) for | \ | ^ X0 > 0, there exists a non-trivial solution u in W2m"2(G) of the 
elliptic boundary-value problem 

{A + \I)u = f(x, T\U, . . . , T2mu) on G, 
m 

BjU = 23 LjkCku on dG, j = 1, . . . , m; 
J c = l 

(ii) let (gh . . . , gm) be in 
m 

n w2m-rj-h'2(dG). 

There exists a solution u in W2m"2(G) of (A + \I)u = fix, T\u, . . . , T2mu) on 
G; BjU = gj on dG. 

2. In this section we shall give the proofs of Theorems 1.2-1.5, assuming 
Theorem 1.1. 

Proof of Theorem 1.2. (1) We establish the a-priori estimate. Suppose that 
part (i) of the theorem is not true. Then for any X with arg X = 6, |X| ^ X0 > 0, 
there would exist {un} with 

IIKHU2 = 1 
and 

m 

HI 04 + ^)un\\\s-2m,2 + ||«n||o,2 + Z) 
j=l 

From the weak compactness of the unit ball in a Hilbert space, we obtain a 
subsequence, which we may assume to be the original one, such that un-+ u 
weakly in WS,2{G) as n —» 00. Since un —> 0 in L2(G), we have that u = 0. 
Since G is a bounded open set of Rn, regular of class Cœ, it follows from the 

B, z 
k=l 

TjkCk •jun\ 
- r i - 4 , 2 • 
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Sobolev imbedding theorem that un —> 0 in WS~1,2{G) and un —» 0 weakly in 
pp-*'2(dG) as w —> oo. The operator Y,%=iLjkCk is a compact linear mapping 
from Ws~1,2(dG) into Ws~r>~*,2(dG), being the composition of a linear map­
ping from Ws~*,2(dG) into T/P_,,A;~^2(dG) and a compact mapping from 
jp->*-*.2 i n t o ^ - ^ - ^ 2 ( a G ) 

Therefore E?=iL^C*«„ -^ 0 in T^—r»-*-2(aG) as n -> oo . 
Hence, J3^ n —> 0 in Ws~Tj~*'2(dG) as w —* oo, j = 1, . . . , m. In a similar 

fashion, we show that 

\t'-'i-h/vnBjUn _^ o in L2(dG), j = 1, . . . , w. 

On the other hand, from Theorem 1.1, we obtain the following: 

i l H i | s , 2 ^ Af| | | |(i4 + X)« w | | | s—2m,2 

Thus |||wn|||Sf2 —•> 0 as n —> <», which is a contradiction. Now take |X| suffi­
ciently large and we obtain the a-priori estimate. 

(2) Let A2 be a linear operator on L2(G) defined as follows: 

D(A2) = \u:u in W2m'\G), Au in L2(G); 
m \ 

BjU = X) LjkCku on dG,j = 1, . . . , rar , 
y f c = l / 

4̂ 2^ = -4w if u is in D(^42). 

A2 is densely denned. Indeed, we have that Cc
œ(G) C D(A2). From the 

a-priori estimate and Proposition 16.1 of Agranovic (2, p. 99), we deduce that 
(A 2 + XI) is a closed operator on L2(G) with iV(^2 + X7) = {0}. We show 
that R(A2 + XI) = L2(G). L e t / be any element of L2(G), y an element of 
W2m"2(G), and suppose that 0 ^ / ^ 1. Consider the following elliptic 
boundary-value problem 

m 

(A + \I)u = f on G, BjU = t X) LjkCkv on dG, j = 1, . . . , m. 

From Theorem 1.1, we know that there exists a unique solution u in J^2W,2(G) 
of the above problem. Define the following non-linear mapping T(t) from 
[0, 1] X W2m'2(G) into W2m>2(G): 

T(t)v = u, 

where u is the unique solution of the above boundary-value problem. If we 
can show that T(l)u = u, i.e. T(l) has a fixed point, then u is in D(A2) and 

is in R(A2 + X7). Since / is an arbitrary element of L2(G), we have that 
R(A2 + XI) = L2(G). We verify that JT(J) satisfies the hypotheses of the 
Leray-Schauder fixed-point theorem. 

