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Abstract
Radar-based hand gesture recognition is a potential noncontact human–machine interaction
technique. To enhance the recognition performance of hand gesture, a multidomain fusion-
based recognition method using frequency-modulated continuous wave radar is proposed in
this article. The received raw echo data of gestures is preprocessed to obtain the range–time
matrix, Doppler–time matrix, and range–Doppler–frame tensor. The obtained three-domain
radar data corresponding to each gesture are input into the three-channel convolutional neural
network for feature extraction. In particular, the extracted features from three-domain data
are fused with learnable weight matrices to obtain the final gesture classification results. The
experimental results have shown that the classification accuracy of the proposed multidomain
fusion network based on learning weight matrix-based fusion is 98.45%, which improves the
classification performance compared with the classic average-based fusion and concatenation
fusion.

Introduction

In recent years, hand gesture recognition technique has found wide applications in the field of
human–machine interaction [1–3]. It has become a new research hotspot in the fields of sign
language translation, vehicle infotainment systems, intelligent home, etc. Typically, the hand
gesture recognition systems are implemented using optical cameras and wearable sensors. The
optical camera systems are sensitive to the illumination condition and have low privacy. The
wearable sensors can normally work only under the contact condition and bring uncomfortable
use experience. Fortunately, the radar sensor can recognize different hand gestures in the case
of noncontact operation, bad lighting condition, and non-line-of-sight [4–6]. Therefore, radar-
based hand gesture recognition has received substantial attention in both academic world and
industry world.

The radar sensors for hand gesture recognition can be broadly categorized as unmodu-
lated continuous wave (CW) radar, pulse radar, and frequency-modulated continuous wave
(FMCW) radar. In papers [7, 8], the micro-Doppler spectrograms corresponding to different
gesture echoes are acquired by unmodulated single-tone CW radar. Then, the micro-Doppler
spectrograms are classified by convolutional neural network (CNN) to realize gesture recogni-
tion. However, the single-tone CW radar cannot provide range information of gestures, which
leads to the limited recognition performance of the system. Due to its ability to provide both
range and Doppler information, FMCW radar system has been widely used for hand gesture
recognition [9–11]. Some researchers adopt FMCWradar systemwithmultiple-inputmultiple-
output architecture to obtain the angle information of hand gesture [12, 13]. However, the angle
information is only applicable to gestures with large-scale motion. In paper [14], a multistatic
FMCW radar with one transmitter and four receivers is used to collect the gesture echo data.
The spectrograms of four receivers are used as the input ofmultichannel two-dimensional CNN
(2-D-CNN) to increase the recognition accuracy of gestures. Unfortunately, 2-D-CNN can only
learn the spatial feature of the spectrograms for each gesture. Three-dimensional CNN (3-D-
CNN) is proposed to extract the spatiotemporal characteristic information of dynamic gesture
to increase the classification accuracy [15, 16]. In paper [15], only the range–Doppler–frame
tensor is used as the input of 3-D-CNN to achieve the gesture classification, which makes the
feature extraction incomplete. In paper [16], the range–Doppler map time sequence (RDMTS)
and range–azimuth map time sequence (RAMTS) are combined to improve the gesture classi-
fication performance. However, the extract features of RAMTS and RDMTS are fused by the
simple concatenation fusion method, which ignores the importance score of each domain data
for the gesture recognition.

To solve the above problem, a multidomain fusion network for hand gesture recogni-
tion based on FMCW radar is developed. First, the range–time matrix, the Doppler–time
matrix, and the range–Doppler frame tensor are obtained by preprocessing the original gesture
echo signal. Then, the range–time matrix and the Doppler–time matrix are used as inputs of
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Figure 1. Block diagram of the used FMCW radar system.

2-D-CNNs, respectively. The range–Doppler–frame tensor is used
as the input of 3-D-CNN. The trainable weight matrix is used to
fuse the extracted feature information from different domain data
so that the most comprehensive feature information is obtained in
the fusion module. Finally, the additional dense layer and Softmax
function are employed for multiclass classification of hand ges-
tures. Experiments are conducted to prove the effectiveness of the
multidomain radar data and the superiority of the learning weight
matrix-based fusionmethod compared to the average-based fusion
and concatenation fusion.

