Proceedings of the Edinburgh Mathematical Society (2023) 66, 897-918
doi:10.1017/S0013091523000469

THE SPECTRAL EIGENMATRIX PROBLEMS OF PLANAR
SELF-AFFINE MEASURES WITH FOUR DIGITS

JING-CHENG LIU' (5, MIN-WEI TANG' (5 AND SHA WU?

1Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education),
School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan,
P.R. China (jcliu@hunnu.edu.cn; tmw33@163.com)
* School of Mathematics, Hunan University, Changsha, Hunan, P.R. China
(shaw0821@163.com)

(Received 6 March 2023)

Abstract Given a Borel probability measure g on R™ and a real matrix R € My, (R). We call R a
spectral eigenmatrix of the measure p if there exists a countable set A C R"™ such that the sets Ep =
{92”<’\’x> HIPWS A} and Erp = {927”'<R’\’“”> HIP WS A} are both orthonormal bases for the Hilbert
space L2(u). In this paper, we study the structure of spectral eigenmatrix of the planar self-affine
measure s, p generated by an expanding integer matrix M € M2(2Z) and the four-elements digit set
D = {(0,0)t, (1,0)%, (0, 1), (=1, —1)t}. Some sufficient and/or necessary conditions for R to be a spectral
eigenmatrix of ups,p are given.
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1. Introduction

Let p be a compactly supported Borel probability measure on R™. We call y a spectral
measure if there exists a countable set A C R™ such that the set {GZWi<)"I> }AeA forms an
orthogonal basis for L2(u). The set A is then called a spectrum of p, and we also say that
(u, A) forms a spectral pair. If @ C R™ is a Lebesgue measurable set with finite positive
Lebesgue measure and dp = xq dx is a spectral measure, then we call Q a spectral set.
Classical spectral measures were first introduced by Fuglede [23], and he proposed his
famous conjecture stating that a bounded measurable set 2 C R™ is a spectral set if and
only if  is a translational tile. The conjecture was proven to be false on n > 3 [29, 44],
but it is still open in one and two dimensions, and it is related to the construction of
Gabor and wavelet bases [13, 38, 46].
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The studies entered into the realm of fractals when Jorgensen and Pedersen discovered
that some singular fractal measures can also be spectral [27]. Since then, singular spec-
tral measures have become an active research topic, which involves classifying classes
of measures which are spectral [1, 3, 4, 6, 9, 14-17, 30], finding their possible spectra
[8, 10, 11, 21, 24, 33, 34] and studying all kinds of convergence problems of the associ-
ated Mock Fourier series [19, 40, 41], etc. Many new exotic phenomena which are different
from Lebesgue measures were discovered for singular fractal measures. Here we list some
typical examples; Dai 7] found that the spectra of some singular spectral measures might
have zero Beurling dimension, while the spectra for Lebesgue measures must have pos-
itive Beurling dimension [32]. Strichartz [40, 41] found a large class of singular spectral
measures with uncountably many spectra such that their associated mock Fourier series
of continuous functions converge uniformly, and the mock Fourier series of LP-functions
converge pointwise almost everywhere; nevertheless, there are also singular spectral mea-
sures and spectra such that the associated Fourier series of continuous function diverges
at some point [19]. These surprising phenomena motivate researchers to find more singu-
lar spectral measures and study their related problems, and it is connected with a number
of areas in mathematics such as number theory, dynamical system, harmonic analysis,
ete. [18, 28, 39]. The following two types of problems are basic in the study of spectrality
of singular measures.

I. Spectral Problems: What kind of measures are spectral measures?

II. Spectral Eigenmatrix Problems: Let p be a singular spectral measure on R™.
The spectral eigenmatrix problems contain two themes in general. (1) Fix a spectrum
A, find all R € M,,(R) such that RA is a spectrum of u (we call it the first type of
spectral eigenmatrix problems); (2) Find all matrices R € M,,(R) such that RA is a
spectrum of p for some spectrum A (we call it the second type of spectral eigenmatrix
problems). In the two cases, R is called a spectral eigenmatriz of p and A is called
a eigenspectrum of p corresponding to R.