PROPOSITION 2.1. T(t) is a completely continuous operator from 
[0, 1] X W2m'2(G) into W2m'2(G). 
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Proof. T(t) is continuous. Let tn —» t, vn —> v in W2m"2(G). From Theorem 1.1 
we obtain the following: 

= ^ ) I l/l 10,2 + X ) II l - k j a A f o O I | |2m-ri- | ,2 ( . 
v- j,k=l J 

Thus 

\\un — U\ |2w,2 ^ M X) I I \LJkCk(tnVn — tv) I I t-ry-J.2. 

We immediately have that un—*u in W2m"2(G). T(t) is compact. Indeed, 
suppose that ||z>w||2w,2 = M. Then from the weak compactness of the unit ball 
in a Hilbert space, we have that vn —» v weakly in W2m'2(G), hence also weakly 
in W2mA'2(dG). But Tiï-iLjkCk is a compact operator from W2m-*'2(dG) into 
W**-n-l*(dG), thus 

D LjkCkvn^T, LjkCkv mW2m-Ti-h\dG) 
k=l k=l 

as well as in L2(dG). Therefore un —» w in T/PW,2(G). 

PROPOSITION 2.2. I — T(0) is a homeomorphism of W2m>2(G) into itself. If 
[I - T(t)]v = 0, 0 < t ^ 1, then II ̂ ||2m,2 = -̂ "> where M is independent of t. 

Proof. The first assertion follows directly from Theorem 1.1. Suppose that 
T{t)v = v\ then v is the solution of the boundary-value problem 

m 

{A + Xl)v = f on G, BjV = X LjkCk(tv) on dG, j = 1, . . . , w. 

In the first part of the proof of the theorem, we may, instead of considering 
the operator Ljky take the operator tLjk ; then we have that 

\\l>\\2m,2 ^ M | | / | | o , 2 , 

where M is independent of X, v, and t. 

Proof of Theorem 1.2 {continued). The operator T(£) satisfies all the 
conditions of the Leray-Schauder fixed-point theorem (the uniform continuity 
condition of the theorem is not necessary as observed by Browder in (7)). 
Therefore, T(l)u = u. Thus R(A2 + XI) = L2(G) and hence, (A2 + X/)"1 

exists and is defined on all of L2(G). Since the injection mapping from W2m"2(G) 
into L2(G) is compact, (A2 + X/) _ 1 is a compact linear mapping of L2(G) into 
itself and, moreover, from the a-priori estimate, it follows that 

\\(A2 + X/)-1!! ^ Af/|X| for |X| ^ Xo > 0. 

The theorem is proved. 

Proof of Theorem 1.3. (1) We establish the a-priori estimate by contra­
diction. I t is similar to the first part of the proof of Theorem 1.2. We obtain a 
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contradiction by using the following estimate of Proposition 16.3 of Agranovic 
(2, p. 101): 

||W||,,2 è M^\\Au\\s-2m,2+ |M|o,2 + £ I \B/U \ |'s-r,-i,2f . 

(2) By standard arguments, we deduce from the a-priori estimate that A 2 is 
closed, N(A2) is of finite dimension, and that R(A2) is closed in L2(G). Hence 
A 2 is a semi-Fredholm operator. 

We now show that if Assumption (1) is satisfied, then A2 is a Fredholm 
operator and ind(A2) = dim N(A2) — codim R(A2) = 0. From Theorem 1.2, 
we have that 

(A2 + \I)(A2 + \I)-' = I, 

where I is the identity operator on L2(G). Thus 

^2(^2 + XI)"1 = I - \(A2+ \I)-K 

Since (A2 + X/) -1, considered as a mapping from L2(G) into itself, is com­
pact, it follows from a well-known argument that / — X(^42 + X/) - 1 is a 
Fredholm operator and ind(7 — X(^42 + XI)-1) = 0- Hence A2{A2 + X/)_1 is 
a Fredholm operator and ind(^42(^2 + XI)_1) = 0. We can easily show that 
R(A2) = R(A2(A2 + X/)-1) and N(A2) = N(A2(A2 + X/)"1). Therefore, 
ind(^2) = ind (^ 2 (^ 2 + XI)'1) = 0. 

