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Direct numerical simulations of oscillatory flow over a bed made of ripples have been
performed. Two oscillatory flow forcing mechanisms have been compared: (i) a sinusoidal
external pressure gradient (pressure-driven flow); and (ii) a sinusoidal velocity boundary
conditions on the rippled bed (shear-driven flow). In the second case, the oscillations of
the bed are such that when observed from a reference frame fixed with the bed, the free
stream follows the same harmonic oscillation as in the pressure-driven case. While the
outer layers have the same dynamics in the two cases, close to the bed differences are
observed during the cycle, mostly because the large form drag across the ripples cannot
be reproduced in the shear-driven case. A comparison against experimental data from
an oscillating tray apparatus provides a relatively good agreement for the phase-averaged
flow when the same forcing is considered (i.e. a shear-driven flow). The pressure-driven
case has a comparable error to the shear-driven numerical results over the crest of the
ripples, whereas the discrepancy is larger at the troughs. The discrepancies between the
two cases are more limited for time-averaged flow quantities, such as the mean flow
pattern and the time-averaged Reynolds stress distribution. This suggests that numerical
or experimental shear-driven configurations may capture well the net effects of coastal
transport processes (which occur in pressure-driven oscillatory flow), but care should be
exercised in interpreting phase-dependent dynamics near the troughs. More work is needed
to fully assess the sensitivity to the forcing mechanisms in different flow regimes.
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1. Introduction

Oscillatory turbulent motion is encountered in a number of engineering, biological and
environmental flows. For instance, the seabed in coastal zones is characterized by the
oscillatory motion generated by free-surface gravity waves. The so-called wave bottom
boundary layer that forms as a result affects the whole seabed ecosystem, from remodelling
the bed morphology (sediment erosion, transport and deposition) to the transport of
nutrients and substances dispersed in water.

Oscillatory wall bounded flow is a relatively well studied problem in fluid mechanics.
One of the few known analytical solutions of the Navier–Stokes equations is the so-called
Stokes’ second problem (Batchelor 1967; Schlichting 1979), which describes the laminar
flow generated by a flat plate oscillating harmonically in its own plane and bounding
a fluid otherwise at rest. The solution was given by Stokes (1851) and shows that the
oscillatory motion propagates by viscous action from the wall to the bulk of the fluid up
to a distance δ, depending on the fluid and the frequency of the oscillations. Observing
the fluid from a reference frame fixed with the plate, the motion has the character of an
oscillating boundary layer, driven by the shear at the bottom wall. Later, Lamb (1933)
calculated the solution for the case of a flat plate at rest bounding a fluid forced by a
harmonic pressure gradient. In this case, since the bed is a smooth flat plate, there are
no inertial effects different from the oscillating plate problem. Thus the pressure-driven
solution coincides with the Stokes shear-driven flow with axes fixed on the plate.

The analogy of the shear-driven flow with the pressure-driven case has been leveraged
by some early experimental works on the wave bottom boundary layer and sediment
transport (Bagnold 1946; Manohar 1955). For example, in his seminal work, Bagnold
(1946) disposed layers of sediments on a tray oscillated by a motor, inducing in this way a
shear-driven boundary layer in otherwise still water. In coastal zones, the bottom boundary
layer is rather pressure-driven because of the free-surface gravity waves. The laboratory
configuration that more closely reproduces field conditions is thus a wave flume. However,
these systems may require prohibitively large facilities to achieve realistic wave heights
and periods (Komar & Miller 1973) and avoid wave-breaking issues (Mirfenderesk &
Young 2003), and have thus seen wide application only in more recent times (Mirfenderesk
& Young 2003; Nichols & Foster 2007; Rodríguez-Abudo, Foster & Henriquez 2013;
Rodríguez-Abudo & Foster 2014). A large body of experimental measurements has been
obtained with oscillating tray rigs (such as the shear-driven set-up used by Bagnold (1946)
and several other authors: Li 1954; Manohar 1955; Kalkanis 1957; Sleath 1976; Young
& Sleath 1990) or oscillatory flow water tunnels (Jonsson & Carlsen 1976; Sato, Mimura
& Watanabe 1984; Sleath 1988; Smith & Sleath 2005; Admiraal et al. 2006), in which
water oscillates to and fro over a stationary bed within the tunnel section in response to a
pressure-driven piston forcing.

There has been relatively limited attention to compare the two types of forcings beyond
the equivalency established by the laminar flow solutions of Stokes and Lamb for a smooth
flat plate. In coastal environments, the bed is not flat, and the flow is turbulent rather than
laminar (Blondeaux 2001). A few early studies (Komar & Miller 1973, 1975) surveyed
literature data from both oscillatory tray rigs and oscillatory water tunnels, reporting
a good agreement between shear-driven and pressure-driven estimates of an equivalent
Shields parameter for sediment motion initiation, while some discrepancies were observed
on the critical Reynolds number for laminar–turbulent transition. As later reported by
Sleath (1988), a scatter in the transitional Reynolds number is also observed among other
pressure-driven (Vincent 1957; Lhermitte 1958) and shear-driven (Li 1954; Manohar 1955)
data from studies over flat rough beds. However, the magnitude of the discrepancy does not
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appear large enough to exclude the impact of other uncertainties arising in the comparison
(Sleath 1988).

When the bed is relatively rough or has large-scale ripples, the exposed bed surface
will be subject to a large form drag because of the external pressure gradient. This
component of the bed drag cannot be reproduced in oscillating tray configurations, where
the pressure gradient is zero (Sleath 1991). In discussing the analogies between oscillatory
flows and non-periodic acceleration/deceleration, Scotti & Piomelli (2001) pointed out that
a non-uniform (i.e. variable in space) time-varying pressure gradient cannot be reduced
with a transformation of variables to a time-varying boundary condition as for the classic
Stokes and Lamb laminar solutions. Thus in a rippled bed, where such local pressure
variations are to be expected, larger discrepancies could result between the two types of
forcings. Du Toit & Sleath (1981) investigated oscillatory flow over rippled beds using
both an oscillatory-tray apparatus and an oscillating water tunnel. However, they were
unable to investigate the same range of flow conditions in both configurations, because
of the operative specifications of each system. More detailed comparisons of the flow
in the boundary layer for these different forcings are scarce, partly because of inevitable
limitations in available experimental facilities. Nonetheless, the use of oscillating trays to
investigate bottom boundary layer dynamics has not ceased (see, for example, the recent
works of Hay et al. 2012; Hare et al. 2014; Aponte Cruz & Rodríguez-Abudo 2024).

A number of numerical studies have been performed to study the flow over rippled beds,
from the early two-dimensional numerical calculations (Sleath 1975; Longuet-Higgins
1981; Smith & Stansby 1985; Blondeaux & Vittori 1991), to more recent large-eddy
and direct numerical simulations (Scandura, Vittori & Blondeaux 2000; Barr et al.
2004; Blondeaux, Scandura & Vittori 2004; Grigoriadis, Dimas & Balaras 2012; Penko
et al. 2013; Leftheriotis & Dimas 2016; Önder & Yuan 2019; Chalmoukis, Dimas
& Grigoriadis 2020), providing additional insights on the flow and bed mechanics.
Nonetheless, these studies have exclusively employed an oscillatory pressure forcing,
which mimics more closely field conditions and is relatively more straightforward to
implement numerically. There is a lack of accurate comparison between shear-driven
and pressure-driven oscillatory flows, which is the goal of this paper. This study is
conducted using direct numerical simulations, with the immersed boundary method to
model the bed geometry. An external sinusoidal pressure gradient is used to reproduce
the pressure-driven flow over the ripples. The shear-driven case is reproduced setting the
external forcing to zero and changing the boundary condition at the bed from no-slip to a
prescribed sinusoidal velocity. The simulation configuration (rippled bed and oscillation
parameters) reproduces conditions from an oscillatory-tray apparatus. Available particle
image velocimetry data from the experiment thus provide a benchmark for the shear-driven
oscillatory boundary layer. The reader is referred to Vargas-Martinez & Rodríguez-Abudo
(2024) for a detailed presentation and discussion of the experimental results.

