
ANZIAM J. 61(2019), 368–381
doi:10.1017/S1446181119000130

A MULTIPHASE MULTISCALE MODEL FOR
NUTRIENT-LIMITED TISSUE GROWTH, PART II:

A SIMPLIFIED DESCRIPTION

E. C. HOLDEN 1, S. J. CHAPMAN 2, B. S. BROOK 1 and R. D. O’DEA ) 1

(Received 4 December, 2018; accepted 6 July, 2019; first published online 18 September 2019)

Abstract

In this paper, we revisit our previous work in which we derive an effective macroscale
description suitable to describe the growth of biological tissue within a porous tissue-
engineering scaffold. The underlying tissue dynamics is described as a multiphase
mixture, thereby naturally accommodating features such as interstitial growth and
active cell motion. Via a linearization of the underlying multiphase model (whose
nonlinearity poses a significant challenge for such analyses), we obtain, by means of
multiple-scale homogenization, a simplified macroscale model that nevertheless retains
explicit dependence on both the microscale scaffold structure and the tissue dynamics,
via so-called unit-cell problems that provide permeability tensors to parameterize the
macroscale description. In our previous work, the cell problems retain macroscale
dependence, posing significant challenges for computational implementation of the
eventual macroscopic model; here, we obtain a decoupled system whereby the quasi-
steady cell problems may be solved separately from the macroscale description.
Moreover, we indicate how the formulation is influenced by a set of alternative
microscale boundary conditions.

2010 Mathematics subject classification: 92B05.
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1. Introduction

Tissue growth is a complex and inherently multiscale phenomenon, whose unified
description requires the integration of insight obtained at one scale with observations
at another. For example, growth processes (or disease manifestation) at the organ
scale are driven by microscopic events at the (sub)cellular scale that themselves
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are influenced by macroscopic dynamics. Such complexity leads inevitably to
formulations that are analytically and computationally intractable or are otherwise
highly idealized. For this reason, a significant area of research is dedicated to
developing various mathematical and computational techniques that enable efficient
coupling between dynamics occurring on multiple scales (see, for example, the
papers [1, 14, 21] and the references therein).

This article follows on from the work of Holden et al. [9], in which the derivation
of a coarse-scale description of the tissue dynamics that nevertheless retains aspects
of tissue microstructure and cell behaviour was considered. Here, we show that the
formulation derived therein may be significantly simplified. To effect this, we again
employ the method of multiple-scale asymptotic homogenization (see, for example,
the books [2, 22] and the papers [7, 12] for reviews). The key feature of this approach
is to derive suitable macroscale equations from an underlying microscale description,
rather than stating them ab initio. Coupling to the microscale physics is enabled by
defining suitable problems on a prototypical “unit cell”, by which to specify effective
coefficients in the macroscale description.

A series of recent studies have employed these methods in a biological setting
to consider growing tissues. We refer the interested reader to the work of Holden
et al. [9] for more extended motivation and background literature, but note here that
a common feature of such studies is the highly idealized representation of growth.
This deficiency was addressed by Holden et al. [9], wherein we instead employed
a multiphase model to describe the microscale tissue dynamics. In particular, this
approach accommodates nutrient-limited interstitial growth, as well as cell aggregation
and repulsion. An effective macroscale description is obtained via a linearization
that ameliorates problems associated with complex mass transfer considered in the
multiphase model (see the paper by Collis et al. [4] for a discussion) and allows
one to obtain via homogenization techniques a more tractable description that permits
coupling between microscale and macroscale processes. The derived model comprises
macroscopic partial differential equations (PDEs) describing the evolution of the
cell population, nutrient concentration and cell and interstitial fluid flow. These
are coupled to the underlying microscale structure and dynamics via suitable cell
problems. Importantly, and in contrast to other similar studies, these unit-cell problems
are themselves parameterized by the macroscale dynamics, so that the microscale and
macroscale descriptions are fully coupled. Here, we modify our previous analysis [9]
to obtain the more standard structure, obtaining a system in which the quasi-steady
cell problems may be solved separately from the macroscale description, thereby
greatly simplifying the computational difficulty that would be associated with fully
coupled multiscale descriptions. We reiterate that the effective description that we
obtain embeds microscale modelling choices, both in terms of the model governing
equations and the associated boundary conditions describing, for example, cell–
scaffold interactions or nutrient transport into the growing tissue. We therefore
consider several alternative microscopic boundary conditions to indicate how the
macroscopic formulation is modified.
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This paper is organized as follows. In Section 2 we briefly recapitulate the
microscale model and boundary conditions of Holden et al. [9]. In Section 3 we
perform a multiscale homogenization to obtain an effective macroscale description
and consider alternative microscopic boundary conditions in Section 4; Section 5
summarizes our results and provides suggestions for future work.