Proof of Theorem 1.4. Since (A2 + X/)_ 1 is a compact linear mapping of 
L2(G) into itself, the spectrum of A 2 is discrete and the eigenspaces are of 
finite dimension. With the hypotheses of the theorem, it follows from Theorem 
3.2 of Agmon (1, pp. 128-129) that the generalized eigenfunctions of A2 are 
complete in L2(G). Indeed, the proof in (1) depends only on the compactness 
of (A 2 + X/)"1 and on an estimate on the growth of the resolvent operator as 
in Theorem 1.2. 

Proof of Theorem 1.5. Let v be an element of W2m,2(G) and suppose that 
0 S t ^ 1. Consider the following elliptic boundary-value problem: 

{A + \I)u = f(x, tTiv, . . . , tT2mv) on G, 
m 

BjU = 23 LjkCkU on dG, j = 1, . . . , m. 

Since 
( 2 m - 1 ^ 

l/(*,fi, . . . , f 2 j | ÛM[I+ E IMJ, 

/ (#, £7\z;, . . . , tT2mv) is in L2(G). Define the non-linear mapping X(t) from 
[0, 1] X W2m'2(G) into ^2W '2(G) as follows: 

Z(t)v = u, 

where u is the unique solution of the above boundary-value problem. I t 
follows from Theorem 1.2 that %(t) is well-defined. 
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To prove the theorem, we show that X(t) satisfies the hypotheses of the 
Leray-Schauder fixed-point theorem. The proof is essentially the same as that 
given in (10). I t suffices to note that since T2m is a bounded linear mapping 
from W2m~*'2(G) into L2(G), it is a compact linear mapping from W2m"2(G) 
into L2(G). 

A similar argument (taking into account Theorem 1.1) gives the existence 
of a solution in W2m'2(G) of 

(A + \I)u = f(x, Tiu, . . . , T2mu) on G, BjU = gj on dG, j = 1, . . . , m. 

Finally, we note that with the estimate on 11(̂ 42 + ^ ) - 1 | | of Theorem 1.2 
for all X with |arg X| S n/2, we may show the existence of a solution of a non­
local parabolic boundary-value problem of the form 

-~ + Au= f(x, t) on G X [0, T] ; 
m 

BjU = 22 Lj7cCku on dG X [0, T], j = 1, . . . , m\ 

u(x, 0) = Uo(x) on G, 

by using a result of Sobolevskiï (9) (cf. 10). 

3. We proceed to prove Theorem 1.1. As usual, we consider first the case of 
a half-space with A and Bj having constant symbols, then the case when A 
and Bj have symbols depending on x, but close (in a sense to be specified) to 
constant symbols, and finally, the case of a bounded open set G of Rn. 

THEOREM 3.1. Let {A ; Bjfj — 1, . . . , m) be a regular elliptic boundary-value 
problem on R+

n = {x: xn > 0}. The homogeneous singular integro-differential 
operators A and Bj are of orders 2m, r^ (jj < 2m — 1) with constant symbols crA(£) 
in WQ'2(2); ajtf) in Wq-*'2(2'), a > (n - l ) / 2 . Suppose that there exists a 
0, 0 S 0 < 2n,for which Assumption (1) is verified. Then 

(i) | | | ^ | | | 5 , 2 ^ M | | | | ( ^ + X i > | | | s _ 2 m , 2 + E \\\Bju\\\'s_Tj^ 

for all u in Ws'2(R+
n) and for all |X| ^ X0 > 0, arg X = 6. M is independent of 

X, u and s è 2m. 
(ii) The mapping s/u = \ (A + \I)u, B±uy . . . , Bmu} of Ws>2(R+

n) into 
m 

Ws~2m'\R+
n) X II W8'7^2^-1) 

is 1-1 and onto for large |X|. 
Proof. We follow (3) closely (cf. also 2 and 5). 
(i) To prove the a-priori estimate, it suffices to show it for u in 

C™(R+n U R!1-1). Since A is an admissible singular integro-differential operator 
on R+

n, we have that 
2m 

A = E AkDn
k; 

k=0 
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similarly, 

Bj = 2_j BjkDn, E 
k=0 

where Ak and Bjk are singular integro-differential operators on Rn~l, homo­
geneous of orders 2m — k and r3 — k, respectively, with constant symbols. 

