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Abstract
Let (𝑊, 𝑆) be a Coxeter system, and write 𝑆 = {𝑠𝑖 : 𝑖 ∈ 𝐼}, where I is a finite index set. Fix a nonempty convex
subset ℒ of W. If W is of type A, then ℒ is the set of linear extensions of a poset, and there are important Bender–
Knuth involutions BK𝑖 : ℒ → ℒ indexed by elements of I. For arbitrary W and for each 𝑖 ∈ 𝐼, we introduce an
operator 𝜏𝑖 : 𝑊 → 𝑊 (depending on ℒ) that we call a noninvertible Bender–Knuth toggle; this operator restricts
to an involution on ℒ that coincides with BK𝑖 in type A. Given a Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 , we consider the
operator Pro𝑐 = 𝜏𝑖𝑛 · · · 𝜏𝑖1 . We say W is futuristic if for every nonempty finite convex set ℒ, every Coxeter element
c and every 𝑢 ∈ 𝑊 , there exists an integer 𝐾 ≥ 0 such that Pro𝐾𝑐 (𝑢) ∈ ℒ. We prove that finite Coxeter groups,
right-angled Coxeter groups, rank-3 Coxeter groups, affine Coxeter groups of types 𝐴 and 𝐶, and Coxeter groups
whose Coxeter graphs are complete are all futuristic. When W is finite, we actually prove that if 𝑠𝑖𝑁 · · · 𝑠𝑖1 is a
reduced expression for the long element of W, then 𝜏𝑖𝑁 · · · 𝜏𝑖1 (𝑊) = ℒ; this allows us to determine the smallest
integer M(𝑐) such that ProM(𝑐)

𝑐 (𝑊) = ℒ for all ℒ. We also exhibit infinitely many non-futuristic Coxeter groups,
including all irreducible affine Coxeter groups that are not of type 𝐴, 𝐶, or 𝐺2.
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1. Introduction

1.1. Linear extensions and noninvertible Bender–Knuth toggles

Let 𝑃 = ([𝑛 + 1], ≤𝑃) be a poset whose underlying set is [𝑛 + 1] = {1, . . . , 𝑛 + 1}. Let 𝔖𝑛+1 denote the
symmetric group whose elements are the permutations of [𝑛 + 1] (i.e., bijections from [𝑛 + 1] to itself).
We can think of a permutation 𝑤 ∈ 𝔖𝑛+1 as a labeling of P in which the element i receives the label
𝑤(𝑖). We say that the permutation w is a linear extension of P if 𝑖 ≤𝑃 𝑗 implies 𝑤(𝑖) ≤ 𝑤( 𝑗). Let L(𝑃)
denote the set of linear extensions of P.

For each 𝑖 ∈ [𝑛], the Bender–Knuth involution BK𝑖 : L(𝑃) → L(𝑃) is defined by

BK𝑖 (𝑢) =
{
𝑢 if 𝑢−1(𝑖) ≤𝑃 𝑢−1(𝑖 + 1);
(𝑖 𝑖 + 1)𝑢 otherwise,

where we write (𝑖 𝑗) for the transposition that swaps i and j. These involutions are fundamental in
algebraic combinatorics [1, 6, 7, 8, 13, 15, 23, 24, 27, 30, 32], largely due to the useful folklore fact
that one can reach any linear extension of P from any other linear extension of P via a sequence of
Bender–Knuth involutions. Haiman [15] and Malvenuto–Reutenauer [23] found that Schützenberger’s
famous promotion and evacuation operators Pro and Ev can be written as

Pro = BK𝑛 · · ·BK1 and Ev = (BK1) (BK2BK1) (BK3BK2BK1) · · · (BK𝑛 · · ·BK2BK1).

For 𝑖 ∈ [𝑛], define the noninvertible Bender–Knuth toggle 𝜏𝑖 : 𝔖𝑛+1 →𝔖𝑛+1 by

𝜏𝑖 (𝑢) =
{
𝑢 if 𝑢−1(𝑖) ≤𝑃 𝑢−1(𝑖 + 1);
(𝑖 𝑖 + 1)𝑢 otherwise.

(1.1)
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Of course, 𝜏𝑖 is an extension of BK𝑖 from the set of linear extensions of P to the set of all permutations
of [𝑛 + 1]; it is noninvertible (unless L(𝑃) = 𝔖𝑛+1 – that is, P is an antichain) because 𝜏𝑖 ((𝑖 𝑖 + 1)𝑢) =
𝜏𝑖 (𝑢) = 𝑢 whenever 𝑢−1(𝑖) ≤𝑃 𝑢−1(𝑖 + 1). Defant and Kravitz introduced noninvertible Bender–Knuth
toggles in [9] in order to define the extended promotion operator Pro : 𝔖𝑛+1 → 𝔖𝑛+1, which is the
composition

Pro = 𝜏𝑛 · · · 𝜏1.

Hodges further investigated extended promotion in [18]. Restricting extended promotion to L(𝑃) re-
covers Schützenberger’s (invertible) promotion operator; hence, we slightly abuse notation by using the
same symbol Pro to denote both of these operators. In a similar vein, we define the extended evacuation
operator Ev: 𝔖𝑛+1 →𝔖𝑛+1 by

Ev = (𝜏1) (𝜏2𝜏1) (𝜏3𝜏2𝜏1) · · · (𝜏𝑛 · · · 𝜏2𝜏1).

One of the main results of [9] is that

Pro𝑛 (𝔖𝑛+1) = L(𝑃). (1.2)

In other words, if we start with a permutation in𝔖𝑛+1 and iteratively apply extended promotion n times,
then we will ‘sort’ the permutation to a linear extension (and every element of L(𝑃) is in the image of
Pro𝑛 since Pro permutes the elements of L(𝑃)). In fact, the same argument shows that

Ev(𝔖𝑛+1) = L(𝑃). (1.3)

It is natural to consider other compositions of noninvertible Bender–Knuth toggles. For example,
gyration [32, 36] is the operator Gyr = BKevenBKodd, where BKodd (respectively, BKeven) denotes the
product of the Bender–Knuth involutions with odd (respectively, even) indices. By replacing Bender–
Knuth involutions with noninvertible Bender–Knuth toggles in the definition of gyration, we obtain the
extended gyration operator Gyr : 𝔖𝑛+1 → 𝔖𝑛+1. One could ask for an analogue of (1.2) for extended
gyration. As a special case of Theorem 1.24 below, we will find that

Gyr �(𝑛+1)/2� (𝔖𝑛+1) = L(𝑃) (1.4)

and that the quantity �(𝑛 + 1)/2� in this statement cannot be decreased. In fact, one of our results will
generalize (1.2) and (1.4) to operators obtained by composing 𝜏1, . . . , 𝜏𝑛 in an arbitrary order. We will
also generalize (1.3) to any operator obtained by starting with a reduced word for the long element
of 𝔖𝑛+1 and replacing each simple reflection by its corresponding noninvertible Bender–Knuth toggle.
Moreover, we will state and prove these theorems in the more general setting where the symmetric
group𝔖𝑛+1 is replaced by any finite Coxeter group. Before stating these results, we need to discuss how
to define noninvertible Bender–Knuth toggles for general Coxeter groups.

1.2. Noninvertible Bender–Knuth toggles for Coxeter groups

Let (𝑊, 𝑆) be a Coxeter system, and write 𝑆 = {𝑠𝑖 : 𝑖 ∈ 𝐼}, where I is a finite index set. This means that
W is a group with a presentation of the form

𝑊 = 〈𝑆 : (𝑠𝑖𝑠𝑖′ )𝑚(𝑖,𝑖
′) = 1 for all 𝑖, 𝑖′ ∈ 𝐼〉, (1.5)

where 𝑚(𝑖, 𝑖) = 1 and 𝑚(𝑖, 𝑖′) = 𝑚(𝑖′, 𝑖) ∈ {2, 3, . . .} ∪ {∞} for all distinct 𝑖, 𝑖′ ∈ 𝐼. The rank of (𝑊, 𝑆)
is |𝑆 | = |𝐼 |. We often refer to just the Coxeter group W, tacitly assuming that this refers to the Coxeter
system (𝑊, 𝑆).
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The Coxeter graph of W is the undirected edge-labeled graph Γ𝑊 with vertex set I in which distinct
vertices i and 𝑖′ are joined by an edge labeled 𝑚(𝑖, 𝑖′) whenever 𝑚(𝑖, 𝑖′) ≥ 3. It is typical to omit the
label ‘3’ in drawings of Coxeter graphs. For 𝐽 ⊆ 𝐼, the corresponding (standard) parabolic subgroup is
the subgroup 𝑊𝐽 of W generated by {𝑠𝑖 : 𝑖 ∈ 𝐽}. The pair (𝑊𝐽 , {𝑠𝑖 : 𝑖 ∈ 𝐽}) is a Coxeter system, and
Γ𝑊𝐽 is the subgraph of Γ𝑊 induced by J.

The root space of W is the vector space 𝑉 = R𝐼 . Let {𝛼𝑖 : 𝑖 ∈ 𝐼} be the standard basis of V; we call
the elements of this basis the simple roots. For each pair {𝑖, 𝑖′} of indices in I such that 𝑚(𝑖, 𝑖′) = ∞,
choose a real number 𝜇{𝑖,𝑖′ } ≥ 1. Define a symmetric bilinear form 𝐵 : 𝑉 ×𝑉 → R by setting

𝐵(𝛼𝑖 , 𝛼𝑖′ ) =
{
− cos(𝜋/𝑚(𝑖, 𝑖′)) if 𝑚(𝑖, 𝑖′) < ∞;
−𝜇{𝑖,𝑖′ } if 𝑚(𝑖, 𝑖′) = ∞

(1.6)

for all 𝑖, 𝑖′ ∈ 𝐼 and extending bilinearly; we say B is induced by W.1 The standard geometric representa-
tion of W is the faithful representation 𝜌 : 𝑊 → GL(𝑉) defined by 𝜌(𝑠𝑖)𝛽 = 𝛽 − 2𝐵(𝛽, 𝛼𝑖)𝛼𝑖 . We often
write 𝑤𝛽 to mean 𝜌(𝑤)𝛽. The set Φ = {𝑤𝛼𝑖 : 𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼} is called the root system of W; its ele-
ments are called roots. We say 𝛽 ∈ Φ is positive if it is a nonnegative linear combination of the simple
roots. We say 𝛽 is negative if −𝛽 is positive. Let Φ+ and Φ− denote the set of positive roots and the set
of negative roots, respectively. We have Φ− = −Φ+ and Φ = Φ+ � Φ−. We say that a subset 𝑅 ⊆ Φ is
closed if whenever 𝛽, 𝛽′ ∈ 𝑅 and 𝑎, 𝑎′ ≥ 0 satisfy 𝑎𝛽 + 𝑎′𝛽′ ∈ Φ, we have 𝑎𝛽 + 𝑎′𝛽′ ∈ 𝑅. We say that
𝑅 ⊆ Φ is antisymmetric if 𝑅 ∩ (−𝑅) = ∅.

Let 𝑉∗ be the dual space of V. For 𝛽 ∈ Φ, consider the hyperplane

H𝛽 = { 𝑓 ∈ 𝑉∗ : 𝑓 (𝛽) = 0}

in 𝑉∗. The Coxeter arrangement of W is the collection H𝑊 = {H𝛽 : 𝛽 ∈ Φ}. A region of H𝑊 is the
closure of a connected component of 𝑉∗ \

⋃
𝛽∈Φ H𝛽 . Consider the region

B = { 𝑓 ∈ 𝑉∗ : 𝑓 (𝛼𝑖) ≥ 0 for all 𝑖 ∈ 𝐼};

the set of bounding walls of B is {H𝛼𝑖 : 𝑖 ∈ 𝐼}. There is a right action of W on 𝑉∗ determined by the
condition that ( 𝑓 𝑤) (𝛽) = 𝑓 (𝑤𝛽) for all 𝑤 ∈ 𝑊 , 𝛽 ∈ 𝑉 , and 𝑓 ∈ 𝑉∗; this induces an action of W on
the set of regions of H𝑊 . The set B𝑊 ⊆ 𝑉∗ is called the Tits cone. The elements of W are in bijection
with the regions of H𝑊 that are contained in the Tits cone via the bijection 𝑢 ↦→ B𝑢. The positive
projectivization of the Tits cone is the quotient

P(B𝑊) = (B𝑊 \ {0})/R>0.

We may view each H𝛽 as a hyperplane in P(B𝑊) and view H𝑊 as a hyperplane arrangement in P(B𝑊).
Two distinct hyperplanes H𝛽 and H𝛽′ intersect in P(B𝑊) if and only if |𝐵(𝛽, 𝛽′) | < 1. It is possible
to equip P(B𝑊) with a (not necessarily Riemannian) metric such that for all distinct 𝛽, 𝛽′ ∈ Φ with
|𝐵(𝛽, 𝛽′) | < 1, the hyperplanes H𝛽 and H𝛽′ intersect at an angle 𝜃 that satisfies |cos(𝜃) | = |𝐵(𝛽, 𝛽′) |.

For 𝛽 ∈ Φ, define the corresponding half-spaces

𝐻+𝛽 = {𝑤 ∈ 𝑊 : 𝑤𝛽 ∈ Φ+} and 𝐻−𝛽 = {𝑤 ∈ 𝑊 : 𝑤𝛽 ∈ Φ−}.

Observe that these two sets are complements of one another in W and that 𝐻−𝛽 = 𝐻+−𝛽 . Note that B𝐻+𝛽
is the part of the Tits cone that lies on one side of H𝛽 , while B𝐻−𝛽 is the part of the Tits cone that lies
on the other side.

1With this definition, B is not uniquely determined by W since we can freely choose the number 𝜇{𝑖,𝑖′} ≥ 1 whenever
𝑚(𝑖, 𝑖′) = ∞. However, all of our results and arguments outside of Section 3.5 are independent of these choices. Thus, unless
explicitly stated otherwise, we will assume 𝜇{𝑖,𝑖′} = 1 whenever 𝑚(𝑖, 𝑖′) = ∞ so that we may refer to B as ‘the’ bilinear form
induced by W.
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For nonempty ℒ ⊆ 𝑊 , define

R(ℒ) = {𝛽 ∈ Φ : ℒ ⊆ 𝐻+𝛽}.

Note that R(ℒ) is closed and antisymmetric. The convex hull of ℒ is the intersection⋂
𝛽∈R(ℒ)

𝐻+𝛽

of all of the half-spaces that contain ℒ (if R(ℒ) = ∅, this intersection is interpreted as all of W). We
say ℒ is convex if it is equal to its own convex hull. In other words, a set is convex if it is an intersection
of half-spaces.

Remark 1.1. Let Cay(𝑊, 𝑆) be the left Cayley graph of W generated by S. It is known (see [35, Theorem
2.19]) that a set ℒ ⊆ 𝑊 is convex if and only if every minimum-length path in Cay(𝑊, 𝑆) between two
elements of ℒ has all of its vertices in ℒ. This implies that the convex hull of a finite set is finite.

Definition 1.2. Fix a nonempty convex subset ℒ of W. For each 𝑖 ∈ 𝐼, define the noninvertible Bender–
Knuth toggle 𝜏𝑖 : 𝑊 → 𝑊 by

𝜏𝑖 (𝑢) =
{
𝑢 if 𝑢−1𝛼𝑖 ∈ R(ℒ);
𝑠𝑖𝑢 if 𝑢−1𝛼𝑖 ∉ R(ℒ).

The preceding definition does not rely on the geometry of the Coxeter arrangement, but it has the
following geometric interpretation. If we identify each element 𝑤 ∈ 𝑊 with the regionB𝑤 of the Coxeter
arrangement, then H𝑢−1𝛼𝑖 is the unique hyperplane separating u from 𝑠𝑖𝑢. The toggle 𝜏𝑖 is defined so
that 𝜏𝑖 (𝑢) = 𝑢 if and only if ℒ ∪ {𝑢} lies entirely on one side of H𝑢−1𝛼𝑖 . Equivalently, 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢 if
and only if there is an element of ℒ on the same side of H𝑢−1𝛼𝑖 as 𝑠𝑖𝑢. Thus, moving from u to 𝜏𝑖 (𝑢)
cannot take us ‘strictly away from’ the convex set ℒ.2

Example 1.3. Let 𝑊 = 𝔖𝑛+1, and let 𝑆 = {𝑠𝑖 : 𝑖 ∈ [𝑛]}, where 𝑠𝑖 = (𝑖 𝑖 + 1). Then (𝔖𝑛+1, 𝑆) is the
Coxeter system of type 𝐴𝑛. We can identify V with the vector space

{(𝑥1, . . . , 𝑥𝑛+1) ∈ R𝑛+1 : 𝑥1 + · · · + 𝑥𝑛+1 = 0}

via the isomorphism that sends the simple root 𝛼𝑖 to 𝑒𝑖 − 𝑒𝑖+1, where 𝑒 𝑗 denotes the j-th standard basis
vector of R𝑛+1. We have

Φ+ = {𝑒𝑖 − 𝑒 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1} and Φ− = {𝑒 𝑗 − 𝑒𝑖 : 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1}.

The action of W on Φ is given by 𝑤(𝑒𝑖 − 𝑒 𝑗 ) = 𝑒𝑤 (𝑖) − 𝑒𝑤 ( 𝑗) . Hence, for any root 𝑒𝑖 − 𝑒 𝑗 ∈ Φ, we have

𝐻+𝑒𝑖−𝑒 𝑗 = {𝑤 ∈ 𝔖𝑛+1 : 𝑤(𝑖) < 𝑤( 𝑗)}.

Let ℒ ⊆ 𝔖𝑛+1 be a nonempty set. We may define a relation ≤ℒ on [𝑛+1] by declaring that 𝑖 ≤ℒ 𝑗 if
and only if either 𝑖 = 𝑗 or 𝑒𝑖 − 𝑒 𝑗 ∈ R(ℒ). Since R(ℒ) is closed and antisymmetric, the relation ≤ℒ is
a partial order. By the above discussion, the convex hull of ℒ is precisely the set of linear extensions of
([𝑛 + 1], ≤ℒ). In this way, nonempty convex subsets of𝔖𝑛+1 correspond bijectively to partial orders on
[𝑛 + 1], and the root-theoretic definition of 𝜏𝑖 in Theorem 1.2 agrees with the poset-theoretic definition
in (1.1).

2One can also define the noninvertible Bender–Knuth toggles using the set of reflections rather than the root system (using (2.4)
below). Although this perspective would make many of our proofs more complicated, it will be somewhat helpful in Section 10.
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Figure 1. The Coxeter arrangement of 𝐴2 forms a triangular grid whose unit triangles correspond to
the elements of 𝐴2. The black convex set ℒ turns each hyperplane in the Coxeter arrangement into
either a transparent window (indicated by a thin gray line) or a one-way mirror (indicated by a line
colored yellow and red). Starting at the initial unit triangle marked with the brown dot, we apply the
noninvertible Bender–Knuth toggles 𝜏0, 𝜏1, 𝜏2, 𝜏0, 𝜏1, 𝜏2, . . .. This has the effect of following a thin cyan
beam of light that eventually gets trapped in ℒ.

1.3. Bender–Knuth billiards

Fix a nonempty convex subsetℒ of a Coxeter group W, and use this convex set to define the noninvertible
Bender–Knuth toggles 𝜏𝑖 for 𝑖 ∈ 𝐼, as in Theorem 1.2.

Let 𝑖1, . . . , 𝑖𝑛 be an ordering of the elements of I. It is convenient to take 𝑖𝑘+𝑛 = 𝑖𝑘 for every positive
integer k, thereby obtaining an infinite periodic sequence 𝑖1, 𝑖2, 𝑖3, . . .. If we start with an element 𝑢0 ∈ 𝑊
and apply the noninvertible Bender–Knuth toggles in the order 𝜏𝑖1 , 𝜏𝑖2 , 𝜏𝑖3 , . . ., we obtain a sequence
𝑢0, 𝑢1, 𝑢2, . . ., where 𝑢 𝑗 = 𝜏𝑖 𝑗 (𝑢 𝑗−1) for each 𝑗 ≥ 1. We call this sequence a (Bender–Knuth) billiards
trajectory. We can draw the billiards trajectory in P(B𝑊). In each of Figures 1 to 4, we have drawn a
billiards trajectory using a sequence of arrows, where each arrow points fromB𝑢 𝑗−1 toB𝑢 𝑗 for some j.

We say a hyperplane H𝛽 is a one-way mirror if 𝛽 ∈ (R(ℒ) ∪ (−R(ℒ)); otherwise, we say that H𝛽

is a window. Somewhat informally, we imagine the billiards trajectory is the trajectory of a beam of
light that starts at 𝑢0. Each window allows the light to pass through it in either direction. By contrast, if
𝛽 ∈ R(ℒ), then H𝛽 is a one-way mirror that allows the light to pass from 𝐻−𝛽 to 𝐻+𝛽 but reflects light
that tries to pass in the other direction.

Example 1.4. Let 𝑊 = 𝔖4, and consider the convex set

ℒ = {1, 𝑠1, 𝑠3, 𝑠1𝑠3, 𝑠2𝑠1𝑠3} = {(1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3), (3, 1, 4, 2)},

where in the last expression for ℒ, we have represented each permutation 𝑤 ∈ ℒ in its one-line notation
(𝑤(1), 𝑤(2), 𝑤(3), 𝑤(4)). Preserve the notation from Theorem 1.3. The Hasse diagram of ([4], ≤ℒ) is

.

.
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Figure 2. A stereographic projection of the Tits cone and Coxeter arrangement of𝔖4. The black convex
set ℒ turns each hyperplane in the Coxeter arrangement into either a transparent window (indicated
by a thin gray circle) or a one-way mirror (indicated by a circle colored yellow and red). Regions
correspond to permutations in𝔖4, which are represented as labelings of a 4-element (N-shaped) poset.
Arrows indicate the billiards trajectory determined by the starting permutation 𝑢0 = 2413 (marked with
a brown dot) and the ordering 1, 2, 3 of I. This billiards trajectory follows a (thin cyan) light beam. (The
diagram is not to scale, so angles have been distorted.)

The Tits cone B𝑊 is the entire 3-dimensional space 𝑉∗, so P(B𝑊) = (B𝑊 \ {0})/R>0 is a sphere.
Figure 2 depicts a stereographic projection of this sphere to a plane. Each of the 6 hyperplanes in the
Coxeter arrangement H𝔖4 = {H𝑒𝑖−𝑒 𝑗 : 1 ≤ 𝑖 < 𝑗 ≤ 4} is drawn as a circle. Each of the 24 regions of
H𝔖4 is represented by a connected component of the space formed by removing the 6 projected circles
from the plane. Each region corresponds to a permutation 𝑤 ∈ 𝔖4, which we represent by the labeling
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Figure 3. If we choose our convex set ℒ to be an infinite strip (shown in black) in 𝐴2, then the billiards
trajectory can ‘escape to infinity’ without ever reflecting off of a mirror.

Figure 4. The Tits cone and Coxeter arrangement of the Coxeter group with Coxeter graph
. We have passed to the positive projectivization P(B𝑊), which is a hyperbolic plane,

and then drawn the hyperbolic plane using the Poincaré disk model. The black convex set ℒ turns each
hyperplane in the Coxeter arrangement into either a transparent window (indicated by a thin gray line)
or a one-way mirror (indicated by a line colored yellow and red). Arrows indicate a billiards trajectory
that starts at the region marked with the brown dot. The billiards trajectory follows the (thin cyan) light
beam.

of the poset ([4], ≤ℒ) (for elements of ℒ, the numbers are drawn in cyan). The regions labeled by
elements of ℒ are shaded black. The windows – represented by thin gray circles – are H𝑒1−𝑒2 , H𝑒3−𝑒4 ,
and H𝑒1−𝑒4 , while the one-way mirrors – represented by circles colored yellow and red – are H𝑒2−𝑒3 ,
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H𝑒1−𝑒3 , and H𝑒2−𝑒4 . The windows and one-way mirrors correspond (respectively) to incomparable and
comparable pairs of elements of the poset ([4], ≤ℒ). Fix the ordering 1, 2, 3 of the index set I. The
arrows in Figure 2 indicate the billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . that starts at the permutation 𝑢0 = 2413
(marked with a brown dot).
Remark 1.5. In each of Figures 1 to 4, we have drawn a thin, cyan, piecewise linear path that reflects
off of the one-way mirrors according to the usual billiards rule (i.e., that the angle of incidence equals
the angle of reflection), which has been studied vigorously and fruitfully in dynamics [16, 20, 25, 34].
We call this cyan path a light beam. Our Bender–Knuth billiards trajectory appears to follow alongside
the light beam, so it can be seen as a discretization of the light beam. It is natural to ask under what
conditions a Bender–Knuth billiards trajectory will discretize a light beam (and how to even rigorously
formalize this idea). We will discuss this in Section 11, where we will see that the Bender–Knuth billiards
trajectory discretizes a light beam whenever |𝐼 | ≤ 3 or the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is bipartite.

Given a word w = 𝑖𝑀 · · · 𝑖1 over the alphabet I, it will be convenient to define the composition of
toggles

𝜏w = 𝜏𝑖𝑀 · · · 𝜏𝑖1 .

A (standard) Coxeter element of W is an element obtained by multiplying the elements of S together in
some order so that each simple reflection appears exactly once in the product. Such an ordering 𝑖1, . . . , 𝑖𝑛
of I gives rise to a reduced word c = 𝑖𝑛 · · · 𝑖1 representing a Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 . Let

Pro𝑐 = 𝜏c = 𝜏𝑖𝑛 · · · 𝜏𝑖1 .

Because 𝜏𝑖𝜏𝑖′ = 𝜏𝑖′𝜏𝑖 whenever 𝑚(𝑖, 𝑖′) = 2, it follows from Matsumoto’s theorem (Theorem 2.1 below)
that Pro𝑐 depends only on c and not on the particular reduced word c. Each operator 𝜏𝑖 restricts to a
bijection from ℒ to itself; thus, Pro𝑐 also restricts to a bijection from ℒ to itself. An element 𝑢 ∈ 𝑊 is
called a periodic point of Pro𝑐 if there exists an integer 𝐾 ≥ 1 such that Pro𝐾𝑐 (𝑢) = 𝑢.

Because noninvertible Bender–Knuth toggles never cause the billiards trajectory to move ‘strictly
away from’ ℒ, one might expect (as we did for a while) that every periodic billiards trajectory must
lie in ℒ. As we will see, this is not always the case. Let us establish some terminology to describe the
various scenarios that can occur.
Definition 1.6. Let ℒ ⊆ 𝑊 be a nonempty convex set, and define the noninvertible Bender–Knuth
toggles with respect to ℒ. Let c be a Coxeter element of W.
◦ We say ℒ is heavy with respect to c if every periodic point of Pro𝑐 lies in ℒ.
◦ We say ℒ is superheavy with respect to c if for every 𝑢 ∈ 𝑊 , there exists a nonnegative integer K

such that Pro𝐾𝑐 (𝑢) ∈ ℒ.3
Note that if ℒ is superheavy with respect to c, then it is heavy with respect to c. The two definitions

are equivalent if W is finite.
Remark 1.7. One could rephrase Theorem 1.6 in the language of billiards trajectories instead of the
operators Pro𝑐 . A convex set ℒ ⊆ 𝑊 is heavy with respect to a Coxeter element 𝑠𝑖𝑛 · · · 𝑠𝑖1 if and only if
every periodic billiards trajectory (defined with respect to the convex set ℒ and the ordering 𝑖1, . . . , 𝑖𝑛 of
I) lies in ℒ. Similarly, ℒ is superheavy with respect to 𝑠𝑖𝑛 · · · 𝑠𝑖1 if and only if every billiards trajectory
eventually reaches ℒ.

As an illustration of the preceding definitions, Theorem 1.15 (below) will tell us that every nonempty
convex subset of 𝐴2 is heavy with respect to the Coxeter element 𝑠2𝑠1𝑠0. This means that for every
nonempty convex set ℒ ⊆ 𝐴2 and every starting element 𝑢0 ∈ 𝑊 \ℒ, the billiards trajectory

𝑢0, 𝜏0(𝑢0), 𝜏1𝜏0(𝑢0), 𝜏2𝜏1𝜏0 (𝑢0), 𝜏0𝜏2𝜏1𝜏0(𝑢0), . . .

3We imagine that ℒ is a black hole that always pulls light into it.
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is not periodic. This does not necessarily imply that the billiards trajectory eventually reaches the set
ℒ. For example, Figure 3 depicts a billiards trajectory in 𝐴2 that does not reach ℒ. Hence, the convex
set depicted in Figure 3 is heavy but not superheavy with respect to 𝑠2𝑠1𝑠0.

Proposition 1.8. Let W be a Coxeter group, and let c be a Coxeter element of W. The following are
equivalent.