2. Model formulation

We consider a model of broad relevance to tissue-engineering applications where
tissue growth occurs on a structured periodic scaffold, such as can be achieved through
the use of 3D printing [11, 25]. We emphasize that this article follows on from the work
of Holden et al. [9] and the underlying model set-up considered herein is identical to
that study (itself following closely Lemon et al. [13] that builds on the general theory
of multiphase porous flow developed in the literature [3, 8, 15]) and so only a very
brief descriptive summary is included here.

The microscale domain is denoted Ω, with boundary ∂Ω, and has characteristic
length scale l. This domain comprises scaffold ΩS , tissue ΩT and interstitial fluid ΩI .
The scaffold boundary is denoted by ∂ΩS and the tissue–interstitium boundary by Γ

(see Figure 1 for a schematic diagram). The macroscopic length scale (associated with
the full extent of the scaffold) is denoted L. The length scales in question are well
separated such that

ε =
l
L
� 1.

We model the porous scaffold material as a rigid solid, and the tissue as a two-
phase mixture of cells (with volume fraction θn) and water (θw) which covers the
scaffold, whilst the interstitial space contains only water. Both cells and water are
modelled as viscous fluids (with pressure pi and velocity vi; i ∈ {n,w, I}), described
by a Stokes flow. Increase in the cell volume fraction of the mixture depends on
the concentration of a generic diffusible nutrient (denoted ci; i ∈ {T, I}) as well as
the availability of water. Tissue growth is represented by movement of the boundary
Γ, occurring as a consequence of nutrient-limited phase transition within the tissue
domain or cell aggregation/repulsion (these being effected by the specification of
suitable additional pressures φn(θn) in the cell phase). Coupling between the tissue
domain and the surrounding interstitium is described by suitable mass flux conditions
across the tissue–interstitium interface as well as continuity of tangential velocity,
stress and nutrient concentration. No-slip and no-penetration are imposed on the
scaffold surface. We emphasize that our model describes a complex free-boundary
problem in which the interface position Γ is not known and should be determined as
part of the solution. However, in the multiscale analysis that follows, the boundary
velocity remains undetermined. In order to close the model, we are therefore required
to specify constitutively this motion; this issue was considered in detail by Holden
et al. [9].

https://doi.org/10.1017/S1446181119000130 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000130


[4] A simplified multiphase multiscale model for tissue growth 371

Figure 1. Schematic diagram of the microscale domain Ω illustrating a periodic scaffold covered with
a layer of tissue, indicating the scaffold ΩS , tissue ΩT and interstitial fluid ΩI domains. The scaffold
boundary is denoted by ∂ΩS and the tissue–interstitium boundary by Γ.

The equations governing the multiphase mixture, interstitial flow and the nutrient
transport within the microscale domain are given in (2.1)–(2.6) and (2.10)–(2.12) of
Holden et al. [9]; boundary conditions are specified in (2.13)–(2.17) of that paper.
This microscale model is nondimensionalized via scalings detailed in Section 2.2
in [9]. We note that alternatives to the boundary conditions describing the cell–scaffold
interactions, and interfacial nutrient transport specified above, may be appropriate for
certain specific biological systems. These are considered in Section 4.

3. Multiple-scales analysis

Following our previous work, we reduce the degree of nonlinearity of the
microscale model to enable a more straightforward multiscale analysis by linearizing
the equations about a uniform steady state, across ΩT , as follows:

θn = θ∗n + δθn,1 + · · · ,

with corresponding expansions for the other model variables and where 0 < δ� 1
and asterisks denote steady-state values. The linearized model is given by equations
(2.18)–(2.22) in [9].