(a) Consider (A + \I)u = Lf = fo(x) on Rn, where L is the extension of 
/ to Rn. By taking the Fourier transform, we obtain 

(< (̂?) + X)Ô =/o(S) = I E **(£')&.* + X k 

A computation as in (3) yields |||«|||Sf2 ^ C|||/|||S_2W(2. 
(b) Consider the boundary-value problem: 

(A + \I)w = 0 on R+
n, Bjw = gj - BjU on Rn~\ j = 1, . . . , m. 

By taking the Fourier transform with respect to the tangential variables 
x = (xi, . . . , xn_i), we obtain 

2m 

E o*tt')A.*0(É', xn) + X0(É', jç.) = 0 , x„ > 0, 
fc=0 

£ c r # f t ' ) i ?Xe ' , 0) = £,(*') = g j - t l <r^)DMi', 0), 7 = 1 « , 

where fe) and | ;- denote the Fourier transforms of w and gj with respect to x. 
We seek a solution of the form 

m s* 

where C\,z> is a closed Jordan rectifiable curve in the upper half f-plane, 
containing in its interior all the m roots of 

2m 

x + E **(nr* = o, 
Â;=0 

considered as a polynomial in f. We are reduced to showing the solvability of 
a system of m equations with m unknowns, pT(i;'). Since Assumption (1) is 
verified, the system may be solved in a unique fashion. If we set 

*ri(É',x)= f r ^ ^ D i ^ ^ r t + xr1^ 
and if QTj(£', X) are the elements of the inverse of the transpose of the matrix 
(cTj), then 

m S* 

®(£,xn)= £ Q„(E', X)£,(f, X) r - ' e x p ^ f x J ^ ^ D + X]- 1 ^ . 

To take the inverse Fourier transform of w(£', xn), we need the following lemma. 
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LEMMA 3.1. (i) Let 

(f>a^xn) = Ça^exp(iÇxn)[aA(£,Ç) + X]_1df. 

Then 

<M£> Xn) = 0(|f| + \\\^my+^-"mexp(-dxn(\^ + \\\1/m)h), 

where d = min{Imf : f £ C] > 0. 
(ii) &,(£, X) = 0(|f| + |x| i /2»)^- '- ' / f r , j = 1, . . . , m. 

Proof. Set X = /j,2m and make the following change of variables: 

r = m 2 + |M|2)-*, /*' = M(|£|2 + IM|2)-% r = r (i?i2 + M2)-*. 
(1) We have that 

<M£, *.) = (l£|2 + |M|2) ( a +^+ 1-2 w ) / 20^(r, xw(|?|2 + |M |2)*), 

where 

** (£,«»)= f ft* exP ( if^) [^ (£, r) + Mawr1*. 
(i) As |f | —> oo, |£'| —» 1 and |// | —> 0. Thus, the roots with positive imagin­

ary parts of 
2m 

GO*" + Z *»(*')*•* = o 
tend continuously to those of 

2m 

Z (̂/)r* = o. 
£=0 

Hence, there exists a closed curve C\ independent of fx and £ containing all the 
m roots with positive imaginary parts of 

2m 

(M)2m+ Z ".(*)*•* = 0 for large|?| . 

Therefore, for large |f|, we have that 
|<M£, *»)| ^ M e x p ( - ^ ( | f | 2 + |M|2)*)( |£ |2 + |M|2)(«+w-2-)/2. 

(ii) For small |£|, as |£| —> 0, |£'| —> 0 and |M'| —> 1. Thus, all the roots with 
positive imaginary parts of (ix'Ym + <TA(%\ f) = 0 tend continuously to those 
with positive imaginary parts of 1 + <rA(0, f) = 0. Again, we have a curve C2, 
in the upper half f-plane, independent of both fj, and £ containing all the m 
roots of (//)2W + <TA(£, f) = 0 for small |£|. Thus, 

<Mf, a») ^ ikf e x p ( - ^ ( | £ | 2 + |M|2)è)(|£|2 + |M|2)(«+^i-2-)/2. 