1. Every nonempty convex set ℒ ⊆ 𝑊 is heavy with respect to c.
2. Every nonempty finite convex set ℒ ⊆ 𝑊 is heavy with respect to c.
3. Every nonempty finite convex set ℒ ⊆ 𝑊 is superheavy with respect to c.

Note that by the paragraph preceding Theorem 1.8, the condition that every nonempty convex set
ℒ ⊆ 𝑊 is superheavy with respect to c is strictly stronger than the conditions (i), (2) and (3) of
Theorem 1.8.

The preceding proposition naturally motivates the following definitions, which are central to the
present work.

Definition 1.9.

◦ We say a Coxeter element 𝑐 ∈ 𝑊 is futuristic if every nonempty convex set ℒ ⊆ 𝑊 is heavy with
respect to c (i.e., c satisfies the three equivalent conditions of Theorem 1.8).

◦ We say a Coxeter element 𝑐 ∈ 𝑊 is superfuturistic if every nonempty convex setℒ ⊆ 𝑊 is superheavy
with respect to c.

◦ We say the Coxeter group W is futuristic if every Coxeter element of W is futuristic (equivalently, if
every nonempty convex subset of W is heavy with respect to every Coxeter element of W).4

◦ We say the Coxeter group W is superfuturistic if every Coxeter element of W is superfuturistic
(equivalently, if every nonempty convex subset of W is superheavy with respect to every Coxeter
element of W).

◦ We say the Coxeter group W is ancient if no Coxeter element of W is futuristic.

Example 1.10. Let 𝑊 = 𝔖𝑛+1 = 𝐴𝑛, and let 𝑐 = 𝑠𝑛 · · · 𝑠1. By Theorem 1.3, each nonempty convex
set ℒ ⊆ 𝑊 has an associated partial order 𝑃 = ([𝑛 + 1], ≤ℒ) such that ℒ = L(𝑃). Additionally,
the promotion operator Pro𝑐 is equal to the extended promotion operator Pro defined in Section 1.1.
By (1.2), the convex set ℒ is superheavy with respect to c. As ℒ was arbitrary, c is superfuturistic.
Likewise, (1.4) implies that the Coxeter element (𝑠2𝑠4𝑠6 · · · ) (𝑠1𝑠3𝑠5 · · · ) is superfuturistic. We will
vastly generalize these observations in Theorem 1.14, which states that every Coxeter element of every
finite Coxeter group is superfuturistic.

Example 1.11. The Coxeter group 𝐷4 has Coxeter graph

.

.

Fix the ordering 0, 1, 2, 3, 4 of I, and let 𝑐 = 𝑠4𝑠3𝑠2𝑠1𝑠0 be the corresponding Coxeter element. Let ℒ
be the convex hull of {𝑠2, 𝑠0𝑠2𝑠0, 𝑠1𝑠2𝑠1, 𝑠3𝑠2𝑠3, 𝑠4𝑠2𝑠4}. It turns out that the billiards trajectory starting
at 𝑢0 = 1 begins with

1
𝜏0−−→ 𝑠0

𝜏1−−→ 𝑠1𝑠0
𝜏2−−→ 𝑠1𝑠0

𝜏3−−→ 𝑠3𝑠1𝑠0
𝜏4−−→ 𝑠4𝑠3𝑠1𝑠0

𝜏0−−→ 𝑠4𝑠3𝑠1
𝜏1−−→ 𝑠4𝑠3

𝜏2−−→ 𝑠4𝑠3
𝜏3−−→ 𝑠4

𝜏4−−→ 1.

4In the movie Back to the Future, Doc asks Marty, ‘Why are things so heavy in the future?’

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.159


Forum of Mathematics, Sigma 11

This shows that Pro2
𝑐 (1) = 1, even though 1 ∉ ℒ. It follows that ℒ is not heavy with respect to c, so c

is not futuristic. In fact, we will see later (Theorem 1.19) that 𝐷4 is ancient.

1.4. Main results

Our overarching goal is to understand which Coxeter groups are futuristic and which are ancient. We
begin with the following propositions, which state that the class of futuristic Coxeter groups and the
class of non-ancient Coxeter groups are in some sense hereditary.

Proposition 1.12. Let 𝑊𝐽 be a standard parabolic subgroup of a Coxeter group W.

1. If W is futuristic, then 𝑊𝐽 is futuristic.
2. If 𝑊𝐽 is ancient, then W is ancient.

Let us say a Coxeter group is minimally non-futuristic if it is not futuristic and all of its proper standard
parabolic subgroups are futuristic. Likewise, say a Coxeter group is minimally ancient if it is ancient
and none of its proper standard parabolic subgroups are ancient. Theorem 1.12 reduces the problem of
characterizing futuristic Coxeter groups and ancient Coxeter groups to the problem of characterizing
minimally non-futuristic Coxeter groups and minimally ancient Coxeter groups.

Another tool that we can use to determine whether or not a Coxeter group is futuristic comes from
the technique of folding, defined in Section 3.5.

Proposition 1.13. Let 𝑊 w be a folding of a Coxeter group W. If W is futuristic, then 𝑊 w is futuristic.

Although we will not obtain a complete characterization of futuristic Coxeter groups, we will prove
that several notable Coxeter groups are futuristic.

Theorem 1.14. Every finite Coxeter group is superfuturistic.

Theorem 1.15. Every affine Coxeter group of type 𝐴, 𝐶, or 𝐺2 is futuristic.

Theorem 1.16. Every right-angled Coxeter group is superfuturistic.

Theorem 1.17. Every Coxeter group with a complete Coxeter graph is futuristic.

Theorem 1.18. Every Coxeter group of rank at most 3 is futuristic.

The next theorem exhibits a vast (infinite) collection of ancient Coxeter groups.

Theorem 1.19. Fix integers 𝑎, 𝑎′, 𝑏, 𝑏′ ≥ 3. If W is a Coxeter group whose Coxeter graph has one of
the following Coxeter graphs as an induced subgraph, then W is ancient:
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,
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,

,

,

. .

(The number of vertices in the first graph in this list can be any integer that is at least 5, while the
number of vertices in the second graph can be any integer that is at least 4.)

Theorems 1.15 and 1.19 allow us to completely describe which affine Coxeter groups are futuristic
and which are ancient. By Theorem 2.2, it suffices to consider the irreducible affine Coxeter groups.
The irreducible affine Coxeter groups not listed in Theorem 1.15 are those of types 𝐵, 𝐷, 𝐸6, 𝐸7, 𝐸8
and 𝐹4, and these all appear in the list in Theorem 1.19.
Corollary 1.20. The irreducible affine Coxeter groups of types 𝐴, 𝐶 and 𝐺2 are futuristic; all other
irreducible affine Coxeter groups are ancient.

A Coxeter graph is called simply laced if all of its edge labels are 3. It is worth noting that Theo-
rems 1.12, 1.14 and 1.19 allow us to determine the futuristicity/ancientness of all Coxeter groups whose
Coxeter graphs are simply laced trees.
Corollary 1.21. Let W be a Coxeter group whose Coxeter graph is a simply laced tree. If W is finite,
then it is futuristic; otherwise, it is ancient.

1.5. Finite Coxeter groups

Let us now assume that W is a finite Coxeter group. Theorem 1.14 tells us that W is superfuturistic;
this implies that for every Coxeter element c of W, there exists a nonnegative integer K satisfying
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Pro𝐾𝑐 (𝑊) = ℒ for every nonempty convex subset ℒ of W. Our proof of Theorem 1.14 will actually
determine the smallest such integer K (in terms of c).

Because W is finite, it has a unique element of maximum length; this element is called the long
element and is denoted by 𝑤◦. The following result generalizes (1.3) and is new even in type A.

Theorem 1.22. If W is finite and 𝑖𝑁 · · · 𝑖1 is a reduced word for 𝑤◦, then

𝜏𝑖𝑁 · · · 𝜏𝑖1 (𝑊) = ℒ.

Theorem 1.22 is tight in the sense that there exists a choice of ℒ such that

𝜏𝑖𝑁−1 · · · 𝜏𝑖1 (𝑊) ≠ ℒ.

For example, this is the case if ℒ = {𝑤◦}, because then 𝜏𝑖𝑁−1 · · · 𝜏𝑖1 (1) = 𝑠𝑖𝑁−1 · · · 𝑠𝑖1 ≠ 𝑤◦ (in fact, the
noninvertible Bender–Knuth toggles generate the 0-Hecke monoid of W [17, 19] in this particular case).

Remark 1.23. If 𝑖, 𝑖′ ∈ 𝐼 satisfy 𝑚(𝑖, 𝑖′) = 2, then 𝜏𝑖 and 𝜏𝑖′ commute. What makes Theorem 1.22
nontrivial is the fact that the noninvertible Bender–Knuth toggles do not (in general) satisfy the other
braid relations of W. For example, when 𝑊 = 𝔖𝑛+1 and 𝑖 ∈ [𝑛], the operators 𝜏𝑖𝜏𝑖+1𝜏𝑖 and 𝜏𝑖+1𝜏𝑖𝜏𝑖+1 are
generally not equal.

Let c be a reduced word for a Coxeter element c of W. For 𝑗 ≥ 1, let c 𝑗 denote the concatenation of j
copies of c. Let M(𝑐) be the smallest positive integer k such that c𝑘 contains a reduced word for 𝑤◦ as a
subword. (The number M(𝑐) depends only on c, not on the particular reduced word c.) In Section 4, we
will describe how to compute M(𝑐) explicitly using diagrams called combinatorial AR quivers. The next
result, which we obtain as a corollary of Theorem 1.22, generalizes (1.2); as discussed in Theorem 1.25,
it also implies the new result (1.4).

Corollary 1.24. If c is a Coxeter element of a finite Coxeter group W, then

ProM(𝑐)
𝑐 (𝑊) = ℒ.

Theorem 1.24 is tight in the sense that there exists a choice of ℒ such that ProM(𝑐)−1
𝑐 (𝑊) ≠ ℒ. For

example, this is the case if ℒ = {𝑤◦}.

Example 1.25. If W is a (not necessarily finite) Coxeter group whose Coxeter graph is bipartite, then
we can consider a bipartition 𝐼 = 𝑄 � 𝑄 ′ and write 𝑐𝑄 =

∏
𝑖∈𝑄 𝑠𝑖 and 𝑐𝑄′ =

∏
𝑖∈𝑄′ 𝑠𝑖 . Then 𝑐𝑄′𝑐𝑄 is

called a bipartite Coxeter element of W.
Now, assume W is finite and irreducible. The Coxeter number of W is the quantity ℎ = |Φ|/|𝑆 |. It is

known that Γ𝑊 must be bipartite, so it has a bipartite Coxeter element 𝑐 = 𝑐𝑄′𝑐𝑄. It is known [3, §V.6
Exercise 2] that M(𝑐𝑄′𝑐𝑄) = �ℎ/2�, so Theorem 1.24 tells us that Pro �ℎ/2�𝑐𝑄′𝑐𝑄 (𝑊) = ℒ.

When 𝑊 = 𝔖𝑛+1 and 𝑆 = {𝑠1, . . . , 𝑠𝑛}, where 𝑠𝑖 = (𝑖 𝑖 + 1), the Coxeter graph Γ𝑊 is a path in
which i is adjacent to 𝑖 + 1 for each 𝑖 ∈ [𝑛 − 1]. In this case, we can take Q (respectively, 𝑄 ′) to be the
set of odd-indexed (respectively, even-indexed) simple reflections. Then Pro𝑐𝑄′𝑐𝑄 = Gyr. The Coxeter
number of 𝔖𝑛+1 is 𝑛 + 1, so we obtain the identity (1.4).

Remark 1.26. The proofs of (1.2) and (1.3) from [9] are quite specific to the extended promotion and
extended evacuation operators (they rely on the notion of a promotion chain), and they do not generalize
to other operators such as extended gyration. Thus, even in type A, our proofs of Theorems 1.22 and
1.24 are new. Our proofs are also type-uniform.

1.6. Futuristic directions

In Section 12, we will discuss several ideas for future research. Let us briefly highlight some of them
here.
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◦ We will define a Coxeter group to be contemporary if it is neither futuristic nor ancient, and we will
ask whether or not such Coxeter groups exist.

◦ We will pose the problem of determining the periodic points of Pro𝑐 when c is not futuristic.
◦ We will consider the algorithmic question of deciding whether a Coxeter element is futuristic.
◦ We will contemplate billiards trajectories arising from infinite sequences of elements of I that might

not be obtained by repeating some fixed ordering of I.
◦ We will suggest a more general definition of noninvertible Bender–Knuth toggles in which the set

R(ℒ) is replaced by an arbitrary closed set of roots R. When R = Φ−, this yields the 0-Hecke monoid
of W.

1.7. Outline

Section 2 provides additional necessary background on Coxeter groups and root systems. Section 3
establishes some general results about Bender–Knuth billiards, including Theorems 1.8, 1.12 and 1.13. In
Section 4, we focus on finite Coxeter groups and prove Theorems 1.22 and 1.24; note that Theorem 1.24
implies Theorem 1.14. Section 5 establishes a general result about Bender–Knuth billiards in affine
Coxeter groups, which we then apply in order to prove Theorem 1.15. Our proofs of Theorems 1.16 to
1.18 use the theory of small roots developed by Brink and Howlett [4]; in Section 6, we discuss small
roots, introduce the small-root billiards graph and explain how this graph can be used to prove that certain
Coxeter groups are futuristic. In Section 7 to 9, we apply this method to prove Theorems 1.16 to 1.18.
Section 10 is about ancient Coxeter groups; it is in this section that we establish Theorem 1.19. Section 11
discusses how Bender–Knuth billiards relate to classical billiards from dynamics. In Section 12, we
come back to the future directions briefly mentioned above.

2. Preliminaries

This section discusses relevant background information about Coxeter groups, largely drawing from the
standard reference [2]. We assume that the reader is familiar with the classifications of finite Coxeter
groups and affine Coxeter groups and the standard notation used to refer to such groups ([2, Appendix
A1]).

Let (𝑊, 𝑆) be a Coxeter system whose set of simple reflections 𝑆 = {𝑠𝑖 : 𝑖 ∈ 𝐼} is indexed by a finite
set I. A word is a sequence w = 𝑖𝑀 · · · 𝑖1 of elements of I; the integer M is called the length of w. We say
the word w = 𝑖𝑀 · · · 𝑖1 represents the product 𝑤 = 𝑠𝑖𝑀 · · · 𝑠𝑖1 of the corresponding simple reflections.
A reduced word for an element 𝑤 ∈ 𝑊 is a word that represents w and has minimum possible length.
If 𝑖𝑀 · · · 𝑖1 is a reduced word for w, then we call the expression 𝑠𝑖𝑀 · · · 𝑠𝑖1 a reduced expression for w.
The length of w, denoted ℓ(𝑤), is defined to be the length of a reduced word for w. A reflection is an
element of W that is conjugate to a simple reflection. We write 𝑇 = {𝑤𝑠𝑤−1 : 𝑤 ∈ 𝑊, 𝑠 ∈ 𝑆} for the
set of reflections of W. For 𝑤 ∈ 𝑊 , the set of right inversions of w is Inv(𝑤) = {𝑡 ∈ 𝑇 : ℓ(𝑤𝑡) < ℓ(𝑤)}.
We have |Inv(𝑤) | = ℓ(𝑤).

Given a word w = 𝑖𝑀 · · · 𝑖1, we write 𝜏w = 𝜏𝑖𝑀 · · · 𝜏𝑖1 . One can apply a commutation move to w by
swapping two consecutive letters i and 𝑖′ that satisfy 𝑚(𝑖, 𝑖′) = 2. We say that two words x and y are
commutation equivalent, denoted x ≡ y, if y can be obtained from x via a sequence of commutation
moves. Note that two commutation equivalent words represent the same element of W. Moreover, if
x ≡ y, then 𝜏x = 𝜏y.

Given symbols 𝜉 and 𝜉 ′ and a positive integer d, let us write

[𝜉 | 𝜉 ′]𝑑 = · · · 𝜉 ′𝜉𝜉 ′︸����︷︷����︸
𝑑

(2.1)

for the string of length d that alternates between 𝜉 and 𝜉 ′ and ends with 𝜉 ′. For example, we have
[𝜉 | 𝜉 ′]4 = 𝜉𝜉 ′𝜉𝜉 ′ and [𝜉 | 𝜉 ′]5 = 𝜉 ′𝜉𝜉 ′𝜉𝜉 ′.
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For 𝑖, 𝑖′ ∈ 𝐼, it follows from the defining presentation of W in (1.5) that the words

[𝑖 | 𝑖′]𝑚(𝑖,𝑖′) and [𝑖′ | 𝑖]𝑚(𝑖,𝑖′) (2.2)

represent the same element of W. If w is a word that contains one of the two alternating words in (2.2)
as a consecutive factor, then we can perform a braid move on w by replacing that consecutive factor
with the other alternating word in (2.2) (if 𝑚(𝑖, 𝑖′) = 2, then this braid move is a commutation move).
If w contains two consecutive occurrences of the same letter, then we can perform a nil move on w by
deleting those two consecutive letters. If a word w can be obtained from a word v via a sequence of
braid moves and nil moves, then v and w represent the same element of W.

Theorem 2.1 (Matsumoto’s Theorem [2, Theorem 3.3.1]). Let v and w be words that represent the same
element of W. If w is reduced, then w can be obtained from v via a sequence of braid moves and nil moves.

As in Section 1.2, let V denote the root space of W. For 𝑖 ∈ 𝐼, let 𝛼𝑖 denote the simple root indexed by i.
Then V is a W-module under the standard geometric representation, and there is a W-invariant symmetric
bilinear form 𝐵 : 𝑉 × 𝑉 → R induced by W. Let Φ = {𝑤𝛼𝑖 : 𝑤 ∈ 𝑊, 𝑖 ∈ 𝐼} be the corresponding
root system; let Φ+ and Φ− denote the sets of positive roots and negative roots, respectively. We have
R𝛽 ∩Φ = {±𝛽} for each 𝛽 ∈ Φ.

To each root 𝛽 = 𝑤𝛼𝑖 , we associate a reflection 𝑟𝛽 = 𝑤𝑠𝑖𝑤
−1 ∈ 𝑇 ; this is well defined in the sense

that it depends only on 𝛽 and not on the particular choices of w and 𝛼𝑖 . The map 𝛽 ↦→ 𝑟𝛽 is a bijection
from Φ+ to T. We have 𝑟𝛽 = 𝑟−𝛽 for all 𝛽 ∈ Φ.

The action of 𝑟𝛽 on V under the standard geometric representation is given by the formula

𝑟𝛽𝛾 = 𝛾 − 2𝐵(𝛾, 𝛽)𝛽. (2.3)

For each reflection 𝑡 ∈ 𝑇 , let 𝛽𝑡 denote the unique positive root such that 𝑟𝛽𝑡 = 𝑡. Then, for every 𝑤 ∈ 𝑊 ,
we have

Inv(𝑤) = {𝑡 ∈ 𝑇 : 𝑤𝛽𝑡 ∈ Φ−}. (2.4)

Equivalently, the half-space 𝐻+𝛽𝑡 is equal to the set of all 𝑤 ∈ 𝑊 that do not have t as a right inversion.
If 𝑖𝑀 · · · 𝑖1 is reduced word for w, then

{𝛼𝑖1 , 𝑠𝑖2𝛼𝑖1 , 𝑠𝑖3 𝑠𝑖2𝛼𝑖1 , . . . , 𝑠𝑖𝑀 · · · 𝑠𝑖3 𝑠𝑖2𝛼𝑖1 } = {𝛽𝑡 : 𝑡 ∈ Inv(𝑤)}. (2.5)

If W is a finite Coxeter group, then we denote the long element of W (the unique element of maximum
length) by 𝑤◦. It is known that 𝑤◦ is an involution and that 𝑤◦Φ+ = Φ−.

Recall that for 𝐽 ⊆ 𝐼, the (standard) parabolic subgroup 𝑊𝐽 is the subgroup of W generated by
{𝑠𝑖 : 𝑖 ∈ 𝐽}. Also recall that (𝑊𝐽 , {𝑠𝑖 : 𝑖 ∈ 𝐽}) is a Coxeter system. Let 𝑉𝐽 = R𝐽 ⊆ 𝑉 denote the
root space of 𝑊𝐽 , and let Φ𝐽 = {𝑤𝛼𝑖 : 𝑤 ∈ 𝑊𝐽 , 𝑖 ∈ 𝐽} ⊆ 𝑉𝐽 denote the root system of 𝑊𝐽 . By [11,
Theorem 3.3], we have Φ𝐽 = Φ ∩𝑉𝐽 .

The irreducible factors of W are the parabolic subgroups 𝑊𝐽1 , . . . ,𝑊𝐽𝑘 , where 𝐽1, . . . , 𝐽𝑘 ⊆ 𝐼 are
the vertex sets of the connected components of the Coxeter graph Γ𝑊 . We have the direct product
decomposition 𝑊 � 𝑊𝐽1 × · · · ×𝑊𝐽𝑘 . We say that W is irreducible if Γ𝑊 is connected.

Remark 2.2. It is straightforward to see that a Coxeter group is futuristic if and only if all of its
irreducible factors are futuristic.

Let 𝛽, 𝛽′ ∈ Φ. We say 𝛽 dominates 𝛽′, written 𝛽 dom 𝛽′, if 𝐻+𝛽 ⊇ 𝐻+𝛽′ . We say 𝛽 is small if 𝛽 ∈ Φ+
and 𝛽 does not dominate any other positive root.

Remark 2.3. Brink and Howlett [4] defined the dominance relation only for positive roots, but many of
our results become easier to state if the relation is extended to all roots as above. The use of the word
small comes from Björner and Brenti [2, Chapter 4.7].

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.159


16 G. Barkley et al.

Note that if 𝛽 dom 𝛽′, then −𝛽′ dom −𝛽 and 𝑢𝛽 dom 𝑢𝛽′ for all 𝑢 ∈ 𝑊 .

Proposition 2.4 [2, Theorem 4.7.6]. The set of small roots is the smallest set Σ ⊆ Φ+ that satisfies the
following properties:

1. All simple roots are in Σ.
2. For 𝑖 ∈ 𝐼 and 𝛾 ∈ Σ \ {𝛼𝑖}, if 0 > 𝐵(𝛾, 𝛼𝑖) > −1, then 𝑠𝑖𝛾 ∈ Σ.

Moreover, the set of small roots is finite.

Corollary 2.5. Let Σ denote the set of small roots of W. For 𝐽 ⊆ 𝐼, the set of small roots of the parabolic
subgroup 𝑊𝐽 is Σ ∩𝑉𝐽 .

3. Basics of Bender–Knuth billiards

In this section, we establish more terminology and collect important facts concerning our general
Bender–Knuth billiards systems.

3.1. Separators

As before, (𝑊, 𝑆) is a Coxeter system, and 𝑆 = {𝑠𝑖 : 𝑖 ∈ 𝐼}, where I is a finite index set. Fix a nonempty
convex set ℒ ⊆ 𝑊 .

In Section 1.2, we stated that a noninvertible Bender–Knuth toggle 𝜏𝑖 cannot move an element ‘strictly
away from’ the convex set ℒ. It is now time to formalize that observation. We define a separator for an
element 𝑢 ∈ 𝑊 to be an element of the set

Sep(𝑢) = {𝛽 ∈ R(ℒ) : 𝑢𝛽 ∈ Φ−} ⊆ R(ℒ).

(Note that Sep(𝑢) depends on the convex set ℒ.) The separators for u correspond to (oriented) hyper-
planes of the Coxeter arrangement that separate B𝑢 from Bℒ. Notice that since ℒ is convex, we have
𝑢 ∈ ℒ if and only if Sep(𝑢) = ∅.

Lemma 3.1. Let 𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼. Then Sep(𝜏𝑖 (𝑢)) ⊆ Sep(𝑢). In fact,

𝜏𝑖 (𝑢) =
{
𝑠𝑖𝑢 if Sep(𝑠𝑖𝑢) ⊆ Sep(𝑢);
𝑢 otherwise.

Proof. A root 𝛾 satisfies 𝛾 ∈ Φ+ and 𝑠𝑖𝛾 ∈ Φ− if and only if 𝛾 = 𝛽𝑠𝑖 = 𝛼𝑖 . Also, by the definition of
separators,

Sep(𝑠𝑖𝑢) \ Sep(𝑢) = {𝛽 ∈ R(ℒ) : 𝑠𝑖𝑢𝛽 ∈ Φ− and 𝑢𝛽 ∈ Φ+}.

This set is {𝑢−1𝛼𝑖} if 𝑢−1𝛼𝑖 ∈ R(ℒ) and is ∅ otherwise. The lemma now follows from the definition of
𝜏𝑖 (Theorem 1.2). �

One important consequence of Theorem 3.1 is that Sep(𝑢0) = Sep(𝑢1) = Sep(𝑢2) = · · · for any
periodic billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . ..

Example 3.2. This example is a continuation of Theorem 1.3. Let ℒ ⊆ 𝔖𝑛+1 be a convex set. As before,
there is an associated partial order ≤ℒ on [𝑛 + 1]. For each 𝑢 ∈ 𝔖𝑛+1, we have 𝑒𝑖 − 𝑒 𝑗 ∈ Sep(𝑢) if and
only if 𝑖 ≤ℒ 𝑗 and 𝑢(𝑖) > 𝑢( 𝑗). In other words, if we think of u as a labeling of the poset ([𝑛 + 1], ≤ℒ),
then the separators for u correspond to the pairs of comparable elements whose labels are ‘in the wrong
order’. Theorem 3.1 says that applying a noninvertible Bender–Knuth toggle cannot create any new such
pairs.

Lemma 3.3. For every 𝑢 ∈ 𝑊 , the set Sep(𝑢) is finite.
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Proof. Fix some 𝑤 ∈ ℒ. For every 𝛽 ∈ Sep(𝑢), we have 𝑤𝛽 ∈ Φ+ and 𝑢𝛽 ∈ Φ−. Writing
𝑢𝛽 = (𝑢𝑤−1) (𝑤𝛽) = (𝑢𝑤−1)𝛽𝑟𝑤𝛽 , we see that 𝑟𝑤𝛽 is a right inversion of 𝑢𝑤−1. It follows that
|Sep(𝑢) | ≤ |Inv(𝑢𝑤−1) | = ℓ(𝑢𝑤−1) < ∞. �

Recall that if w = 𝑖𝑀 · · · 𝑖1 is a word, then 𝜏w denotes the composition 𝜏𝑖𝑀 · · · 𝜏𝑖1 .

Lemma 3.4. Let 𝑤 ∈ 𝑊 , and let w be a reduced word for w. Then

Sep(𝜏w (𝑢)) ⊆ Sep(𝑤−1𝜏w (𝑢))

for all 𝑢 ∈ 𝑊 .

Proof. We proceed by induction on 𝑀 = ℓ(𝑤). The base case 𝑀 = 0 is trivial, so assume that 𝑀 > 0.
Write w = 𝑖𝑀 · · · 𝑖1. Let w′ = 𝑖𝑀−1 · · · 𝑖1 be the word obtained by deleting the leftmost letter of w, and
let 𝑤′ = 𝑠𝑖𝑀𝑤 ∈ 𝑊 be the element of W represented by the word w′. Then 𝜏w (𝑢) = 𝜏𝑖𝑀 (𝜏w′ (𝑢)).

First, suppose that 𝜏w (𝑢) = 𝑠𝑖𝑀 𝜏w′ (𝑢). Then (𝑤′)−1𝜏w′ (𝑢) = 𝑤−1𝜏w (𝑢). Hence, by Theorem 3.1 and
the inductive hypothesis, we have

Sep(𝜏w (𝑢)) ⊆ Sep(𝜏w′ (𝑢)) ⊆ Sep((𝑤′)−1𝜏w′ (𝑢)) = Sep(𝑤−1𝜏w (𝑢)),

as desired.
Next, suppose that 𝜏w (𝑢) = 𝜏w′ (𝑢). Let 𝑣 = 𝜏w (𝑢) = 𝜏w′ (𝑢). We wish to prove that

Sep(𝑣) ⊆ Sep(𝑤−1𝑣).

Choose any 𝛽 ∈ Sep(𝑣); we will show that 𝛽 ∈ Sep(𝑤−1𝑣) (i.e., that 𝑤−1𝑣𝛽 ∈ Φ−). Recall that

𝑠𝑖𝑀 𝑣𝛽 = 𝑣𝛽 − 2𝐵(𝑣𝛽, 𝛼𝑖𝑀 )𝛼𝑖𝑀 . (3.1)

We now consider two cases.