We now work with the linearized version of the model and, for the sake of
clarity, suppress the associated subscripts. To derive a suitable macroscale description
incorporating the microscale growth, dynamics and structure, we follow [5, 20, 24] in
using the method of multiple scales. Correspondingly, we rescale such that the time
scale under consideration is that of macroscale advection, and the pressure scaling
results in the appropriate leading-order problem

t = εt̃, p =
1
ε

p̃,
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in which tildes denote the rescaled variables. This choice of time rescaling
results in a quasi-steady problem at leading order, thereby simplifying the analysis.
Correspondingly, as in [9], we rescale growth and uptake processes to O(ε). In the
subsequent sections, we drop the tilde notation for convenience as we work exclusively
with the rescaled variables.

Next, we introduce a macroscale coordinate X, where X = εx (x being the
microscale coordinate) and expand all variables in the general multiple-scales form
as follows:

ψ(x,X, t; ε) = ψ(0)(x,X, t) + εψ(1)(x,X, t) + · · · ,

∇ = ∇x + ε∇X , ∇2 = ∇2
x + 2ε∇x · ∇X + ε2∇2

X .

Moreover, in addition to the boundary conditions [9, (2.13)–(2.17)], we require that
ψ(i) for i = 0, 1, . . . are periodic in x. Analysing the equations at each order, and via the
averaging process over the domain ΩI ,

〈g〉 =
1
|Ω|

∫
ΩI

g dV (3.1)

(where Ω = ΩI ∪ΩT ∪ΩS ), allows us to obtain a description of the macroscale growth
and transport.

3.1. Velocity and pressure ansatz Following arguments in earlier works [6, 9, 20],
we find that pressures, nutrient concentrations and cell volume fractions are
independent of the microscale variable x, that is,

p(0)(X, t) = p(0)
I (X, t) = p(0)

w (X, t) + θ∗nφ
(0)
n (X, t), (3.2)

c(0)(X, t) = c(0)
T (X, t) = c(0)

I (X, t), (3.3)

θ(0)
n = θ(0)

n (X, t), (3.4)

in which p(0) and c(0) denote the overall leading-order pressure and concentration,
which are uniform across ΩT ∪ΩI .

The governing equations at O(ε) are given by (3.6)–(3.8) in [9] and, therein,
we followed, for example, [6, 7, 16, 20, 24] in exploiting the linearity of the O(ε)
momentum equations by taking an appropriate Darcy-type form for the macroscale
velocities and microscale pressures to be given by the following ansatz:

v(0)
i = −Ki∇X p(0) and p(1)

i = −ai · ∇X p(0) − p̄i for i ∈ {n,w, I}. (3.5)

In (3.5), Ki are tensors describing the permeability, ai are first-order tensors imparting
microscale pressure variation and p̄i are the mean (microscale-invariant) values of the
first-order pressures in ΩI .

This choice of ansatz results in unit-cell problems that are parameterized by the
macroscale pressure and cell volume fraction (through φ(0)), so that the microscale
and macroscale descriptions are fully coupled (see the paper by Holden et al.
[9, (3.12)–(3.14)]). This provides a significant challenge from a computational point
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of view. Here, we seek to remove this complexity; since both the macroscale water
pressure and pressures associated with active cell behaviour terms appear linearly in
the momentum equations (3.6c,d) and (3.7b) in [9], a more appropriate form for the
macroscale velocities and microscale pressures is given by

v(0)
i = −Ki∇X p(0)

w −Mi∇Xφ
(0)
n , (3.6)

p(1)
i = −ai · ∇X p(0)

w − bi · ∇Xφ
(0)
n − p̄i, (3.7)

for i ∈ {n,w}. In the interstitial domain, the original ansatz (3.5) remains suitable.
Note that rather than an ansatz in terms of the overall macroscale pressure p(0), in
equations (3.6) and (3.7), the macroscale velocities and microscale pressures are given
as linear functions of the macroscale common mixture pressure p(0)

w and extra pressure
due to cell aggregation φ(0)

n .