Combining (i) and (ii) we obtain the first part of the lemma. 
(2) Arguing as above, we have that 

QrA, X) = 0(|f| + | x | i / - )2—y. 
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Proof of Theorem 3.1. (i) (continued). As in (3), using Lemma 3.1 and the 
Parseval formula, we obtain: 

m 

I I k l I Is,2 S C X) |||/M||'-r;-è,2. 
Thus 

||M||at2 ^ CJ ||M||s,2 + Z) ll|gill|S-ri-è,2J ^ 

•c{11l/l 1 1 ^ , , + g I I I ^ I U U M } -

Therefore, if z> is such that {A + \I)v = f on i?+
w, 5 ^ = gy on jRn_1, we obtain 

| |MIL2^ C,|||[/|||,_2ro,2+ Ç HblU'wy-^j. 

(ii) Let (/, gi, . . . , gTO) be an element of 

m 

ws~2m'2(R+
n) x n w-^^sr1). 

i=i 

Then the unique solution u in Ws'2(R+
n) of 

(4 + \I)u = / on i?+w, Byw = g, on 2?-i , j = 1, . . . , m, 

is given by 

«(*) = F^kitë) + xr 'WMk» 

+ E ( ^ T ^ § Qn J c f r _ 1 exp(^xJ [c r A ( r , f ) + X ] - 1 ^ } ^ 

where Ff denotes the Fourier transform with respect to x. 
Because of Lemma 3.1, the expression is well-defined. 

THEOREM 3.2. Let {A ; Bjtj = 1, . . . , m\ be a regular elliptic boundary-value 
problem on R+

n. The singular integro-differential operators A and B û are of orders 
2m and rj (rj < 2m — 1), respectively. Suppose that there exists a 6, 0 ^ 0 < 
2ir,for which Assumption (1) is satisfied. Suppose further that 

max\\<rA(è,x) - <rA(£, 0)||ff,2 + X) max\\(rjk(x', £') - <rjk(0, ê')||«-i,2 = 5 

x j,k x 

for x near 0. Then 
(1) TTzere exists a constant M independent of X, arg X = 0, and of u such that 

\\\u\\\s,2 ^ M^\\\(A + \)u\\\s^2m,2+ Z I P ^ I I l U y - ^ j s è 2m; 

(2) Far ei>er;y (/, gi, . . . , gro) i» 

^s-2m'2(i?+") x n T F * - " - * ^ ^ 1 ) 
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there exists a unique solution u in Ws'2(R+n) of (A + X) u = f on R+
n\ BjU = gj 

on i£n _ 1 , j = 1, . . . , m. 

Proof. We prove the a-priori es t imate . We denote by AQ and B^ the 
principal pa r t s of A and B3, and by ^o(O) and Bj0(0) the homogeneous singular 
integro-difïerential operators with symbols crA(0, £) and <r;(0, £')• F rom 
Theorem 3.1, we obtain 

( m ) 
\s,2 ^ M^\\\(Ao(0) + \)u\\\s.2m,2 + Ç |||5,o(0>|HUy-i,2| 

^ M{\\\(A + X)^|||s_2m,2+ |||(^o(0) -4 0 H| | s _ 2 m , 2 

m 

+ \\\(A - ^0>|||s-2m,2 + Z'I lll-B#|||'s-r,-e,2 + 111(5,0 - £,)«|||'_ry-i.î 

+ | | | (^o-^o(0))^[ | | ' s_ r ; ._i,2 

(i) Since 4̂ is an admissible singular integro-differential operator on R+
n, it 

may be wri t ten as: A = RÂL + T, where T is an operator a lmost of order 

2m - 1 on Ws'2(R+
n). 

Therefore, \\(A — A0)u\\s-.2m,2 ^ e||w||, |2 + C(e) | |w| | ,_i | 2 and 

| X | ( S - 2 m ) / 2 m | | ^ _ A0)u\\o.2 ^ e\\\ < - * » ) ' » » | \ U\ \ 2m ,2 + C (e)\\\^-^/2m\\u\\2m.1>2. 