Case 1. Assume 𝐵(𝑣𝛽, 𝛼𝑖𝑀 ) ≥ 0. Then applying (𝑤′)−1 to each side of (3.1) yields

𝑤−1𝑣𝛽 = (𝑤′)−1𝑣𝛽 − 2𝐵(𝑣𝛽, 𝛼𝑖𝑀 ) (𝑤′)−1𝛼𝑖𝑀 .

By the inductive hypothesis, we have 𝛽 ∈ Sep((𝑤′)−1𝑣), so (𝑤′)−1𝑣𝛽 ∈ Φ−. Moreover, 𝑠𝑖𝑀 is not a
right inversion of (𝑤′)−1, so by (2.4), we have (𝑤′)−1𝛼𝑖𝑀 ∈ Φ+. It follows that 𝑤−1𝑣𝛽 ∈ Φ−, as desired.

Case 2. Assume 𝐵(𝑣𝛽, 𝛼𝑖𝑀 ) < 0. We will prove that 𝑣−1𝑠𝑖𝑀 𝑣𝛽 ∈ Sep((𝑤′)−1𝑣); this will imply that

𝑤−1𝑣𝛽 = (𝑤′)−1𝑣(𝑣−1𝑠𝑖𝑀 𝑣𝛽) ∈ Φ−,

as desired. Our inductive hypothesis tells us that Sep(𝑣) ⊆ Sep((𝑤′)−1𝑣), so it suffices to show that
𝑣−1𝑠𝑖𝑀 𝑣𝛽 ∈ Sep(𝑣); that is, we want to show that 𝑣−1𝑠𝑖𝑀 𝑣𝛽 ∈ R(ℒ) and 𝑣(𝑣−1𝑠𝑖𝑀 𝑣)𝛽 ∈ Φ−.

Applying 𝑣−1 to each side of (3.1) yields

𝑣−1𝑠𝑖𝑀 𝑣𝛽 = 𝛽 − 2𝐵(𝑣𝛽, 𝛼𝑖𝑀 )𝑣−1𝛼𝑖𝑀 .

We know that 𝛽 ∈ R(ℒ). Since 𝜏w (𝑢) = 𝜏w′ (𝑢) = 𝑣, we also have 𝑣−1𝛼𝑖𝑀 ∈ R(ℒ). Because R(ℒ) is
closed, this implies that 𝑣−1𝑠𝑖𝑀 𝑣𝛽 ∈ R(ℒ). Since −𝛽 ∉ R(ℒ), we also know that −𝛽 ≠ 𝑣−1𝛼𝑖𝑀 , so
𝑣𝛽 ≠ −𝛼𝑖𝑀 . Since 𝑣𝛽 ∈ Φ− \ {−𝛼𝑖𝑀 }, we also conclude that 𝑣(𝑣−1𝑠𝑖𝑀 𝑣)𝛽 = 𝑠𝑖𝑀 𝑣𝛽 ∈ Φ−. �
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Remark 3.5. Theorem 3.4 is equivalent to the statement that the function 𝑊 → 𝑊 given by 𝑢 ↦→
𝑤−1𝜏w (𝑢) is idempotent. It is unclear whether this formulation is useful.

3.2. Strata

It will be useful to classify the elements of W by their separators. We define the stratum corresponding
to a finite subset 𝑅 ⊆ R(ℒ) to be the set

Str(𝑅) = {𝑢 ∈ 𝑊 : Sep(𝑢) = 𝑅}.

Note that the nonempty strata form a partition of the set W. By Theorem 3.1, any periodic billiards
trajectory is contained in a single stratum. The stratum corresponding to the empty set is ℒ itself; we
call the other nonempty strata the proper strata.

Strata have the following geometric interpretation. Recall that the hyperplanes H𝛽 for 𝛽 ∈ R(ℒ)
are called one-way mirrors (see Figures 1 to 4, where one-way mirrors are drawn as yellow-and-red
lines or curves). These hyperplanes form a subarrangement Hℒ

𝑊 of the Coxeter arrangement H𝑊 . The
nonempty strata correspond to the intersections of the regions of Hℒ

𝑊 with the Tits cone.

Lemma 3.6. If ℒ is finite, then |Str(𝑅) | ≤ 2 |Φ\(R(ℒ)∪(−R(ℒ))) | for all 𝑅 ⊆ R(ℒ).

Proof. Fix an arbitrary 𝑣 ∈ Str(𝑅). Each element 𝑢 ∈ Str(𝑅) is uniquely determined by the set of
hyperplanes in the Coxeter arrangement H𝑊 that separate B𝑣 from B𝑢. Each such hyperplane must be
of the form H𝛽 for some root 𝛽 in the finite set Φ \ (R(ℒ) ∪ (−R(ℒ))). �

Using strata, we may prove Theorem 1.8, which we now restate.

Proposition 3.7. Let W be a Coxeter group, and let c be a Coxeter element of W. The following are
equivalent.

1. Every nonempty convex set ℒ ⊆ 𝑊 is heavy with respect to c.
2. Every nonempty finite convex set ℒ ⊆ 𝑊 is heavy with respect to c.
3. Every nonempty finite convex set ℒ ⊆ 𝑊 is superheavy with respect to c.

Proof. It is clear that (1) implies (2) and that (3) implies (2). Therefore, it is enough to show that (2)
implies both (1) and (3). Write 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 , where 𝑖1, . . . , 𝑖𝑛 is an ordering of I.

Assume (2); we will prove (1). Let ℒ ⊆ 𝑊 be a (possibly infinite) convex set, and let 𝑢0, 𝑢1, 𝑢2, . . .
be a periodic billiards trajectory (defined with respect to the convex set ℒ and the ordering 𝑖1, . . . , 𝑖𝑛 of
I). We wish to show that 𝑢0 ∈ ℒ. Our strategy will be to construct a finite convex subset ℒ′ ⊆ ℒ such
that the billiards trajectory remains the same if the convex set ℒ is replaced by ℒ′. It will then follow
from (2) that 𝑢0 ∈ ℒ′ and, consequently, that 𝑢0 ∈ ℒ.

Choose a positive integer K such that the period of 𝑢0, 𝑢1, 𝑢2, . . . divides 𝐾𝑛. For each 𝑗 ∈ [𝐾𝑛]
such that 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1, we have 𝑢−1

𝑗−1𝛼𝑖 𝑗 ∉ R(ℒ) by the definition of the noninvertible Bender–Knuth
toggles, so we may choose an element

𝑤 𝑗 ∈ ℒ \ 𝐻+𝑢−1
𝑗−1𝛼𝑖 𝑗

.

Let ℒ′ be the convex hull of {𝑤 𝑗 : 𝑗 ∈ [𝐾𝑛], 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1}. Then ℒ′ is a finite convex subset of ℒ
(see Theorem 1.1).

For 𝑖 ∈ 𝐼, let 𝜏′𝑖 denote the noninvertible Bender–Knuth toggle defined with respect to the convex set
ℒ′. Let 𝑢′0 = 𝑢0, and define a billiards trajectory 𝑢′0, 𝑢

′
1, 𝑢
′
2, . . . using the convex set ℒ′ and the ordering

𝑖1, . . . , 𝑖𝑛 of I. (That is, define this sequence via the recurrence relation 𝑢′𝑗 = 𝜏′𝑖 𝑗 (𝑢
′
𝑗−1).) We claim that

𝑢 𝑗 = 𝑢′𝑗 for all nonnegative integers j. It suffices to prove that 𝑢 𝑗 = 𝑢′𝑗 for all 𝑗 ∈ [𝐾𝑛]. To do so, we use
induction on j.
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Suppose first that 𝑢 𝑗 = 𝑢 𝑗−1. Then 𝑢−1
𝑗−1𝛼𝑖 𝑗 ∈ R(ℒ). Since ℒ′ ⊆ ℒ, this implies that

𝑢−1
𝑗−1𝛼𝑖 𝑗 ∈ R(ℒ′), so

𝑢′𝑗 = 𝜏′𝑖 𝑗 (𝑢
′
𝑗−1) = 𝜏′𝑖 𝑗 (𝑢 𝑗−1) = 𝑢 𝑗−1 = 𝑢 𝑗 .

Next, suppose that 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1. Then

𝑤 𝑗 ∈ ℒ′ \ 𝐻+𝑢−1
𝑗−1𝛼𝑖 𝑗

,

so 𝑢−1
𝑗−1𝛼𝑖 𝑗 ∉ R(ℒ′). Therefore,

𝑢′𝑗 = 𝜏′𝑖 𝑗 (𝑢
′
𝑗−1) = 𝜏′𝑖 𝑗 (𝑢 𝑗−1) = 𝑠𝑖 𝑗𝑢 𝑗−1 = 𝑢 𝑗 .

This proves our claim that 𝑢 𝑗 = 𝑢′𝑗 for all nonnegative integers j. By (2), we have 𝑢0 ∈ ℒ′ ⊆ ℒ, as
desired.

Now, still assuming (2), we will prove (3). Letℒ ⊆ 𝑊 be a finite convex set, and let 𝑢0, 𝑢1, 𝑢2, . . . ∈ 𝑊
be a billiards trajectory (defined with respect to the convex set ℒ and the ordering 𝑖1, . . . , 𝑖𝑛 of I). We
wish to show that the billiards trajectory eventually reaches ℒ.

By Theorem 3.1, we have

Sep(𝑢0) ⊇ Sep(𝑢1) ⊇ Sep(𝑢2) ⊇ · · · .

By Theorem 3.3, the sequence Sep(𝑢0), Sep(𝑢1), Sep(𝑢2), . . . is eventually constant; equivalently, there
exists a single stratum Str(𝑅) that contains 𝑢𝑘 for all sufficiently large positive integers k. The stratum
Str(𝑅) is finite by Theorem 3.6, so the billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . is eventually periodic. According
to (2), we have 𝑢𝑘 ∈ ℒ for all sufficiently large positive integers k. This proves (3). �

Let 𝑅 ⊆ R(ℒ). A transmitting root of the stratum Str(𝑅) is a root 𝛽 ∈ R(ℒ) that can be written in
the form −𝑤−1𝛼𝑖 for some 𝑤 ∈ Str(𝑅) and 𝑖 ∈ 𝐼. Any such root belongs to the set Sep(𝑤) = 𝑅. The
transmitting roots of R correspond to the one-way mirrors that allow light to leave R.

Lemma 3.8. Every proper stratum has at least one transmitting root.

Proof. Let 𝑣 ∈ ℒ be arbitrary. Choose some 𝑤 ∈ Str(𝑅) that minimizes the length ℓ(𝑣𝑤−1). Since
𝑤 ≠ 𝑣, there exists 𝑖 ∈ 𝐼 such that ℓ(𝑣𝑤−1𝑠𝑖) = ℓ(𝑣𝑤−1) − 1. We claim that −𝑤−1𝛼𝑖 is a transmitting
root. To prove this, it is enough to show that −𝑤−1𝛼𝑖 ∈ R(ℒ).

By the minimality of ℓ(𝑣𝑤−1), we have that 𝑠𝑖𝑤 ∉ Str(𝑅), so Sep(𝑠𝑖𝑤) ≠ Sep(𝑤). That is, there
exists a root 𝛽 ∈ R(ℒ) such that 𝑠𝑖𝑤𝛽 and 𝑤𝛽 have different signs. It follows that 𝛽 = ±𝑤−1𝛼𝑖 . Since
ℓ(𝑣𝑤−1𝑠𝑖) < ℓ(𝑣𝑤−1), we see that 𝑠𝑖 is a right inversion of 𝑣𝑤−1, so 𝑣𝑤−1𝛼𝑖 ∈ Φ−. Since 𝑣𝛽 ∈ Φ+, we
cannot have 𝛽 = 𝑤−1𝛼𝑖 , so 𝛽 = −𝑤−1𝛼𝑖 . Therefore, −𝑤−1𝛼𝑖 ∈ R(ℒ), as desired. �

Let 𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼, and let 𝛽 be a transmitting root of Str(𝑅), where 𝑅 = Sep(𝑢). Under certain
conditions on u, i and 𝛽, it is possible to prove that 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢. We will prove our strongest lemma of
this form (Theorem 3.9) first and then deduce from it two weaker lemmas whose hypotheses are easier
to check (Theorems 3.10 and 3.11). We remind the reader that in this setting, we have 𝛽 ∈ 𝑅 = Sep(𝑢),
so 𝑢𝛽 ∈ Φ−.

Lemma 3.9. Let 𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼, and let 𝛽 be a transmitting root of Str(𝑅), where 𝑅 = Sep(𝑢).
Suppose that there exists a positive root 𝛾 such that 𝛾 ≠ −𝑢𝛽 and

𝐻+𝛾 ∩ 𝐻+𝑢𝛽 ∩ 𝐻+𝛼𝑖 = ∅.

Then 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢.
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Figure 5. An illustration of the proof of Theorem 3.9, drawn using the positive projectivization of the
Tits cone and Coxeter arrangement of 𝐺2, whose Coxeter graph is . The assumption that
𝜏𝑖 (𝑢) = 𝑢 implies that ℒ ⊆ 𝐻+𝛽 ∩ 𝐻+

𝑢−1𝛼𝑖
⊆ 𝐻−

𝑢−1𝛾
, which ends up contradicting the hypothesis that 𝛽 is

a transmitting root of the stratum containing u.

Proof. Let us rephrase the hypotheses of the lemma as follows. We have that 𝑢 ∈ 𝐻+
𝑢−1𝛾

, that 𝛽 ≠ −𝑢−1𝛾,
and that

𝐻+
𝑢−1𝛾
∩ 𝐻+𝛽 ∩ 𝐻+

𝑢−1𝛼𝑖
= ∅.

See Figure 5 for an illustration of this scenario.
Assume for the sake of contradiction that 𝜏𝑖 (𝑢) = 𝑢. By the definition of a transmitting root, there

exist 𝑤 ∈ Str(𝑅) and 𝑖′ ∈ 𝐼 such that −𝑤𝛽 = 𝛼𝑖′ . We will show that

𝑠𝑖′𝑤 ∈ 𝐻+
𝑢−1𝛾
∩ 𝐻+𝛽 ∩ 𝐻+

𝑢−1𝛼𝑖
,

which will contradict the fact that 𝐻+
𝑢−1𝛾
∩ 𝐻+𝛽 ∩ 𝐻+

𝑢−1𝛼𝑖
= ∅.

First, we will show that 𝑠𝑖′𝑤 ∈ 𝐻+
𝑢−1𝛾

. Since 𝜏𝑖 (𝑢) = 𝑢, we have 𝛽, 𝑢−1𝛼𝑖 ∈ R(ℒ), so

ℒ ⊆ 𝐻+𝛽 ∩ 𝐻+
𝑢−1𝛼𝑖

⊆ 𝐻+−𝑢−1𝛾
.

Thus, −𝑢−1𝛾 ∈ R(ℒ). We also have 𝑢(−𝑢−1𝛾) = −𝛾 ∈ Φ−, so −𝑢−1𝛾 ∈ Sep(𝑢) = 𝑅 = Sep(𝑤).
Therefore, 𝑤(−𝑢−1𝛾) ∈ Φ−, or equivalently, 𝑤𝑢−1𝛾 ∈ Φ+. Since 𝛾 ≠ −𝑢𝛽, we have 𝑤𝑢−1𝛾 ≠ 𝛼𝑖′ . It
follows that 𝑠𝑖′𝑤𝑢−1𝛾 ∈ Φ+ as well. Hence, 𝑠𝑖′𝑤 ∈ 𝐻+

𝑢−1𝛾
.

Second, we have 𝑠𝑖′𝑤 ∈ 𝐻+𝛽 since 𝑠𝑖′𝑤𝛽 = 𝑠𝑖′ (−𝛼𝑖′ ) = 𝛼𝑖′ ∈ Φ+.
Finally, we will show that 𝑠𝑖′𝑤 ∈ 𝐻+

𝑢−1𝛼𝑖
. We have 𝑢−1𝛼𝑖 ∈ R(ℒ) (since 𝜏𝑖 (𝑢) = 𝑢) and 𝑢(𝑢−1𝛼𝑖) =

𝛼𝑖 ∈ Φ+, so 𝑢−1𝛼𝑖 ∉ Sep(𝑢) = 𝑅 = Sep(𝑤). Therefore, 𝑤𝑢−1𝛼𝑖 ∈ Φ+. Since 𝑤−1𝛼𝑖′ = −𝛽 ∉ R(ℒ), we
have 𝑤−1𝛼𝑖′ ≠ 𝑢−1𝛼𝑖 , so 𝑤𝑢−1𝛼𝑖 ≠ 𝛼𝑖′ . It follows that 𝑠𝑖′𝑤𝑢−1𝛼𝑖 ∈ Φ+, so 𝑠𝑖′𝑤 ∈ 𝐻+

𝑢−1𝛼𝑖
. �

Lemma 3.10. Let 𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼, and let 𝛽 be a transmitting root of Str(𝑅), where 𝑅 = Sep(𝑢).
Suppose that there exist real numbers 𝑎, 𝑎′ > 0 such that 𝑎𝑢𝛽 + 𝑎′𝛼𝑖 ∈ Φ. Then 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢.

Proof. First, suppose that 𝑢𝛽 and 𝛼𝑖 are linearly dependent. Since 𝛽 ∈ Sep(𝑢), this implies that
−𝑢𝛽 = 𝛼𝑖 . Since 𝛽 ∈ R(ℒ), we have 𝑢−1𝛼𝑖 = −𝛽 ∉ R(ℒ), so 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢 by the definition of 𝜏𝑖 .

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.159


Forum of Mathematics, Sigma 21

Next, suppose that 𝑢𝛽 and 𝛼𝑖 are linearly independent. Let 𝛾 = −(𝑎𝑢𝛽 + 𝑎′𝛼𝑖) ∈ Φ. We have
−𝑢𝛽 ∈ Φ+, so when 𝛾 is written in the basis of simple roots, all the coefficients are nonnegative except
possibly the coefficient of 𝛼𝑖 . But 𝛾 ≠ −𝛼𝑖 , so 𝛾 ∈ Φ+. Moreover, 𝛾 ≠ −𝑢𝛽, and

𝐻+𝛾 ∩ 𝐻+𝑢𝛽 ∩ 𝐻+𝛼𝑖 = {𝑤 ∈ 𝑊 : {−𝑎𝑤𝑢𝛽 − 𝑎′𝑤𝛼𝑖 , 𝑤𝑢𝛽, 𝑤𝛼𝑖} ⊆ Φ+} = ∅.

By Theorem 3.9, we have 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢. �

Informally, the following lemma says that a billiards trajectory cannot reflect off of any one-way
mirror that forms an obtuse angle with the one-way mirror corresponding to a transmitting root. (Recall
that, since the bilinear form B is W-equivariant, we have 𝐵(𝑢𝛽, 𝛼𝑖) = 𝐵(𝛽, 𝑢−1𝛼𝑖).)

Lemma 3.11. Let 𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼, and let 𝛽 be a transmitting root of Str(𝑅), where 𝑅 = Sep(𝑢). If
𝐵(𝑢𝛽, 𝛼𝑖) < 0, then 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢.

Proof. We have 𝑠𝑖𝑢𝛽 = 𝑢𝛽−2𝐵(𝑢𝛽, 𝛼𝑖)𝛼𝑖 ∈ Φ. Now take 𝑎 = 1 and 𝑎′ = −2𝐵(𝑢𝛽, 𝛼𝑖) in Theorem 3.10.
�

The following lemma will be useful in the proofs of Theorems 1.16 to 1.18, where we will compute
the set of small roots and use it to determine the structure of the strata.

Lemma 3.12. Let Str(𝑅) be a stratum, and let 𝛽 be a transmitting root of Str(𝑅). For every 𝑢 ∈ Str(𝑅),
the root −𝑢𝛽 is small.

Proof. We have −𝑢𝛽 ∈ Φ+ because 𝛽 ∈ 𝑅 = Sep(𝑢). Now, let 𝛾 ∈ Φ+, and suppose that

−𝑢𝛽 dom 𝛾. (3.2)

We must show that 𝛾 = −𝑢𝛽.
We know by (3.2) that −𝛾 dom 𝑢𝛽. Applying 𝑢−1 to each side yields −𝑢−1𝛾 dom 𝛽. Then

ℒ ⊆ 𝐻+𝛽 ⊆ 𝐻+−𝑢−1𝛾
, so −𝑢−1𝛾 ∈ R(ℒ). Moreover, 𝑢(−𝑢−1𝛾) = −𝛾 ∈ Φ−, so −𝑢−1𝛾 ∈ Sep(𝑢) = 𝑅.

By the definition of a transmitting root, there exists 𝑤 ∈ Str(𝑅) such that −𝑤𝛽 is a simple root.
Since −𝑢−1𝛾 ∈ 𝑅 = Sep(𝑤), we have that 𝑤𝑢−1𝛾 ∈ Φ+. Applying 𝑤𝑢−1 to each side of (3.2) yields
−𝑤𝛽 dom 𝑤𝑢−1𝛾. Since −𝑤𝛽 is simple, it is small, so 𝑤𝑢−1𝛾 = −𝑤𝛽. Therefore, 𝛾 = −𝑢𝛽, as
desired. �

3.3. Conjugate Coxeter elements

Consider the Coxeter graph Γ𝑊 of W. An acyclic orientation of Γ𝑊 is a directed graph with no
directed cycles that is obtained by orienting each edge of Γ𝑊 . A sink (respectively, source) of an acyclic
orientation is a vertex with out-degree (respectively, in-degree) 0. If i is a source or a sink of Γ𝑊 , then
we can flip i by reversing the orientations of all edges incident to i; the result is a new acyclic orientation
of Γ𝑊 . We say two acyclic orientations of Γ𝑊 are flip equivalent if one can be obtained from the other
via a sequence of flips.

Let c be a Coxeter element of W. Let us direct the edge between two adjacent vertices i and 𝑖′ in Γ𝑊
from i to 𝑖′ if i appears to the right of 𝑖′ in some (equivalently, every) reduced word for c. Doing this for
all edges in Γ𝑊 yields an acyclic orientation ao(𝑐) of Γ𝑊 .

The map ao is a bijection from the set of Coxeter elements of W to the set of acyclic orientations of
Γ𝑊 . Moreover, it is known [10, Theorem 1.15] that two Coxeter elements c and 𝑐′ are conjugate in W
if and only if ao(𝑐) and ao(𝑐′) are flip equivalent.

Proposition 3.13. Let c and 𝑐′ be Coxeter elements of W that are conjugate to each other. Then c is
futuristic if and only if 𝑐′ is futuristic.
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Proof. According to [10, Theorem 1.15], the acyclic orientations ao(𝑐) and ao(𝑐′) are flip equivalent.
Hence, we may assume that ao(𝑐′) is obtained from ao(𝑐) via a single flip from a source to a sink. That
is, there is a reduced word 𝑖𝑛𝑖𝑛−1 · · · 𝑖1 for c such that 𝑖𝑛−1 · · · 𝑖1𝑖𝑛 is a reduced word for 𝑐′.

Fix an arbitrary nonempty convex set ℒ ⊆ 𝑊 . Suppose c is futuristic. Let 𝑢 ∈ 𝑊 be a periodic point
of Pro𝑐′ . We have that Pro𝑐 ◦ 𝜏𝑖𝑛 = 𝜏𝑖𝑛 ◦ Pro𝑐′ , so 𝜏𝑖𝑛 (𝑢) must be a periodic point of Pro𝑐 . Since c is
futuristic, this implies that 𝜏𝑖𝑛 (𝑢) ∈ ℒ. Because u is a periodic point of Pro𝑐′ , it can be obtained by
applying a sequence of noninvertible Bender–Knuth toggles to 𝜏𝑖𝑛 (𝑢). Hence, 𝑢 ∈ ℒ. This proves that
𝑐′ is futuristic.

We have shown that if c is futuristic, then 𝑐′ is futuristic. A similar argument proves the other
direction. �

It is well known that all acyclic orientations of a forest are flip equivalent, so we immediately obtain
the following corollary.

Corollary 3.14. If the Coxeter graph of a Coxeter group W is a forest, then W is either futuristic or
ancient.

3.4. Futuristicity is hereditary

We now prove Theorem 1.12, which states that the class of futuristic Coxeter groups and the class of non-
ancient Coxeter groups are hereditary in the sense that they are closed under taking standard parabolic
subgroups. In fact, these results are immediate corollaries of the following stronger proposition.

Proposition 3.15. Let 𝐽 ⊆ 𝐼. Let c be a Coxeter element of W, and let 𝑐′ be a Coxeter element of the
standard parabolic subgroup 𝑊𝐽 such that there exists a reduced word for c that contains a reduced
word for 𝑐′ as a subword. If c is futuristic, then 𝑐′ is also futuristic.

Proof. Assume that c is futuristic; we will show that 𝑐′ is futuristic. Let ℒ ⊆ 𝑊𝐽 be a nonempty convex
set; we will show that every periodic point of Pro𝑐′ lies in ℒ.

Note that 𝑊𝐽 is precisely the set of elements of W with no right inversions in 𝑊 \𝑊𝐽 , so 𝑊𝐽 is a
convex subset of W, with R(𝑊𝐽 ) = Φ+ \Φ𝐽 . Now, write R𝐽 (ℒ) = {𝛽 ∈ Φ𝐽 : ℒ ⊆ 𝐻+𝛽}. We have

R(ℒ) ∩Φ𝐽 = R𝐽 (ℒ),

and the inclusion ℒ ⊆ 𝑊𝐽 gives Φ+ \Φ𝐽 ⊆ R(ℒ). At the same time, we have 𝑤𝛽 ∈ Φ− for all 𝑤 ∈ ℒ
and 𝛽 ∈ Φ− \Φ𝐽 , so R(ℒ) is disjoint from Φ− \Φ𝐽 . Putting this all together yields

R(ℒ) = R𝐽 (ℒ) ∪ (Φ+ \Φ𝐽 ). (3.3)

Moreover, ℒ is the intersection of the half-spaces 𝐻+𝛽 for 𝛽 ∈ R𝐽 (ℒ) ∪ (Φ+ \Φ𝐽 ), so ℒ is convex as
a subset of W.

For 𝑖 ∈ 𝐼, let 𝜏𝑖 : 𝑊 → 𝑊 denote the noninvertible Bender–Knuth toggle on W that is defined with
respect to ℒ. For 𝑖 ∈ 𝐽, let 𝜏𝐽𝑖 : 𝑊𝐽 → 𝑊𝐽 denote the noninvertible Bender–Knuth toggle on 𝑊𝐽 that
is defined with respect to ℒ.

We claim that for all 𝑖 ∈ 𝐽, the restriction of 𝜏𝑖 to𝑊𝐽 is 𝜏𝐽𝑖 . Moreover, we claim that for all 𝑖 ∈ 𝐼 \𝐽, the
restriction of 𝜏𝑖 to 𝑊𝐽 is the identity function on 𝑊𝐽 . Let 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝑊𝐽 . Then 𝜏𝑖 (𝑢) = 𝑢 if and only
if 𝑢−1𝛼𝑖 ∈ R(ℒ). By (3.3), this holds if and only if 𝑢−1𝛼𝑖 ∈ R𝐽 (ℒ) or 𝑖 ∉ 𝐽; this proves both claims.

It follows that the restriction of Pro𝑐 to 𝑊𝐽 is Pro𝑐′ . Since c is futuristic, every periodic point of Pro𝑐
lies in ℒ. Hence, every periodic point of Pro𝑐′ lies in ℒ, as desired. �

3.5. Folding

There is a common technique known as folding that can be used to obtain new Coxeter groups from
old ones [31]. In this subsection, we discuss this technique and its relation to Bender–Knuth billiards.
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We were not able to find a discussion of folding root systems in the literature at the level of generality
that we present here, so we will prove all of the relevant statements. However, on the level of Coxeter
groups, these foldings are discussed in [12, 26].

Let (𝑊, 𝑆) be a Coxeter system whose simple reflections are indexed by a finite index set I, and let
𝜎 : 𝐼 → 𝐼 be an automorphism of the Coxeter graph Γ𝑊 such that each orbit (i.e., cycle) of 𝜎 is an
independent set (i.e., a set of pairwise nonadjacent vertices). Let 𝐼 w be the set of orbits of 𝜎.5 Consider
a symbol 𝑠𝔬 for each orbit 𝔬 ∈ 𝐼 w. Let 𝑆 w = {𝑠𝔬 : 𝔬 ∈ 𝐼 w}, and let (𝑊 w, 𝑆 w) be the Coxeter system such
that for all 𝔬,𝔬′ ∈ 𝐼 w, the order 𝑚(𝔬,𝔬′) of 𝑠𝔬𝑠𝔬′ in 𝑊 w is equal to the order of

∏
𝑖∈𝔬 𝑠𝑖

∏
𝑖′ ∈𝔬′ 𝑠𝑖′ in W.