3.2. Microscale cell problems Substituting (3.6) and (3.7) into the conservation of
mass and momentum equations (3.2a,b) and (3.6c,d) in [9] (recalling that the mass
transfer terms have been rescaled to O(ε)), we obtain the following modified Stokes-
type cell problems in ΩT :

∇x · KT
n = 0, ∇x ·MT

n = 0, (3.8)

∇x · KT
w = 0, ∇x ·MT

w = 0, (3.9)

∇xaT
n − I − ∇2

xKn − βθ
∗
w(Kw − Kn) = 0, (3.10)

∇xaT
w − I − µ∇2

xKw − βθ
∗
n(Kn − Kw) = 0, (3.11)

∇xbT
n − I − ∇2

xMn − βθ
∗
w(Mw −Mn) = 0, (3.12)

∇xbT
w − µ∇

2
xMw − βθ

∗
n(Mn −Mw) = 0. (3.13)

In ΩI , standard Stokes problems are obtained via (3.3a) and (3.7b) in [9], as follows:

∇x · KT
I = 0,

∇xaT
I − I − µ∇2

xKI = 0.

These cell problems are coupled together through the boundary conditions (3.4a–c)
and (3.8d) in [9] specified on the interface, Γ, which supply

KT
I n = 0, KT

nn = 0, KT
wn = 0, MT

nn = 0, MT
wn = 0,

−aT ⊗ n + (∇KT + (∇KT )T)n = −aI ⊗ n + µ(∇KI + (∇KI)T)n,

−bT ⊗ n + (∇MT + (∇MT )T)n = θ∗n[−aI ⊗ n + µ(∇KI + (∇KI)T)n], (3.14)

in which (3.2) has been employed to replace p(0), and where

KT = θ∗nKn + µθ∗wKw, aT = θ∗nan + θ∗waw,

MT = θ∗nMn + µθ∗wMw, bT = θ∗nbn + θ∗wbw.

Lastly, on ∂ΩS , no-slip and no-penetration provide

Kn = 0, Kw = 0, Mn = 0, Mw = 0. (3.15)
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For uniqueness in the above cell problems, we use a standard approach [17, 20, 23, 24]
and impose that in the relevant domain

〈ai〉 = 0, 〈bi〉 = 0. (3.16)

We note that, while a standard Stokes-type cell problem is obtained in ΩI , the
multiphase dynamics in ΩT leads to significantly increased complexity. In particular,
we obtain a set of coupled modified Stokes problems, determining the permeability
tensors Ki, Mi and extra pressures ai, bi for each phase, which are further coupled to
the flow in ΩI via stress and velocity continuity boundary conditions. Furthermore, we
highlight that whilst the number of cell problems has increased as a result of the change
in ansatz from that employed by Holden et al. [9], we find that the permeability tensors
are no longer dependent on macroscale pressures. The system we obtain therefore
represents a significant simplification, taking the more familiar form, where the quasi-
steady cell problems can be solved separately from the macroscale description that we
obtain below.

3.3. Averaging The macroscale flow is obtained by averaging (3.7) via the
definition (3.1) to obtain

〈v(0)
i 〉 = −〈Ki〉∇X p(0)

w − 〈Mi〉∇Xφ
(0)
n ,

wherein p(0)
w and φ(0)

n (via θ(0)
n and (2.6) and (2.19) in [9]) are obtained from the

following system, derived from the average (exploiting the divergence theorem) of
(3.6a,b,e) and (3.7a,c) in [9]):

∂

∂t
〈θ(0)

n 〉T + θ∗n(∇X · 〈v(0)
n 〉T + 〈v(1)

Γ
· n〉Γ) = 〈S (0)

n 〉T , (3.17)

∇X · (K̃∇X p(0)
w + M̃∇Xφ

(0)
n ) = −〈(1 − ρ̄)S (0)

n 〉T , (3.18)

ΦT∪I
∂c(0)

∂t
+ c∗(1 − ρ̄)〈S (0)

n 〉T = −〈Λ(0)〉T , (3.19)

where ΦT∪I = |ΩT ∪ ΩI |/|Ω|. We note that equation (3.19) arises from the average
of the sum of (3.6e) and (3.7c) in [9]; on application of the divergence theorem and
boundary conditions, terms associated with c(1)

T and c(1)
I vanish.

The tensors K̃ and M̃ are given by

K̃ = 〈θ∗nKn + θ∗wKw〉T + 〈KI〉I , M̃ = 〈θ∗nMn + θ∗wMw〉T + 〈θ∗nKI〉I ,

where the individual permeability tensors Ki and Mi are determined from the set of
coupled Stokes problems (3.8)–(3.16).