The remainder of the paper is organized as follows. The details of the numerical
methodology and the flow configuration are described in § 2. The analysis of the results is
reported in § 3, and conclusions are summarized in § 4.

2. Methodology

The governing equations are the incompressible, non-dimensional continuity and
Navier–Stokes equations:

∂Ui

∂xi
= 0, (2.1)
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Figure 1. Configuration. (a) Rippled bed waveform, with definitions of ripple parameters, wavelength λ and
amplitude k. Also shown is the particle image velocimetry (PIV) field of view of the experimental dataset.
(b) Three-dimensional view of the computational domain.

∂Ui

∂t
+ ∂

∂xj

(
UiUj

) = − ∂p
∂xi

+ 1
Re

∂2Ui

∂xj ∂xj
+Πδi1, (2.2)

where Ui is the component of the velocity vector in direction xi (i = 1, or x, streamwise
direction; i = 2, or y, spanwise direction; and i = 3, or z, wall-normal direction), p is the
pressure, δij is the Kronecker delta. Also, Re = U0δ/ν is the Reynolds number based on
the amplitude of the oscillatory motion U0, the Stokes’ layer depth δ = √

2ν/ω, and the
fluid kinematic viscosity ν. Amplitude U0 and angular frequency ω are set to match the
experimental conditions: U0 = 0.31 m s−1, and ω = 2π/T ≈ 1.257 rad s−1 (where T =
5 s is the period of the oscillations). This results in a Reynolds number Re = 390.

In (2.2), Π is a uniform (i.e. constant in space) externally applied pressure gradient
applied in the streamwise direction x1 (which adds to the local term ∂p/∂xi computed
directly as part of the solution of the Navier–Stokes equations). For the pressure-driven
case, the external pressure gradient is set to

Π = −ωδ
U0

cosωt (2.3)

together with a no-slip boundary condition Ui ≡ 0 on the lower wall (the rippled bed). The
oscillating pressure gradient in (2.3) leads to a free stream oscillating as U0 sinωt.

In the shear-driven case, the external pressure gradient is set to zero (Π = 0), and the
boundary condition on the lower wall is set to

Ui (x, y, z = zbed, t) = −U0δi1 sinωt, (2.4)

where zbed(x) is the rippled bed waveform (figure 1a). Thus in a reference frame moving
with the bed, the free-stream motion is the same as the pressure-driven case, U0 sinωt.

The other boundary conditions are the same for both the shear-driven and
pressure-driven set-ups. Periodicity is applied in the x and y directions, and free-slip is
applied at the top boundary of the domain. The lower boundary of the domain consists of
a rippled bed (figure 1). The bedform is approximately sinusoidal with average wavelength
λ = 7.73 cm and amplitude k = 1.8 cm (see inset in figure 1 for the definitions).
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This results in a Keulegan–Carpenter number KC = 2πA/λ ≈ 20 (where A = U0/ω
is the wave orbital amplitude). The bedform replicates the rigid bed placed over the
oscillating cart in the experimental reference (Aponte Cruz & Rodríguez-Abudo 2024;
Vargas-Martinez & Rodríguez-Abudo 2024). The computational domain in the streamwise
direction (x) fully includes the original ripple waveform, and has length 3λ, as shown
in figure 1(b). In the spanwise direction, the width has been taken equal to 3λ, and
1.66λ in the bed-normal direction. The grid consisted of 768 × 256 × 768 grid points
in the streamwise, spanwise and bed-normal directions, respectively. The grid points are
distributed uniformly in the x–y plane, while stretching is applied in the z direction to
cluster more points close to the ripples: 640 points are distributed uniformly within a
layer of height 1.2λ from the lowest trough of the ripples (z = 0 plane). In terms of
Stokes layer depths, the resolutions in the bed-parallel directions (x and y) are�x = 0.24δ
and �y = 0.74δ. In the z direction, near the bed the resolution is �z ≈ 0.094δ, i.e.
approximately 10 grid points per Stokes layer thickness, or approximately 4 wall units
(�z uτ,0/ν, based on the mean absolute friction velocity over the cycle uτ,0). More details
and results of a grid sensitivity study are reported in Appendix A.

The bed is treated with the immersed boundary method described in Orlandi & Leonardi
(2006). The numerical discretization, discussed in detail in Orlandi (2000), employs the
centred second-order finite-difference approximation on an orthogonal staggered grid. The
solution is advanced in time with a hybrid third-order low-storage Runge–Kutta scheme,
with linear terms treated implicitly, and nonlinear terms treated explicitly. The matrix
resulting from the implicit terms is inverted with an approximate factorization technique.
A fractional step method is used to treat the pressure. The equations are advanced in time
with the pressure at the previous step, yielding an intermediate non-solenoidal velocity
field. A scalar quantity is used to project the solution onto a solenoidal field, and update
the pressure.

In the following, the instantaneous flow variables (such as the velocity or pressure
field) are analysed as the sum of three components, consisting of the time average,
a phase-coherent fluctuation and the turbulent fluctuation (Hussain & Reynolds 1970;
Raupach & Shaw 1982). Taking as an example the streamwise velocity component U,
the notation (analogous for all other variables) is

U(x, y, z, t) = Ū(x, z)+ ũ(x, z, t)+ u′(x, y, z, t). (2.5)

The overline denotes an average in time and along the homogeneous y direction:

Ū (x, z) = 1
Ts

1
Ly

∫ Ts

0

∫ Ly

0
U(x, y, z, t) dy dt, (2.6)

where Ly is the dimension of the computational domain in the spanwise direction, and
Ts = NsT indicates the total simulation time used for the statistics (an integer multiple
Ns of the oscillation period T). In (2.5), the tilde denotes the phase-coherent fluctuation
(which depends on the cycle phase ϕ = ωt), and u′ is the random (turbulent) component.
The phase average (or ensemble average) is denoted with angle brackets and defined as

〈U〉(x, z, t) = Ū(x, z)+ ũ(x, z, t) = 1
Ns

1
Ly

Ns∑
n=0

[∫ Ly

0
U(x, y, z, t + nT) dy

]
. (2.7)

Statistics are collected over Ns = 30 periods, with a sampling frequency equal to 52/T . An
analysis on the sensitivity of statistics to Ns is reported in Appendix A. The simulations
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are initialized on a coarser grid with the fluid at rest (Ui ≡ 0). The oscillatory forcing
(either the amplitude of the boundary condition in (2.4) in the shear-driven case, or Π in
the pressure-driven case) is spun up from zero to its nominal value over 10 periods. After
this transient, the resolution is also progressively increased over the next 10 periods, which
are discarded, then statistics are collected for Ns cycles.