Observe that there is a group homomorphism 𝜄 : 𝑊 w → 𝑊 determined by 𝜄(𝑠𝔬) =
∏
𝑖∈𝔬 𝑠𝑖 . (The map

𝜄 is actually injective [26], but we will not need this.) We call 𝑊 w a folding of W. We also say 𝑊 w is
obtained from W by folding along 𝜎.

Example 3.16. The Coxeter graph of the affine Coxeter group 𝐸6 is

.
.

We have shaded in red the orbits of a Coxeter graph automorphism of order 2. By folding along this
automorphism, we obtain the affine Coxeter group 𝐹4, whose Coxeter graph is

..

The Coxeter graph of the affine Coxeter group 𝐸7 is

.
.

As in the case of 𝐸6, we have shaded in red the orbits of a Coxeter graph automorphism of order 2. By
folding along this automorphism, we again obtain 𝐹4.

For each orbit 𝔬 ∈ 𝐼 w, let us fix a particular index 𝑖𝔬 ∈ 𝔬. For 𝔬,𝔬′ ∈ 𝐼 w, let deg𝔬′ (𝔬) denote the
number of edges in Γ𝑊 of the form {𝑖𝔬, 𝑖′} for 𝑖′ ∈ 𝔬′. Let lab𝔬′ (𝔬) be the multiset of labels of the
form 𝑚(𝑖𝔬, 𝑖′) with 𝑖′ ∈ 𝔬′ and 𝑚(𝑖𝔬, 𝑖′) ≥ 3, where the multiplicity of a label a in lab𝔬′ (𝔬) is equal
to |{𝑖′ ∈ 𝔬′ : 𝑚(𝑖𝔬, 𝑖′) = 𝑎}|. (Because 𝜎 is a Coxeter graph automorphism, neither @𝔬′ (𝔬) nor lab𝔬′ (𝔬)
depends on the choice of 𝑖𝔬.) Thus, @𝔬′ (𝔬) is the cardinality of lab𝔬′ (𝔬), counted with multiplicity. In
particular, if @𝔬′ (𝔬) = 0 (i.e., 𝔬 ∪ 𝔬′ is an independent set in Γ𝑊 ), then 𝔬 ∪ 𝔬′ is an independent set
in Γ𝑊 ), then lab𝔬′ (𝔬) is empty. The following lemma allows us to determine the label 𝑚(𝔬, 𝔬′) of the
𝑚(𝔬, 𝔬′) of the edge between 𝔬 and 𝔬′ in Γ𝑊 w from the tuples lab𝔬′ (𝔬) and lab𝔬 (𝔬′).
Lemma 3.17. Let 𝔬,𝔬′ be distinct orbits in 𝐼 w, and assume that deg𝔬′ (𝔬) ≤ deg𝔬 (𝔬′).
◦ If deg𝔬′ (𝔬) = 0, then 𝑚(𝔬, 𝔬′) = 2.
◦ If deg𝔬′ (𝔬) = deg𝔬 (𝔬′) = 1, then lab𝔬′ (𝔬) = lab𝔬 (𝔬′) = {𝑚(𝔬,𝔬′)}.
◦ If deg𝔬′ (𝔬) = 1 and lab𝔬 (𝔬′) = {3, 3}, then 𝑚(𝔬,𝔬′) = 4.
◦ If deg𝔬′ (𝔬) = 1 and lab𝔬 (𝔬′) = {3, 3, 3}, then 𝑚(𝔬,𝔬′) = 6.
◦ If deg𝔬′ (𝔬) = 1 < deg𝔬 (𝔬′) and lab𝔬 (𝔬′) is not {3, 3} or {3, 3, 3}, then 𝑚(𝔬,𝔬′) = ∞.
◦ If deg𝔬′ (𝔬) ≥ 2, then 𝑚(𝔬, 𝔬′) = ∞.

Proof. By passing to the parabolic subgroup 𝑊𝔬∪𝔬′ , we may assume that 𝔬 ∪ 𝔬′ = 𝐼.
It is immediate from the definitions that 𝑚(𝔬,𝔬′) = 2 if deg𝔬′ (𝔬) = 0.

5The symbol w is pronounced “fold”.
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Suppose that deg𝔬′ (𝔬) = 1. The irreducible factors of W are pairwise isomorphic Coxeter groups,
and the Coxeter graph of each irreducible factor is a star graph whose edges all have the same label. To
compute the order of

∏
𝑖∈𝔬𝑠𝑖

∏
𝑖′ ∈𝔬′𝑠𝑖′ in W, we compute the order after projecting to each irreducible

factor, and we then take the least common multiple of the orders obtained this way (which will all
be equal because the irreducible factors are isomorphic). We can check directly that this order is a if
lab𝔬 (𝔬′) = {𝑎}, is 4 if lab𝔬 (𝔬′) = {3, 3}, is 6 if lab𝔬 (𝔬′) = {3, 3, 3}, and is∞ otherwise.

Finally, suppose that deg𝔬′ (𝔬)≥2. Let 𝔬 = {𝑖1, . . . , 𝑖𝑘 } and 𝔬′ = {𝑖′1, . . . , 𝑖
′
𝑘′ }, and let 𝑏≥1 be an

integer. Upon inspection, we find that it is is impossible to apply a sequence of commutation moves
to the word (𝑖1 · · · 𝑖𝑘𝑖′1 · · · 𝑖

′
𝑘′ )

𝑏 to obtain a word to which we can apply a nil move or a braid move
that is not a commutation move. By Matsumoto’s (Theorem 2.1), this implies that (𝑖1 · · · 𝑖𝑘 𝑖′1 · · · 𝑖

′
𝑘′ )

𝑏

is a reduced word. Hence,
∏
𝑖∈𝔬𝑠𝑖

∏
𝑖′ ∈𝔬′𝑠𝑖′ does not have order b. As b was arbitrary, we conclude that

𝑚(𝔬, 𝔬′) = ∞. �

Let us now discuss how root systems interact with folding. Recall that when defining the bilinear
form in (1.6), we had to choose a number 𝜇{𝑖,𝑖′ } ≥ 1 whenever 𝑚(𝑖, 𝑖′) = ∞; we now stress that, in this
subsection, we will sometimes need to choose a value for 𝜇{𝑖,𝑖′ } that is strictly greater than 1.

Let V be the root space of W, and let B be a bilinear form on V induced by W. Let 𝑉 w be the root
space of 𝑊 w. Define a bilinear form 𝐵 w : 𝑉 w ×𝑉 w → R by setting

𝐵

w(𝛼𝔬, 𝛼𝔬′ ) = −

√√√(∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖𝔬 , 𝛼𝑖′ )
) (∑

𝑖∈𝔬
𝐵(𝛼𝑖𝔬′ , 𝛼𝑖)

)
. (3.4)

Because 𝜎 is a Coxeter graph automorphism, we can equivalently write

𝐵

w(𝛼𝔬, 𝛼𝔬′ ) =

√
deg𝔬 (𝔬′)
deg𝔬′ (𝔬)

∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖𝔬 , 𝛼𝑖′ ) =

√
deg𝔬′ (𝔬)
deg𝔬 (𝔬′)

∑
𝑖∈𝔬

𝐵(𝛼𝑖𝔬′ , 𝛼𝑖). (3.5)

It will be useful to keep in mind that √
deg𝔬 (𝔬′)
deg𝔬′ (𝔬)

=

√
|𝔬 |
|𝔬′ | (3.6)

(this is also a consequence of the fact that 𝜎 is a Coxeter graph automorphism).

Lemma 3.18. The bilinear form 𝐵 w is induced by 𝑊 w.

Proof. Fix 𝔬,𝔬′ ∈ 𝐼 w, and assume without loss of generality that deg𝔬′ (𝔬) ≤ deg𝔬 (𝔬′). The proof follows
from Theorem 3.17 and (3.5). For example, if deg𝔬′ (𝔬) = 1 and lab𝔬 (𝔬′) = {3, 3, 3}, then

𝐵

w(𝛼𝔬, 𝛼𝔬′ ) =

√
deg𝔬 (𝔬′)
deg𝔬′ (𝔬)

∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖𝔬 , 𝛼𝑖′ ) =
√

3
1
(− cos(𝜋/3)) = − cos(𝜋/6),

and 𝑚(𝔬,𝔬′) = 6 by Theorem 3.17. If deg𝔬′ (𝔬) ≥ 2, then

𝐵

w(𝛼𝔬, 𝛼𝔬′ ) =

√
deg𝔬 (𝔬′)
deg𝔬′ (𝔬)

∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖𝔬 , 𝛼𝑖′ ) ≤
∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖𝔬 , 𝛼𝑖′ ) ≤ 2(− cos(𝜋/3)) = −1,

and 𝑚(𝔬,𝔬′) = ∞ by Theorem 3.17. Similar arguments handle the other cases. �
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Theorem 3.18 allows us to consider the standard geometric representation of𝑊 w defined with respect
to 𝐵 w. Define the linear transformation 𝜔 : 𝑉 → 𝑉 w by taking 𝜔(𝛼𝑖) = 1√

|𝔬 |
𝛼𝔬 for all 𝔬 ∈ 𝐼 w and all

𝑖 ∈ 𝔬. We claim that

𝜔(𝜄(𝑣)𝛽) = 𝑣𝜔(𝛽) (3.7)

for all 𝑣 ∈ 𝑊 w and 𝛽 ∈ 𝑉 . It suffices to prove this when 𝛽 = 𝛼𝑖 is a simple root and 𝑣 = 𝑠𝔬′ is a simple
reflection. Let 𝔬 ∈ 𝐼 w be the orbit containing i. Then

𝜔(𝜄(𝑠𝔬′ )𝛼𝑖) = 𝜔

(
𝛼𝑖 −

∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖 , 𝛼𝑖′ )𝛼𝑖′
)

=
1√
|𝔬 |

𝛼𝔬 −
∑
𝑖′ ∈𝔬′

𝐵(𝛼𝑖 , 𝛼𝑖′ )
1√
|𝔬′ |

𝛼𝔬′

=
1√
|𝔬 |

𝛼𝔬 −
1√
|𝔬 |

𝐵

w (𝛼𝔬, 𝛼𝔬′ )𝛼𝔬′ ,

where the last equality follows from (3.5) and (3.6). Because

𝑠𝔬′𝜔(𝛼𝑖) =
1√
|𝔬 |

𝑠𝔬′𝛼𝔬 =
1√
|𝔬 |

𝛼𝔬 −
1√
|𝔬 |

𝐵
w(𝛼𝔬, 𝛼𝔬′ )𝛼𝔬′ ,

this completes the proof of (3.7).
In what follows, we will write Φ and Φ w for the root system of W (defined with respect to B) and

the root system of 𝑊 w (defined with respect to 𝐵 w), respectively. A version of this lemma (without root
systems) also appears as [12, Theorem 6.1(c)].

Lemma 3.19. Let 𝔬 ∈ 𝐼 w, and let 𝑖 ∈ 𝔬. For 𝑣 ∈ 𝑊 w, we have 𝑣𝛼𝔬 ∈ (Φ w)+ if and only if 𝜄(𝑣)𝛼𝑖 ∈ Φ+.

Proof. According to (3.7), we have 𝑣𝛼𝔬 =
√
|𝔬 |𝜔(𝜄(𝑣)𝛼𝑖), so the proof follows from the fact that 𝜔 maps

each simple root of W to a positive scalar multiple of a simple root of 𝑊 w. �

Let ℒ w be a nonempty convex subset of 𝑊 w, and let ℒ be the convex hull of 𝜄(ℒ w) in W. For 𝑖 ∈ 𝐼,
let 𝜏𝑖 be the noninvertible Bender–Knuth toggle on W defined with respect to ℒ. For 𝔬 ∈ 𝐼 w, let 𝜏𝔬 be
the noninvertible Bender–Knuth toggle on 𝑊 w defined with respect to ℒ w, and let 𝜏𝔬 =

∏
𝑖∈𝔬 𝜏𝑖 , where∏

denotes composition. The order of the composition does not matter because 𝔬 is an independent set
of Γ𝑊 .

Lemma 3.20. For every 𝔬 ∈ 𝐼 w, we have 𝜄 ◦ 𝜏𝔬 = 𝜏𝔬 ◦ 𝜄.

Proof. Fix 𝔬 ∈ 𝐼 w and 𝑥 ∈ 𝑊 w. We wish to prove that 𝜄(𝜏𝔬 (𝑥)) = 𝜏𝔬 (𝜄(𝑥)). To do so, it suffices to show
that for each 𝑖 ∈ 𝔬, we have 𝜏𝔬 (𝑥) = 𝑥 if and only if 𝜏𝑖 (𝜄(𝑥)) = 𝜄(𝑥).

Fix 𝑖 ∈ 𝔬. We have 𝜏𝔬 (𝑥) = 𝑥 if and only if 𝑤𝑥−1𝛼𝔬 ∈ (Φ w)+ for all 𝑤 ∈ ℒ w. According to
Theorem 3.19, this holds if and only if 𝜄(𝑤) (𝜄(𝑥)−1𝛼𝑖) ∈ Φ+ for all 𝑤 ∈ ℒ w. Because ℒ is the convex
hull of 𝜄(ℒ w), it follows that 𝜏𝔬 (𝑥) = 𝑥 if and only if 𝑧(𝜄(𝑥)−1𝛼𝑖) ∈ Φ+ for all 𝑧 ∈ ℒ. This, in turn,
holds if and only if 𝜏𝑖 (𝜄(𝑥)) = 𝜄(𝑥). �

We are now prepared to prove Theorem 1.13, which states that a folding of a futuristic Coxeter group
is futuristic. This result is immediate from the following stronger proposition. Note that if c is a Coxeter
element of 𝑊 w, then 𝜄(𝑐) is a Coxeter element of W.

Proposition 3.21. Let 𝑊 w be a folding of W, and let c be a Coxeter element of 𝑊 w. If 𝜄(𝑐) is futuristic,
then c is futuristic.
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Proof. Preserve the notation from above. We prove the contrapositive. Suppose that c is not futuristic.
Then there exist a nonempty convex set ℒ w ⊆ 𝑊 w and an element 𝑢 ∈ 𝑊 w \ℒ w such that Pro𝐾𝑐 (𝑢) = 𝑢
for some integer 𝐾 ≥ 1. Let ℒ be the convex hull in W of 𝜄(ℒ w). It follows from Theorem 3.20 that
𝜄 ◦ Pro𝑐 = Pro 𝜄 (𝑐) ◦ 𝜄. Hence, Pro𝐾𝜄 (𝑐) (𝜄(𝑢)) = 𝜄(Pro𝐾𝑐 (𝑢)) = 𝜄(𝑢).

We need to show that 𝜄(𝑢) ∉ ℒ. Because 𝑢 ∉ ℒ w, there exists 𝛽 ∈ Φ w such that 𝑢𝛽 ∈ (Φ w)− and
𝑤𝛽 ∈ (Φ w)+ for all 𝑤 ∈ ℒ w. We can write 𝛽 = 𝑦𝛼𝔬 for some 𝑦 ∈ 𝑊 w and 𝔬 ∈ 𝐼 w. Choose 𝑖 ∈ 𝔬. For
each 𝑣 ∈ 𝑊 w, we can use Theorem 3.19 to see that 𝑣𝛽 ∈ (Φ w)+ if and only if 𝜄(𝑣) (𝜄(𝑦)𝛼𝑖) ∈ Φ+. It
follows that 𝜄(𝑢) (𝜄(𝑦)𝛼𝑖) ∈ Φ− and that 𝜄(𝑤) (𝜄(𝑦)𝛼𝑖) ∈ Φ+ for all 𝑤 ∈ ℒ w. Since ℒ is the convex hull
of 𝜄(ℒ w), we deduce that 𝜄(𝑢) ∉ ℒ. �

4. Finite Coxeter groups

Throughout this section, we assume that the Coxeter group W is finite.
The machinery developed in Section 3.1 allows us to painlessly finish the proofs of Theorems 1.22

and 1.24.

Proof of Theorem 1.22. Let w◦ be a reduced word for 𝑤◦. Let 𝑢 ∈ 𝑊 , and assume for the sake of
contradiction that 𝜏w◦ (𝑢) ∉ ℒ. Then there is some 𝛽 ∈ Sep(𝜏w◦ (𝑢)). According to Theorem 3.4, we have
𝛽 ∈ Sep(𝑤−1

◦ 𝜏w◦ (𝑢)). But then the roots 𝜏w◦ (𝑢)𝛽 and 𝑤−1
◦ 𝜏w◦ (𝑢)𝛽 are both negative, which contradicts

the fact that 𝑤◦Φ+ = Φ− (recall that 𝑤−1
◦ = 𝑤◦). �

In the following proof, recall the commutation equivalence relation ≡ defined in Section 2.

Proof of Theorem 1.24. Let c be a reduced word for the Coxeter element c. It follows from [29, Corollary
4.1] that there is a reduced word w◦ for 𝑤◦ such that cM(𝑐) ≡ yw◦ for some word y. Appealing to
Theorem 1.22, we find that

ProM(𝑐)
𝑐 (𝑊) = 𝜏y (𝜏w◦ (𝑊)) = 𝜏y (ℒ) = ℒ.

�

In the remainder of this section, we provide a (slightly informal) discussion of how one can compute
M(𝑐) explicitly.

Let x be a word. Let 𝑖 ∈ 𝐼, and let 𝑝𝑖 (x) be the number of occurrences of i in x. For 1 ≤ 𝑘 ≤ 𝑝𝑖 (x), let
𝑖 (𝑘) be the k-th occurrence of i in x (counted from the right). It will be convenient to view 𝑖 (1) , . . . , 𝑖 (𝑝𝑖 (x))

as distinct entities. The heap of x is a certain poset whose elements are the letters in x (which are seen
as distinct from one another, even if they are equal as elements of I). The order relation is defined so
that if 𝑖 (𝑘1)

1 and 𝑖 (𝑘2)
2 are two letters, then 𝑖 (𝑘1)

1 < 𝑖 (𝑘2)
2 if and only if 𝑖 (𝑘1)

1 appears to the right of 𝑖 (𝑘2)
2 in

every word that is commutation equivalent to x. Two words are commutation equivalent if and only if
they have the same heap. The Hasse diagram of the heap of x, which we denote by Heap(x), is called a
combinatorial AR quiver [33]. We will draw Heap(x) sideways so that larger letters appear to the left of
smaller letters.6

There is an involution 𝜓 : 𝐼 → 𝐼 given by 𝑠𝜓 (𝑖) = 𝑤◦𝑠𝑖𝑤◦. We can extend 𝜓 to an involution on the
set of words over I by letting 𝜓(𝑖𝑀 · · · 𝑖1) = 𝜓(𝑖𝑀 ) · · ·𝜓(𝑖1).

Recall that the Coxeter number of W is the quantity ℎ = |Φ|/|𝑆 |. Let c be a reduced word for a
Coxeter element c. It is known that M(𝑐) ≤ ℎ. In fact, it follows from [33, Lemma 2.6.5] that

cℎ ≡ 𝜓(sortc (𝑤◦))sortc (𝑤◦),

where sortc (𝑤◦) is a special reduced word called the c-sorting word for 𝑤◦ (see [28]). One can compute
sortc (𝑤◦) by drawing the combinatorial AR quiver Heap(cℎ) and then ‘cutting’ the diagram in half so

6It is typical to draw Heap(x) with larger letters to the right of smaller letters, but we have adopted the opposite convention in
order to match our equally unorthodox convention for writing words.

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.159


Forum of Mathematics, Sigma 27

Figure 6. An illustration of Theorem 4.1. The black-and-blue piecewise linear curve cuts Heap(c7) into
two pieces; the right piece is Heap(sortc (𝑤◦)), while the left piece is Heap(𝜓(sortc (𝑤◦))).

that the left side can be obtained by applying 𝜓 to the right side. Then M(𝑐) is the smallest positive
integer k such that the right side fits inside of Heap(c𝑘 ).

Example 4.1. Suppose that 𝑊 = 𝔖7, and let 𝑠𝑖 = (𝑖 𝑖 +1). The Coxeter number of𝔖7 is ℎ = 7. Consider
the word c = 213456, and let 𝑐 = 𝑠2𝑠1𝑠3𝑠4𝑠5𝑠6 be the Coxeter element represented by c. Figure 6 shows
the combinatorial AR quiver of c7; it is formed by placing 7 copies of Heap(c) (indicated by bands
shaded in yellow) in a row and adding (black) edges as appropriate.

The involution 𝜓 : 𝐼 → 𝐼 is given by 𝜓(𝑖) = 7 − 𝑖. The thick black-and-blue piecewise linear curve
in Figure 6 cuts the diagram into two pieces such that the piece on the left side of the cut can be
obtained by applying 𝜓 to the piece on the right side of the cut. Thus, the piece on the right side of the
cut is Heap(sortc (𝑤◦)). The piece on the right of the cut uses letters from 5 different yellow bands, so
M(𝑐) = 5.

5. Affine Coxeter groups

This section discusses general results about Bender–Knuth billiards in affine Coxeter groups. We will
use these results to prove Theorem 1.15, which states that the affine Coxeter groups of types 𝐴, 𝐶, and
𝐺2 are futuristic.

5.1. Affine Coxeter groups

Preserve the notation from Section 2, and assume in addition that the Coxeter system (𝑊, 𝑆) is affine.
This means that the associated bilinear form 𝐵 : 𝑉 × 𝑉 → R is positive semidefinite but not positive
definite. We will also assume that W is irreducible. Let

𝑉𝑊 = {𝛾 ∈ 𝑉 : 𝑢𝛾 = 𝛾 for all 𝑢 ∈ 𝑊}

be the space of W-invariant vectors in V. Equivalently, 𝑉𝑊 is the kernel of B. The space 𝑉𝑊 is 1-
dimensional, and there exists 𝛿 ∈ 𝑉𝑊 whose coefficients in the basis of simple roots are all positive.
We call 𝛿 the imaginary root, though the reader should keep in mind that it is not a root of W.

Let 𝑉 = 𝑉/𝑉𝑊 , and let 𝜋 : 𝑉 → 𝑉 be the quotient map. Then 𝑉 is a W-module, and the form B
descends to a W-invariant real inner product 𝐵 : 𝑉 ×𝑉 → R. Unlike V, the W-module 𝑉 is not faithful;
that is, the homomorphism 𝜌𝑉 : 𝑊 → GL(𝑉) is not injective. Let 𝑊 be the quotient group 𝑊/ker(𝜌𝑉 ),
and let 𝜋 : 𝑊 → 𝑊 be the quotient map. (It is a slight abuse of notation to use the letter 𝜋 to refer to
two different quotient maps, but it will always be clear from context which is meant.) It is well known
that 𝑊 is a finite Coxeter group.
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We will make use of the following result due to Speyer. (As noted in Speyer’s article, this result was
already proved for affine Coxeter groups in [14, 21].)

Theorem 5.1 [29, Theorem 1]. Let W be an infinite irreducible Coxeter group, and let 𝑖1, . . . , 𝑖𝑛 be an
ordering of the index set I. For every 𝐾 ≥ 1, the word (𝑖𝑛 · · · 𝑖1)𝐾 is reduced.

To prove that the affine Coxeter groups of type 𝐴 are futuristic, we will use the following theorem,
whose proof is type-uniform.

Theorem 5.2. Let W be an irreducible affine Coxeter group. Let ℒ ⊆ 𝑊 be a nonempty convex set, let
𝑖1, . . . , 𝑖𝑛 be an ordering of the index set I, and let 𝑢0, 𝑢1, 𝑢2, . . . be a corresponding periodic billiards
trajectory that is contained within a single proper stratum Str(𝑅). Let 𝛽 be a transmitting root of Str(𝑅).
If j is a positive integer such that 𝑢 𝑗 = 𝑢 𝑗−1, then 𝐵(𝑢 𝑗−1𝛽, 𝛼𝑖 𝑗 ) = 0.

Proof. It may help to keep the following geometric intuition in mind. As in Figure 1, we can think of the
Bender–Knuth billiards process as taking place within the Tits cone B𝑊 , or, equivalently, in the positive
projectivization P(B𝑊) = (B𝑊 \ {0})/R>0, which has the structure of an affine Euclidean space. By
Theorem 3.11, the billiards trajectory can never reflect off of a one-way mirror that forms an obtuse
angle with the hyperplane H𝛽 . Thus, if the billiards trajectory is ever moving toward the hyperplane
H𝛽 , it can never be redirected to move away from H𝛽 . Since the billiards trajectory is periodic, the only
possibility is that it always moves parallel to H𝛽 and hits only one-way mirrors that are orthogonal to
H𝛽 . In other words, if 𝑢 𝑗 = 𝑢 𝑗−1, then 𝐵(𝑢 𝑗−1𝛽, 𝛼𝑖 𝑗 ) = 0.

Of course, the billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . is really a sequence of elements of W rather than an
actual piecewise linear path inside P(B𝑊). (But see Section 11 and Theorem 12.4.) So, in order to turn
our geometric intuition into a rigorous proof, we must formalize the notions of ‘moving toward’ and
‘moving away from’ H𝛽 . We can do so as follows.

Consider the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 . There is an integer 𝐾 ≥ 1 such that Pro𝐾𝑐 (𝑢0) = 𝑢0 and
𝜋(𝑐)𝐾 = 1. For 𝑗 ≥ 1, define

𝜆 𝑗 =

{
2𝐵(𝑢 𝑗−1𝛽, 𝛼𝑖 𝑗 ) if 𝑢 𝑗 = 𝑢 𝑗−1;
0 if 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1.

By Theorem 3.11, we have 𝜆 𝑗 ≥ 0 for all j, and we wish to prove that 𝜆 𝑗 = 0 for all j. Observe that we
have defined 𝜆 𝑗 in such a way that

𝑢 𝑗 𝛽 = 𝑠𝑖 𝑗𝑢 𝑗−1𝛽 + 𝜆 𝑗𝛼𝑖 𝑗 . (5.1)

For 𝑗 ≥ 0, define

𝑐 𝑗 = 𝑠𝑖 𝑗+𝑛 · · · 𝑠𝑖 𝑗+2 𝑠𝑖 𝑗+1 ∈ 𝑊 and 𝛾 𝑗 = 𝑐𝐾𝑗 𝑢 𝑗 𝛽 − 𝑢 𝑗 𝛽 ∈ 𝑉.

One may think of 𝑐𝐾𝑗 𝑢 𝑗 = 𝑠𝑖 𝑗+𝐾𝑛 · · · 𝑠𝑖 𝑗+2 𝑠𝑖 𝑗+1𝑢 𝑗 as the location that the billiards trajectory would reach
if it were to start at 𝑢 𝑗 and then progress 𝐾𝑛 steps, in the absence of any one-way mirrors. Roughly, 𝛾 𝑗
measures the angle between the hyperplane H𝛽 and the ‘limiting direction’ of the billiards trajectory.

Note that for all integers 𝑗 ≥ 0 and all vectors 𝜖 ∈ 𝑉 , we have

𝜋(𝑐𝐾𝑗 𝜖 − 𝜖) = 𝜋(𝑐𝐾𝑗 )𝜋(𝜖) − 𝜋(𝜖).

Since 𝑐 𝑗 is conjugate to c and we have 𝜋(𝑐)𝐾 = 1, we must also have 𝜋(𝑐𝐾𝑗 ) = 1. It follows that
𝜋(𝑐𝐾𝑗 𝜖 − 𝜖) = 0, so 𝑐𝐾𝑗 𝜖 − 𝜖 ∈ 𝑉𝑊 . Taking 𝜖 = 𝑢 𝑗 𝛽, we find that 𝛾 𝑗 ∈ 𝑉𝑊 for all j. Taking 𝜖 = 𝛼𝑖 𝑗
yields that 𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 ∈ 𝑉𝑊 for all j.
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Next, we will use (5.1) to relate 𝛾 𝑗 and 𝛾 𝑗−1. We have

𝛾 𝑗 = 𝑐𝐾𝑗 (𝑠𝑖 𝑗𝑢 𝑗−1𝛽 + 𝜆 𝑗𝛼𝑖 𝑗 ) − (𝑠𝑖 𝑗𝑢 𝑗−1𝛽 + 𝜆 𝑗𝛼𝑖 𝑗 )
= 𝑠𝑖 𝑗 (𝑐𝐾𝑗−1𝑢 𝑗−1𝛽 − 𝑢 𝑗−1𝛽) + 𝜆 𝑗 (𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 )

= 𝑠𝑖 𝑗𝛾 𝑗−1 + 𝜆 𝑗 (𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 )
= 𝛾 𝑗−1 + 𝜆 𝑗 (𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 ); (5.2)

in the second equality, we used the fact that 𝑐 𝑗 𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 𝑐 𝑗−1, and in the fourth equality, we used the fact
that 𝛾 𝑗−1 ∈ 𝑉𝑊 .