We remark that while the modification to the unit-cell problems outlined above is
significant, the impact of our modification to the approach of Holden et al. [9] on the
macroscale description is less significant, being restricted to the redefinition of the
relevant permeability tensors and the associated velocities and pressures (in particular,
in the explicit appearance of ∇Xφ

(0)
n terms associated with active cell motion).
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The governing system itself is of identical structure and comprises a macroscale Darcy
flow PDE, coupled to reaction equations describing tissue component volume fractions
and nutrient concentration. Lastly, we note that as is common in analyses of this type,
the macroscale model we obtain is not closed: we are required to specify constitutively
the O(ε) boundary velocity v(1)

Γ
· n (see the papers [6, 10]). This was explored by

Holden et al. [9] by means of detailed investigation of the travelling wave properties
of the microscale multiphase model, but we do not pursue this here.

Lastly, we note in passing that in the limit case of inviscid water (that was employed
in [9] for illustrative numerical simulations) the overall pressure p(0) is zero and
consequently so is p(0)

w + θ∗nφ
(0)
n . This means that the new ansatz (3.6)–(3.7) can be

rewritten as

v(0)
i =

[
−Ki +

1
θ∗n

Mi

]
∇X p(0)

w ,

p(1)
i =

[
−ai +

1
θ∗n

bi

]
∇X p(0)

w − p̄i,

which is equivalent to (3.5), where the terms in square brackets are given by single
tensors.

4. Alternative boundary conditions

In the model described above, we impose no-slip and no-penetration conditions
on the scaffold boundary ΩS and continuity of nutrient flux and concentration on the
free interface Γ. While these are physically sensible choices in general, reflecting the
solid nature of the scaffold material and passive diffusive transport of nutrient into the
tissue domain, in some cases a less restrictive choice may be of interest. For example,
as well as the active motion embodied by the intraphase pressure φn, cells may
exhibit significant haptotactic motion on the scaffold surface itself. This is especially
pertinent to the tissue-engineering application under study, in which scaffolds may
be manufactured to incorporate substrate-bound chemoattractants thereby promoting
cell ingress (see, for example, the papers [18, 19, 26] and the references therein).
Additionally, other descriptions for solute transport across Γ may be appropriate, for
example accommodating aspects of active transport, binding kinetics or membrane law
behaviour.

4.1. Cell motion on the scaffold surface As a simple alternative choice of
boundary condition permitting cell motion on the scaffold surface, we now consider a
slip condition of the form

vn = b
∂vn

∂n
, x ∈ Γ,

where b is a constant of proportionality and ∂/∂n denotes the normal derivative. We
retain the no-penetration condition vi · n = 0 on ∂ΩS , since the scaffold is assumed to
remain solid. We remark, however, that it would be straightforward to accommodate,
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for example, scaffold dissolution, invoking the approach and scaling arguments of
O’Dea et al. [20].

The effective macroscale equations remain the same in each case, and the only
change to the Stokes problem is in the tissue–scaffold boundary conditions. The above
equations give

Kn = b
∂Kn

∂n
, Mn = b

∂Mn

∂n
, KT

nn = 0, MT
nn = 0

as the set of alternative boundary conditions to be applied on Kn and Mn at ∂ΩS in the
Stokes problem. (Note that the slip condition is of similar form to that obtained by
Irons et al. [10] in a similar cell problem for a porous medium growth model.)

4.2. Nutrient flux As noted above, we have imposed continuity of flux and
concentration on the tissue–interstitium interface Γ. For completeness, we also
indicate the influence of alternative concentration flux boundary conditions. As
discussed by Shipley and Chapman [24] two further, widely used, options are
suggested, which we now consider.

Option 1 – Membrane law The flux of nutrient concentration across the boundary is
proportional to the concentration jump. This widely used approach demands

(cIvI − DI∇cI) · n = (cT vT − DT∇cT ) · n = r(cT − cI), (4.1)

where r is a constant reflecting the permeability of the tissue boundary to nutrient flux.

Option 2 – Concentration jump due to species solubility Alternatively, a
concentration jump may be permitted, as a consequence of reduced solubility in the
tissue compared to the interstitium (compare with Henry’s law for gases, in which the
concentration c and partial pressure P of a gas in solution are related through c = γP,
where γ denotes the solubility):

αcI = cT , (4.2)

where we assume for simplicity that α is a constant, although in a more general
formulation it may be suitable to specify α = α(θn).