3. Results

3.1. Phase-averaged field
Phase-averaged velocity profiles from the experiment and simulations are shown in figure 2
at a few representative phases during the cycle. For the experiment and the shear-driven
simulation case, the velocity is plotted on a reference frame fixed with the bed. Thus
the free stream far from the ripples appears to oscillate with a sinusoidal velocity as
in the pressure-driven (numerical) case. Close to the bed, there are some discrepancies
between the two types of forcing. In particular, these are more noticeable on the lee side
of the ripple during the early acceleration phases, e.g. figures 2(a,b) at x ≈ 2 cm and
x ≈ 10 cm (forward acceleration), and figures 2( f,g) at x ≈ 5 cm and x ≈ 12 cm (backward
acceleration). A high-velocity jet forms above the ripple crests. The fluid along the stoss
side of the ripple (upward slope) accelerates rapidly, is ejected at the crest and is convected
over the next trough. The flow initially separates on the negative-slope flanks (figure 2(b),
x ≈ 2 cm), creating a recirculating region, which extends to the entire trough in the
later phases of the oscillation (figures 2(c,d), 2 cm � x � 5 cm). The dynamics of the
separation appears similar to the recirculation observed in downstream backward-facing
steps (Armaly et al. 1983; Le, Moin & Kim 1997) and in classic studies of rough elements
(Leonardi et al. 2003, 2004; Leonardi, Orlandi & Antonia 2007).

In the shear-driven case, the flow penetrates deeper into the cavities. Over the crests,
the overlying jet is weaker, since the acceleration is not instantly imparted on all fluid
particles (as by an external pressure gradient), but is propagated by viscous action from
the bed to the outer layer. Rather, the flow contours the bedform and tends to separate
first on the stoss flank (positive slope, see e.g. figures 2(b,c), x ≈ 5 cm). This is due to a
local adverse pressure gradient, which forms as an upstream pressure disturbance since
the bed is actually moving in the direction opposite to the one plotted in figure 2. There is
no counterpart of this effect in the pressure-driven flow. The numerical and experimental
shear-driven profiles are in good agreement, although the recirculation appears slightly
weaker in the simulations. Minor differences between the experiment and simulations may
be expected as the flow configuration cannot be exactly matched in all details. For example,
the boundary conditions in the numerical model are periodic, while the tray has a finite size
and a development part. The formation and evolution of the recirculation regions within
the troughs can best be described by isocontours of the phase-averaged streamfunction ψ ,
defined such that

∂ψ

∂z
= 〈U〉 and

∂ψ

∂x
= −〈V〉. (3.1a,b)

Streamfunction isocontours, superimposed to streamwise velocity colour levels, are shown
in figure 3 for the positive half of the cycle, and in a supplementary movie (available
at https://doi.org/10.1017/jfm.2024.931) for a few full cycles. The comparison is made
between the numerical shear-driven case (left column) and the pressure-driven case (right
column). In the first phases after the forcing reverses sign (figure 3(a), t/T = 0.06), the
flow pattern is relatively similar between the two cases, with high-speed regions over the
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Figure 2. Velocity profiles at different phases during the cycle (as indicated in the top-right panel). Circles
indicate experiment; solid lines indicate shear-driven simulation; dashed lines indicate pressure-driven
simulation.
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Figure 3. For caption see next page.
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Figure 3 (cntd). Phase-averaged streamwise velocity field, 〈U〉, with super-imposed streamfunction
isocontours at different phases during the oscillation cycle: (a) t/T = 0.06, (b) t/T = 0.1, (c) t/T = 0.13,
(d) t/T = 0.21, (e) t/T = 0.25, ( f ) t/T = 0.37, (g) t/T = 0.44, (h) t/T = 0.5. (The phase is also shown in the
inset by the solid black line.) (a i,b i,c i,d i,e i, f i,g i,h i) Shear-driven simulation; (a ii,b ii,c ii,d ii,e ii, f ii,g ii,h ii)
pressure-driven simulation. The horizontal lines indicate the depth of a layer 2δT from the crest plane: dashed
line indicates δT with (3.3); dash-dotted line indicates δT with (3.4).
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laminar solution for a smooth wall, Cf = (2

√
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crests (i.e. the ‘jet’ observed from the velocity profiles in the pressure-driven case and,
albeit with a smaller magnitude, in the shear-driven case). Flow separation is incipient
inside the cavities and develops in large recirculating cells as the outer layer approaches
the maximum velocity (t/T = 0.25). Comparing the two forcings, not only does the
recirculation originate on opposed ripple flanks, but also, in the shear-driven case, the
recirculation affects flow layers above the crest plane (z � 2 cm) and is convected towards
the lee side of the ripple and weakens in intensity, whereas in the pressure-driven case, the
recirculation appears stationary and confined to the cavity region. During the deceleration,
as the motion in the outer layer loses intensity, the flow direction is already reversed close
to the bed and increases in magnitude (figures 3g,h). This occurs because the wall shear
stress has a phase lead over the free-stream velocity and changes sign before t = T/2,
which is a typical feature of oscillatory boundary layers (Batchelor 1967; Jensen, Sumer
& Fredsøe 1989; Fytanidis, García & Fischer 2021; Mier, Fytanidis & García 2021).

The normalized shear stress (skin friction coefficient 〈Cf 〉) and pressure drag (〈Pd〉) are
shown in figure 4 for each phase of the cycle. Both quantities are defined to account for
the total drag over the ripples:

〈Cf 〉 =

∫ Lx

0
〈τ 〉 ds

1
2ρU2

0Lx
and 〈Pd〉 =

∫ Lx

0
〈p〉 n · x ds

1
2ρU2

0Lx
, (3.2a,b)

where 〈τ 〉 and 〈p〉 are the phase-averaged shear stress and pressure on the bed, respectively,
ρ is the fluid density, Lx = 3λ is the length of the domain in the x direction, n is the
unit outward normal to the bed, x is the unit vector in the streamwise direction, and s is
a curvilinear coordinate along the bed. For both types of forcing, figure 4(a) shows the
zero-crossing of the wall shear stress at t/T ≈ 0.375, that is, a phase lead of π/4 over the
flow reversal at t = T/2. This is in notable agreement with the laminar Stokes’ solution,
for which the shear stress varies as cos(ωt + π/4). The literature on oscillatory boundary
layers most commonly uses the maximum of the signals rather than the zero-crossing to
compute the shear velocity phase shift. Then the phase shift is still clearly a phase lead
π/4 in laminar (smooth wall) flows, while during transition it reduces to even negative
values (i.e. a phase lag) before settling to approximately π/18 in the fully-developed
turbulent regime (Fytanidis et al. 2021; Mier et al. 2021). For the present cases, the
‘maximum’-based phase shift is around a π/4 lead. Cross-correlating the shear stress
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Shear- versus pressure-driven oscillatory flows over ripples

signal with the flow oscillation yields a phase shift of approximately 0.27π, which is
close to the estimates based on the zero-crossing and maximum values. The proximity
of the phase shift to the laminar flow value suggests that the flow regime may still be
in an intermittently turbulent regime for both types of forcing. The magnitude of the
peak shear is, however, different with a lower value for the pressure-driven case. As
observed above, the flow responds faster to the forcing in the pressure-driven case. Thus
the recirculation in the ripple troughs forms more rapidly during the early acceleration
stages (0 � t/T � 0.25, see figures 2a,b), which reduces the overall shear

∫ Lx
0 〈τ 〉 ds.