Let M € M, (R) be an n X n expanding real matrix (i.e., all the eigenvalues of M have
modulus strictly greater than one), and D C R™ be a finite digit set. Then there exists a
unique Borel probability measure j)s, p, which satisfies that

1

= 55 Z wm.p(ME —d) for any Borel set E, (1.1)

deD

wum.p(E)

where #D denotes the cardinality of D [26]. Moreover, the measure is supported on

T(M, D) = {ZM’“dk cdy € D} = ZM*’@D.
k=1

k=1

We call par,p a self-affine measure and T (M, D) a self-affine set. In particular, if M
is a multiple of an orthonormal matrix, then pas p and T'(M, D) are called self-similar

https://doi.org/10.1017/50013091523000469 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091523000469

The spectral eigenmatriz problems of planar self-affine measures 899

measure and self-similar set, respectively. It is known that a self-affine measure ps,p can
be expressed by the infinite convolution of Dirac measures with equal weights as follows:

sy, = Opp—1p % Opp—2p % Opp—3p %=+,

where * is the convolution sign, dp = ﬁ > ecr Oc for a finite set £ and d. is the Dirac
measure at the point e, and the convergence is in the weak sense.

The spectral eigenmatrix problems are also called the scaling matrix problems. The
origin of spectral eigenmatrix problems goes back to Laba and Wang [30], who first
discovered a countable set A such that A and 2A are spectra of a measure u. This
surprise discovery attracted many researchers, and a lot of new results about the
spectral eigenmatrix have been obtained. For examples, Dutkay and Jorgensen [17]
proved that R = 5"(n € NT) is a spectral eigenmatrix of M4 f0,2y for the spectrum
Ay =377 ,{0,1}4*" and R = 3n(n € NT) is not a spectral eigenmatrix of ju4 (02}
for the spectrum A;. Dutkay and Haussermann [18] proved that if p is a prime number
greater than 3, then p”A; is also a spectrum of ju4 19,21 for any n > 1. He et al. [25] gave
an answer to the spectral eigenmatrix problems (1) about the measure t, (0,ar5r}y for the
spectrum A := Y77 {0,£1}¢" 1. Fu et al. [22] gave a complete characterization on the
spectral eigenmatrix problems (2) of the Bernoulli convolution g, Wang and Wu [45]
studied the spectral eigenmatrix problems (2) for a class of self-similar spectral measures
with consecutive digits. The known results on spectral eigenvalue problems mainly focus
on self-similar spectral measures in one-dimensional case; however, there are not much
discussions about the spectral eigenmatrix problems in high-dimensional case since the
methods in one dimension are difficult to apply to higher dimensions even for the sim-
ple cases. As far as we know, the only high-dimensional example was by An et al. [2],
who discussed the spectral eigenmatrix problems of the Sierpinski-type measure psp
generated by an expanding matrix M = diag[3¢, 3¢] and D = {(0,0)%, (0,1)%,(1,0)*}.

The planar Cantor-dust measure p; s is the most typical self-affine measure except
for the planar Sierpinski-type measure, and it is generated by an expanding matrix M €
M5(Z) and the integer digit set D’ = {(0,0)?, (a1, a2)?, (B1, B2)t, (—a1 — B1, —ag — B2)'}.
There are many researches about its spectrality or non-spectrality [35, 37, 42, 43].
Recently, Chen et al.[5] gave the following complete characterization on the spectrality

of pipr pr-

Theorem 1.1. [5] Let D' = {(0,0)!, (a1, 2)", (B1, B2)!, (—a1 — B1, —ag — B2)'} be an
integer digit set and M € My(Z) be an expanding matriz. If o8y — sy ¢ 27Z, then
P pr 08 a spectral measure if and only if M € M3 (27Z).

o -

The corresponding self-affine measure pys,p is the simplest planar Cantor-dust measure.
Motivated by the above works, our goal in the present paper is to investigate the spectral
structure and spectral eigenvalue problems of p5s,p, and we hope that the methods used
in this paper can shed some light on the study of high-dimensional spectral eigenvalue
problems.