Reconstruction of multidomain data

Signal model

The simplified block diagram of the used FMCW radar is depicted
in Fig. 1. The FMCW radar consists of a waveform generator, a
transmitting antenna, a receiving antenna, a quadrature demod-
ulator, two low-pass filters, and two analog-to-digital converters.
The FMCW signal generated by the waveform generator is sent to
the transmitting antenna. The transmitted signal reflected by the
hand is received by the receiving antenna. The received signal is
then amplified andmixedwith transmitted signal to obtain the beat
signal.

For an FMCW radar, the received signal can be expressed as

Srx(t) = Arx cos(2𝜋(f0(t − 𝜏) + r
2 (t − 𝜏)2) + 𝜑rx) (1)

where 𝜏 represents the round-trip propagation time delay, f0 is the
carrier frequency, r is the chirp rate, 𝜑rx is the initial phase of the
received signal, and Arx is the amplitude of the received signal and
expressed as

Arx = G𝜆
√
P𝜎

(4𝜋)1.5R2
√
L

(2)

whereG is the antenna gain; P and 𝜆 are the power and wavelength
of transmitted signal, respectively; 𝜎 is the radar cross section
of target; and L denotes other losses. After the received signal is
demodulated by the I/Q demodulator, the beat signal is obtained
as

S(t) = I(t) + jQ(t) = A exp[ j𝜓(t)] (3)

where 𝜓(t) is the phase of the signal.

Data preprocessing

The range–time matrix, Doppler–time matrix and range–
Doppler–frame tensor corresponding to each gesture can be
obtained by preprocessing the beat signal collected by FMCW
radar. The flowchart of raw echo data preprocessing is shown
in Fig. 2. First, the original echo data are reshaped into a two-
dimensional raw data matrix, where the horizontal axis represents
the slow time dimension and the vertical axis represents the
fast time dimension. The raw data matrix is transformed into the
range–timematrix by performing the fast Fourier transform (FFT)
along the fast time dimension. Then the fourth-order Butterworth
high-pass filter with the cut-off frequency of 0.0075 Hz is used as
moving target indicator to suppress the background static clutter
in the range–time matrix. Considering the distance between the
hand and the radar for different gestures, the range bins starting
from 0.75 m to 2.25 m are chosen for further short time Fourier
transform (STFT) processing. The STFT with length of 0.2 s and
overlap coefficient of 95% is performed for each range bin along
the slow time dimension. Accordingly, the Doppler–time matrix
is obtained by coherently summing the STFT results of each range
bin. A frame is established by stacking arrays of the sampled beat
signals for a certain number of frequency modulation periods.
A series of range–Doppler matrix can be obtained by performing
FFT along the slow time for each frame. Finally, the range–
Doppler–frame tensor is obtained by stacking the range–Doppler
matrix of each frame. In this article, the range–Doppler–time
tensor is composed of 20 frames, with the duration of 100 ms per
frame.

The range–time matrix, Doppler–time matrix, and range–
Doppler–time tensor are combined to implement the classification
of hand gestures. Since each domain data has its unique and
valuable feature information, how to effectively integrate the fea-
tures of three-domain data is critical to enhance the classification
performance of hand gestures.

Proposed multidomain fusion network

In order to make full use of feature information of each domain,
each domain data is input into different CNNmodels according to
its own property. The entire architecture of the proposed multido-
main fusion network is depicted in Fig. 3.The proposed network is
composed of three parts: feature extraction module, feature fusion
module, and classification module.

Feature extraction

In order to extract the feature information from the three-domain
data, different network models are designed according to the dif-
ferent characteristics of three-domain data.The range–timematrix
contains the time-varying range information between the radar
and the hand.The range–Doppler matrix reflects the time-varying
Doppler frequency information of various scattering points of the
hand. Each range–Doppler frame characterizes the changes in
range–Doppler signature over time. In the proposed network, two
2-D-CNNs with the same structure are used to extract the spatial
features of range–time matrix and Doppler–time matrix, respec-
tively. A 3-D-CNN model is built to extract the spatiotemporal
features of range–Doppler–frame tensor. As shown in Fig. 4(a),
the built 2-D-CNNmodel consists of three 2-D convolution layers,
each of which is followed by a rectified linear unit (ReLU) activa-
tion function and amax pooling layer.The last max pooling layer is
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Figure 2. Flowchart of raw echo data preprocessing.

Figure 3. The proposed network architecture for hand gesture recognition.

followed by a dense layer, which outputs the 10 × 1 feature vector.
In order to reduce the parameters of network, the built 3-D-CNN
model only contains two 3-D convolution layers, each of which is
followed by a ReLU activation function and a 3-D max pooling
layer. Finally, the feature vector with 10 × 1 dimension is output
through the dense layer.The structure of 3-D-CNNmodel is shown
in Fig. 4(b).