By Theorem 5.1, the word (𝑖 𝑗+𝑛 · · · 𝑖 𝑗+1)𝐾 𝑖 𝑗 is reduced. Hence, 𝑐𝐾𝑗 𝛼𝑖 𝑗 ∈ Φ+, and 𝑐𝐾𝑗 𝛼𝑖 𝑗 ≠ 𝛼𝑖 𝑗 (by
(2.5)). It follows that when 𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 is written in the basis of simple roots, at least one of the
coefficients is positive. Since 𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 ∈ 𝑉𝑊 , we find that 𝑐𝐾𝑗 𝛼𝑖 𝑗 − 𝛼𝑖 𝑗 is a positive real multiple of
the imaginary root 𝛿.

Using (5.2) together with the fact that 𝜆 𝑗 ≥ 0, we find that 𝛾 𝑗 − 𝛾 𝑗−1 is a nonnegative real multiple of
𝛿 for all j. Since the sequence 𝛾0, 𝛾1, 𝛾2, . . . is periodic, it must actually be constant. This implies that
𝜆 𝑗 = 0 for all j, as desired. �

For 𝛽 ∈ Φ, let 𝑊𝛽 be the subgroup of W generated by the set

{𝑟𝛽′ : 𝛽′ ∈ Φ and 𝐵(𝛽, 𝛽′) = 0}.

Corollary 5.3. Let W be an irreducible affine Coxeter group, and let c be a Coxeter element of W. If c
is not futuristic, then there exist an integer 𝐾 ≥ 1 and a root 𝛾 ∈ Φ such that 𝑐𝐾 ∈ 𝑊𝛾 .

Proof. Let us write 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 , where 𝑖1, . . . , 𝑖𝑛 is a fixed ordering of I. Suppose that c is not
futuristic. That is, there exist a nonempty convex set ℒ ⊆ 𝑊 and an element 𝑢0 ∈ 𝑊 \ℒ such that the
corresponding billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . is periodic. By Theorem 3.1, the billiards trajectory is
contained in a single proper stratum Str(𝑅).

Choose a positive integer K such that Pro𝐾𝑐 (𝑢0) = 𝑢0 and 𝜋(𝑐)𝐾 = 1. Let 𝛽 be an arbitrary transmitting
root of Str(𝑅), which exists by Theorem 3.8. We will prove that 𝑐𝐾 ∈ 𝑊𝑢0𝛽 . Clearly, 𝑊𝑢0𝛽 = 𝑢0𝑊

𝛽𝑢−1
0 ,

so it suffices to prove that

𝑢−1
0 𝑐𝐾𝑢0 ∈ 𝑊𝛽 . (5.3)

For each 𝑗 ≥ 1, define

𝑡 𝑗 = 𝑢−1
𝑗 𝑠𝑖 𝑗𝑢 𝑗−1 =

{
𝑟𝑢−1
𝑗−1𝛼𝑖 𝑗

if 𝑢 𝑗 = 𝑢 𝑗−1;

1 if 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1.

In other words, if the billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . hits a one-way mirror at step j, then 𝑡 𝑗 is the
reflection corresponding to that one-way mirror; otherwise, 𝑡 𝑗 is the identity. It follows from Theorem 5.2
that 𝑡 𝑗 ∈ 𝑊𝛽 for all 𝑗 ≥ 1. We have

𝑡𝐾𝑛𝑡𝐾𝑛−1 · · · 𝑡2𝑡1 = (𝑢−1
𝐾𝑛𝑠𝑖𝐾𝑛𝑢𝐾𝑛−1) (𝑢−1

𝐾𝑛−1𝑠𝑖𝐾𝑛−1𝑢𝐾𝑛−2) · · · (𝑢−1
2 𝑠𝑖2𝑢1) (𝑢−1

1 𝑠𝑖1𝑢0)
= 𝑢−1

𝐾𝑛 (𝑠𝑖𝐾𝑛 · · · 𝑠𝑖1)𝑢0

= 𝑢−1
0 𝑐𝐾𝑢0,

which implies (5.3). �

In the remainder of this section, we address the affine Coxeter groups of types 𝐴, 𝐶, and 𝐺2.
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5.2. Type 𝐴

Fix an integer 𝑛 ≥ 3. An affine permutation of size n is a bijection 𝑢 : Z→ Z such that 𝑢( 𝑗 +𝑛) = 𝑢( 𝑗)+𝑛
for all 𝑗 ∈ Z and

∑𝑛
𝑗=1 𝑢( 𝑗) = 𝑛(𝑛 + 1)/2. Let 𝐴𝑛−1 be the group of affine permutations of size n under

composition. For 𝑎, 𝑏 ∈ Z with 𝑎 � 𝑏 (mod 𝑛), define

𝑡𝑎,𝑏 =
∏
𝑟 ∈Z
(𝑎 + 𝑟𝑛 𝑏 + 𝑟𝑛) ∈ 𝐴𝑛−1. (5.4)

Note that 𝑡𝑎,𝑏 = 𝑡𝑏,𝑎 = 𝑡𝑎+𝑘𝑛,𝑏+𝑘𝑛 for all 𝑘 ∈ Z. Let 𝑠𝑖 = 𝑡𝑖,𝑖+1, and let 𝑆 = {𝑠0, . . . , 𝑠𝑛−1}. Then
(𝐴𝑛−1, 𝑆) is a Coxeter system [2, Section 8.3]. The reflections of 𝐴𝑛−1 are precisely the elements 𝑡𝑎,𝑏
defined in (5.4). The Coxeter graph of 𝐴𝑛−1 is

.

. (5.5)

Let U be the real vector space freely generated by 𝑒1, . . . , 𝑒𝑛, 𝛿. We can define 𝑒 𝑗 for all 𝑗 ∈ Z
by taking 𝑒𝑖+𝑛 = 𝑒𝑖 − 𝛿. The root space of 𝐴𝑛−1 is isomorphic to the subspace of U spanned by
{𝑒𝑖 − 𝑒𝑖+1 : 𝑖 ∈ Z}. Under this isomorphism, the root system is

Φ = {𝑒𝑎 − 𝑒𝑏 : 𝑎, 𝑏 ∈ Z, 𝑎 � 𝑏 (mod 𝑛)},

and the reflection corresponding to the root 𝑒𝑎 − 𝑒𝑏 is 𝑟𝑒𝑎−𝑒𝑏 = 𝑡𝑎,𝑏 . We easily obtain the following
lemma.

Lemma 5.4. Let 𝑒𝑎 − 𝑒𝑏 and 𝑒𝑎′ − 𝑒𝑏′ be two roots in the root system of type 𝐴𝑛−1. We have
𝐵(𝑒𝑎 − 𝑒𝑏 , 𝑒𝑎′ − 𝑒𝑏′ ) = 0 if and only if 𝑎, 𝑏, 𝑎′, 𝑏′ belong to distinct residue classes modulo n.

Proposition 5.5. For 𝑛 ≥ 3, the Coxeter group 𝐴𝑛−1 is futuristic.

Proof. Let us consider acyclic orientations of the n-vertex cycle graph Γ𝐴𝑛−1
, as in Section 3.3. For

1 ≤ 𝑑 ≤ 𝑛 − 1, let 𝑐 (𝑑) be the Coxeter element 𝑠𝑑𝑠𝑑+1 · · · 𝑠𝑛−1𝑠𝑑−1𝑠𝑑−2 · · · 𝑠0. If we draw Γ𝐴𝑛−1
in the

plane as in (5.5), then the acyclic orientation ao(𝑐 (𝑑) ) has exactly d counterclockwise edges. It is a
simple exercise to show that two acyclic orientations of Γ𝐴𝑛−1

are flip equivalent if and only if they have
the same number of edges oriented counterclockwise. It follows that each Coxeter element of 𝐴𝑛−1 is
conjugate to exactly one of 𝑐 (1) , 𝑐 (2) , . . . , 𝑐 (𝑛−1) ; hence, according to Theorem 3.13, we just need to
show that each of the 𝑛 − 1 Coxeter elements in this list is futuristic. Fix 1 ≤ 𝑑 ≤ 𝑛 − 1, and view 𝑐 (𝑑)
as an affine permutation of size n. By Theorem 5.3, it suffices to prove that 𝑐𝐾(𝑑) ∉ 𝑊𝛾 for every integer
𝐾 ≥ 1 and every root 𝛾 ∈ Φ. Fix such K and 𝛾, and write 𝛾 = 𝑒𝑎 − 𝑒𝑏 for some integers a and b with
𝑎 � 𝑏 (mod 𝑛). According to Theorem 5.4, the subgroup 𝑊𝛾 is generated by reflections t that satisfy
𝑡 (𝑎) = 𝑎 and 𝑡 (𝑏) = 𝑏. Consequently, we just need to show that 𝑐𝐾(𝑑) (𝑎) ≠ 𝑎.

For 𝑗 ∈ Z, it is straightforward to compute that

𝑐 (𝑑) ( 𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑗 − 𝑛 + 𝑑 − 1 if 𝑗 ≡ 1 (mod 𝑛);
𝑗 − 1 if 𝑗 ≡ 2, 3, . . . , 𝑑 (mod 𝑛);
𝑗 + 1 if 𝑗 ≡ 𝑑 + 1, 𝑑 + 2, . . . , 𝑛 − 1 (mod 𝑛);
𝑛 + 𝑑 + 1 if 𝑗 ≡ 𝑛 (mod 𝑛).

From this, one can readily deduce that 𝑐𝐾(𝑑) ( 𝑗) < 𝑗 if 𝑗 ≡ 1, 2, . . . , 𝑑 (mod 𝑛) and that 𝑐𝐾(𝑑) ( 𝑗) > 𝑗 if
𝑗 ≡ 𝑑 + 1, 𝑑 + 2, . . . , 𝑛 (mod 𝑛). In particular, 𝑐𝐾(𝑑) (𝑎) ≠ 𝑎. �
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Remark 5.6. The only affine Coxeter group of type 𝐴 that Theorem 5.5 fails to address is 𝐴1, which
has the Coxeter graph

..

However, because 𝐴1 is right-angled, its futuristicity follows from Theorem 1.16. Alternatively, we
could use Theorem 1.13 and the fact that 𝐴1 is a folding of 𝐶2, which we will prove is futuristic in the
next subsection.

5.3. Type 𝐶

For 𝑛 ≥ 3, the Coxeter graph of the affine Coxeter group 𝐶𝑛−1 is

,,

where there are n vertices in total. We can draw the Coxeter graph of 𝐴2𝑛−3 as

,
,

where we have shaded in red the orbits of a Coxeter graph automorphism 𝜎 of order 2. Since 𝐶𝑛−1 is
obtained from 𝐴2𝑛−1 by folding along 𝜎, it follows from Theorem 1.13 that 𝐶𝑛−1 is futuristic.

5.4. Type 𝐺2

The affine Coxeter group 𝐺2 has Coxeter graph

..

The fact that 𝐺2 is futuristic is a special case of Theorem 1.18, which will be proved in Section 9.
Combining this fact with Theorem 5.5, Theorem 5.6 and the folding argument in Section 5.3 proves
Theorem 1.15.

6. The small-root billiards graph

We now proceed to the proofs of Theorems 1.16 to 1.18. In each proof, our strategy will be as follows.
Let W be a Coxeter group that we wish to prove is futuristic. Let ℒ ⊆ 𝑊 be a nonempty convex set,
let 𝑖1, . . . , 𝑖𝑛 be an ordering of I, and let 𝑢0, 𝑢1, 𝑢2, . . . be a corresponding periodic billiards trajectory.
Assume for the sake of contradiction that the billiards trajectory is not contained in ℒ. Then by
Theorem 3.1, it is contained within a single proper stratum Str(𝑅). By Theorem 3.8, there exists a
transmitting root 𝛽 of Str(𝑅). By Theorem 3.12, each root −𝑢 𝑗 𝛽 is small. Let 𝛾 𝑗 = −𝑢 𝑗 𝛽. The sequence
𝛾0, 𝛾1, 𝛾2, . . . of small roots is highly constrained. First, for each 𝑗 ≥ 1, we have 𝑢 𝑗 ∈ {𝑢 𝑗−1, 𝑠𝑖 𝑗𝑢 𝑗−1}, so
𝛾 𝑗 ∈ {𝛾 𝑗−1, 𝑠𝑖 𝑗𝛾 𝑗−1}. Moreover, if there exists a positive root 𝛾′ ≠ 𝛾 𝑗−1 such that 𝐻+𝛾′ ∩𝐻−𝛾 𝑗−1∩𝐻

+
𝛼𝑖 𝑗

= ∅,
then Theorem 3.9 implies that 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1 and (consequently) 𝛾 𝑗 = 𝑠𝑖 𝑗𝛾 𝑗−1.

These considerations show that the distinct 𝛾 𝑗 ’s form a walk on a particular directed graph, which we
now define. This graph is similar to the minimal root reflection table of Casselman [5], but it contains
some additional information.
Definition 6.1. The small-root billiards graph of W, denoted G𝑊 , is the following directed graph in
which each edge is labeled by an element of I and is either solid or dotted. The vertex set of the small-root
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Figure 7. The small-root billiards graph of 𝐺2, whose Coxeter graph is .

billiards graph is Σ ∪ {�}, where Σ is the set of small roots and � is a special symbol that represents
negative roots. For each 𝛾 ∈ Σ and 𝑖 ∈ 𝐼 such that 𝑠𝑖𝛾 ∈ Σ, there is an edge labeled i from 𝛾 to 𝑠𝑖𝛾 (this
edge is a loop if 𝑠𝑖𝛾 = 𝛾). The edge from 𝛾 to 𝑠𝑖𝛾 is solid if there exists a positive root 𝛾′ ≠ 𝛾 such that
𝐻+𝛾′ ∩ 𝐻−𝛾 ∩ 𝐻+𝛼𝑖 = ∅; otherwise, it is dotted. Additionally, for each 𝑖 ∈ 𝐼, there is a solid edge labeled i
from 𝛼𝑖 to �. Let 𝜆(𝑒) ∈ 𝐼 denote the label of an edge e of G𝑊 .

Figure 7 shows the small-root billiards graph of 𝐺2.
We will always draw the small-root billiards graph with the higher roots nearer the top of the diagram.

That is, if 𝑖 ∈ 𝐼 and 𝛾 ∈ Σ satisfy 𝑠𝑖𝛾 = 𝛾 − 2𝐵(𝛾, 𝛼𝑖)𝛼𝑖 ∈ Σ, then we will draw the vertex 𝑠𝑖𝛾 above
(respectively, below) the vertex 𝛾 if 𝐵(𝛾, 𝛼𝑖) < 0 (respectively, 𝐵(𝛾, 𝛼𝑖) > 0). If 𝛾 is drawn above 𝑠𝑖𝛾,
then the edge from 𝛾 to 𝑠𝑖𝛾 is solid because we may take 𝛾′ = 𝑠𝑖𝛾. Thus, every edge in G𝑊 that points
downward is solid. However, it is also possible for a solid edge to point upward.

The following lemma summarizes the discussion thus far. The fact that the sequence 𝛾0, 𝛾1, 𝛾2, . . .
is eventually periodic follows from the fact that Σ is finite.

Lemma 6.2. Let 𝑖1, . . . , 𝑖𝑛 be an ordering of I, and let 𝑢0, 𝑢1, 𝑢2, . . . be a corresponding billiards
trajectory that is contained in a single proper stratum. Then there is an eventually periodic sequence
𝛾0, 𝛾1, 𝛾2, . . . of small roots such that the following hold for all 𝑗 ≥ 1.
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1. If 𝑢 𝑗 = 𝑢 𝑗−1, then 𝛾 𝑗 = 𝛾 𝑗−1, and there is no solid edge of G𝑊 labeled 𝑖 𝑗 with source 𝛾 𝑗−1.
2. If 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1, then there is an edge of G𝑊 labeled 𝑖 𝑗 from 𝛾 𝑗−1 to 𝛾 𝑗 . (This edge may be either

solid or dotted.)

Moreover, if the sequence 𝑢0, 𝑢1, 𝑢2, . . . is periodic, then so is 𝛾0, 𝛾1, 𝛾2, . . ., and the period of
𝛾0, 𝛾1, 𝛾2, . . . divides the period of 𝑢0, 𝑢1, 𝑢2, . . ..

Our next goal is to reformulate Theorem 6.2 in a way that is easier to visualize. The idea of
the reformulation is as follows. If 𝛾0, 𝛾1, 𝛾2, . . . is a sequence of roots satisfying the conditions of
Theorem 6.2, then we may remove the consecutive duplicates from the sequence 𝛾0, 𝛾1, 𝛾2, . . . to obtain
a walk in the graph G𝑊 . This walk satisfies certain conditions, which we will describe in Theorem 6.3
below. First, we must introduce some additional terminology.

Fix an ordering 𝑖1, . . . , 𝑖𝑛 of I. As usual, we may define an infinite periodic sequence 𝑖1, 𝑖2, 𝑖3, . . . by
setting 𝑖 𝑗+𝑛 = 𝑖 𝑗 for all 𝑗 ≥ 1. For any indices 𝑖, 𝑖′, 𝑖′′ ∈ 𝐼, let us say that 𝑖′ is betwixt i and 𝑖′′ if for all
positive integers 𝑗 < 𝑗 ′′ with 𝑖 𝑗 = 𝑖 and 𝑖 𝑗′′ = 𝑖′′, there exists an integer 𝑗 ′ with 𝑗 < 𝑗 ′ < 𝑗 ′′ and 𝑖 𝑗′ = 𝑖′.
Note that this definition is not symmetric in i and 𝑖′′. For 𝑗 , 𝑗 ′, 𝑗 ′′ ∈ [𝑛], we have that 𝑖 𝑗′ is betwixt 𝑖 𝑗
and 𝑖 𝑗′′ if and only if 𝑗 < 𝑗 ′ < 𝑗 ′′, 𝑗 ′ < 𝑗 ′′ ≤ 𝑗 , or 𝑗 ′′ ≤ 𝑗 < 𝑗 ′.

A closed walk in a directed graph 𝐺 is a pair C = ((𝑣1, . . . , 𝑣𝑑), (𝑒1, . . . , 𝑒𝑑)), where 𝑑 > 0 is an
integer, 𝑣1, . . . , 𝑣𝑑 are vertices of 𝐺, and for each 𝑗 ∈ [𝑑], 𝑒 𝑗 is an edge of 𝐺 from 𝑣 𝑗 to 𝑣 𝑗+1; here we
use the convention 𝑣𝑑+1 = 𝑣1.

Definition 6.3. Let C = ((𝑣1, . . . , 𝑣𝑑), (𝑒1, . . . , 𝑒𝑑)) be a closed walk in the small-root billiards graph
G𝑊 . We say that C is billiards-plausible (with respect to the ordering 𝑖1, . . . , 𝑖𝑛 of I) if it satisfies the
following two properties.

1. For each 𝑗 ∈ [𝑑], there is no solid edge with source 𝑣 𝑗 whose label is betwixt 𝜆(𝑒 𝑗−1) and 𝜆(𝑒 𝑗 ).
Here, we use the convention 𝑒0 = 𝑒𝑑 .

2. We have 𝑠𝜆(𝑒1) · · · 𝑠𝜆(𝑒𝑑) = 1.

Lemma 6.4. If there does not exist a closed walk in G𝑊 that is billiards-plausible with respect to the
ordering 𝑖1, . . . , 𝑖𝑛, then the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is futuristic.

Proof. We prove the contrapositive. Assume that c is not futuristic. Then there exist a nonempty convex
subset ℒ ⊆ 𝑊 and a periodic billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . that is not contained in ℒ. Let 𝐾 > 0 be
an integer such that 𝑢0 = 𝑢𝐾𝑛.

Let 𝑗1, . . . , 𝑗𝑑 be the elements of the set { 𝑗 ∈ [𝐾𝑛] : 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1} in increasing order. We have

1 = 𝑢0𝑢
−1
𝐾𝑛 = (𝑢0𝑢

−1
1 ) (𝑢1𝑢

−1
2 ) · · · (𝑢𝐾𝑛−2𝑢

−1
𝐾𝑛−1) (𝑢𝐾𝑛−1𝑢

−1
𝐾𝑛). (6.1)

For each 𝑗 ∈ [𝐾𝑛], the factor 𝑢 𝑗−1𝑢
−1
𝑗 equals 1 if 𝑢 𝑗 = 𝑢 𝑗−1 and equals 𝑠𝑖 𝑗 if 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1. Removing

the identity terms from the product in (6.1) thus yields

𝑠𝑖 𝑗1 · · · 𝑠𝑖 𝑗𝑑 = 1. (6.2)

Now, let 𝛾0, 𝛾1, 𝛾2, . . . be the sequence from Theorem 6.2. For each 𝑘 ∈ [𝑑], let 𝑒𝑘 be the edge of G𝑊

labeled 𝑖 𝑗𝑘 from 𝛾 𝑗𝑘−1 to 𝛾 𝑗𝑘 . By Theorem 6.2(1), the edges 𝑒1, . . . , 𝑒𝑑 form a closed walk C satisfying
Theorem 6.3(1). It follows from (6.2) that C also satisfies Theorem 6.3(2), so C is billiards-plausible. �

For an example of how Theorem 6.4 can be used to prove that several Coxeter groups are futuristic,
see the proof of Theorem 1.18 in Section 9.

The proof of Theorem 6.4 gives a procedure for constructing a billiards-plausible closed walk C from
a periodic billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . in a proper stratum. We say that the trajectory 𝑢0, 𝑢1, 𝑢2, . . .
is a lift of C.

It is natural to ask if the converse of Theorem 6.4 holds.
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Question 6.5. Suppose G𝑊 has a closed walk that is billiards-plausible with respect to the ordering
𝑖1, . . . , 𝑖𝑛. Is the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 necessarily not futuristic?

Lemma 6.6. If there does not exist a closed walk in G𝑊 that satisfies Theorem 6.3(1) with respect to
the ordering 𝑖1, . . . , 𝑖𝑛, then the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is superfuturistic.

Proof. We prove the contrapositive. Assume that c is not superfuturistic. Then there exist a nonempty
convex subset ℒ ⊆ 𝑊 and a billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . that does not eventually reach ℒ. By
Theorem 3.1, we have

Sep(𝑢0) ⊇ Sep(𝑢1) ⊇ Sep(𝑢2) ⊇ · · · .

By Theorem 3.3, the sequence Sep(𝑢0), Sep(𝑢1), Sep(𝑢2), . . . is eventually constant. We may assume
that this sequence is constant and the billiards trajectory 𝑢0, 𝑢1, 𝑢2, . . . is contained within a single
stratum Str(𝑅).

Let 𝛾0, 𝛾1, 𝛾2, . . . be the sequence from Theorem 6.2, and let 𝐾 > 0 be an integer such that 𝐾𝑛 is
divisible by the period of the sequence 𝛾0, 𝛾1, 𝛾2, . . .. As in the proof of Theorem 6.4, let 𝑗1, . . . , 𝑗𝑑 be
the elements of the set { 𝑗 ∈ [𝐾𝑛] : 𝑢 𝑗 = 𝑠𝑖 𝑗𝑢 𝑗−1} in increasing order. For each 𝑘 ∈ [𝑑], let 𝑒𝑘 be the
edge of G𝑊 labeled 𝑗𝑘 from 𝛾 𝑗𝑘−1 to 𝛾 𝑗𝑘 . By Theorem 6.2(1), the edges 𝑒1, . . . , 𝑒𝑑 form a closed walk
C satisfying Theorem 6.3(1). �

We now prove some lemmas that will help us determine whether the edges of G𝑊 are solid or dotted.

Lemma 6.7. Let 𝛾 ∈ Σ and 𝑖 ∈ 𝐼. Suppose that when 𝛾 is written in the basis of the simple roots, the
coefficient of 𝛼𝑖 is zero. If there is an edge labeled i from 𝛾 to 𝑠𝑖𝛾 in G𝑊 , then it is dotted.

Proof. Assume for the sake of contradiction that there is a solid edge from 𝛾 to 𝑠𝑖𝛾. Then there is a root
𝛾′ ∈ Φ+ \ {𝛾} such that 𝐻+𝛾′ ∩ 𝐻−𝛾 ∩ 𝐻+𝛼𝑖 = ∅.

Let 𝑡 = 𝑟𝛾 and 𝑡 ′ = 𝑟𝛾′ be the reflections corresponding to 𝛾 and 𝛾′, respectively. We have 𝑡 ∈ 𝐻−𝛾 .
Also, t lies in the parabolic subgroup 𝑊𝐼\{𝑖 }. In particular, t does not have 𝑠𝑖 as a right inversion, so
𝑡 ∈ 𝐻+𝛼𝑖 . Since 𝐻+𝛾′ ∩ 𝐻−𝛾 ∩ 𝐻+𝛼𝑖 = ∅, we have 𝑡 ∉ 𝐻+𝛾′ . Hence, t must have 𝑡 ′ as a right inversion. It
follows that 𝑡 ′ also lies in the parabolic subgroup 𝑊𝐼\{𝑖 }, so 𝛾′ is a root of 𝑊𝐼\{𝑖 }.

The fact that 𝐻+𝛾′ ∩ 𝐻−𝛾 ∩ 𝐻+𝛼𝑖 = ∅ tells us that 𝐻+𝛾′ ∩ 𝐻+𝛼𝑖 ⊆ 𝐻+𝛾 . Because 𝑊𝐼 \{𝑖 } ⊆ 𝐻+𝛼𝑖 , we have

𝐻+𝛾′ ∩𝑊𝐼\{𝑖 } ⊆ 𝐻+𝛾 ∩𝑊𝐼\{𝑖 } .

But 𝐻+𝛾′ ∩𝑊𝐼 \{𝑖 } and 𝐻+𝛾 ∩𝑊𝐼\{𝑖 } are the half-spaces of 𝑊𝐼\{𝑖 } corresponding to 𝛾′ and 𝛾, respectively.
Hence, 𝛾 is not a small root of 𝑊𝐼\{𝑖 }. This contradicts Theorem 2.5. �

Lemma 6.8. Let 𝛾 ∈ Σ and 𝑖 ∈ 𝐼. Suppose that there exist real numbers 𝑎, 𝑎′ > 0 such that 𝑎𝛾−𝑎′𝛼𝑖 ∈ Φ.
If there is an edge from 𝛾 to 𝑠𝑖𝛾 in G𝑊 , then it is solid.

Proof. Let 𝛾′ = 𝑎𝛾 − 𝑎′𝛼𝑖 . Then 𝐻+𝛾′ ∩ 𝐻−𝛾 ∩ 𝐻+𝛼𝑖 = ∅, so the edge from 𝛾 to 𝑠𝑖𝛾 is solid. �

6.1. Small roots of rank-2 parabolic subgroups

The proofs of Theorems 1.16 to 1.18 will involve explicitly computing G𝑊 for various Coxeter groups
W and applying Theorem 6.2 or Theorem 6.4. In this subsection, we will show that G𝑊 always has a
certain easily described induced subgraph.

Let 𝑖, 𝑖′ ∈ 𝐼 be distinct indices such that 𝑚(𝑖, 𝑖′) < ∞, and let 𝑚 = 𝑚(𝑖, 𝑖′). It follows from a routine
computation that the roots of the standard rank-2 parabolic subgroup 𝑊{𝑖,𝑖′ } are the vectors

𝛼𝑖,𝑖′ (𝑘) =
sin((𝑘 + 1)𝜋/𝑚)

sin(𝜋/𝑚) 𝛼𝑖 +
sin(𝑘𝜋/𝑚)
sin(𝜋/𝑚) 𝛼𝑖

′ ∈ 𝑉,
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where k ranges over the integers. The vector 𝛼𝑖,𝑖′ (𝑘) depends only on the residue class of k modulo
2𝑚, and distinct residue classes yield distinct vectors 𝛼𝑖,𝑖′ (𝑘), so the number of roots of 𝑊{𝑖,𝑖′ } is 2𝑚.
Geometrically, the restriction of B to the 2-dimensional space 𝑉{𝑖,𝑖′ } = span{𝛼𝑖 , 𝛼𝑖′ } ⊆ 𝑉 is a real inner
product, and 𝛼𝑖,𝑖′ (0), 𝛼𝑖,𝑖′ (1), . . . , 𝛼𝑖,𝑖′ (2𝑚−1) are 2𝑚 equally spaced vectors (in that order) on the unit
circle of 𝑉{𝑖,𝑖′ }. The simple roots of 𝑊{𝑖,𝑖′ } are 𝛼𝑖,𝑖′ (0) = 𝛼𝑖 and 𝛼𝑖,𝑖′ (𝑚 − 1) = 𝛼𝑖′ . The action of 𝑊{𝑖,𝑖′ }
on the roots is given by 𝑠𝑖𝛼𝑖,𝑖′ (𝑘) = 𝛼𝑖,𝑖′ (𝑚 − 𝑘) and 𝑠𝑖′𝛼𝑖,𝑖′ (𝑘) = 𝛼𝑖,𝑖′ (𝑚 − 2 − 𝑘).