The other component of the bed drag, the pressure (or form) drag 〈Pd〉, is much larger
in the pressure-driven case than in the shear-driven one. This component of the drag,
which would be zero over a smooth wall, is the main source of dissimilarity between the
two forcings in the present configuration. When the flow is forced over the stationary bed
(pressure-driven case), the geometry of the ripples induces a strong increase in pressure
on the stoss side, and a decrease on the lee side. This mechanism is absent when the bed
is oscillating next to a fluid at rest (shear-driven case). The additional pressure gradient
due to the ripple is not homogeneous in space, in contrast with the externally imposed
forcing – i.e. considering (2.2), the inhomogeneous, time-varying, ∂〈p〉/∂xi(x, z, t) term
versus the homogeneous time-varying Π(t) term. Because of the inhomogeneity of the
pressure gradient, a change of reference frame (i.e. a change from an oscillatory forcing to
an oscillatory boundary condition) does not result in equivalent flows (Tardu & Binder
1997; Scotti & Piomelli 2001). Instead, in the shear-driven set-up, the pressure drag
magnitude is mostly minimal and presents only some localized variation throughout the
cycle.

The visualizations in figure 3 show that to some extent, the flow dynamics over the bed
remains confined within a layer of depth 2δT from the crest plane, indicated in the figure
by the horizontal green dashed line. Here, δT is the so-called ‘turbulent Stokes length’
defined in analogy with the classic Stokes length (or depth) δ and leveraging the eddy
viscosity concept as

δT =
√

2(ν + νT)

ω
, (3.3)

where νT is the eddy viscosity. The turbulent Stokes length in (3.3), with some variations
across the literature, has been used widely in pulsating flows (i.e. a non-zero mean
oscillating flow Um + U0 sinωt; Ramaprian & Tu 1983; Scotti & Piomelli 2001; He &
Jackson 2009; Manna, Vacca & Verzicco 2012, 2015; Taylor & Seddighi 2024), albeit most
of the studies have focused on so-called ‘current’-dominated oscillations (U0/Um < 1).
Scotti & Piomelli (2001) propose an eddy viscosity of the form νT = κuτ δT (where
κ = 0.41 is the von Kármán constant) to relate δT to the classical Stokes length in wall
units:

δ+T = δ+
⎡⎣κδ+

2
+

√
1 +

(
κδ+

2

)2
⎤⎦ . (3.4)

In addition, previous studies on smooth and rough wall oscillatory boundary layers (Salon,
Armenio & Crise 2007; Ciri et al. 2023) report that a region of good correlation exists
during the deceleration stages between the wall-normal shear and the Reynolds shear
stress, which is the underlying hypothesis for the eddy viscosity concept. In effect,
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Figure 5. Eddy viscosity ratio as a function of the distance from the bed for (a,c,e) the shear-driven simulation
and (b,d, f ) the pressure-driven simulation, at different phases: (a,b) t/T = 0.23, (c,d) t/T = 0.34, (e, f ) t/T =
0.46.

calculating the eddy viscosity as

〈νT〉x = 〈u′w′〉x

d〈U〉x/dz
(3.5)

shows the presence of a plateau in a wide layer over the ripples also in the present case
(figure 5). In (3.5), the notation 〈·〉x indicates that the ensemble average (2.7) is extended
to the streamwise direction; i.e. taking the streamwise velocity as an example variable,

〈U〉x(z, t) = 1
Ns

1
LxLy

Ns∑
n=0

[∫ Lx

0

∫ Ly

0
U(x, y, z, t + nT) dx dy

]
. (3.6)

This average is introduced under the assumption that u′w′ and dU/dz are the dominating
components, as in a canonical smooth wall boundary layer. Figure 5 shows the presence
of an approximately flat region, which extends deeper in the fluid during the deceleration
(t/T = 0.34 and t/T = 0.46). The eddy viscosity value in the plateau is of the order of
100ν, and is larger in the shear-driven case than in the pressure-driven one. The value is
consistent with values reported by Salon et al. (2007) and Ciri et al. (2023), and does not
vary significantly across phases, at least during the deceleration stages, as observed also for
rough oscillatory boundary layers (Sleath 1987). Taking an average over the plateau region
(2 cm � z � 6 cm) over the deceleration stages, the Stokes depth has been estimated using
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Figure 6. Velocity profile in wall units for the (a) shear-driven and (b) pressure-driven simulations during the
first half of the cycle. Line colours indicate the phase as per the inset in (b). The dashed black line is the law of
the wall, κ−1 log z+ + 5.5, with κ = 0.41.

(3.3) as well as with the formulation (3.4) of Scotti & Piomelli (2001). The latter resulted
in an estimate approximately 50 % larger using the mean absolute value of the friction
velocity during the cycle. We recall that (3.4) was developed in the context of pulsating
flows, where uτ is the (non-zero) mean friction velocity acting throughout the entirety of
the cycle. The calculated values of δT are used in figure 3 to demarcate a distance 2δT from
the crest plane, which is commonly taken as the thickness of the layer where the effects
of the oscillation are confined (Scotti & Piomelli 2001). The value based on the eddy
viscosity estimate (3.5) seems to characterize better the layer depth during the deceleration
and the early stage of the acceleration. It must be acknowledged that the characterization is
qualitative, and there is some uncertainty as to the ‘virtual origin’ for the oscillation layer.

Further corroboration of the ‘canonical’ turbulence characteristics of the flow during
the deceleration is provided by velocity profiles in wall units, 〈U〉+x = 〈U〉x/uτ , shown
in figure 6. As for the computation of the eddy viscosity, the ensemble average is
extended to the streamwise direction (3.6) to provide an overall description of the flow,
while uτ is the phase-dependent value of the friction velocity. Visual inspection of the
profiles suggests the presence of a logarithmic layer during the deceleration phases of
the cycle (t/T > 0.25). The zero-plane displacement d in figure 6 has been calculated
so that the slope of the profiles is given approximately by the nominal value of the
von Kármán constant κ = 0.41 (dashed line in figure 6, with the nominal value of
the smooth wall intercept, B = 5.5). Following an approach similar to that of Kaptein
et al. (2020) and Dunbar et al. (2023), the presence of a logarithmic layer at each
phase is identified by: (i) first estimating the roughness function �U+ (i.e. the vertical
shift between the law of the wall, κ−1 log z+ + B, and the velocity profile) as the
average vertical shift between the crest plane and the z position at which the maximum
velocity is observed; and (ii) then computing the coefficient of determination R2 between
the velocity profile and the expected ‘rough’ law of the wall, κ−1 log z+ + B −�U+.
Values R2 > 0.8 are considered to indicate the presence of a logarithmic layer at that
particular phase. These phases are shown in figure 7(a) together with literature data from
Kaptein et al. (2020) (smooth wall) and Dunbar et al. (2023) (rough wall). Present data,
albeit at a lower Reynolds number, are consistent with the rough wall case presenting
a logarithmic layer for the most part of the deceleration phases. Smooth wall data
at Re ≈ 900 from Kaptein et al. (2020) show instead that a logarithmic region is
detected already during the late acceleration. In the flow over ripples, the shear-driven
forcing seems to have early dynamics of the log layer similar to the pressure-driven
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Figure 7. (a) Cycle phases in which the logarithmic layer is detected. (b) Roughness function �U+ as a
function of time. Colour symbols, present simulations: red square, shear-driven; blue circle, pressure-driven.
Black symbols in (a) are literature data: up triangle for Kaptein et al. (2020), down triangle for Dunbar et al.
(2023).

case, even though the coefficient R2 tends to be smaller than for t/T > 0.25
(thus indicating a weaker fit). For the pressure-driven case, the log region is identified only
during the deceleration phase, and the logarithmic fit is generally lower. However, there
are inevitably some uncertainties in this identification procedure (such as the zero-plane
displacement, or the averaging range), which warrant interpreting these results with
caution. Overall, the dependence of the logarithmic region from the forcing seems mild,
considering the profiles in figure 6 or the value of the estimated roughness function
�U+ shown in figure 7(b) for half the cycle (the other half is similar). The roughness
function tends to increase at a similar rate between the two types of forcing over the
deceleration phase. For both cases, the time-averaged value is �U+ ≈ 6.6, which results
in an equivalent sand grain roughness k+

s ≈ 200 or ks/k ≈ 0.8, which is similar to the
ks/d50 value reported by Dunbar et al. (2023) for rough walls made of irregular grains
(d50 being the median grain size).