B u t 

IM|2m-i,2 ^ e/C(e)||w||2m,2 + K(e)I|tt|10,2, 

111(4 - i4o)tt|||^2w,2 ^ 2 € | | | « | | | , i 2 + CaCeJIXl-^ l lMlH,^ 

(ii) Similarly, 

rj Tj 

Bj= 2-J B j^Dn + 2^i TjjJJn , 
k==0 k=0 

where Tjk are linear operators a lmost of orders r3- — k — 1 on Ws~^'2(Rn~l). 
T h u s 

|(J3, - -B^o)w|||{-ri-4f2 ^ e | |H| | ' s_i,2 + C3(e)|X| — l / 2 w i | W 

(hi) W e consider |||C4o — ^-o(0))w|||s_2m,2. If <TA(%, J) is the symbol of 4 , 
then the symbol <rA(x, J) of 4 may be obtained from <rA(x, £) by the Hestenes 
formula and, moreover, 

max||o-i;(x, £) - ^ ( O , £)||fff2 ^ Cmax| |o-A(x, J) - o-A(0, £)||fff2, 

where C does no t depend on <rA. T h u s 

HI(4o - 4o(0))w| | | s_2 W ) 2 â C2 | | | ( i î0 - 4o(0) )L^ | | | 5 _ 2 m , 2 . 

Using Proposition 8.3 of Agranovic (2, p . 47) , we have t h a t 

| | | ( Jo - l o ( 0 ) ) L ^ | | | s _ 2 m , 2 ^ Czb\\\u\\\s,2 + C4(crA) |X|-1 /2- | |^ | | | s ,2 . 
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(iv) A similar argument yields: 

| | | (B i 0 - 3,o(0))«| | |Uy-M ^ C«||H||,,2 + C^M-^lWulW^. 

Therefore, by taking ô small and |X| sufficiently large, we obtain the a-priori 
estimate of the theorem. 

(2) We now show t h a t s / has a right inverse. I t follows from Theorem 3.1 
thatJ^o(O) has a right inverse Xo] thus 

j / £ o = j / o ( 0 ) î 0 + (*/ - j / o ) î o + (Se, - j / o ( 0 ) ) £ o 

= 1+ (J* - ^ o ) £ o + Çs/o - ^ o ( 0 ) ) î 0 . 
Set 

m 

g = (gl, • . . , g m ) a n d | | | C f , g ) | | | , , 2 = | | | / | | | S - 2 m , 2 + Z l l b l l l i - r y - 4 , 2 . 

Let u = Xo(ff g) withs/o(0)Xo(ff g) = (/, g) (Theorem 3.1). Then a computa­
tion, as in the first part, yields 

HK^O -S/,(0))Xo(f, g)\\\,,t è IIHCf, g)|||S,2 

for <5 small and |X| sufficiently large. Also, 

\\\(sf-sfo)Z0(f,g)\\\£i\\\(f,i)\\\..* 

since ($/ — S/Q) is an operator almost of order —1 from WSi2(R+n) into 
W'-m'2(R+n) X IL^W8-'''-*-2^-1). Let 

Q = (</ - J^0)£o + («fl̂ o - ^ o ( 0 ) ) £ 0 ; 

then |||Q(f, g ) | | | . , 2^ i | | | ( f^ ) l l l . . 2 . Hence (7 + Ç)"1 exists. Take £ = 
£ o ( / + G)"1, t h e n j / 2 : = 7. 