In the following, we investigate the choice of boundary condition, and scaling of
associated constant, on the effective macroscale description. Note that the choice of
condition has no direct impact on the Stokes problem on the periodic cell.

4.2.1 Membrane law. Firstly we linearize the boundary condition (4.1); assuming
that at steady state, the nutrient concentration is equal and uniform across both
domains, ΩI and ΩT ,

c∗
(
vI − vΓ −

1
PeI
∇cI

)
· n = c∗

(
vT − vΓ −

1
PeT
∇cT

)
· n = r(cT − cI).

In the subsequent multiple-scales analysis, we consider two further scaling subcases
on the membrane permeability, namely, r = O(1) or r = εr̄ with r̄ = O(1). At leading
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order, the boundary condition in each case reads as

−
1

PeI
∇xc(0)

I · n = −
1

PeT
∇xc(0)

T · n =

r(c(0)
T − c(0)

I ),
0.

We recall that the leading-order problem is quasi-steady, so there is no growth of
ΩT , flux of fluid across the interface or nutrient uptake; correspondingly, and in line
with the linearized model set-up, it is consistent to assume that there is no induced
diffusive transport of nutrient across Γ either. In the first subcase (r = O(1)), this
implies that since r , 0, c(0)

T = c(0)
I , whilst in the second subcase (r = εr̄), there is

already no interfacial transport at this order and a concentration jump can arise. In
both cases, the leading-order concentration in each domain is independent of x.

Following through the rest of the analysis as described above and in [9] for O(1)
membrane permeability, we find that the effective macroscale equation is unchanged,

ΦT∪I
∂c(0)

∂t
+ c∗(1 − ρ̄)〈S (0)

n 〉T = −〈Λ(0)〉T .

In the second subcase, there are minor differences imbued by the fact that a leading-
order concentration jump may be permitted and we obtain the following macroscale
representation in each domain:

ΦT
∂c(0)

T

∂t
+ c∗(1 − ρ̄)〈S (0)

n 〉T = −〈r̄(c(0)
T − c(0)

I )〉Γ − 〈Λ(0)〉T ,

ΦI
∂c(0)

I

∂t
= 〈r̄(c(0)

T − c(0)
I )〉Γ,

which are identical to those presented by Shipley and Chapman [24], except that
advective transport is linearized in our description. Macroscale nutrient concentration
in this case is given by two coupled equations, one for each of c(0)

T and c(0)
I .

4.2.2 Concentration jump due to species solubility. We remark that when
linearizing the model equations, we can no longer assume that at steady state
the nutrient concentration c∗ is uniform across the entire unit cell (unless α = 1,
which returns to our original representation). We instead suppose that the nutrient
concentration is uniform in each domain, connected by the boundary condition, that
is,

cT = c∗T + δcT1 + · · · ,

cI = c∗I + δcI1 + · · · ,

where
αc∗I = c∗T , (4.3)

and the steady-state concentrations c∗T are defined as in Section 2.3 in [9].

https://doi.org/10.1017/S1446181119000130 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000130
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The linearized and rescaled equations for the nutrient concentration are given by

ε
∂cT,1

∂t
+ ∇ · (c∗T (θ∗nvn,1 + θ∗wvw,1)) =

1
PeT
∇2cT,1 − Λ1 in ΩT ,

ε
∂cI,1

∂t
+ ∇ · (c∗I vI,1) =

1
PeI
∇

2cI,1 in ΩI ,[
c∗i (vi,1 − vΓ,1) · n −

1
Pei
∇ci,1 · n

]+

−

= 0,

αcI,1 = cT,1 on Γ. (4.4)

All other equations remain unchanged from the original analysis, except that in the
cell proliferation and nutrient uptake terms c∗ is replaced by c∗T . In the following, the
subscripts associated with the linearization are omitted for clarity.