Let
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In order to characterize the structure of the spectra of pp; p, we need to introduce
some notation from symbolic dynamical system. Let ¥ = {0,1,2,3}, ¥° = () and X" =
{irvig--+in 1 i; € ¥,1 < j < n} to be the set of all words i; - --4,, with length n > 1.
For any I € ¥" and J € ¥™, the word IJ is their natural conjunction. In particular,
Oig i =41 ip, [j =iy--ipjforall I =iy---i, € X", n>1,and 0F =0---0. We

k
define that I|; =d14a---ig for I =iyig-- i, € X" and k < n.

B Y R

Then we can state our first result as follows.

Theorem 1.2. Let M € My(2Z) be an expanding matric, D be given
by Equation (1.2). If A is a spectrum of py,p with 0 € A, then for each n > 1, A
has a decomposition

1 1 1
A= U (M* <2811 +ZI1> + M*? (2512 +212> +o M (281 +F1>> )

Iexn
(1.4)
where zyk = Sk = son =0, Ujensyi =S, 27i C Z2 for every J € ¥¥, 0 <k <n—1 and
each Ty C Z?% is a spectrum of py.p with 0 € Ton. Conversely, if A can be decomposed

into the form of Equation (1.4) for some positive integer n, then A is a spectrum of piar,p
with 0 € A.

Theorem 1.2 characterizes the structure of the spectra of s, p, which is useful for us
to find the necessary conditions for a matrix to be a spectral eigenmatrix of pps,p. Our
main results about spectral eigenmatrices are the following three theorems.

Theorem 1.3. Let M € M5(27) be an expanding matriz, D be given by Equation (1.2)
and let R € Ms(R) and R, = M*~*RM** for any k € Z. Suppose R is a spectral
eigenmatriz of ua, p, then the following statements hold.

(i) R=$M*R'M*~! for somel € 2Z+ 1 and R' € My(Z) with det(R') € 2Z + 1;
(ii) For each k >0, Ry is a spectral eigenmatriz of fiar,p;
(ii) If M = diag[2p, 2q] with Wg,q% € 27+ 1, then for each k > 0, R_j is a spectral
eigenmatric of par,p.

Theorem 1.3 just gives some necessary conditions for a matrix to be a spectral eigen-
matrix of par,p. For some special case, the sufficient and necessary conditions for the
spectral eigenmatrices of p1ar,p can be characterized.

Theorem 1.4. Let M = diag[2p,2q] € M3(2Z) with |p|,|q| > 1, D be given
by Equation (1.2). Suppose R € M5(R) satisfies RM= MR, then R is a spectral

eigenmatriz of par,p if and only if R € Mg(#zﬂ) and det(R) € 3%—1}.
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We remark that the condition |p|, |¢| > 1 can be removed in the proof of the necessity
of Theorem 1.4, but this condition plays a key role in constructing the spectrum in the
proof of the sufficiency of Theorem 1.4. For the condition ‘RM = MR’, we do not know
whether it is superfluous. But the following theorem tells us that this condition may be
necessary in Theorem 1.4.

Theorem 1.5. Let M = diag[2p,2q] € M>(27Z) be an expanding matriz, D be given
by Equation (1.2). Suppose R € M2(R) is a spectral eigenmatriz of un,p, then the
following statements hold.

o~

[a b(2)

0 4 ] for some integers l,a,d € 2Z+1 and b € Z;

0
(i) If m €27, then R = 1 L&) d] for some integers l,a,d € 2Z.4+1 and c € Z.