Nevertheless, the determination of the roughness function has some uncertainty related
to (arbitrary) choice of the zero-plane displacement d. A physical argument has been put
forth by Jackson (1981) for the zero-plane displacement as the height at which the total
drag acts. Taking this viewpoint, a departure of the von Kármán constant from its nominal
value κ = 0.41 must be admitted in principle (Leonardi & Castro 2010). The log law for
the rough wall can then be rewritten as κ̃−1 log(x + d′)+ B̃′, where d′ is the zero-plane
displacement computed according to the Jackson (1981) definition, and the tildes on κ
and B′ = B −�U+ indicate that the slope and intercepts are not necessarily equal to their
nominal values. The value of κ̃ , fitted from numerical data using d′ as the zero-plane
displacement, is shown in figure 8(a) at different phases of the cycle. The value for those
phases that were previously identified as characterized by a logarithmic region (i.e. the
phases in figure 7a) are denoted by symbols, whereas the lines show the behaviour of k̃
throughout all phases of the cycle. (Gaps are present, e.g. for t/T < 0.1, when the fitting
algorithm did not converge.) During the deceleration, both cases approximately reach a
plateau for the value of κ̃ for 0.3 � t/T � 0.35, but the value is different from 0.41, and
depends strongly on the forcing (approximately 0.35 for the pressure-driven case, and 0.47
for the shear-driven case). The behaviour of κ̃ is consistent with that reported by Kaptein
et al. (2020) for the oscillatory flow over a smooth wall. They also admitted a variability of
the von Kármán constant (and intercept), and determined its value from the minimum of
the diagnostic function. Their curves also show κ̃ increasing during the late acceleration,
and attaining a relatively steady value during the deceleration, which increases with
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Figure 8. (a) Variation of the von Kármán constant κ̃ over the half cycle. Symbols indicate the phases at which
the log region is detected as in figure 7: red square, shear-driven; blue circle, pressure-driven. The horizontal
dashed line is the nominal value κ = 0.41. (b) Variation of k̃B̃′ versus B̃′ at different phases, compared with
the curve fits of Nagib & Chauhan (2008) in the solid line, and Leonardi & Castro (2010) in the dashed line.
Colour denotes the phase as in the inset (some phases are not present in the B̃–k̃B̃ plane for either or both
cases because a log layer is not detected in the velocity profile); square indicates shear-driven, circle indicates
pressure-driven.

Reynolds number from 0.37 at Re = 990 up to 0.46 at Re = 3, 460. According to the
Kaptein et al. (2020) data, the value of the constant decreases towards the end of the
deceleration for a smooth wall, while in the present case, for the flow over ripples, κ̃ tends
to increase and diverge as a logarithmic layer is no longer present in the profiles (figure 6).

The phase-dependent values of κ̃ and B̃′ match relatively well on the B̃′–κ̃B̃′ plane with
the fits of Nagib & Chauhan (2008) and Leonardi & Castro (2010), as shown in figure 8(b).
Nagib & Chauhan (2008) collected various smooth wall data (including favourable and
adverse pressure gradient boundary layers) and, allowing for a variation of κ depending
on the type of flow, collapsed them onto an exponential fit (solid line in figure 8b). Later,
Leonardi & Castro (2010) extended (part of) the curve with a polynomial fit calculated over
several different rough wall channel flows (dashed line). Data from the pressure-driven
case follow quite closely the rough-wall correction of Leonardi & Castro (2010) during the
deceleration. A similar agreement was observed by Yuan & Piomelli (2015) for adverse
pressure gradient (i.e. decelerating) rough-wall boundary layers. The shear-driven case is
also initially found along the ‘rough-wall’ branch of the curve for the early deceleration
phases, but later phases are more scattered over the B̃′–κ̃B̃′ plane as the von Kármán
constant value starts to drift off. Due to the present low/moderate Reynolds number, a
log region is not observed in the acceleration phases (figure 7a), and values of the von
Kármán constant and intercept B̃′ could not be computed and plotted in figure 8(b).

Overall, for the phase-averaged velocity field there is a relatively good agreement
between the experiment and the simulation with shear-driven forcing (i.e. employing the
same forcing mechanism as in the experiment). Minor differences between the experiment
and simulations may be expected as the flow configuration cannot be matched exactly in
all details. For example, the boundary conditions in the numerical model are periodic,
while the tray has a finite size and a development part. This is quantified by computing the
difference using the L1-norm between the experiment and the simulations:

�(x, t) = 1
h

∫ h

0

∣∣〈Unum〉(x, z, t)− 〈Uexp〉(x, z, t)
∣∣ dz, (3.7)

where h ≈ 13 cm is the height of the experimental field of view (figure 1a), Unum indicates
the velocity field from the numerical simulations (either pressure- or shear-driven), and
Uexp is the experimental velocity field (shear-driven). The difference over the cycle is
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Figure 9. The L1-norm difference throughout the oscillation cycle for the shear-driven numerical case (red
symbols) and the pressure-driven numerical case (blue symbols). The solid black line shows the oscillatory
forcing for reference. The blue and red symbols are slightly shifted in the time axis for the sake of clarity. The
symbols denote the location where the difference is evaluated according to the legend in the inset. Empty
symbols (crests): square indicates x = 0 cm, circle indicates x = 7.6 cm. Solid symbols (troughs): square
indicates x = 3.8 cm, circle indicates x = 11.2 cm.

shown in figure 9 for two locations at the crest of the ripple (empty symbols) and two
locations at the trough (solid symbols). The difference of the shear-driven numerical case
typically remains below 10 % throughout the whole oscillation cycle, without too much
sensitivity on the probing location. On the other hand, in the pressure-driven case, the
difference tends to be larger at locations above the ripple trough (solid symbols). At
the crest, the difference is comparable with the shear driven case. This suggests that
the dynamics of the fluid layers over the ripple crest is not too sensitive to the forcing
mechanism; rather, it is similar between the shear-driven and pressure-driven cases. The
similarity may then likely extend beyond the hydrodynamic features to the processes that
depend upon it, such as the transport of sediments, which is particularly important at
the crest where the ripple growth occurs. An experimental or numerical set-up based on
a shear-driven forcing may provide a sound representation of sediment transport at the
seabed of coastal environments (where the oscillating boundary layer is pressure-driven),
at least for the range of parameters considered in the present case. Further studies would
need to be performed to fully characterize the parameter space and observe any potential
larger discrepancy. At the ripple trough, the discrepancy, characterized by the value of Δ,
between the two types of forcing is larger. This is due to the different mechanisms and
location by which flow separation occurs within the cavity between two crests, and the
potential interaction of pressure gradients given by both the wave and the ripple features.