Feature fusion

The feature fusion is carried out on the extracted 1-D feature
vectors from three-domain data. Since the three feature vectors
contain different feature information of gestures, they have dif-
ferent importance scores the final recognition results. In order to

obtain the complementary feature, the trainable weight matrices
are used to merge three feature vectors. The fused feature vector
can be expressed as

Ffuse = 𝛼 × F1 + 𝛽 × F2 + 𝛾 × F3 (4)

where F1, F2 and F3 are extracted feature vectors from range–time
matrix, Doppler–time matrix, and Doppler–range–frame tensor,
respectively. 𝛼, 𝛽, and 𝛾 are the trainable weight matrices of the
three feature vectors, respectively. Because the extracted features
from different domain data have their own importance for hand
gestures classification, the learnable weight matrices can help the
model find the most appropriate fusion way to represent differ-
ent significance of three-domain input data. If the contributions
of features from three-domain data are consider to be equal, the
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Figure 4. 2-D-CNN/3-D-CNN structure: (a) 2-D-CNN structure and. (b) 3-D-CNN
structure.

recognition accuracy of gesture will be reduced, which will be
proved this in the following experiment part. Since the fused vector
obtained by theweightmatrices contains importance proportion of
each domain data, it can provide the most discriminative feature
representation of three-domain data, which effectively improves
the classification ability of the network model.

Classification

After fusing the features of the three-domain data, the final fused
feature vector is obtained. Then the dense layer is used to map the
fused feature to the label space. Finally, the Softmax function is
deployed to convert the real values of the vector into probability
values between 0 and 1.The output probability of Softmax function
is given by

yi =
exp(zi)

∑k
j=1 exp(zj)

i = 1, 2, ⋯ , 8 (5)

where yi represents the prediction probability that the data belongs
to the i th category, k denotes the total number of gesture classes
and is equal to 8, andzi is the output value of the ith neuron of the
dense layer.

Given a set of labeled samples, the cross-entropy loss function
is adopted to train the proposed network model. The loss function
is given as

L = − 1
N

N

∑
n=1

k

∑
i=1

y′
n,i log (yn,i) (6)

whereN denotes the size of aminibatch, y′
n,i is the actual prediction

probability of the i th category corresponding to the nth sample,
and yn,i represents the expected prediction probability of the i th
category corresponding to the nth sample.

Experimental results

Data collection

Thecommercial K-bandFMCWradar platformSDR-KIT-2400AD
developed by Ancortek incorporation is used to collect data sam-
ples of different hand gestures. The radar transmits FMCW wave-
form with a carrier frequency of 24 GHz and a bandwidth of
2 GHz. The FMCW sweep time is set to 1 ms and the data sam-
pling frequency is 128 kHz.The transmitted power of the system is
18 dBm, and the two horn antennas with 10 dBi gain are used for
transmitting and receiving signals.The experiment is performed in
an indoor laboratory with one subject sitting in front of the radar.
The hand of the subject has a distance of approximately 30 cm from
the antennas.The experimental scene is demonstrated in Fig. 5.The
gesture data are recorded by five volunteers, which are composed
of fourmen and onewoman. Eight types of gestures used for evalu-
ation are listed as follows: (a) raise, (b) swipe left to right, (c) swipe
back to front, (d) circle, (e) push, (f) pinch, (g) flick, and (h) snap.
The illustrative images of the different gestures are shown in Fig. 6.
The recording time for each gesture is set as 2 s. Each subject is
required to repeat each gesture 40 times and thus the total number
of each gesture is 200 (5 subjects × 40 repetitions).

The collected raw radar data are preprocessed by MATLAB
software to obtain range–time matrix, Doppler–time matrix, and
range–Doppler–frame tensor for each gesture. The proposed net-
work is implemented using Tensorflow and Keras library. All the
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Figure 5. Experimental scene.

Figure 6. Illustrative images of the different gestures: (a) raise, (b) swipe left to
right, (c) swipe back to front, (d) circle, (e) push, (f) pinch, (g) flick, and (h) snap.

experiments are performed on a workstation with an NVIDIA
Quadro P5000 GPU and an Intel(R) Xeon(R) Gold 6132 processor.