Let Σ≤2 denote the set

{𝛼𝑖 : 𝑖 ∈ 𝐼} ∪ {𝛼𝑖,𝑖′ (𝑘) : 𝑖, 𝑖′ ∈ 𝐼 are distinct, 𝑚(𝑖, 𝑖′) < ∞, 0 < 𝑘 < 𝑚(𝑖, 𝑖′) − 1}. (6.3)

Note that since 𝛼𝑖,𝑖′ (𝑘) = 𝛼𝑖′,𝑖 (𝑚(𝑖, 𝑖′) − 1− 𝑘), we have listed each element of Σ≤2 \ {𝛼𝑖 : 𝑖 ∈ 𝐼} twice
in (6.3). Let G𝑊 ,≤2 denote the induced subgraph of G𝑊 on the vertex set Σ≤2 ∪ {�}.

Lemma 6.9. The set Σ≤2 consists of all small roots that can be written as linear combinations of at
most two simple roots. Moreover, the edges of G𝑊 ,≤2 are as follows.

1. For each pair 𝑖, 𝑖′ ∈ 𝐼 of distinct indices with 𝑚(𝑖, 𝑖′) < ∞ and for each integer k satisfying
0 < 𝑘 < 𝑚(𝑖, 𝑖′) − 1, there is a solid edge labeled i from 𝛼𝑖,𝑖′ (𝑘) to 𝛼𝑖,𝑖′ (𝑚(𝑖, 𝑖′) − 𝑘).

2. For each pair 𝑖, 𝑖′ ∈ 𝐼 of distinct indices with 𝑚(𝑖, 𝑖′) < ∞, there is a dotted edge labeled i from 𝛼𝑖′

to 𝛼𝑖,𝑖′ (1). (If 𝑚(𝑖, 𝑖′) = 2, then this edge is a loop.)
3. For each triple 𝑖, 𝑖′, 𝑖′′ ∈ 𝐼 of distinct indices with 2 = 𝑚(𝑖, 𝑖′) = 𝑚(𝑖, 𝑖′′) < 𝑚(𝑖′, 𝑖′′) < ∞ and for

each integer k satisfying 0 < 𝑘 < 𝑚(𝑖′, 𝑖′′) −1, there is a dotted edge labeled i from 𝛼𝑖′,𝑖′′ (𝑘) to itself.
4. For each 𝑖 ∈ 𝐼, there is a solid edge labeled i from 𝛼𝑖 to �.

Proof. The first statement in the lemma follows from Theorem 2.5.
Let 𝛾 ∈ Σ≤2 and 𝑖 ∈ 𝐼. Upon inspection, we find that 𝑠𝑖𝛾 ∈ Σ≤2 if and only if one of the following

conditions holds:

1. We have 𝛾 = 𝛼𝑖,𝑖′ (𝑘), where 𝑖′ ∈ 𝐼 satisfies 𝑚(𝑖, 𝑖′) < ∞ and k is an integer such that 0 < 𝑘 <
𝑚(𝑖, 𝑖′) − 1. In this case, 𝑠𝑖𝛾 = 𝛼𝑖,𝑖′ (𝑚(𝑖, 𝑖′) − 𝑘).

2. We have 𝛾 = 𝛼𝑖′ , where 𝑖′ ∈ 𝐼 satisfies 𝑚(𝑖, 𝑖′) < ∞. In this case, 𝑠𝑖𝛾 = 𝛼𝑖,𝑖′ (1).
3. We have 𝛾 = 𝛼𝑖′,𝑖′′ (𝑘), where 𝑖′, 𝑖′′ ∈ 𝐼 satisfy 2 = 𝑚(𝑖, 𝑖′) = 𝑚(𝑖, 𝑖′′) < 𝑚(𝑖′, 𝑖′′) < ∞ and k is an

integer such that 0 < 𝑘 < 𝑚(𝑖′, 𝑖′′) − 1. In this case, 𝑠𝑖𝛾 = 𝛾.

Together with the edge from 𝛼𝑖 to � for each i, this completes the description of the set of edges of
G𝑊 ,≤2. We use Theorems 6.7 and 6.8 to determine which edges are solid and which edges are dotted. �

Let us use Theorem 6.9 to briefly discuss the graph structure of G𝑊 ,≤2, ignoring for now whether
edges are solid or dotted. As mentioned above, 𝛼𝑖,𝑖′ (𝑘) = 𝛼𝑖′,𝑖 (𝑚(𝑖, 𝑖′) − 1 − 𝑘). Let 𝑖, 𝑖′ ∈ 𝐼 be distinct
indices. If 𝑚 = 𝑚(𝑖, 𝑖′) is an odd integer, then G𝑊 ,≤2 has a bidirectional path

𝛼𝑖 = 𝛼𝑖,𝑖′ (0) ←→
𝑖′

𝛼𝑖,𝑖′ (𝑚 − 2) ←→
𝑖

𝛼𝑖,𝑖′ (2) ←→
𝑖′
· · · ←→

𝑖′
𝛼𝑖,𝑖′ (1) ←→

𝑖
𝛼𝑖,𝑖′ (𝑚 − 1) = 𝛼𝑖′

with m vertices and 𝑚 − 1 edges in each direction. If instead 𝑚 = 𝑚(𝑖, 𝑖′) is an even integer, then we
obtain the two disjoint bidirectional paths

𝛼𝑖 = 𝛼𝑖,𝑖′ (0) ←→
𝑖′

𝛼𝑖,𝑖′ (𝑚 − 2) ←→
𝑖

𝛼𝑖,𝑖′ (2) ←→
𝑖′
· · · ←→ 𝛼𝑖,𝑖′ (2�𝑚/4�) and

𝛼𝑖′ = 𝛼𝑖,𝑖′ (𝑚 − 1) ←→
𝑖

𝛼𝑖,𝑖′ (1) ←→
𝑖′

𝛼𝑖,𝑖′ (𝑚 − 3) ←→
𝑖
· · · ←→ 𝛼𝑖,𝑖′ (2�(𝑚 − 2)/4� + 1),

each of which has 𝑚/2 vertices and 𝑚/2 − 1 edges in each direction; there are also loops at the vertices
𝛼𝑖,𝑖′ (2�𝑚/4�) and 𝛼𝑖,𝑖′ (2�(𝑚−2)/4� +1). (The labels of these loops and of the rightmost edges in these
bidirectional paths depend on the parity of 𝑚/2.) Regardless of the parity of m, each vertex in one of
these paths also has a loop labeled 𝑖′′ for each index 𝑖′′ ∈ 𝐼 such that 𝑚(𝑖, 𝑖′′) = 𝑚(𝑖′, 𝑖′′) = 2.
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Figure 8. The small-root billiards graph of the right-angled Coxeter group whose Coxeter graph is
.

7. Right-angled Coxeter groups

The Coxeter group W is called right-angled if 𝑚(𝑖, 𝑖′) ∈ {2,∞} for all distinct 𝑖, 𝑖′ ∈ 𝐼. We now prove
Theorem 1.16, which states that every right-angled Coxeter group is superfuturistic.

Proof of Theorem 1.16. Let W be a right-angled Coxeter group. By Theorem 2.4, the set Σ of small
roots of W is equal to the set {𝛼𝑖 : 𝑖 ∈ 𝐼} of simple roots. In the small-root billiards graph G𝑊 , there
is a dotted edge labeled i from 𝛼𝑖′ to itself for all 𝑖, 𝑖′ ∈ 𝐼 with 𝑚(𝑖, 𝑖′) = 2. There is also a solid edge
labeled i from 𝛼𝑖 to � for all 𝑖 ∈ 𝐼. There are no other edges. See Figure 8 for an example.

The fact that W is superfuturistic now follows directly from Theorem 6.6. �

8. Coxeter groups with complete Coxeter graphs

Theorem 1.17 states that if the Coxeter graph of a Coxeter group W is complete, then W is futuristic.
To prove this, we will show that the small-root billiards graph G𝑊 is actually equal to the graph G𝑊 ,≤2
that we described in Theorem 6.9 and the subsequent paragraphs. See Figure 9 for an example.

Lemma 8.1. If the Coxeter graph of W is complete, then Σ≤2 = Σ.

Proof. By Theorem 2.4, it suffices to prove that for all 𝑖 ∈ 𝐼 and all 𝛾 ∈ Σ≤2 \ {𝛼𝑖}, we have either
𝑠𝑖𝛾 ∈ Σ≤2 or 𝐵(𝛾, 𝛼𝑖) ≤ −1. For this, there are two inequalities to check. First, we must show that
for all 𝑖, 𝑖′ ∈ 𝐼 with 𝑚(𝑖, 𝑖′) = ∞, we have 𝐵(𝛼𝑖 , 𝛼𝑖′ ) ≤ −1. Second, we must show that for all distinct
𝑖, 𝑖′, 𝑖′′ ∈ 𝐼 with 𝑚(𝑖, 𝑖′) < ∞ and for all k with 0 < 𝑘 < 𝑚(𝑖, 𝑖′) − 1, we have 𝐵(𝛼𝑖,𝑖′ (𝑘), 𝛼𝑖′′ ) ≤ −1. The
first inequality follows from the definition of the bilinear form B. For the second, we have

𝐵(𝛼𝑖,𝑖′ (𝑘), 𝛼𝑖′′ ) = −
sin((𝑘 + 1)𝜋/𝑚(𝑖, 𝑖′))

sin(𝜋/𝑚(𝑖, 𝑖′)) cos(𝜋/𝑚(𝑖, 𝑖′′)) − sin(𝑘𝜋/𝑚(𝑖, 𝑖′))
sin(𝜋/𝑚(𝑖, 𝑖′)) cos(𝜋/𝑚(𝑖′, 𝑖′′))

≤ − cos(𝜋/𝑚(𝑖, 𝑖′′)) − cos(𝜋/𝑚(𝑖′, 𝑖′′))
≤ −1,

where we have used the inequalities 0 < 𝑘 < 𝑚(𝑖, 𝑖′) − 1 and 𝑚(𝑖, 𝑖′′), 𝑚(𝑖′, 𝑖′′) ≥ 3. �

To prove Theorem 1.17, all that remains is to carefully apply Theorem 6.4.

Proof of Theorem 1.17. Let W be a Coxeter group with a complete Coxeter graph. Let 𝑖1, . . . , 𝑖𝑛 be
an ordering of I, and assume for the sake of contradiction that 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is not futuristic. By
Theorem 6.4, there is a billiards-plausible closed walk C = ((𝑣1, . . . , 𝑣𝑑), (𝑒1, . . . , 𝑒𝑑)) in G𝑊 .
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Figure 9. The small-root billiards graph of the Coxeter group whose Coxeter graph is
.

By Theorem 6.3(2), we have 𝑠𝜆(𝑒1) · · · 𝑠𝜆(𝑒𝑑) = 1. Therefore, by Matsumoto’s theorem (Theorem 2.1),
it is possible to apply a nil move or a braid move to the word 𝜆(𝑒1) · · · 𝜆(𝑒𝑑).

Suppose first that it is possible to apply a nil move to the word 𝜆(𝑒1) · · · 𝜆(𝑒𝑑). Then there are two
consecutive edges 𝑒 𝑗−1, 𝑒 𝑗 of the walk C such that 𝜆(𝑒 𝑗−1) = 𝜆(𝑒 𝑗 ). Every element of 𝐼 \ {𝜆(𝑒 𝑗 )} is
betwixt 𝜆(𝑒 𝑗−1) and 𝜆(𝑒 𝑗 ). Therefore, by Theorem 6.3(1), there are no solid edges in G𝑊 with source
𝑣 𝑗 , except possibly 𝑒 𝑗 .

By Theorem 8.1, either 𝑣 𝑗 = 𝛼𝑖 for some 𝑖 ∈ 𝐼, or 𝑣 𝑗 = 𝛼𝑖,𝑖′ (𝑘), where 𝑖, 𝑖′ ∈ 𝐼 satisfy 𝑚(𝑖, 𝑖′) < ∞
and k is an integer such that 0 < 𝑘 < 𝑚(𝑖, 𝑖′) − 1. If 𝑣 𝑗 = 𝛼𝑖 for some 𝑖 ∈ 𝐼, then there is a solid edge
from 𝑣 𝑗 to �. If instead 𝑣 𝑗 = 𝛼𝑖,𝑖′ (𝑘), then by Theorem 6.9, there are two solid edges with source 𝑣 𝑗 :
one labeled i and one labeled 𝑖′. In either case, we obtain a contradiction with the fact that 𝑒 𝑗 is the only
possible solid edge in G𝑊 with source 𝑣 𝑗 .

Now suppose that it is possible to apply a braid move to the word 𝜆(𝑒1) · · · 𝜆(𝑒𝑑). Then there exist
indices 𝑖, 𝑖′ ∈ 𝐼 such that the closed walk C has 𝑚(𝑖, 𝑖′) consecutive edges whose labels alternate
between i and 𝑖′. However, by Theorems 6.9 and 8.1, any walk in G𝑊 that does not use the vertex �
and whose edge labels alternate between i and 𝑖′ must have at most 𝑚(𝑖, 𝑖′) − 1 edges. Again, we obtain
a contradiction. �
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9. Coxeter groups of rank at most 3

We now have all the tools we need to prove Theorem 1.18, which states that all Coxeter groups of rank
at most 3 are futuristic.

Proof of Theorem 1.18. All Coxeter groups of rank at most 2 are futuristic by Theorems 1.14 and 1.16.
Let W be a Coxeter group of rank 3. We wish to show that W is futuristic. Without loss of generality, we
may assume that the index set I is {1, 2, 3}. Let 𝑝 = 𝑚(1, 3), 𝑞 = 𝑚(1, 2), and 𝑟 = 𝑚(2, 3), and assume
without loss of generality that 𝑝 ≤ 𝑞 ≤ 𝑟 . We now consider several cases depending on the values of p,
q, and r.

Case 1. (𝑝 = 𝑞 = 2)
In this case, W is reducible, and its irreducible factors are futuristic because they each have rank at

most 2. Therefore, W is futuristic (see Theorem 2.2).

Case 2. (𝑝 = 2, 𝑞 = 3, and 𝑟 ≤ 5)
In this case, it follows from the classification of finite Coxeter groups [2, Appendix A1] that W is

finite, so it is futuristic by Theorem 1.14.

Case 3. (𝑝 = 2, 𝑞 = 3, and 𝑟 = 6)
In this case, W is the affine Coxeter group 𝐺2. The small-root billiards graph G𝑊 is depicted in

Theorem 7. We will now show that 𝑐 = 𝑠𝑖3 𝑠𝑖2 𝑠𝑖1 is futuristic, where 𝑖1 = 1, 𝑖2 = 2, and 𝑖3 = 3. By
inspection, every closed walk in G𝑊 that satisfies Theorem 6.3(1) uses the sequence of vertices

√
3𝛼2 + 𝛼3,

√
3𝛼1 +

√
3𝛼2 + 𝛼3,

√
3𝛼1 +

√
3𝛼2 + 𝛼3,

√
3𝛼1 +

√
3𝛼2 + 2𝛼3,

√
3𝛼2 + 2𝛼3,

√
3𝛼2 + 2𝛼3,

cyclically shifted and repeated K times for some 𝐾 > 0. Such a walk cannot satisfy Theorem 6.3(2).
Indeed, using Matsumoto’s theorem (Theorem 2.1), one can check that the word (123123)𝐾 is reduced,
so

(𝑠1𝑠2𝑠3𝑠1𝑠2𝑠3)𝐾 ≠ 1.

By Theorem 6.4, 𝑠3𝑠2𝑠1 is futuristic. By Theorem 3.14, W is futuristic.

Case 4. (𝑝 = 2, 𝑞 = 3, and 7 ≤ 𝑟 < ∞)
We claim that

Σ = Σ≤2 ∪ {𝛼1 + 𝛼2,3 (𝑟 − 2), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3)}.

Moreover, we claim that G𝑊 has 11 edges aside from the ones in G𝑊 ,≤2:

◦ a solid edge labeled 3 from 𝛼1 + 𝛼2,3 (𝑟 − 2) to 𝛼1 + 𝛼2 = 𝛼1,2 (1) and a dotted edge labeled 3 in the
other direction;

◦ a solid edge labeled 1 from 𝛼1 + 𝛼2,3 (𝑟 − 2) to 𝛼2,3 (𝑟 − 2) and a dotted edge labeled 1 in the other
direction;

◦ a solid edge labeled 1 from 2 cos(𝜋/𝑟)𝛼1 +𝛼2,3 (1) to 𝛼2,3(1) and a dotted edge labeled 1 in the other
direction;

◦ a solid edge labeled 1 from 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3) to 𝛼2,3 (𝑟 − 3) and a dotted edge labeled 1 in
the other direction;

◦ a solid edge labeled 3 from 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3) to 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1) and another solid
edge labeled 3 in the other direction;

◦ a solid loop labeled 2 from 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1) to itself.
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Figure 10. The small-root billiards graph of the Coxeter group whose Coxeter graph is .

See Figures 10 and 11 for examples. By the discussion after the proof of Theorem 6.9, the graph will
look substantially different depending on the parity of r.

To verify our claim, we use Theorem 2.4. We have

𝛼1 + 𝛼2,3 (𝑟 − 2) = 𝑠1𝛼2,3 (𝑟 − 2) with 𝐵(𝛼2,3 (𝑟 − 2), 𝛼1) = −
1
2

> −1,

2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1) = 𝑠1𝛼2,3 (1) with 𝐵(𝛼2,3 (1), 𝛼1) = − cos(𝜋/𝑟) > −1,
2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3) = 𝑠1𝛼2,3 (𝑟 − 3) with 𝐵(𝛼2,3 (𝑟 − 3), 𝛼1) = − cos(𝜋/𝑟) > −1,

so 𝛼1 + 𝛼2,3 (𝑟 − 2), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1), and 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3) are small roots. To find the
edges of G𝑊 incident to these three vertices, we apply each of the simple reflections 𝑠1, 𝑠2 and 𝑠3 to
each of the roots 𝛼1 + 𝛼2,3 (𝑟 − 2), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1) and 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3). We omit the
details; the only nontrivial verification is that the edge labeled 2 from 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1) to itself is
solid, which follows from the fact that

𝐻+𝛼1 ∩ 𝐻−2 cos(𝜋/𝑟 )𝛼1+𝛼2,3 (1) ∩ 𝐻+𝛼2 = 𝐻−𝑠1𝑠2𝑠1𝛼2 ∩ 𝐻−𝑠1𝑠2𝑠1𝛼3 ∩ 𝐻−𝑠1𝑠2𝑠1𝛼1

= (𝐻−𝛼2 ∩ 𝐻−𝛼3 ∩ 𝐻−𝛼1)𝑠1𝑠2𝑠1

= ∅.
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Figure 11. The small-root billiards graph of the Coxeter group whose Coxeter graph is .

We must show that these are the only small roots. That is, we must show that Σ = Σ′, where

Σ′ = Σ≤2 ∪ {𝛼1 + 𝛼2,3 (𝑟 − 2), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3)}.

It suffices to prove that for each 𝑖 ∈ 𝐼 and 𝛾 ∈ Σ′ \ {𝛼𝑖}, we have either 𝑠𝑖𝛾 ∈ Σ′ or 𝐵(𝛾, 𝛼𝑖) ≤ −1. This
reduces to proving three inequalities:

𝐵(𝛼1 + 𝛼2,3 (𝑟 − 2), 𝛼2) ≤ −1;
𝐵(2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3), 𝛼2) ≤ −1;

𝐵(𝛼2,3 (𝑘), 𝛼1) ≤ −1 for 2 ≤ 𝑘 ≤ 𝑟 − 4.

Each of these inequalities is easy to verify from the definition of the bilinear form B.
We will now show that 𝑐 = 𝑠𝑖3 𝑠𝑖2 𝑠𝑖1 is futuristic, where 𝑖1 = 1, 𝑖2 = 2, and 𝑖3 = 3. By Theorem 6.4, it

suffices to show that G𝑊 has no billiards-plausible closed walk.
On one hand, we claim that if r is odd, then no closed walk in G𝑊 can even satisfy Theorem 6.3(1).

Indeed, if a walk satisfying Theorem 6.3(1) enters one end of the bidirectional path between 𝛼2,3 (𝑟 − 2)
and 𝛼2,3(𝑟 − 3), then it must traverse the entire path and come out the other end because of all the solid
edges labeled 2 and 3. It follows that the length of this path does not affect whether or not there exists a
closed walk in G𝑊 satisfying Theorem 6.3(1). Verifying the claim is now a matter of checking finitely
many possibilities. It follows that if r is odd, then 𝑠3𝑠2𝑠1 is futuristic.
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Figure 12. The small-root billiards graph of the Coxeter group whose Coxeter graph is .

On the other hand, if r is even, then a similar argument (to reduce to checking finitely many
possibilities) implies that every closed walk in G𝑊 satisfying Theorem 6.3(1) must use the sequence of
vertices

𝛼2,3 (1), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (1), 2 cos(𝜋/𝑟)𝛼1 + 𝛼2,3 (𝑟 − 3),
𝛼2,3 (𝑟 − 3), 𝛼2,3 (3), 𝛼2,3 (𝑟 − 5), 𝛼2,3 (5), . . . , 𝛼2,3 (5), 𝛼2,3 (𝑟 − 5), 𝛼2,3 (3), 𝛼2,3 (𝑟 − 3),

cyclically shifted and repeated K times for some 𝐾 ≥ 1. Such a walk cannot satisfy Theorem 6.3(2).
Indeed, using Matsumoto’s theorem (Theorem 2.1), one can check that the word (1231(23)𝑟/2−2)𝐾 is
reduced, so

(𝑠1𝑠2𝑠3𝑠1(𝑠2𝑠3)𝑟/2−2)𝐾 ≠ 1.

It follows that if r is even, then 𝑠3𝑠2𝑠1 is futuristic. By Theorem 3.14, W is futuristic.

Case 5. (𝑝 = 2 and 4 ≤ 𝑞 ≤ 𝑟 < ∞)
We claim that Σ = Σ≤2 ∪ {2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3}. Moreover, we claim that G𝑊 has 4

edges aside from the ones in G𝑊 ,≤2:

◦ a solid edge labeled 1 from 2 cos(𝜋/𝑞)𝛼1 +𝛼2 +2 cos(𝜋/𝑟)𝛼3 to 𝛼2,3 (𝑟 −2) and a dotted edge labeled
1 in the other direction;

◦ a solid edge labeled 3 from 2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3 to 𝛼1,2 (1) and a dotted edge labeled 3
in the other direction.

See Figure 12 for an example. To verify our claim, we use Theorem 2.4. We have

2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3 = 𝑠3𝛼1,2 (1)

with 𝐵(𝛼1,2 (1), 𝛼3) = − cos(𝜋/𝑞) > −1, so 2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3 is a small root. To
find the edges of G𝑊 incident to this vertex, we apply each of the simple reflections 𝑠1, 𝑠2 and 𝑠3 to
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2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3. We omit the details; it is possible to determine whether each edge is
solid or dotted using Theorems 6.7 and 6.8.

We must show that these are the only small roots. That is, we must show that Σ = Σ′, where

Σ′ = Σ≤2 ∪ {2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3}.

It suffices to prove that for all 𝑖 ∈ 𝐼 and all 𝛾 ∈ Σ′ \ {𝛼𝑖}, we have either 𝑠𝑖𝛾 ∈ Σ′ or 𝐵(𝛾, 𝛼𝑖) ≤ −1.
This reduces to proving three inequalities:

𝐵(2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3, 𝛼2) ≤ −1;
𝐵(𝛼1,2 (𝑘), 𝛼3) ≤ −1 for 2 ≤ 𝑘 ≤ 𝑞 − 2;
𝐵(𝛼2,3 (𝑘), 𝛼1) ≤ −1 for 1 ≤ 𝑘 ≤ 𝑟 − 3.

Each of these inequalities is easy to verify from the definition of the bilinear form B.
We will now show that 𝑐 = 𝑠𝑖3 𝑠𝑖2 𝑠𝑖1 is futuristic, where 𝑖1 = 1, 𝑖2 = 2 and 𝑖3 = 3. If q is odd or r is odd,

then (along the lines of the argument from Case 4) no closed walk in G𝑊 can satisfy Theorem 6.3(1).
If q and r are both even, then every closed walk in G𝑊 that satisfies Theorem 6.3(1) uses the sequence
of vertices

𝛼2, 𝛼1,2 (1), 𝛼1,2 (𝑞 − 3), 𝛼1,2(3), . . . , 𝛼1,2 (3), 𝛼1,2 (𝑞 − 3), 𝛼1,2 (1),
2 cos(𝜋/𝑞)𝛼1 + 𝛼2 + 2 cos(𝜋/𝑟)𝛼3,

𝛼2,3 (𝑟 − 2), 𝛼2,3 (2), 𝛼2,3 (𝑟 − 4), . . . , 𝛼2,3 (𝑟 − 4), 𝛼2,3 (2), 𝛼2,3 (𝑟 − 2),

cyclically shifted and repeated K times for some 𝐾 ≥ 1. Such a walk cannot satisfy Theorem 6.3(2). In-
deed, using Matsumoto’s theorem (Theorem 2.1), one can check that the word ((12)𝑞/2−131(23)𝑟/2−1)𝐾
is reduced, so

((𝑠1𝑠2)𝑞/2−1𝑠3𝑠1(𝑠2𝑠3)𝑟/2−1)𝐾 ≠ 1.

By Theorem 6.4, 𝑠3𝑠2𝑠1 is futuristic. By Theorem 3.14, W is futuristic.

Case 6. (𝑝 = 2 and 𝑞 < 𝑟 = ∞)
We claim that Σ = Σ≤2. For this, it suffices to prove that for each 𝑖 ∈ 𝐼 and all 𝛾 ∈ Σ≤2 \ {𝛼𝑖},

we have either 𝑠𝑖𝛾 ∈ Σ≤2 or 𝐵(𝛾, 𝛼𝑖) ≤ −1. This reduces to proving that 𝐵(𝛼3, 𝛼2) ≤ −1 and that
𝐵(𝛼1,2 (𝑘), 𝛼3) ≤ −1 for 1 ≤ 𝑘 ≤ 𝑞 − 1; both inequalities are are easy to verify from the definition of
the bilinear form B. It is straightforward to check that no closed walk in G𝑊 can satisfy Theorem 6.3(1)
(for any ordering 𝑖1, 𝑖2, 𝑖3 of the indices 1, 2, 3), so W is futuristic by Theorem 6.4.

Case 7. (𝑝 = 2 and 𝑞 = 𝑟 = ∞)
In this case, W is futuristic because it is right-angled (Theorem 1.16).

Case 8. (𝑝 ≥ 3)
In this case, W is futuristic because its Coxeter graph is complete (Theorem 1.17). �

10. Ancient Coxeter groups

We now shift gears and construct examples of ancient Coxeter groups.
Let us outline the strategy that led us to the arguments presented below. The Coxeter graph of each

Coxeter group W considered in this section is a tree, so in order to prove that W is ancient, it suffices
(by Theorem 3.14) to prove that a single fixed Coxeter element of W is not futuristic. To do so, we
first construct a candidate periodic sequence 𝑢0, 𝑢1, 𝑢2, . . .. Next, we attempt to find a nonempty convex
subset ℒ ⊆ 𝑊 , not containing 𝑢0, such that 𝑢0, 𝑢1, 𝑢2, . . . is a periodic billiards trajectory with respect
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to ℒ. The machinery of Section 6 tells us that we should take 𝑢0, 𝑢1, 𝑢2, . . . to be a lift of a billiards-
plausible closed walk in the corresponding small-root billiards graph.

It will be helpful to keep in mind an alternative definition of noninvertible Bender–Knuth toggles
that uses reflections rather than roots. Let ℒ ⊆ 𝑊 be a nonempty convex set, and let 𝑖 ∈ 𝐼 and 𝑢 ∈ 𝑊 .
Then 𝜏𝑖 (𝑢) = 𝑢 if either every element of ℒ ∪ {𝑢} has 𝑢−1𝑠𝑖𝑢 as a right inversion or no element of
ℒ ∪ {𝑢} has 𝑢−1𝑠𝑖𝑢 as a right inversion. Otherwise, 𝜏𝑖 (𝑢) = 𝑠𝑖𝑢. For each reflection t, the hyperplane
H𝛽𝑡 is a one-way mirror if and only if either every element of ℒ has t as a right inversion or no element
of ℒ has t as a right inversion.

If 𝐽 ⊆ 𝐼 is such that the standard parabolic subgroup 𝑊𝐽 is finite, then we write 𝑤◦(𝐽) for the long
element of 𝑊𝐽 .

Proposition 10.1. Fix 𝑛 ≥ 3, and let 𝑏, 𝑏′ ≥ 3 be integers. The Coxeter group W with Coxeter graph

is ancient.