Proof of Theorem 1.1. (1) We establish the a-priori estimate. Since G is a 
bounded open set of Rn, regular of class Cœ (cf. 5), there exist a finite open 
covering of c\(G) and a finite partition of unity 4>k corresponding to Nk. Let 
xf/jc be an infinitely difïerentiable function with compact support in Nk such 
that \j/k = 1 on the support of <j>k. We have that 

where 7" is an operator almost of order —1 from W8,2(G) into 

m 

Ws~2m'\G) X I I Ws-rj~h\dG) and J / * = (Ak + XI, S « , • . . , *«*), 

where Ak and Bjk are singular integro-differential operators on R+
n and on 

Rn~1
1 respectively. We also have that 

^fk{<t>icU) = j/jtiMkU) = <M^fc(*M) + Tk(fau), 
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where Tk is an operator almost of order —1 from Ws'2(R+n) into 

m 

Ws~2m'\R+
n) X II W^-^iR71'1) 

if Nk is a boundary neighbourhood and Tk is an operator almost of order — 1 
from Ws>2(R+n) into Ws~2m'2(R+

n) if Nk is an interior neighbourhood (cf. 2). 
From Theorem 3.2 and an easy computation we obtain 

|||<M|||S,2 ^ M\\\\<t>k(Ak + \)xf/ku\\\s-2m,2 + €|||^M|||Si2 

m ^ 

+ C(e)|Xr1/2m |i|^M | |!s,2+ £ || |**B#(M)|||i-r,-i.*f-

The norms are taken in local coordinates. On the other hand, we have that 

0*^*(lM) = <l>u8/(\frku) + (j)kTk(\pku), 

where Tk is an operator of the same type as Tk. Therefore 

|<M|||S,2 ^ Mj|||<fo04 + X)(^) | | | s_2 m ,2+ €|||^W|||S,2 

m ^ 

+ C(e)|Xr1/2m | | |^M | | |s,2+ £ | | [^5,(^M) | | | ' s_ r j-i .2h 
3=1 J 

We may write <j>k{A + \)(fau) = <j>k(A + X)u + 4>k(A + \)(\f/k — \)u and, 
similarly, for <j>kBjk{^ku). The operator <j>kS$'{\pk — 1) is again an operator 
almost of order —1 from WS,2(G) into 

m 

Ws-im'\G) X II Ws-ri-h\dG). 

Hence we finally obtain 

|||«|||,.s ^ M\\\\(A +X)M|||s_2m,2 + e|||M|||s,2+ C(€)iXr1/2m|||M|||s,2 

m \ 

+ Z ) \\\BJU\\\fS-Tj-hM • 
3=1 J 

Taking e small and |X| sufficiently large, we obtain the a-priori estimate. 
(2) We now construct the inverse oîs/. We have that 

N 

k=l 

For each k,sek has a right inverse Rk (Theorem 3.2). To simplify the notation, 
we write g = (gi, . . . , & » ) . Consider 

R(f,g) = £ trRrM 4>rg). 
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R is a bounded linear operator from Ws-2m'2(G) X U™=iWs-r^>2(dG) into 
WS>2(G). We have that 

N 

J*R(f,g) = E 4*sf*[*Jl,M **)**] + TR(f,g). 

Set wr = \prRT(<j>Tf, 4>Tg). We also have that 

(cf. 2, pp. 102, 75) rrA; is an operator almost of order —1 from WSt2(G) into 

m 

Ws~2m'\G) X I I W-T'-i-\dG). 

Hence 

^(f-g) = E hMrtfrRM, 4>rg) + ri?(/)g) 
7 - , A; 

+ E 4>kTrl[trRr{4>rf, 4>rg)] 
r,k 

+ E 4>*WAMrRr{4>rf, 4>rg)] ~ Mr<%? rRr{<t>rf, 4>rg))-
r,k 

Consider the first sum. I t is equal to (f, g). Set 

m 

llltts)lll.= 111/111̂ .2+ Z HblllU-^-
Then 

i ! i^(f .«) in. s «ma,«)in. + c(«)ixi-i/2miii(f, f)in,. 
In a similar fashion, we obtain the same bound for the third sum. Since 
^rhPk^r'] ~ tr^k&^A'] is an operator almost of order —1 from Ws,2(R+

n) into 
m 

Ws~2m'\R+
n) X I I W^-^iR71"1), 

we obtain the following upper bound for the last sum, namely, 

^ l l l ( f^) l l l .+ C(6) |X | -^ | | | ( f ,g) | | | . . 

Thus J^R(f, g) = (/, g) + SC</, g) with ||St|| ^ i for large |X|. Hence 
(J + Î ) - 1 exists andsé~ l = R(I + Z)~K 
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