Network training

The three-domain data are input into the proposed network
model for training. The network is trained from scratch using
a learning rate of 0.001 and the adaptive moment estimation
(Adam) optimizer. The datasets are split into 60% for the train-
ing, 20% for the validation, and 20% for the testing. The training
dataset and validation dataset are shuffled every epoch and the
validation dataset is not included in the test dataset. The test
dataset is used after the complete training to inspect the per-
formance of the network. The network model is trained for 250
epochs. The minibatch size is set to 16 and each epoch consists
of 60 batches. The training and validation accuracies are calcu-
lated at the end of each epoch. Figure 7 shows the accuracy of
training and validation process for the proposed multidomain
fusion network. It is observed from Fig. 7 that there is no further
increase of accuracy when the number of training epochs is more
than 180.

In the process of network training, the cross-entropy loss func-
tion which measures the difference between the predicted value
and the actual value is exploited to evaluate the fitting degree of
trainable parameters. Figure 8 shows the value of loss function for
the training and validation process. As can be seen from Fig. 8,
the loss value gradually decreases as the number of training epochs

Figure 7. Training and validation accuracy at each epoch.

Figure 8. Training and validation loss at each epoch.

increases.When the training reaches the 180th epoch, the loss does
not decrease further, which means that the network has attained
maturity.

Performance evaluation

In order to compare the classification performance of multido-
main data and single-domain data, four sets of experiments are
performed to input the range–time matrix, the Doppler–time
matrix [8], the range–Doppler–frame tensor [14] and three-
domain data into the corresponding single-channel or three-
channel network. In order to make the results more general, we
conduct a fivefold cross-validation experiment for each case. The
whole dataset is divided into five parts, where four parts are used
for training and one part is kept for testing. The average confu-
sion matrices of four cases are shown in Fig. 9. It can be observed
from Fig. 9 that the proposed three-channel network with mul-
tidomain data input has the lowermisclassification rates compared
to other single-channel networks with single-domain data input.
In addition, when only single-domain data are used as the input
of the network, the misclassification rates is relatively high for
the gestures of swipe left to right, circle, pinch, flick, and snap.
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Figure 9. Confusion matrices: (a) three-domain data, (b) range–time matrix, (c) Doppler–time matrix [8], and (d) range–Doppler–frame tensor [14].

Table 1. Classification accuracies comparison of different input data

Input data Average accuracy (%)

Three-domain data 98.45

Range–time matrix 90.63

Doppler–time matrix [8] 93.13

Range–Doppler–frame tensor [14] 94.69

This phenomenon is due to the fact that the hand movement of
these gestures is relatively small and the single-channel networks
which has incomplete feature extraction cannot distinguish these
gestures well. Table 1 provides the comparison result of classifica-
tion accuracies for different input data. As shown in Table 1, the
classification performance using the range–Doppler–frame tensor
data is the best for single-domain data input. However, the ges-
ture feature information contained in the single-domain data is
relatively incomplete, and the classification accuracies based on
single-domain data are not satisfactory. When the three-domain
data are used as the network input, more feature information
of gesture actions can be extracted. The classification accuracy
based on three-domain data can reach to 98.45%. Therefore, the
recognition accuracy of multidomain data is higher than that of
single-domain data.

In order to compare the effect of different fusion methods on
the result of gesture recognition, the classification performances
of three fusion modes are compared in this article. (1) Learning
weight matrix-based fusion—It assigns a trainable weight matrix
to the extracted feature vector from each domain data and adds
the three feature vectors after multiplying the weight matrix. (2)
Average-based fusion—It directly adds up the extracted feature
vectors of three-domain radar data without considering the impor-
tance degree of each domain radar for hand gesture recogni-
tion. (3) Concatenation fusion—Theextracted feature vectors from
three-domain radar data are concatenated to obtain the new fea-
ture vector. Table 2 illustrates the classification accuracies of the
different fusion methods.The experimental results in Table 2 show
that the learning weight matrix-based fusionmethod has the high-
est classification accuracy. Due to the neglection of significance of
each domain data, both average-based fusion and concatenation
fusion are inferior to learning weight matrix-based fusion.