Proof. The Coxeter graph of W is a tree, so by Theorem 3.14, it suffices to prove that the Coxeter
element 𝑐 = 𝑠0𝑠1 · · · 𝑠𝑛−1𝑠𝑛 is not futuristic.

Let 𝐽 = {1, . . . , 𝑛 − 2}. We can view the standard parabolic subgroup 𝑊𝐽 of W as the symmetric
group 𝔖𝑛−1 (where 𝑠𝑖 is the transposition (𝑖 𝑖 + 1)). For 0 ≤ 𝑗 ≤ 𝑛 − 3, let

𝑧 𝑗 = (𝑠 𝑗 𝑠 𝑗+1) (𝑠 𝑗−1𝑠 𝑗 ) · · · (𝑠2𝑠3) (𝑠1𝑠2) ∈ 𝑊𝐽 .

Note that 𝑧0 = 1. Using commutation moves, we can also write

𝑧 𝑗 = (𝑠 𝑗 · · · 𝑠2𝑠1) (𝑠 𝑗+1 · · · 𝑠3𝑠2). (10.1)

The one-line notation of the permutation 𝑧𝑛−3𝑠1 is (𝑛 − 1, 𝑛 − 2, 1, 2, 3, . . . , 𝑛 − 3). Consequently, the
right inversions of 𝑧𝑛−3𝑠1 are 𝑠1 and the transpositions of the form (𝑖 𝑗) with 1 ≤ 𝑖 ≤ 2 < 𝑗 ≤ 𝑛 − 1.

Consider the reflection 𝑡∗ = 𝑠0𝑠1𝑠0. Let

𝒦 = {𝑠1, 𝑧𝑛−3𝑠1, 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3, 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3},

and write 𝒦𝑡∗ = {𝑣𝑡∗ : 𝑣 ∈ 𝒦}. Let us fix our convex set ℒ to be the convex hull of 𝒦 ∪𝒦𝑡∗.
If we write ℒ𝑡∗ = {𝑣𝑡∗ : 𝑣 ∈ ℒ}, then ℒ = ℒ𝑡∗. Note that if 𝑡 ≠ 𝑠1 is a right inversion of some
𝑤 ∈ 𝒦 ∪𝒦𝑡∗, then H𝛽𝑡 is a window because 𝑤 ∈ 𝐻−𝛽𝑡 and 𝑠1 ∈ 𝐻+𝛽𝑡 . For each 𝑣 ∈ 𝒦, one can check
that ℓ(𝑣𝑡∗) = ℓ(𝑣) + ℓ(𝑡∗); this implies that

Inv(𝑣𝑡∗) = Inv(𝑡∗) ∪ {𝑡∗𝑡𝑡∗ : 𝑡 ∈ Inv(𝑣)} = {𝑠0, 𝑡
∗, 𝑠1𝑠0𝑠1} ∪ {𝑡∗𝑡𝑡∗ : 𝑡 ∈ Inv(𝑣)}. (10.2)

Recall the notation [𝜉 | 𝜉 ′]𝑑 from (2.1). It will be helpful to keep in mind that we have the reduced
expressions

𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 = [𝑠𝑛−1 | 𝑠𝑛−2]𝑏−2(𝑠𝑛−3𝑠𝑛−4 · · · 𝑠1) (𝑠𝑛−1𝑠𝑛−2 · · · 𝑠1) (10.3)

= [𝑠𝑛−2 | 𝑠𝑛−1]𝑏−2(𝑠𝑛−2𝑠𝑛−3 · · · 𝑠1) (𝑠𝑛−1𝑠𝑛−2 · · · 𝑠2) (10.4)
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and

𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3 = [𝑠𝑛 | 𝑠𝑛−2]𝑏′−2 (𝑠𝑛−3𝑠𝑛−4 · · · 𝑠1) (𝑠𝑛𝑠𝑛−2 · · · 𝑠1) (10.5)

= [𝑠𝑛−2 | 𝑠𝑛]𝑏′−2(𝑠𝑛−2𝑠𝑛−3 · · · 𝑠1) (𝑠𝑛𝑠𝑛−2 · · · 𝑠2) (10.6)

(with parentheses added for clarity). This can be seen by applying braid moves. For example, if 𝑛 = 6
and 𝑏 = 5, then (10.3) follows from the computation

𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 = 𝑠4𝑠5𝑠4𝑠5𝑠4𝑠3𝑠4𝑠2𝑠3𝑠1𝑠2

= 𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠3𝑠2𝑠3𝑠1𝑠2

= 𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠2𝑠3𝑠2𝑠1𝑠2

= 𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠2𝑠3𝑠1𝑠2𝑠1

= 𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠2𝑠1𝑠3𝑠2𝑠1

= 𝑠4𝑠5𝑠4𝑠5𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2𝑠1

= 𝑠4𝑠5𝑠4𝑠3𝑠2𝑠1𝑠5𝑠4𝑠3𝑠2𝑠1,

while (10.4) follows from the computation

𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 = 𝑠5𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠2𝑠3𝑠1𝑠2

= 𝑠5𝑠4𝑠5𝑠4𝑠5𝑠3𝑠4𝑠2𝑠1𝑠3𝑠2

= 𝑠5𝑠4𝑠5𝑠4𝑠5𝑠3𝑠2𝑠1𝑠4𝑠3𝑠2

= 𝑠5𝑠4𝑠5𝑠4𝑠3𝑠2𝑠1𝑠5𝑠4𝑠3𝑠2.

The reflection 𝑠1 is a right inversion of both 𝑠1 and 𝑧𝑛−3𝑠1. It follows from (10.3) and (10.5) that
𝑠1 is also a right inversion of 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 and of 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3. For each 𝑣 ∈ 𝒦, we
have just shown that 𝑠1 ∈ Inv(𝑣), so it follows from (10.2) that 𝑠1 = 𝑡∗𝑠1𝑡

∗ ∈ Inv(𝑣𝑡∗). We deduce that
𝒦 ∪𝒦𝑡∗ ⊆ 𝐻−𝛼1 and hence ℒ ⊆ 𝐻−𝛼1 . Note that 1 belongs to a proper stratum since 1 ∈ 𝐻+𝛼1 . We will
show that Pro2𝑛−2

𝑐 (1) = 1, which will prove that c is not futuristic. Because ℒ = ℒ𝑡∗, it follows from
the definition of the noninvertible Bender–Knuth toggles (Theorem 1.2) that 𝜏𝑖 (𝑢𝑡∗) = 𝜏𝑖 (𝑢)𝑡∗ for all
𝑢 ∈ 𝑊 and 𝑖 ∈ 𝐼. This implies that Pro𝑘𝑐 (𝑢)𝑢−1 = Pro𝑘𝑐 (𝑢𝑡∗)(𝑢𝑡∗)−1 for all 𝑢 ∈ 𝑊 and 𝑘 ≥ 0. Setting
𝑢 = 1 and 𝑘 = 𝑛 − 1, we find that Pro𝑛−1

𝑐 (1)𝑡∗ = Pro𝑛−1
𝑐 (𝑡∗). We will actually prove that

Pro𝑐 (𝑧 𝑗 ) = 𝑧 𝑗+1 for all 0 ≤ 𝑗 ≤ 𝑛 − 4, (10.7)

Pro𝑐 (𝑧𝑛−3) = 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0, (10.8)

Pro𝑐 (𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0) = 𝑡∗; (10.9)

since 1 = 𝑧0, this will immediately imply that Pro𝑛−1
𝑐 (1) = 𝑡∗, from which it will follow that

Pro2𝑛−2
𝑐 (1) = Pro𝑛−1

𝑐 (𝑡∗) = Pro𝑛−1
𝑐 (1)𝑡∗ = (𝑡∗)2 = 1,

as desired. (The reader may find it helpful to consult Theorem 10.2 while reading the remainder of the
proof.)

We begin by proving (10.8) and (10.9). Let

𝛾1 = 𝑧−1
𝑛−3𝑠𝑛𝑠𝑛−1𝛼𝑛−2.

Because 𝑠𝑛𝑠𝑛−1𝛼𝑛−2 ∈ Φ+ \ Φ𝐽 and 𝑧−1
𝑛−3 ∈ 𝑊𝐽 , we know that 𝛾1 ∈ Φ+. Note that each element of

𝒦 ∪𝒦𝑡∗ belongs to either 𝑊𝐼 \{𝑛−1} or 𝑊𝐼\{𝑛}; since the reflection 𝑟𝛾1 = 𝑧−1
𝑛−3𝑠𝑛𝑠𝑛−1𝑠𝑛−2𝑠𝑛−1𝑠𝑛𝑧𝑛−3
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does not belong to either of these parabolic subgroups, it is not a right inversion of any element of
𝒦 ∪𝒦𝑡∗. This shows that 𝒦 ∪𝒦𝑡∗ ⊆ 𝐻+𝛾1 , so

ℒ ⊆ 𝐻+𝛾1 . (10.10)

Using (10.1), we find that 𝑧−1
𝑛−3𝛼𝑛 = 𝑠2𝑠3 · · · 𝑠𝑛−2𝛼𝑛. This implies that when we apply 𝜏𝑛 to

𝑧𝑛−3, we cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛 , which is a window because it corresponds to a right inver-
sion of the element 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3 (by (10.6)). Likewise, when we apply 𝜏𝑛−1 to 𝑠𝑛𝑧𝑛−3, we
cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛−1 , which is a window because it corresponds to a right inversion of the
element 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 (by (10.4)). When we apply 𝜏𝑛−2 to 𝑠𝑛−1𝑠𝑛𝑧𝑛−3, we hit the mirror
H𝛾1 . When we next apply 𝜏𝑛−3, 𝜏𝑛−4, . . . , 𝜏1 (this sequence is empty if 𝑛 = 3), we cross through
H𝑠1𝑠2 · · ·𝑠𝑛−3𝛼𝑛−2 , H𝑠1𝑠2 · · ·𝑠𝑛−4𝛼𝑛−3 , . . . , H𝑠1𝛼2 , which are windows because they correspond to the right in-
versions (1 𝑛 − 1), (1 𝑛 − 2), . . . , (1 3) of 𝑧𝑛−3𝑠1. Thus,

𝜏1𝜏2 · · · 𝜏𝑛 (𝑧𝑛−3) = 𝑠1𝑠2 · · · 𝑠𝑛−3𝑠𝑛−1𝑠𝑛𝑧𝑛−3 = 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2.

When we apply 𝜏0 to 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2, we cross through H𝛼0 , which is a window because it corresponds
to the right inversion 𝑠0 of 𝑠1𝑡

∗. This proves (10.8).
When we apply 𝜏𝑛 to 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0, we cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛 , which is a window because

it corresponds to a right inversion of 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3 (by (10.6)). When we then apply 𝜏𝑛−1 to
𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0, we cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛−1 , which is a window because it corresponds to a right
inversion of 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 (by (10.4)). When we next apply 𝜏𝑛−2, 𝜏𝑛−3, . . . , 𝜏2 (this sequence
is empty if 𝑛 = 3), we cross through H𝑠2𝑠3 · · ·𝑠𝑛−3𝛼𝑛−2 , H𝑠2𝑠3 · · ·𝑠𝑛−4𝛼𝑛−3 , . . . , H𝑠2𝛼3 , H𝛼2 , which are windows
because they correspond to the right inversions (2 𝑛 − 1), (2 𝑛 − 2), . . . , (2 3) of 𝑧𝑛−3𝑠1. Thus,

𝜏2𝜏3 · · · 𝜏𝑛 (𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0) = 𝑠0.

When we apply 𝜏1 to 𝑠0, we cross through H𝑠0𝛼1 , which is a window because it corresponds to the
right inversion 𝑠0𝑠1𝑠0 of 𝑠1𝑡

∗. When we apply 𝜏0 to 𝑠1𝑠0, we cross through H𝑠0𝑠1𝛼0 , which is a window
because it corresponds to the right inversion 𝑠1𝑠0𝑠1 of 𝑠1𝑡

∗. This proves (10.9).
It remains to prove (10.7). Because (10.7) is vacuously true if 𝑛 = 3, we may assume in what follows

that 𝑛 ≥ 4. Let 𝛾2 = 𝑠2𝑠1𝛼0 ∈ Φ+, and for 3 ≤ 𝑖 ≤ 𝑛, let 𝛾𝑖 = 𝛼𝑖 ∈ Φ+. We will prove that

𝒦 ∪𝒦𝑡∗ ⊆ 𝐻+𝛾2 ∩ 𝐻+𝛾3 ∩ · · · ∩ 𝐻+𝛾𝑛 . (10.11)

Suppose 2 ≤ 𝑖 ≤ 𝑛 and 𝑣 ∈ 𝒦; we wish to show that 𝑟𝛾𝑖 ∉ Inv(𝑣) ∪ Inv(𝑣𝑡∗). One may readily check
that 𝑡∗𝑟𝛾𝑖 𝑡∗ = 𝑟𝛾𝑖 and that 𝑟𝛾𝑖 ∉ Inv(𝑡∗). Appealing to (10.2), we find that 𝑟𝛾𝑖 is in Inv(𝑣) if and only if
it is in Inv(𝑣𝑡∗). Hence, it suffices to show that 𝑟𝛾𝑖 ∉ Inv(𝑣). We may verify this directly if 3 ≤ 𝑖 ≤ 𝑛; if
𝑖 = 2, then we simply need to observe that 𝑣 ∈ 𝑊𝐼\{0} and 𝑟𝛾2 ∉ 𝑊𝐼\{0}. This proves (10.11). Because
ℒ is the convex hull of 𝒦 ∪𝒦𝑡∗, it follows that

ℒ ⊆ 𝐻+𝛾2 ∩ 𝐻+𝛾3 ∩ · · · ∩ 𝐻+𝛾𝑛 .

Suppose 0 ≤ 𝑗 ≤ 𝑛−4. Let us compute Pro𝑐 (𝑧 𝑗 ) by starting at 𝑧 𝑗 and applying 𝜏𝑛, 𝜏𝑛−1, . . . , 𝜏0 in that
order. When we apply 𝜏𝑛, 𝜏𝑛−1, . . . , 𝜏𝑗+3, we hit the mirrors H𝛾𝑛 , H𝛾𝑛−1 , . . . , H𝛾 𝑗+3 , respectively. When
we apply 𝜏𝑗+2 to 𝑧 𝑗 , we cross through the hyperplane H𝑧−1

𝑗 𝛼𝑗+2
= H𝑠2𝑠3 · · ·𝑠 𝑗+1𝛼𝑗+2 , which is a window

because it corresponds to the right inversion (2 𝑗 + 3) of 𝑧𝑛−3𝑠1. When we next apply 𝜏𝑗+1 to 𝑠 𝑗+2𝑧 𝑗 , we
cross through the hyperplane H𝑧−1

𝑗 𝑠 𝑗+2𝛼𝑗+1
= H𝑠1𝑠2 · · ·𝑠 𝑗+1𝛼𝑗+2 , which is a window because it corresponds

to the right inversion (1 𝑗 + 3) of 𝑧𝑛−3𝑠1. This shows that

𝜏𝑗+1𝜏𝑗+2 · · · 𝜏𝑛 (𝑧 𝑗 ) = 𝑠 𝑗+1𝑠 𝑗+2𝑧 𝑗 = 𝑧 𝑗+1.
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If we now apply 𝜏𝑗 , 𝜏𝑗−1, . . . , 𝜏0 to 𝑧 𝑗+1, we hit the mirrors H𝛾 𝑗+2 , H𝛾 𝑗+1 , . . . , H𝛾2 , respectively. This
establishes (10.7) and completes the proof that W is ancient. �

Example 10.2. Let us illustrate the proof of Theorem 10.1 when 𝑛 = 5 (for arbitrary integers 𝑏, 𝑏′ ≥ 3).
In this case, we have

𝒦 = {𝑠1, 𝑧2𝑠1, 𝑤◦({3, 4})𝑧2, 𝑤◦({3, 5})𝑧2}

and

𝒦𝑡∗ = {𝑠1𝑡
∗, 𝑧2𝑠1𝑡

∗, 𝑤◦({3, 4})𝑧2𝑡
∗, 𝑤◦({3, 5})𝑧2𝑡

∗},

where 𝑧2 = 𝑠3𝑠4𝑠2𝑠3 and 𝑡∗ = 𝑠0𝑠1𝑠0. Then ℒ is the convex hull of 𝒦 ∪ 𝒦𝑡∗. Fix the ordering
5, 4, 3, 2, 1, 0 of I. The beginning of the billiards trajectory starting at 1 is

.

We have underlined each arrow associated to a toggle that hits a mirror (this is meant to resemble an
equals sign). We have colored each arrow that passes through a window H𝛽𝑡 with the same color as one
of the elements 𝑤 ∈𝒦 ∪𝒦𝑡∗ such that 𝑡 ∈ Inv(𝑤). For example, the arrow corresponding to 𝜏3 in the
second row is colored green because it passes through the window H𝛽𝑡 , where 𝑡 = 𝑠2𝑠3𝑠2 ∈ Inv(𝑧2𝑠1).

Proposition 10.3. Fix 𝑛 ≥ 3, and let 𝑎, 𝑎′, 𝑏, 𝑏′ ≥ 3 be integers. The Coxeter group W with Coxeter
graph

is ancient.

Proof. The proof is similar to that of Theorem 10.1, so we will omit some details. The Coxeter graph
of W is a tree, so it suffices (by Theorem 3.14) to prove that the Coxeter element 𝑐 = 𝑠𝑛𝑠𝑛−1 · · · 𝑠1𝑠0𝑠0′

is not futuristic.
For 0 ≤ 𝑗 ≤ 𝑛 − 3, let

𝑧 𝑗 = (𝑠 𝑗 𝑠 𝑗+1) · · · (𝑠2𝑠3) (𝑠1𝑠2).

Let us fix our convex set ℒ to be the convex hull of the set

𝒦 = {𝑠1, 𝑧𝑛−3𝑠1, 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3, 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3, 𝑤◦({0, 1}), 𝑤◦({0′, 1})}.

If 𝑡 ≠ 𝑠1 is a right inversion of some 𝑤 ∈ 𝒦, then H𝛽𝑡 is a window because 𝑤 ∈ 𝐻−𝛽𝑡 and 𝑠1 ∈ 𝐻+𝛽𝑡 .
For example, H𝛼0 and H𝛼0′ are windows because 𝑠0 and 𝑠0′ are right inversions of 𝑤◦({0, 1}) and
𝑤◦({0′, 1}), respectively.

We can readily check that ℒ ⊆ 𝐻−𝛼1 . Because 1 ∈ 𝐻+𝛼1 , we know that 1 belongs to a proper stratum.
We will show that Pro𝑛−1

𝑐 (1) = 1, which will prove that c is not futuristic. To do so, we will actually
prove that
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Pro𝑐 (𝑧 𝑗 ) = 𝑧 𝑗+1 for all 0 ≤ 𝑗 ≤ 𝑛 − 4, (10.12)

Pro𝑐 (𝑧𝑛−3) = 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ , (10.13)

Pro𝑐 (𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ ) = 1. (10.14)

An argument very similar to the one used to prove (10.8) in the proof of Theorem 10.1 yields the
identity 𝜏0𝜏1 · · · 𝜏𝑛−1𝜏𝑛 (𝑧𝑛−3) = 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0. Moreover, if we apply 𝜏0′ to 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0, then
we cross through the window H𝛼0′ to reach 𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ . This proves (10.13).

Let us now prove (10.14). Note that we still have the reduced expressions (10.4) and (10.6)
for 𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 and 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3, respectively. When we apply 𝜏𝑛 to the element
𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ , we cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛 , which is a window because it corresponds to
a right inversion of 𝑤◦({𝑛 − 2, 𝑛})𝑧𝑛−3 (by (10.6)). When we then apply 𝜏𝑛−1 to 𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ ,
we cross through H𝑠2𝑠3 · · ·𝑠𝑛−2𝛼𝑛−1 , which is a window because it corresponds to a right inversion of
𝑤◦({𝑛 − 2, 𝑛 − 1})𝑧𝑛−3 (by (10.4)). When we next apply 𝜏𝑛−2, 𝜏𝑛−3, . . . , 𝜏2 (this sequence is empty if
𝑛 = 3), we cross through H𝑠2𝑠3 · · ·𝑠𝑛−3𝛼𝑛−2 , H𝑠2𝑠3 · · ·𝑠𝑛−4𝛼𝑛−3 , . . . , H𝑠2𝛼3 , H𝛼2 , which are windows because
they correspond to the right inversions (2 𝑛 − 1), (2 𝑛 − 2), . . . , (2 3) of 𝑧𝑛−3𝑠1 (we are again viewing
𝑊{1,...,𝑛−2} as 𝔖𝑛−1). Thus,

𝜏2𝜏3 · · · 𝜏𝑛 (𝑠𝑛𝑠𝑛−1 · · · 𝑠3𝑠2𝑠0𝑠0′ ) = 𝑠0𝑠0′ .

Notice that ℒ ⊆ 𝐻+𝑠0′ 𝑠0𝛼1 since each element of 𝒦 is in either 𝑊𝐼\{0} or 𝑊𝐼\{0′ }. Moreover, 𝑠0𝑠0′ ∈
𝐻+𝑠0′ 𝑠0𝛼1 since 𝑠0′𝑠0𝑠1𝑠0𝑠0′ is not a right inversion of 𝑠0𝑠0′ . Hence, when we apply 𝜏1 to 𝑠0𝑠0′ , we hit
H𝑠0′ 𝑠0𝛼1 , which is a mirror. When we apply 𝜏0 to 𝑠0𝑠0′ , we cross through the window H𝛼0 to reach 𝑠0′ .
Finally, when we apply 𝜏0′ to 𝑠0′ , we cross through the window H𝛼0′ to reach 1. This proves (10.14).

It remains to prove (10.12). Because (10.12) is vacuously true if 𝑛 = 3, we may assume in what
follows that 𝑛 ≥ 4. Consider the positive roots

𝛾2 = 𝑠2𝑠1𝛼0 and 𝛾′2 = 𝑠2𝑠1𝛼0′ ,

and for 3 ≤ 𝑖 ≤ 𝑛, let 𝛾𝑖 = 𝛼𝑖 . An argument very similar to the one used in the proof of Theorem 10.1
shows that

ℒ ⊆ 𝐻+𝛾2 ∩ 𝐻+𝛾′2
∩ 𝐻+𝛾3 ∩ · · · ∩ 𝐻+𝛾𝑛 .

By employing an argument very similar to the one used to establish (10.7) in the proof of Theorem 10.1,
we find that 𝜏0𝜏1 · · · 𝜏𝑛−1𝜏𝑛 (𝑧 𝑗 ) = 𝑧 𝑗+1 for all 0 ≤ 𝑗 ≤ 𝑛 − 4. Moreover, if we apply 𝜏0′ to 𝑧 𝑗+1, we hit
the mirror H𝛾′2

. This establishes (10.12) and completes the proof that W is ancient. �

Example 10.4. Let us illustrate the proof of Theorem 10.3 when 𝑛 = 5 (for arbitrary integers
𝑎, 𝑎′, 𝑏, 𝑏′ ≥ 3). In this case, ℒ is the convex hull of the set

𝒦 = {𝑠1, 𝑧2𝑠1, 𝑤◦({3, 4})𝑧2, 𝑤◦({3, 5})𝑧2, 𝑤◦({0, 1}), 𝑤◦({0′, 1})},

where 𝑧2 = 𝑠3𝑠4𝑠2𝑠3. Fix the ordering 5, 4, 3, 2, 1, 0, 0′ of I. The billiards trajectory starting at 1 begins
with
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and then continues to repeat periodically. We have underlined each arrow associated to a toggle that hits
a mirror. We have colored each arrow that passes through a window H𝛽𝑡 with the same color as one of
the elements 𝑤 ∈𝒦 such that 𝑡 ∈ Inv(𝑤).
Proposition 10.5. The Coxeter group with Coxeter graph

is ancient.
Proof. By Theorem 3.14, it suffices to show that the Coxeter element 𝑐 = 𝑠0𝑠1𝑠2𝑠3 is not futuristic.
Consider the reflection 𝑡∗ = 𝑠0𝑠1𝑠0. Let

𝒦 = {𝑠1, 𝑤◦({0, 1, 2}), 𝑤◦({0, 1, 3})},

and write 𝒦𝑡∗ = {𝑣𝑡∗ : 𝑣 ∈𝒦}. Let us fix our convex set ℒ to be the convex hull of 𝒦∪𝒦𝑡∗. One can
check directly (by hand or by computer) that 1 ∉ ℒ and that Pro4

𝑐 (1) = 1. Hence, c is not futuristic. �

In the following proposition, we consider the affine Coxeter groups 𝐸6, 𝐸7, 𝐸8, 𝐹4, whose Coxeter
graphs are

,

,

,

,

respectively.
Proposition 10.6. The Coxeter groups 𝐸6, 𝐸7, 𝐸8, 𝐹4 are ancient.
Proof. According to Theorem 3.14, we need only show that these Coxeter groups are not futuristic. We
saw in Theorem 3.16 that 𝐹4 is a folding of 𝐸6 and is also a folding of 𝐸7. Therefore, by Theorem 1.13,
it suffices to show that 𝐸8 and 𝐹4 are not futuristic.

Let us start with 𝐹4. Let 0, 1, 2, 3, 4 be the vertices of the Coxeter graph of 𝐹4, listed from left to right
(in the figure drawn above), and let 𝑐 = 𝑠0𝑠1𝑠2𝑠3𝑠4. Consider the positive roots

𝛽 = 𝑠2𝛼3, 𝛾1 = 𝑠0𝑠1𝛼2, 𝛾2 = 𝑠1𝑠3𝛼2, 𝛾3 = 𝑠4𝑠3𝛼2,

and let

ℒ = 𝐻−𝛽 ∩ 𝐻+𝛾1 ∩ 𝐻+𝛾2 ∩ 𝐻+𝛾3 .
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Evidently, 1 is not in ℒ since 1 is not in 𝐻−𝛽 . One can check (by hand or by computer) that Pro3
𝑐 (1) = 1.

Hence, c is not futuristic.
We now prove that 𝐸8 is not futuristic. Let us identify the vertices of the Coxeter graph with 0, 1, . . . , 8

as follows:

.

.

Let 𝑐′ = 𝑠0𝑠1𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7𝑠8. Consider the positive roots

𝛽 = 𝑠7𝑠6𝑠4𝑠3𝑠2𝑠5𝛼4, 𝛾1 = 𝛼0, 𝛾2 = 𝛼2, 𝛾3 = 𝑠1𝑠3𝛼4, 𝛾4 = 𝑠5𝑠6𝛼7

𝛾5 = 𝑠3𝑠4𝛼5, 𝛾6 = 𝑠6𝑠7𝛼8, 𝛾7 = 𝑠4𝑠5𝛼6, 𝛾8 = 𝑠7𝛼8,

and let

ℒ = 𝐻−𝛽 ∩ 𝐻+𝛾1 ∩ 𝐻+𝛾2 ∩ 𝐻+𝛾3 ∩ 𝐻+𝛾4 ∩ 𝐻+𝛾5
∩ 𝐻+𝛾6

∩ 𝐻+𝛾7 ∩ 𝐻+𝛾8 .

Evidently, 1 is not in ℒ since 1 is not in 𝐻−𝛽 . One can check (by hand or by computer) that Pro3
𝑐′ (1) = 1.

Hence, 𝑐′ is not futuristic. �

11. Classical billiards (light beams)

We now briefly discuss how our Bender–Knuth billiards systems relate to more classical billiards systems
studied in dynamics (as in [16, 20, 25, 34]).

As before, let (𝑊, 𝑆) be a Coxeter system whose simple reflections are indexed by a finite set I;
we will assume that |𝐼 | ≥ 2. Recall that B𝑊 is the Tits cone of W. A ray is a continuous function
𝔯 : R≥0 → B𝑊 such that 𝔯(𝑡) ≠ 0 for all 𝑡 ∈ R≥0, the positive projectivization 𝔯 : R≥0 → P(B𝑊) is
locally injective, and the image of 𝔯 is contained in a 2-dimensional subspace of 𝑉∗.

Example 11.1. If W is finite, then B𝑊 = 𝑉∗. In this case, for any two linearly independent vectors
𝛾, 𝛾′ ∈ 𝑉∗, there is a ray 𝔯 : R≥0 → B𝑊 defined by

𝔯(𝑡) = cos(𝑡)𝛾 + sin(𝑡)𝛾′.

Definition 11.2. Let us say that a continuous, piecewise linear curve 𝔮 : R≥0 → B𝑊 is cordial if it
satisfies the following conditions:

1. There are infinitely many real numbers 𝑡 ∈ R≥0 such that 𝔮(𝑡) ∈
⋃

H∈H𝑊
H.