3.2. Steady streaming
Figure 10 shows the time-averaged component of the flow, i.e. the so-called ‘steady
streaming’ (Stuart 1963, 1966; Riley 1966, 2001). The steady streaming indicates a net
non-zero time-averaged flow despite an oscillatory forcing, and has been studied widely in
wave bottom boundary layers. If the bed has ripples, then the time-averaged flow takes the
form of recirculating cells (Lyne 1971; Sleath 1976; Kaneko & Honji 1979; Vittori 1989;
Hara & Mei 1990). Such a pattern can be observed in figure 10, with a good agreement
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Figure 10. Time-averaged streamwise velocity Ū, with superimposed isocontours of the streamfunction ψ̄ :
(a) shear-driven numerical results; (b) pressure-driven numerical results. The horizontal lines indicate the depth
of a layer 2δT from the crest plane: dashed line indicates δT with (3.3); dash-dotted line indicates δT with (3.4).

between the two types of forcing. Quantitatively, anticlockwise recirculations (present over
ripple flanks with dzbed/dx > 0) are somewhat weaker in the pressure-driven case, and as
a result, the contour lines are not closed. However, this is a relatively minor discrepancy,
which is also a consequence of the asymmetry in the bedform, and qualitatively the two
distributions point to a similar type of motion. The recirculating pattern is approximately
confined within a layer of depth 2δT , when the turbulent Stokes length is evaluated with the
estimated eddy viscosity from (3.5). The time-averaged flow is generally not very strong.
In this case, maximum velocity is less than 10 % of the oscillation amplitude U0. However,
this component has an important impact on the bed morphology and ripple formation and
evolution, especially in the early stages. As observed from figure 10, the steady motion
is such that near-bed fluid particles (thus the sediments) are conveyed from the troughs
to the crests, which is the ‘rolling-grain’ mechanism that initiates the ripple in the first
place (Bagnold 1946; Sleath 1976). The similarity between the flow patterns suggests that
shear-driven configurations may appropriately characterize near-bed hydrodynamics, and
the related sediment transport patterns, in the rolling-grain regime.

3.3. Turbulent flow field
A second mechanism for ripple formation and growth is referred to as the ‘vortex
regime’ mechanism (Bagnold 1946), which overtakes the steady streaming when the ripple
steepness increases significantly and the flow is turbulent. The separation of the boundary
layer creates a recirculation region, such as that discussed in figure 3, which rolls up,
entrapping sediment, and is ejected out of the cavity as the boundary layer oscillation
changes sign. The ejected vortex then loses coherence while convected upwards along
the flank, and entrapped sediments are deposited around the ripple crest. Turbulence
intensity affects the strength of the recirculation, and as a result, the transport and
suspension of sediments. Turbulence statistics are compared in figures 11–13 for the
experimental and numerical cases. The magnitude of the fluctuations in the streamwise
and bed-normal directions (figures 11 and 12, respectively) is generally over-predicted by
the numerical results. The discrepancy can be ascribed to the inevitable uncertainties in the
numerical results as well as in the measurements (such as facility vibrations, background
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Figure 11. Colour contours of root-mean-square (r.m.s.) streamwise velocity fluctuation 〈u′u′〉1/2
: (a)

experimental (shear-driven) results; (b) numerical shear-driven results; (c) numerical pressure-driven results.
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Figure 12. Colour contours of r.m.s. bed-normal velocity fluctuation 〈w′w′〉1/2
: (a) experimental

(shear-driven) results; (b) numerical shear-driven results; (c) numerical pressure-driven results.

turbulence, vortex-shedding from instrumentation parts) that are unavoidable and may
affect especially turbulence statistics. In addition, the boundary conditions also introduce
some differences in the flow configurations, because the numerical domain is periodic,
while the tray has a finite size and effects. A better agreement is observed in terms of
the penetration depth in the fluid layers where the intensity is large, at least between the
experiment and the shear-driven numerical case. The pressure-driven flow also presents
much more intense velocity fluctuations, especially for the u component. In this case, the
numerical results show a more rapid growth and decay of the turbulent fluctuations. The
turbulence intensity in the cavity is larger than for the shear-driven forcing as a result of
the deeper penetration into the cavity of the recirculating region that forms on the flank of
the ripple (figure 3).

While local turbulence intensities depend on the type of forcing, Reynolds shear stresses,
which are compared in figure 13, are very similar. There is a quantitative good agreement
regarding the order of magnitude of the Reynolds stresses, and the spatial distribution
is also well reproduced qualitatively. In particular, the near-bed distribution, which is
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Figure 13. Colour contours of Reynolds shear stress −ρ〈u′w′〉: (a) experimental (shear-driven) results;
(b) numerical shear-driven results; (c) numerical pressure-driven results.

critical in sediment transport, is well captured, with the exception of the troughs where
〈u′w′〉 is under-estimated. The intensity in the outer layers is also smaller compared to the
experimental measurements.

The Reynolds stress 〈u′w′〉 depends on the correlation between the two components
u′ and w′. This correlation seems to be relatively independent of the forcing, compared
to more evident effects on the individual components. From a practical point of view, it
appears that the key mechanisms for sediment transport, such as the Reynolds stresses
and the steady streaming, are rather similar in the shear-driven and pressure-driven flows,
at least in a bulk or time-averaged sense. More sensitivity to the forcing is observed
in the time evolution during the cycle. Phase-averaged Reynolds stresses −ρ〈u′w′〉 are
shown in figure 14. Figure 14(a) starts with the distribution in the early deceleration phase
of the cycle (t = 0.36T), when oscillatory turbulent flows typically show characteristics
analogous to the canonical unidirectional counterpart (Jensen et al. 1989; Salon et al. 2007;
Ciri et al. 2023). Indeed, both types of forcing present a near-bed layer where the Reynolds
stresses rapidly increase with the distance from the wall, reach a peak, and then decrease at
larger distances from the bed. The layer depth is well characterized by the turbulent Stokes
length evaluated using (3.3) and (3.5). Regions with opposite sign of the Reynolds stress
occur farther from the bed (z � 2δT ) as a residual of flow structures from earlier phases of
the cycle (the so-called ‘history effect’). Such regions are found farther away from the wall
in the shear-driven case than the pressure-driven case. The latter case also presents stronger
〈u′w′〉 values in the troughs as a consequence of the more energetic recirculation observed
with this type of forcing (figure 3). As the cycle approaches the flow reversal (figure 14b),
history effects tend to disappear, and the Reynolds stresses weaken in intensity although
they mostly maintain the same spatial distribution, well contained within two turbulent
Stokes lengths from the crest plane. For the shear-driven case, regions of negative −〈u′w′〉
(which would be the ‘canonical’ sign in the second half of the cycle) are already well
developed at this stage in the troughs. As shown in figure 4(a), the wall shear stress has a
phase lead with the free-stream velocity, and changes sign at t = 0.375T . As the flow in the
troughs is recirculating (figures 3g,h) during these phases (0.375 � t/T � 0.5), the shear
and the near-bed flow have the same signs as in a canonical unidirectional wall-bounded
flow in the negative x direction, which leads to the development of the (negative) Reynolds
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Figure 14. Reynolds shear stress −ρ〈u′w′〉 at different phases during the oscillation cycle: (a) t/T = 0.36,
(b) t/T = 0.5, (c) t/T = 0.56, (d) t/T = 0.61, (e) t/T = 0.68. (a i,b i,c i,d i,e i) Shear-driven simulation;
(a ii,b ii,c ii,d ii,e ii) pressure-driven simulation. The horizontal lines indicate the depth of a layer 2δT from
the crest plane: dashed line indicates δT with (3.3); dash-dotted line indicates δT with (3.4).
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Figure 15. Total turbulent kinetic energy as a function of time during one cycle; solid line indicates
shear-driven simulation, dashed line indicates pressure-driven simulation.

stresses in the troughs. In the pressure-driven case, the wall shear and the local flow also
have corresponding signs, but the dynamics is affected by the additional presence of the
external forcing Π , and only a marginal layer of negative Reynolds stresses has formed at
t/T = 0.5.