The scatter diagrams of feature space visualization based on
t-distributed stochastic neighbor embedding (t-SNE) [17] for dif-
ferent fusionmethods are shown in Figs. 10–12. It is observed from
three figures that the overlap among the features extracted by the
leaning weight matrix-based fusion is the smallest, which makes

Table 2. Classification accuracies of different fusion methods

Fusion method Accuracy (%)

Learning weight matrix-based fusion 98.45

Average-based fusion 89.38

Concatenation fusion 96.56

it easy to classify the eight gesture classes accurately and reliably.
For the features extracted by the average-based fusion, the con-
fusion between the different gestures is severe, especially for the
gestures of pinch, circle, and snap, as shown in Fig. 11. It is seen
from Fig. 12 that the two gestures of pinch and snap have the seri-
ous overlap, which indicates that the extracted features with the
concatenation fusion make it difficult to separate two gestures due
to the small-scale motion amplitude of gestures.

The effects of learning rate,minibatch size, and optimizer on the
performance of the proposed network are also investigated. First,
the minibatch size is set to 16 and the adaptive moment estimation
(Adam) optimizer is used for optimization, the values of learning
rates are set to 0.0005, 0.001, 0.002, and 0.003, respectively. The
classification accuracies and convergence epochs of network train-
ing for different learning rates are shown in Table 3. If the learning
rate is too small, it will take much time for the network to com-
plete the convergence in the training process and the classification
accuracy will be relatively low. However, if the learning rate is too
large to learn subtle features, the classification accuracy will not
reach the optimal level. When the learning rate is set to 0.001, the
classification performance is the best. Secondly, the learning rate is
fixed to 0.001 and the Adam optimizer is used, the classification
accuracies and convergence epochs for different minibatch sizes
are shown in Table 4. It is observed from Table 4 that the network
can make a good tradeoff between the classification accuracy and
the convergence epochs when the minibatch size is equal to 16.
Finally, the effects of different optimizers such as adaptive gradi-
ent (Adagrad), stochastic gradient descent (SGD), and Adam on
the classification accuracy and convergence epochs are tested. The
experimental results are shown in Table 5. It can be observed that
the Adam optimizer can achieve the highest classification accuracy
and the fastest convergence among the three optimizers.

The hand gesture recognition of unknown people based on
trained data from known people is very important for practi-
cal application. In order to evaluate the generalization ability of
the proposed network, the leave one subject out cross-validation
method is used to separate the training and testing data, where
the data from one of the five subjects are selected for evaluating
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Figure 10. Scatter diagram of learning weight
matrix-based fusion.

Figure 11. Scatter diagram of average-based fusion.
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Figure 12. Scatter diagram of concatenation fusion.

Table 3. Classification accuracies and convergence epochs of different learning
rates

Learning rate 0.0005 0.001 0.002 0.003

Accuracy (%) 92.18 98.45 96.87 94.68

Convergence epochs 400 180 120 80

Table 4. Classification accuracies and convergence epochs of different mini-
batch sizes

Minibatch size 8 16 32 64

Accuracy (%) 94.92 98.45 98.75 98.13

Convergence epochs 170 180 350 420

Table 5. Classification accuracies and convergence epochs of different optimiz-
ers

Optimizer Adagrad SGD Adam

Accuracy (%) 95.70 94.06 98.75

Convergence epochs 270 350 180

the performance and the data of the remaining four subjects are
used for training the network model. Each of five subjects labeled
from A to E is tested when the training data and testing data
change sequentially. Table 6 shows the classification accuracy for
each subject. It is observed from Table 6 that the gesture classifi-
cation accuracy is higher than 97% for each subject. Hence, the
proposed networkmodel has the robust classification performance
for different subjects.

Table 6. Classification accuracy of each subject

Subject A B C D E

Accuracy (%) 98.13 97.19 99.06 98.75 98.44

Conclusion

Gesture recognition has wide application in human–machine
interaction. In this article, we propose a multidomain fusion net-
work architecture for hand gesture recognition method based on
FMCW radar system. The proposed method uses two 2-D-CNNs
and one 3-D-CNN to extract feature information from the range–
timematrix, Doppler–timematrix, and range–Doppler–frame ten-
sor. Specifically, the learning weight matrix-based fusion method
is developed to fuse the features of multidomain radar data. The
experimental results show that the recognition accuracy of mul-
tidomain input is 98.45%, which is higher than that of single-
domain input. The learning weight matrix-based fusion can fuse
multidomain features more effectively and improve the hand ges-
ture classification performance. In addition, the experiment results
of the leave one subject out cross-validation prove that the pro-
posed network has the satisfactory generalization ability. In the
future, we try to develop the network model with smaller size and
higher accuracy for embedded implementation.
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