At leading order, we find, via standard arguments, that both c(0)
I and c(0)

T are
independent of the microscale and related by the leading-order version of (4.4). At
O(ε), the relevant equations are

∂c(0)
T

∂t
+ c∗T [∇x · (θ∗nv(1)

n + θ∗wv(1)
w ) + ∇X · (θ∗nv(0)

n + θ∗wv(0)
w )]

=
1

PeT
∇2

xc(1)
T − Λ(0) in ΩT , (4.5)

∂c(0)
I

∂t
+ c∗I (∇x · v(1)

I + ∇X · v(0)
I ) =

1
PeI
∇

2
xc(1)

I in ΩI , (4.6)[
c∗i (v(1)

i − v(1)
Γ

) · n −
1

Pei
(∇xc(1)

i + ∇Xc(0)
i ) · n

]+

−

= 0, (4.7)

αc(1)
I = c(1)

T on Γ.

On averaging (4.5) and (4.6) over their domains,

ΦT
∂c(0)

T

∂t
+ c∗T (1 − ρ̄)〈S (0)

n 〉T =

〈 1
PeT
∇xc(1)

T · n
〉

Γ

− 〈Λ(0)〉T , (4.8)

ΦI
∂c(0)

I

∂t
= −

〈 1
PeI
∇xc(1)

I · n
〉

Γ

. (4.9)

Averaging boundary condition (4.7) over Γ and rearranging, we find that〈 1
PeT
∇xc(1)

T · n
〉

Γ

−

〈 1
PeI
∇xc(1)

I · n
〉

Γ

= (c∗T − c∗I )〈Q(0)〉Γ,

where
Q(0) = (v(1)

I − v(1)
Γ

) · n = (v(1)
T − v(1)

Γ
) · n = θ∗w(v(1)

w − v(1)
Γ

) · n

describes the leading-order flux of material across the boundary of the tissue domain.
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Summing (4.8) and (4.9) and exploiting (4.3) and (4.4) to eliminate c∗I and c(0)
I ,(

ΦT +
1
α

ΦI

)
∂c(0)

T

∂t
+ c∗T (1 − ρ̄)〈S (0)

n 〉T = c∗T

(
1 −

1
α

)
〈Q(0)〉Γ − 〈Λ

(0)〉T

and Q(0) must be determined. Note that when α = 1, that is, when we have continuity
of concentration on the boundary, we obtain (3.19) as in the original model and Q(0)

no longer appears.

5. Discussion

In this paper, we have revisited and extended the work of Holden et al. [9] to derive
a new effective description for a growing tissue, by means of two-scale asymptotics.
We considered a rigid periodic lattice-like structure covered by a layer of growing
tissue. The model is therefore applicable to problems in regenerative medicine, such as
tissue growth within a tissue-engineering scaffold (our primary motivation) or biofilm
growth, for example in the subsurface or the fouling of filters.

Multiscale homogenization techniques are increasing in popularity in biologically
inspired models, with a recent series of studies seeking to incorporate growth [4, 6,
9, 20, 23]. As in [9], here, we seek to accommodate a more complex description
of tissue growth than one comprising a solid undergoing accretion [20, 23] or
volumetric growth [4], by employing a multiphase fluid tissue model that naturally
accommodates aspects such as interstitial growth and active cell motion, while still
obtaining a tractable macroscale description. (A multiphase approach was used
by Collis et al. [6]; however, exploiting the limit of large interphase drag reduces
the dynamics to effectively an accretion-type process.) In [9], this deficiency was
addressed to obtain an effective description of tissue growth that retains active cell
motion, caused by cellular aggregation or repulsion. Analytical progress was effected
by a linearization that ameliorates problems associated with complex mass transfer
considered in the multiphase model; however, the macroscale description obtained
was fully coupled to the microscale unit-cell problems, thereby providing a significant
computational challenge in the general case (decoupling is obtained in the inviscid
limit case). Here, we address this feature by adopting a more suitable solution ansatz
to describe the velocities and pressures in the system that respects the linear structure
of the relevant momentum equations. This analysis provides a macroscale model of
very similar structure to that presented in [9], parameterized by permeability tensors,
provided by a set of modified Stokes-type cell problems. The contribution of this
work is that, unlike that presented in [9], the cell problems are independent of the
macroscale description, leading to a system whereby the quasi-steady cell problems
may be solved separately from the macroscale description, thereby greatly simplifying
the computational difficulty associated with fully coupled multiscale descriptions.
Moreover, we also demonstrate how the model formulation is changed under a set
of exemplar alternative microscale boundary conditions associated with, for example,
cell motion over the scaffold surface or alternative nutrient flux dynamics across the
tissue–interstitium boundary.
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