2. For any fixed real number b, there are only finitely many real numbers t with 0 ≤ 𝑡 ≤ 𝑏 such that
𝔮(𝑡) ∈

⋃
H∈H𝑊

H.
3. For all 𝛽, 𝛽′ ∈ Φ such that 𝐵(𝛽, 𝛽′) ≠ 0, the image of 𝔮 does not intersect H𝛽 ∩ H𝛽′ .

Let 𝔯 : R≥0 → B𝑊 be a cordial ray such that 𝔯(0) ∉
⋃

H∈H𝑊
H. Consider the open regions of the

Coxeter arrangement through which the curve 𝔯 passes. We obtain a sequence 𝑣0, 𝑣1, 𝑣2, . . . of elements
of W and a sequence 0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · of real numbers with the property that for all nonnegative
integers k and all real numbers t with 𝑡𝑘 < 𝑡 < 𝑡𝑘+1, we have 𝔮(𝑡) ∈ B◦𝑣𝑘 , where B◦ denotes the interior
of B. Although 𝔯 is a continuous curve, the regions B𝑣𝑘−1 and B𝑣𝑘 can be nonadjacent in the Coxeter
arrangement since 𝔯(𝑡𝑘 ) can lie on multiple hyperplanes of H𝑊 . Put differently, it is possible that 𝑣𝑘𝑣−1

𝑘−1
is not a simple reflection. However, (3) guarantees that for each integer 𝑘 ≥ 1, the hyperplanes in H𝑊

that contain 𝔯(𝑡𝑘 ) are pairwise orthogonal. Since 𝔮(𝑡𝑘 ) lies in both B𝑣𝑘−1 and B𝑣𝑘 , we conclude that
𝑣𝑘𝑣
−1
𝑘−1 is a product of distinct simple reflections that commute pairwise. Let 𝐽𝑘 (𝔯) denote the set of the
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indices of these simple reflections. Then 𝐽𝑘 (𝔯) is an independent set (i.e., a set of pairwise nonadjacent
vertices) of the Coxeter graph Γ𝑊 .

Definition 11.3. Let 𝑖1, . . . , 𝑖𝑛 be an ordering of the elements of I, and let 𝑖1, 𝑖2, 𝑖3, . . . be the infinite
sequence satisfying 𝑖 𝑗+𝑛 = 𝑖 𝑗 for every positive integer j. We say that the ordering 𝑖1, . . . , 𝑖𝑛 is luminous
if there exists a cordial ray 𝔯 : R≥0 → B𝑊 such that the sequence 𝑖1, 𝑖2, 𝑖3, . . . consists of the elements
of 𝐽1 (𝔯) in some order, followed by the elements of 𝐽2(𝔯) in some order, followed by the elements of
𝐽3 (𝔯) in some order, and so on. In this case, we say that 𝔯 certifies that 𝑖1, . . . , 𝑖𝑛 is luminous.

Let 𝑖1, . . . , 𝑖𝑛 be a luminous ordering of the elements of I, and let 𝑖1, 𝑖2, 𝑖3, . . . be the infinite sequence
satisfying 𝑖 𝑗+𝑛 = 𝑖 𝑗 for every positive integer j. Let 𝔯 be a cordial ray that certifies that 𝑖1, . . . , 𝑖𝑛 is
luminous, and let 𝐽𝑘 = 𝐽𝑘 (𝔯). That is, for every 𝑘 ≥ 1, we have

𝐽𝑘 = {𝑖 𝑗+1, . . . , 𝑖 𝑗+|𝐽𝑘 | },

where 𝑗 = |𝐽1 | + · · · + |𝐽𝑘−1 |. Let ℒ ⊆ 𝑊 be a convex set, and let 𝑢0, 𝑢1, 𝑢2, . . . be a billiards trajectory
defined with respect to the ordering 𝑖1, . . . , 𝑖𝑛. We will now describe how to ‘fold’ the ray 𝔯 into a cordial
curve 𝔭 : R≥0 → B𝑊 , which we call a light beam. The light beam 𝔭 will reflect off of the one-way
mirrors of the convex set ℒ as in classical billiards, and we can think of the Bender–Knuth billiards
trajectory 𝑢0, 𝑢1, 𝑢2, . . . as a discretization of 𝔭.

For each independent set 𝐽 = { 𝑗1, . . . , 𝑗𝑑} ⊆ 𝐼 of the Coxeter graph Γ𝑊 , define

𝑠𝐽 = 𝑠 𝑗1 · · · 𝑠 𝑗𝑑 and 𝜏𝐽 = 𝜏𝑗1 · · · 𝜏𝑗𝑑 ;

since J is independent, the order of the multiplication used to define 𝑠𝐽 does not matter, nor does the
order of the composition used to define 𝜏𝐽 .

After multiplying 𝔯 on the right by a suitable element of W, we may assume that 𝔯(0) lies in
the region B◦𝑢0. Recall that there exist a sequence 𝑣0, 𝑣1, 𝑣2, . . . of elements of W and a sequence
0 = 𝑡0 < 𝑡1 < 𝑡2 < · · · of positive real numbers such that 𝔮(𝑡) ∈ B◦𝑣𝑘 for all nonnegative integers k and
all real numbers t with 𝑡𝑘 < 𝑡 < 𝑡𝑘+1. We have

𝑣𝑘 = 𝑠𝐽𝑘 𝑠𝐽𝑘−1 · · · 𝑠𝐽1𝑢0.

Therefore, the ray 𝔯 passes consecutively through the open regions

B
◦𝑢0, B

◦𝑠𝐽1𝑢0, B
◦𝑠𝐽2 𝑠𝐽1𝑢0, B

◦𝑠𝐽3 𝑠𝐽2 𝑠𝐽1𝑢0, . . .

of the Coxeter arrangement. The light beam 𝔭 will be constructed so that it instead passes consecutively
through the open regions

B
◦𝑢0, B

◦𝜏𝐽1 (𝑢0), B◦𝜏𝐽2𝜏𝐽1 (𝑢0), B◦𝜏𝐽3𝜏𝐽2𝜏𝐽1 (𝑢0), . . . .

Note that the elements 𝑢0, 𝜏𝐽1 (𝑢0), 𝜏𝐽2𝜏𝐽1 (𝑢0), 𝜏𝐽3𝜏𝐽2𝜏𝐽1 (𝑢0), . . . form a subsequence of the billiards
trajectory 𝑢0, 𝑢1, 𝑢2, . . ..

Define the function 𝔭 : R≥0 → B𝑊 via

𝔭(𝑡) = 𝔯(𝑡) (𝑠𝐽𝑘 · · · 𝑠𝐽1𝑢0)−1(𝜏𝐽𝑘 · · · 𝜏𝐽1 (𝑢0))

for all integers 𝑘 ≥ 0 and all real numbers t with 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1. It is not difficult to check that 𝔭 is
a continuous, piecewise linear and cordial curve. The positive projectivization 𝔭 : R≥0 → P(B𝑊) is a
curve that travels along a linear path unless it hits the reflective side of a one-way mirror of ℒ, at which
point it reflects off of that one-way mirror. It is possible to equip P(B𝑊) with a metric [25, Section 2] in
such a way that when the light beam 𝔭 reflects off of a one-way mirror, the angle of incidence equals the
angle of reflection. With this metric, P(B𝑊) is isometric to a sphere if W is finite, to a Euclidean space
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if W is affine, and to a hyperbolic space H𝑛−1 if W is hyperbolic (i.e., if the bilinear form 𝐵 : 𝑉 ×𝑉 → R
has signature (𝑛 − 1, 1), where 𝑛 = |𝐼 | is the rank of W). For examples of light beams reflecting in this
manner, see the thin cyan curves in Figures 1 and 4.7

Let us highlight two settings where it is known that an ordering is luminous. Both of these settings
are discussed in [25].

The first setting is that in which Γ𝑊 is bipartite. Let 𝐼 = 𝑄 � 𝑄 ′ be a bipartition of Γ𝑊 ; we may
assume that Q and 𝑄 ′ are both nonempty. Let 𝑖1, . . . , 𝑖𝑞 be an ordering of Q, and let 𝑖𝑞+1, . . . , 𝑖𝑛 be an
ordering of 𝑄 ′. The base region B is a cone whose facets correspond to the elements of I. For 𝑖 ∈ 𝐼, let
𝐹𝑖 be the facet of B that separates B from B𝑠𝑖 . Let F𝑄 =

⋂
𝑖∈𝑄 𝐹𝑖 and F𝑄′ =

⋂
𝑖∈𝑄′ 𝐹𝑖 . We can choose

𝑧 ∈ P(F𝑄) and 𝑧′ ∈ P(F𝑄′ ) so that the line 𝔩 passing through z and 𝑧′ is orthogonal to both F𝑄 and
F𝑄′ (here, orthogonality is defined with respect to the Hilbert metric on P(B𝑊), as defined in [25]). Let
𝑥0 be a point on the line 𝔩 that lies in the interior of P(B). Let 𝔯 : R≥0 → B𝑊 be a ray whose positive
projectivization 𝔯 satisfies 𝔯(0) = 𝑥0, 𝔯(1) = 𝑧, and 𝔯(𝜖) ∈ P(B) for all 0 ≤ 𝜖 ≤ 1. Then 𝔯 certifies that
𝑖1, . . . , 𝑖𝑛 is a luminous ordering of I.

The second setting is that in which W has rank 3. In this case, we will show that each ordering of I
is a cyclic shift of a luminous ordering, which will justify why we were able to draw the thin cyan light
beams in Figures 1 to 4. If 𝑚(𝑖, 𝑖′) = 2 for some 𝑖, 𝑖′ ∈ 𝐼, then every ordering of I is a cyclic shift of an
ordering coming from a bipartition of Γ𝑊 , so the desired result follows from the preceding paragraph.

Figure 13. The Tits cone and Coxeter arrangement of the Coxeter group with Coxeter graph

. We have passed to the positive projectivization P(B𝑊), which is a hyperbolic plane,
and then drawn the hyperbolic plane using the Poincaré disk model. We have shaded P(B) in light gray
and drawn the pedal triangle of P(B) in purple. We have used the pedal triangle to construct a ray 𝔯;
the image of 𝔯 is drawn in cyan.

7When the thin cyan curve in Figure 2 reflects off the hyperplane H𝑒1−𝑒3 , the angle of incidence does not appear to be equal
to the angle of reflection. This is because Figure 2 is drawn not-to-scale and angles are distorted.
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Therefore, we may assume that 𝑚(𝑖, 𝑖′) ≥ 3 for all distinct 𝑖, 𝑖′ ∈ 𝐼. The positive projectivization P(B)
of the base region B is a hyperbolic triangle with (acute) angles 𝜋/𝑚(𝑖1, 𝑖2), 𝜋/𝑚(𝑖1, 𝑖3), 𝜋/𝑚(𝑖2, 𝑖3).
For each 𝑖 ∈ 𝐼, let 𝐹𝑖 be the side of P(B) that separates P(B) from P(B𝑠𝑖). The pedal triangle of P(B) is
the triangle whose vertices are the feet of the altitudes of P(B). Let v𝑖 be the vertex of the pedal triangle
of P(B) that lies in 𝐹𝑖 . It is known [25] that the pedal triangle is a closed billiards path (in the classical
sense) inside of P(B). This means that we can extend one of the sides of the pedal triangle of P(B) into
a ray that induces the sequence 𝑖1, 𝑖2, 𝑖3, . . .. To be more precise, let 𝔩 be the line passing through v𝑖3 and
v𝑖1 . Let 𝑥0 be a point on 𝔩 that lies in the interior of P(B). Let 𝔯 : R≥0 → B𝑊 be a ray whose positive
projectivization 𝔯 satisfies 𝔯(0) = 𝑥0, 𝔯(1) = v1, and 𝔯(𝑎) ∈ P(B) for all 0 ≤ 𝑎 ≤ 1. Then 𝔯 certifies that
𝑖1, 𝑖2, 𝑖3 is a luminous ordering of I. See Figure 13.

12. Futuristic directions

12.1. Characterizations

The most outstanding open problem arising from this paper is that of characterizing futuristic Coxeter
groups and ancient Coxeter groups. Let us mention some smaller questions that might be more tractable.

Say a Coxeter group W is contemporary if it is neither futuristic nor ancient. In other words, W is
contemporary if there exist Coxeter elements c and 𝑐′ of W such that c is futuristic while 𝑐′ is not.

Question 12.1. Do contemporary Coxeter groups exist?

Note that Theorem 3.14 tells us that a Coxeter group whose Coxeter graph is a forest cannot be
contemporary.

Every minimally non-futuristic Coxeter group that we have found is also minimally ancient. Moreover,
every minimally ancient Coxeter group that we have found has only finite edge labels in its Coxeter
graph. This leads us naturally to the following questions.

Question 12.2. Does there exist a minimally ancient Coxeter group W such that at least one edge of Γ𝑊
is labeled∞?

Question 12.3. Does there exist a minimally non-futuristic Coxeter group W such that at least one edge
of Γ𝑊 is labeled∞?

12.2. Periodic points

Let c be a Coxeter element of W, and let ℒ ⊆ 𝑊 be a convex set that is not heavy with respect to c. By
definition, Pro𝑐 has a periodic point outside of ℒ. It would be interesting to gain a better understanding
of these periodic points.

12.3. Billiards-plausible closed walks

In Theorem 6.5, we asked whether the converse to Theorem 6.4 holds. In other words, if there exists a
closed walk in G𝑊 that is billiards-plausible with respect to an ordering 𝑖1, . . . , 𝑖𝑛 of I, does it follow that
the Coxeter element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is not futuristic? (The stronger statement that every billiards-plausible
closed walk in G𝑊 lifts to a billiards trajectory is false; there is a counterexample with 𝑊 = 𝐸8.)

12.4. Decidability

Is there an algorithm for deciding whether or not a Coxeter element is futuristic? Such an algorithm
could conceivably be based on the results of Section 6, which imply that a Coxeter element fails to be
futuristic if and only if there is some billiards-plausible closed walk that lifts to a billiards trajectory.
Given a billiards-plausible closed walk, one can algorithmically determine whether it lifts to a billiards
trajectory. One can also iterate over the billiards-plausible closed walks of a bounded length. So one route
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to showing that futuristicity is decidable is to find an upper bound for the minimal length of a periodic
billiards trajectory or, equivalently, for the minimal length of a billiards-plausible closed walk that lifts.

We remark that there is an algorithm for determining whether or not a given finite convex set ℒ is
heavy with respect to a given Coxeter element c. In order to describe this algorithm, we require a bit
of terminology. For 𝑄 ⊆ 𝑊 , let D(𝑄) denote the directed labeled graph with vertex set 𝑄 ∪ {𝜏𝑖 (𝑢) :
𝑢 ∈ 𝑄, 𝑖 ∈ 𝐼} that has a directed edge labeled i from u to 𝜏𝑖 (𝑢) for all 𝑢 ∈ 𝑄 and all 𝑖 ∈ 𝐼. We say that
𝑄,𝑄 ′ ⊆ 𝑊 are 𝜏-equivalent if D(𝑄) and D(𝑄 ′) are isomorphic as labeled directed graphs (that is, there
exists a graph isomorphism from D(𝑄) to D(𝑄 ′) that preserves the direction and label of each edge).

Let ℒ be a finite convex set, and let c be a Coxeter element. Recall from Theorem 3.6 that the sizes of
the strata are bounded above by 2 |Φ\(R(ℒ)∪(−R(ℒ))) | . It follows that there are only finitely many distinct
proper strata up to 𝜏-equivalence. It is possible to algorithmically find one representative from each
𝜏-equivalence class of proper strata. It then suffices to search for periodic billiards trajectories in these
representatives. Since each stratum is finite, this search can be completed in a finite amount of time.

12.5. Operators from long elements

Let w◦ be a reduced word for the long element of a finite Coxeter group W. Fix a nonempty convex
subset ℒ of W as before. We proved (Theorem 1.22) that 𝜏w◦ (𝑊) = ℒ. It could be interesting to study
the fibers of 𝜏w◦ , even in the special case where 𝑊 = 𝔖𝑛 and 𝜏w◦ is the extended evacuation operator Ev.

One could also study the dynamics of the restriction of 𝜏w◦ to ℒ (which is a bijection). When𝑊 = 𝔖𝑛

and 𝜏w◦ = Ev, the restriction of 𝜏w0 to ℒ is Schützenberger’s evacuation map, which is well known to
be an involution. In general, however, the restriction of 𝜏w◦ to ℒ need not be an involution.

12.6. Sorting times

Let c be a Coxeter element of W, and let ℒ be a nonempty finite convex set that is heavy with respect
to c. By multiplying ℒ on the right by an element of W if necessary, we may assume without loss of
generality that1 ∈ ℒ. For 𝑢 ∈ 𝑊 , let T(𝑢) be the smallest nonnegative integer K such that Pro𝐾𝑐 (𝑢) ∈ ℒ.
We call T(𝑢) the sorting time of u. It is natural to ask about the asymptotic growth rate of T(𝑢) as ℓ(𝑢)
grows. (Recall from Section 2 that ℓ(𝑢) denotes the length of u.)

Since each noninvertible Bender–Knuth toggle can decrease the length of an element by at most 1,
it is clear that T(𝑢) ≥ ℓ(𝑢)/|𝐼 | − 𝑂 (1). The finiteness of ℒ ensures that all strata are finite and that
there are only finitely many 𝜏-equivalence classes of strata (see Section 12.4). Since ℒ is heavy with
respect to c, there exists an integer 𝑘 ≥ 1 such that Sep(Pro𝑘𝑐 (𝑣)) � Sep(𝑣) for all 𝑣 ∈ 𝑊 \ℒ. So,
T(𝑢) ≤ 𝑘 |Sep(𝑢) | ≤ 𝑘ℓ(𝑢). This shows that T(𝑢) grows linearly with ℓ(𝑢).

Even for specific choices of W, c and ℒ, it could be interesting to compute or estimate the quantity

𝐶0 (𝑐,ℒ) := lim sup
ℓ (𝑢)→∞

T(𝑢)/ℓ(𝑢).

Is there an upper bound on 𝐶0 (𝑐,ℒ) that depends only on W? One could also study the quantity

lim sup
ℓ (𝑢)→∞

T(𝑢)/|Sep(𝑢) |,

which is closely related to 𝐶0 (𝑐,ℒ).

12.7. Luminous orderings

In Section 11, we discussed two settings where we know that an ordering 𝑖1, . . . , 𝑖𝑛 of I is luminous.

Question 12.4. For which Coxeter groups is it the case that every ordering of I is a cyclic shift of a
luminous ordering?
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12.8. Closed and antisymmetric sets of roots

One can generalize the definition of the noninvertible Bender–Knuth toggles in Theorem 1.2 by replacing
the set R(ℒ) with an arbitrary closed and antisymmetric set R ⊆ Φ. Analogues of Theorems 3.10, 3.11
and 5.2 and remain true in this more general setting, but Theorems 3.9 and 3.12 become false.

One special case of this more general setting is that in which R = Φ−. In this case, the resulting
noninvertible Bender–Knuth toggles generate H𝑊 (0), the 0-Hecke monoid of W, and their action on
W defines the standard action of H𝑊 (0) on W (see [17, 19]). Said differently, 𝜏w (1) is the Demazure
product of a word w.

12.9. Other toggle sequences

Let ℒ be a nonempty convex subset of W. Given any infinite sequence i = (𝑖1, 𝑖2, . . .) of elements of I
and any starting point 𝑢0 ∈ 𝑊 , we can construct the sequence 𝑢0, 𝑢1, 𝑢2, . . . by the recurrence relation
𝑢 𝑗 = 𝜏𝑖 𝑗 (𝑢 𝑗−1) for all 𝑗 ≥ 1. In this article, we have been primarily concerned with the setting in which i
arises by repeating some ordering of I. However, it could be fruitful to consider other sequences, such as
sequences induced by light beams. We could, for instance, say that i is futuristic if for every nonempty
finite convex set ℒ and every starting point 𝑢0, the resulting sequence 𝑢0, 𝑢1, 𝑢2, . . . eventually reaches
ℒ. If i is formed by repeating some ordering 𝑖1, . . . , 𝑖𝑛 of I, then i is futuristic if and only if the Coxeter
element 𝑐 = 𝑠𝑖𝑛 · · · 𝑠𝑖1 is futuristic (by Theorem 1.8).

It could also be interesting to consider the setting in which the noninvertible Bender–Knuth toggles
are applied in a random order. This produces a Markov chain with state space W in which each transition
is given by applying 𝜏𝑖 , where 𝑖 ∈ 𝐼 is chosen randomly (according to some probability distribution on
I). This random process was studied by Lam [22] in the case where W is an affine Weyl group and the
noninvertible Bender–Knuth toggles are defined via the set R = Φ− (as discussed in Section 12.8).

Acknowledgements. This work initiated while Colin Defant, Eliot Hodges, Noah Kravitz and Mitchell Lee were visiting and/or
working at the University of Minnesota Duluth Mathematics REU in 2023 with support from Jane Street Capital; we thank Joe
Gallian for providing this wonderful opportunity. We are grateful to Jon McCammond, Curtis McMullen and Ilaria Seidel for
several helpful conversations. We thank the anonymous referee for several helpful comments.

Competing interest. The authors have no competing interest to declare.

Funding statement. Grant Barkley was supported in part by the National Science Foundation grant DMS-1854512. Colin Defant
was supported by the National Science Foundation under Award No. 2201907 and by a Benjamin Peirce Fellowship at Harvard
University. Eliot Hodges was supported by Jane Street Capital, the National Security Agency, the National Science Foundation
(grants 2140043 and 2052036) and the Harvard College Research Program. Noah Kravitz was supported in part by a National
Science Foundation Graduate Research Fellowship (grant DGE–2039656).

References

[1] A. Ayyer, S. Klee and A. Schilling, ‘Combinatorial Markov chains on linear extensions’, J. Algebraic Combin. 39 (2014),
853–881.

[2] A. Björner and F. Brenti, Combinatorics of Coxeter Groups (Graduate Texts in Mathematics) vol. 231 (Springer, 2005).
[3] N. Bourbaki, Lie Groups and Lie Algebras (Springer–Verlag, 2002).
[4] B. Brink and R. B. Howlett, ‘A finiteness property and an automatic structure for Coxeter groups’, Math. Ann. 296 (1993).
[5] B. Casselman, ‘Computation in Coxeter groups II. Constructing minimal roots’, Represent. Theory 12 (2008).
[6] J. H.-H. Chiang, A. T. N. Hoang, M. Kendall, R. Lynch, S. Nguyen, B. Przybocki and J. Xia, ‘Bender–Knuth involutions on

linear extensions of posets’, Preprint, 2023, arXiv:2302.12425.
[7] C. Defant, ‘Polyurethane toggles’, Electron. J. Combin. 27 (2020).
[8] C. Defant and N. Kravitz, ‘Friends and strangers walking on graphs’, Comb. Theory 1 (2021).
[9] C. Defant and N. Kravitz, ‘Promotion sorting’, Order 14 (2022).

[10] M. Develin, M. Macauley, and V. Reiner, ‘Toric partial orders’, Trans. Amer. Math. Soc. 368 (2016), 2263–2287.
[11] M. Dyer, ‘Reflection subgroups of Coxeter systems’, J. Algebra 135 (1990), 57–73.
[12] M. J. Dyer, ‘Embeddings of root systems II: Permutation root systems’, J. Algebra 321 (2009), 953–981.
[13] P. Edelman and C. Greene, ‘Balanced tableaux’, Adv. Math. 63 (1987), 42–99.

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://arxiv.org/abs/2302.12425
https://doi.org/10.1017/fms.2024.159


Forum of Mathematics, Sigma 55

[14] S. Fomin and A. Zelevinsky, ‘Cluster algebras IV’, Compos. Math. 143 (2007), 112–164.
[15] M. D. Haiman, ‘Dual equivalence with applications, including a conjecture of Proctor’, Discrete Math. 99 (1992), 79–113.
[16] B. Hasselblatt and A. Katok (eds.), Handbook of Dynamical Systems vol. 1A (Elsevier, 2002).
[17] F. Hivert, A. Schilling and N. Thiéry, ‘The biHecke monoid of a finite Coxeter group and its representations’, Algebra

Number Theory 7 (2013), 595–671.
[18] E. Hodges, ‘On promotion and quasi-tangled labelings of posets’, Ann. Comb. 28 (2024), 529–554.
[19] T. Kenney, ‘Coxeter groups, Coxeter monoids and the Bruhat order’, J. Algebraic Combin. 39 (2014), 719–731.
[20] V. V. Kozlov and D. V. Treshchëv, Billiards (Translations of Mathematical Monographs) vol. 89 (American Mathematical

Society, 1991).
[21] A. Kuniba, K. Misra, M. Okado, T. Takagi and J. Uchiyama, ‘Crystals for Demazure modules of classical affine Lie algebras’,

J. Algebra 208 (1998), 185–215.
[22] T. Lam, ‘The shape of a random affine Weyl group element and random core partitions’, Ann. Probab. 43 (2015), 1643–1662.
[23] C. Malvenuto and C. Reutenauer, ‘Evacuation of labelled graphs’, Discrete Math. 132 (1994), 137–143.
[24] M. Massow, ‘Linear extension graphs and linear extension diameter’, PhD thesis, Cuvillier Verlag Göttingen, 2010.
[25] C. McMullen, ‘Coxeter groups, Salem numbers and the Hilbert metric’, Publ. Math. Inst. Hautes Etudes Sci. 95 (2002),

151–183.
[26] B. M. Mühlherr, ‘Coxeter groups in Coxeter groups’, in Finite Geometry and Combinatorics (Deinze, 1992) (London Math.

Soc. Lecture Note Ser.) vol. 191 (Cambridge Univ. Press, Cambridge), 277–287.
[27] S. Poznanović and K. Stasikelis, ‘Properties of the promotion Markov chain on linear extensions’, J. Algebraic Combin. 47

(2018), 505–528.
[28] N. Reading, ‘Clusters, Coxeter-sortable elements and noncrossing partitions’, Trans. Amer. Math. Soc. 359 (2007), 5931–

5958.
[29] D. Speyer, ‘Powers of Coxeter elements in infinite groups are reduced’, Proc. Amer. Math. Soc. 137 (2009), 1295–1302.
[30] R. P. Stanley, ‘Promotion and evacuation’, Electron. J. Combin. 16 (2009).
[31] J. Stembridge, ‘Folding by automorphisms’, Preprint, 2008, https://dept.math.lsa.umich.edu/~jrs/papers/folding.pdf.
[32] J. Striker and N. Williams, ‘Promotion and rowmotion’, European J. Combin. 33 (2012) 1919–1942.
[33] C. Stump, H. Thomas and N. Williams, ‘Cataland: Why the Fuß? To appear in Mem. Amer. Math. Soc.
[34] S. Tabachnikov, Geometry and Billiards (Student Mathematical Library) vol. 30 (American Mathematical Society, 2005).
[35] J. Tits, Buildings of Spherical Type and Finite BN-Pairs (Lecture Notes in Mathematics) vol. 386 (Springer-Verlag, Berlin-

New York, 1974).
[36] B. Wieland, ‘A large dihedral symmetry of the set of alternating sign matrices’, Electron. J. Combin. 7 (2000).

https://doi.org/10.1017/fms.2024.159 Published online by Cambridge University Press

https://dept.math.lsa.umich.edu/~jrs/papers/folding.pdf
https://doi.org/10.1017/fms.2024.159

	1 Introduction
	1.1 Linear extensions and noninvertible Bender–Knuth toggles
	1.2 Noninvertible Bender–Knuth toggles for Coxeter groups
	1.3 Bender–Knuth billiards
	1.4 Main results
	1.5 Finite Coxeter groups
	1.6 Futuristic directions
	1.7 Outline

	2 Preliminaries
	3 Basics of Bender–Knuth billiards
	3.1 Separators
	3.2 Strata
	3.3 Conjugate Coxeter elements
	3.4 Futuristicity is hereditary
	3.5 Folding

	4 Finite Coxeter groups
	5 Affine Coxeter groups
	5.1 Affine Coxeter groups
	5.2 Type "0365A
	5.3 Type "0365C
	5.4 Type "0365G2

	6 The small-root billiards graph
	6.1 Small roots of rank-2 parabolic subgroups

	7 Right-angled Coxeter groups
	8 Coxeter groups with complete Coxeter graphs
	9 Coxeter groups of rank at most 3
	10 Ancient Coxeter groups
	11 Classical billiards (light beams)
	12 Futuristic directions
	12.1 Characterizations
	12.2 Periodic points
	12.3 Billiards-plausible closed walks
	12.4 Decidability
	12.5 Operators from long elements
	12.6 Sorting times
	12.7 Luminous orderings
	12.8 Closed and antisymmetric sets of roots
	12.9 Other toggle sequences

	References