At later phases (figures 14c,d), the negative Reynolds shear stress keep developing
during the acceleration in the negative half of the cycle, while a ‘new’ history effect region
(−〈u′w′〉 > 0) progressively diminishes in intensity. The main differences between the
forcings are again observed in the troughs of the rippled bed. In the pressure-driven case, as
the flow separates at the crest, the Reynolds stresses rapidly increase (in magnitude) within
the cavity, and their intensity is larger than in the shear-driven flow. In the shear-driven
case, as the recirculation starts developing from the flank, the Reynolds shear stresses
significantly decrease in the troughs. The spatial distribution in the overlying layers is also
significantly affected because of the size of the recirculation, which extends over the crest
plane (figure 3(d), for the opposite half of the cycle). At the end of the acceleration part
(figure 14e), the fully-developed ‘canonical’ distribution starts to establish. Comparing
the two types of forcings, analogous features to the early deceleration stage (figure 14a)
are observed, i.e. a milder Reynolds stress intensity in the troughs, and larger penetration
length for the shear-driven case, while the pressure-driven forcing is more energetic in the
cavities.

The phase distributions of the Reynolds stresses highlight the different dynamics
between the two forcings. This is further corroborated by the evolution during the cycle
of the volume-integrated turbulent kinetic energy Q = (LxLz)

−1 ∫ Lx
0

∫ Lz
0 〈q〉 dx dz (where

〈q〉 = (〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉)/2 is the local phase-averaged turbulent kinetic energy),
reported in figure 15. While the trend is similar in both curves, the shear-driven case
presents a phase lag with respect to the pressure-driven case. The phase lag is likely
related to the general faster response of the flow to the pressure forcing, particularly in
terms of flow separation, which is a main driver of turbulent kinetic energy production.
Indeed, Önder & Yuan (2019) have shown in direct numerical simulations of oscillatory
flow over a sinusoidal wall that the turbulent kinetic energy production P has a
peak in the acceleration stage (t/T ≈ 0.125) due to vorticity shedding from the crests.
The pressure-driven curve of Q seems consistent with this scenario, as the turbulent
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Figure 16. Volume-integrated production (solid lines) and dissipation (dashed lines) during one cycle:
(a) shear-driven simulation; (b) pressure-driven simulation.

kinetic energy rapidly increases during the acceleration phases (recall that from the
budget, dQ/dt ∝ P) and reaches a maximum shortly before t/T = 0.25 (i.e. at the peak
free-stream velocity). In the case of the shear-driven simulation, the maximum turbulent
kinetic energy occurs after t/T = 0.25 during the early deceleration phase. Figure 16
shows the volume-integrated turbulent kinetic energy production P and dissipation ε,
which are obtained from the local phase-dependent production 〈P〉 and dissipation 〈e〉:

〈P〉 = 〈u′u′〉 ∂〈U〉
∂x

+ 〈u′w′〉 ∂〈U〉
∂z

+ 〈w′w′〉 ∂〈W〉
∂z

+ 〈u′w′〉 ∂〈W〉
∂x

, (3.8)

〈e〉 = 2ν〈sijsij〉, (3.9)

where sij is the symmetric part of the fluctuating velocity gradient tensor.
Volume-integrated production and dissipation in figure 16 are normalized in wall units,
using the average friction velocity during the cycle uτ,0 (and P+0 = Pν/u4

τ,0), to avoid
singularities in the curves as the shear vanishes. In both cases, the production peaks during
the early acceleration cycle, in relatively good agreement with Önder & Yuan (2019).
Their results also present a secondary peak at the end of the deceleration cycle, which
is not observed in the present case. The present trend is rather similar to the curves of
Ciri et al. (2023) for a rough bed made of spherical particles at Re = 1200 and 1500,
though the peak production in those cases is found closer to the maximum velocity phase
(t/T ≈ 0.20–0.25). Önder & Yuan (2019) performed simulation over sinusoidal ripples at
Re ≈ 140. Thus it appears that as the Reynolds number increases, the first and secondary
production peaks coalesce into one that shifts at later phases during the acceleration. This
behaviour is somewhat similar to that observed by Mier et al. (2021) and Fytanidis et al.
(2021) for the shear stress over smooth walls.

Comparing the two types of forcing provides an explanation for the phase shift observed
in figure 15. While in the pressure-driven case early deceleration phases coincide with an
excess of production, which leads to a rapid growth of the turbulent kinetic energy Q,
in the shear-driven case the production is closely matched by an increase in dissipation
ε, which explains the delay observed in figure 15 in the maximum of turbulent kinetic
energy. During the deceleration (t/T > 0.25), an excess of dissipation is observed, with
a concurrent decrease in Q. Overall, the dissipation tends to be much larger for the
shear-driven case, where P/ε < 1 during the deceleration phases.

Despite the phase shift in figure 15 between the two simulations, the behaviour
of the two curves is analogous, which explains the fairly good similarity observed
for bulk quantities, such as, for example, the time-averaged Reynolds stresses 〈u′w′〉
(figure 13). Therefore, it seems that an experimental or numerical shear-driven set-up can
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provide an accurate characterization with respect to field condition of bulk flow features,
whereas more care is necessary in interpreting phase-dependent results. As warranted
above, more studies are required to fully characterize the generality of the present
observations regarding the sensitivity to the forcing approach over a range of Reynolds
and Keulegan–Carpenter numbers.

4. Conclusions

Direct numerical simulations of oscillatory boundary layer flow over a rippled bed
have been performed. The oscillations have imposed in the simulations either through a
sinusoidal pressure gradient (pressure-driven oscillations) or through a sinusoidal velocity
boundary condition at the rippled bed (shear-driven oscillations). Results have been
compared with experimental PIV data from an oscillating tray apparatus, which thus
corresponds to a shear-driven configuration.

Observed from a reference frame with axes fixed on the bed, the far field of the
shear-driven cases oscillates harmonically as in the pressure-driven case. Close to the
bed, however, some discrepancies are observed in the troughs of the ripples. In particular,
boundary layer separation and flow recirculation originate on opposing flanks of the ripple.
The shear-driven case does not capture the large pressure gradient (and consequent form
drag) generated across the ripple crest. Due to this local and non-homogeneous (i.e.
variable in space) effect, the equivalence between an oscillatory forcing and an oscillatory
boundary condition breaks down. The numerical results in the shear-driven case reproduce
fairly accurately the experimental measurements for phase-averaged first-order statistics,
while the error is generally larger on turbulence quantities and for the pressure-driven
forcing. However, over the crest the pressure-driven forcing error is comparable in
magnitude to the shear-driven simulations, which suggests that the hydrodynamics at this
important location for the ripple growth may not depend too much on the external forcing.

Despite the differences throughout the cycle phases, time-averaged flow patterns are
relatively similar between the two types of forcing. Consistent with previous studies
on ripples, the ‘steady streaming’ results from two counter-rotating cells formed within
the cavity in both cases. Given the similarity, a shear-driven numerical or experimental
set-up may be expected to faithfully capture sediment dynamics in the initial formation
and growth of the ripples (‘rolling-grain regime’), where the steady streaming is a key
factor. The time-averaged distribution of the Reynolds shear stress (which affects the
dynamics in the ‘vortex regime’) is also similar qualitatively and quantitatively between
the shear-driven and pressure-driven cases. However, notable differences in the Reynolds
stress distributions are observed through the various phases of the cycle, as well as for the
turbulent kinetic energy that presents a phase lag in its evolution for the shear-driven case.

Overall, the results suggest that, at least in the present conditions, whereas bulk
time-averaged processes may be well described in shear-driven configurations as in
pressure-driven cases, more attention must be paid to interpreting instantaneous or
phase-dependent flow features. Although the analysis in this paper does not span the full
parameter space, present results may pave the way for further studies.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.931.
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Appendix A. Grid sensitivity and statistical convergence analysis

Results of a grid sensitivity study are presented in this appendix. Second-order statistics
are compared for a case with 384 × 128 × 384 grid points (‘coarse grid’), and a case with
768 × 256 × 768 grid points (‘fine grid’), which is the baseline case analysed throughout
the paper. The two simulations are run on the same domain, so that effectively the fine grid
case has twice as much resolution as the coarse grid case in all directions. Statistics shown
in the following have been computed over 30 cycles. As reported in § 2, the simulations
are initialized on a coarser grid (192 × 64 × 192) with the fluid at rest while the forcing is
spun up over 10 periods. The same spin-up simulation is used for the cases presented here.
Then the resolution is progressively refined up to 768 × 256 × 768 for the fine grid case
over 10 periods, which are not used for statistics calculation. For the coarse grid case, the
refinement is done over 6 periods, after which statistics are collected for 30 periods. As
detailed below, 30 periods are sufficient to achieve convergence of second-order statistics.
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Figure 17. Colour contours of r.m.s. streamwise velocity fluctuation 〈u′u′〉1/2
: (a) shear-driven, coarse grid;

(b) shear-driven, fine grid; (c) pressure-driven, coarse grid; (d) pressure-driven, fine grid.
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Figure 18. Colour contours of Reynolds shear stress −ρ〈u′w′〉: (a) shear-driven, coarse grid;
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Figure 19. Profiles of phase-averaged r.m.s streamwise velocity fluctuation 〈u′u′〉1/2: dashed line indicates
coarse grid; solid line indicates fine grid. (a,c,e,g,i) Shear-driven results (red lines); (b,d, f,h, j) pressure-driven
results (blue lines). Phases: (a,b) t/T = 0.52, (c,d) t/T = 0.6, (e, f ) t/T = 0.75, (g,h) t/T = 0.82, (i, j) t/T =
0.98.

Time-averaged streamwise velocity fluctuations and Reynolds shear stress distributions
are compared in figures 17 and 18. Overall, both grids result in similar distributions
for both kinds of forcing, which suggests that the results discussed can be considered
as grid-independent. The Reynolds stresses seem to have a mildly more pronounced
dependence on the resolution, although the main features of the distribution are in general
agreement for both the coarse and fine grids. Profiles of phase-averaged 〈u′u′〉 and 〈u′w′〉
at the crests and troughs of the ripple mostly confirm the grid convergence (figures 19
and 20, respectively). Some discrepancies are observed at the peak velocity phase and in
the early deceleration (t/T = 0.75 and t/T = 0.82) within the troughs of the ripples for
the pressure-driven case, with the coarser grid tending to slightly over-predict the peak
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Figure 20. Profiles of phase-averaged Reynolds shear stresses 〈u′w′〉: dashed line indicates coarse grid; solid
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Phases: (a,b) t/T = 0.52, (c,d) t/T = 0.6, (e, f ) t/T = 0.75, (g,h) t/T = 0.82, (i, j) t/T = 0.98.

turbulence intensity, but overall the curves do not change significantly with the adopted
resolutions.

A somewhat larger sensitivity is observed for quantities that depend on variable
derivatives, such as the maximum value of the friction velocity uτ,m, the eddy viscosity νT ,
and the turbulent Stokes length δT (table 1). Derivatives, akin to higher-order statistics, are
notably sensitive to the grid resolutions. Nevertheless, even for these variables, the error
is of the same order (10–15 %) as the difference with the experimental measurements
(figure 9).

In addition, figures 21 and 22 report results of a statistical convergence analysis on
the ensemble average of second-order statistics. Specifically, we have considered different
numbers of cycles Ns for computing the phase average defined in (2.7) and reiterated here,
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Forcing Grid �x+m �y+m �z+m
min uτ,m (cm s−1) Error νT/ν Error δT (cm) Error

Shear-driven Coarse 32.07 96.21 12.31 5.18 −5.2 % 114.3 7.0 % 1.356 −3.5 %
Fine 16.91 50.73 6.49 5.47 — 123.0 — 1.406 —

Pressure-driven Coarse 23.11 69.34 8.88 3.74 −9.0 % 79.6 14.5 % 1.134 6.9 %
Fine 12.69 38.08 4.87 4.10 — 69.6 — 1.061 —

Table 1. Grid resolution in wall units (�x+m
i = xiuτ,m/ν) and sensitivity analysis for the maximum friction

velocity uτ,m, eddy viscosity νT (3.5), and turbulent Stokes length δT (3.3). The error (column to the right of
each parameter) is computed with respect to the fine grid.
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Figure 21. Profiles of phase-averaged r.m.s streamwise velocity fluctuation 〈u′u′〉1/2 for different numbers
of averaging cycles: dash-dotted line for N = 10 cycles; dashed line for N = 20 cycles; solid line for N =
30 cycles. (a,c,e,g,i) Shear-driven results (red lines); (b,d, f,h, j) pressure-driven results (blue lines). Phases:
(a,b) t/T = 0.52, (c,d) t/T = 0.6, (e, f ) t/T = 0.75, (g,h) t/T = 0.82, (i,j) t/T = 0.98.
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Figure 22. Profiles of phase-averaged Reynolds shear stresses 〈u′w′〉 for different numbers of averaging cycles:
dash-dotted line for N = 10 cycles; dashed line for N = 20 cycles; solid line for N = 30 cycles. (a,c,e,g,i)
Shear-driven results (red lines); (b,d, f,h, j) pressure-driven results (blue lines). Phases: (a,b) t/T = 0.52,
(c,d) t/T = 0.6, (e, f ) t/T = 0.75, (g,h) t/T = 0.82, (i, j) t/T = 0.98.

for convenience, for a generic variable φ:

〈φ〉(x, z, t) = 1
Ns

1
Ly

Ns∑
n=0

[∫ Ly

0
φ(x, y, z, t + nT) dy

]
. (A1)

Results are shown for Ns = 10, 20 and 30 (which is the value adopted for the statistics
shown in the main section of the paper), with profiles taken at the crests and troughs
of the ripples as indicated in the figures. Both the streamwise r.m.s. fluctuations (〈u′u′〉,
figure 21) and the Reynolds shear stresses (〈u′w′〉, figure 22) show little sensitivity to
Ns. Some discrepancies are observed for 10 cycles, while the curves for Ns = 20 and
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Ns = 30 collapse to a good approximation regardless of the phase or location. It appears
that at least for the present geometry and Reynolds number, 20 cycles are sufficient to
achieve convergence of the statistics. We recall that the ensemble average is calculated
by averaging not only corresponding phases in time, but also along the (homogeneous)
spanwise direction.
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