This paper is organized as follows. In § 2, we introduce some basic definitions and
results that will be used in the proof of our main results. In § 3, we study the structure
of the spectra of pps, p and prove Theorem 1.2. In § 4, we will discuss the structure of
the spectral eigenmatrices of p1ps, p and prove Theorems 1.3 and 1.5. In § 5, we will prove
Theorem 1.4. In § 6, some remarks and open questions related to our main results will
be given.

2. Preliminaries

For a probability measure p on R™, the Fourier transform of u is defined by

(€)= [ e ).

It follows from Equations (1.1) and (1.2) that the Fourier transform fiys, p of the self-affine
measure Uys,p is

fine,p(§) = /R2 > dppy p () = H mp(M*77¢), € eR? (2.1)
j=1

where M* denotes the transposed conjugate of M and

_ 1 ori(de) _ 1 omie omie —omi(€]+E9) _ t o2
mD(g)—%ée —1<1+e L+e2 +e 1 '2)7 §=({1,&) e R

Denote Z(f1) = {z € R? : i(x) = 0} to be the zero set of i. For convenience, we let

Fi= %{(zl,eg)t :0;€{0,1},i=1,2} and F2:=F2\ {0}. (2.2)
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It follows from Equations (2.2) and (2.1) that

Z(mp) = F2 + 72, (2.3)

For a probability measure p on R™ and a countable set A C R", it is easy to check
that the family Ej := {e?™**) : X\ € A} forms an orthogonal set for L?(y), which is
equivalent to the condition that

(A =M)\{0} € 2(A). (2.5)

We call A an orthogonal set (respectively, spectrum) of u if Ea forms an orthogonal
system (respectively, Fourier basis) for L?(u). Since the properties of orthogonal set (or

spectrum) are invariant under a translation, it will be convenient to assume that 0 € A,
and hence A C (A —A).
Let

Qua(®) =) _lUE+ V%, EeR™ (2.6)

AEA

The well-known result of Jorgensen and Pedersen [27, Lemma 4.2] shows that @, (&) is
an entire function if A is an orthogonal set of u. The following provides a universal test,
which allows us to decide whether an orthogonal set A is a spectrum of the measure p.

Theorem 2.1. [27] Let p be a Borel probability measure with compact support on R™,
and let A C R™ be a countable set. Then

(i) A is an orthogonal set of p if and only if QA (§) <1 for & € R™.
(it) A is a spectrum of p if and only if QA (&) =1 for £ € R™.

In the study of the spectrality of self-affine measures, the concept of Hadamard triple
plays an important role. To the best of our knowledge, almost all spectra of self-affine
measures are generated by Hadamard triples.

Definition 2.2. Let M € M, (Z) be an expanding integer matriz, and let D, L C Z"™ be
two finite digit sets with the same cardinality. We say that the pair (M, D) is admissible
if the matriz

M*llhl . T — [e 7’< 7>:|
is unitary, that is, Hy, 1,  H;

M-1DL = Iyp. In this case, we call the triple (M, D, L)
a Hadamard triple and also call (M D, L) a compatible pair.

deD,leL
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Lemma 2.3. [12, 20] Let M € M, (Z) be an expanding integer matriz, and let D, L C
Z" be two finite digit sets with the same cardinality. Then the following statements are
equivalent.

(i) (M,D, L) is a Hadamard triple.
(i) mp(M*=1(l; —13)) =0 for any l; #12 € L.
(ili) (0,,-1p,L) is a spectral pair.

Moreover, if (M, D, L) is a Hadamard triple, then for any n > 1, (M™,D,,L,) is a
Hadamard triple where Dy, := D+ MD + M?D +---+ M""'D and L,, := L+ M*L +
M*2], N M*n=1p,

Lemma 2.4. [40] Let pup,p be defined by Equation (1.1), and (M~'D, Ly,) be compat-
ible pairs with 0 € Ly, k > 1. Suppose that the set of zeros of the Fourier transform fiar,p
is uniformly disjoint from the sets M*~ "L+ M*~("=D Ly ... 4 M*~1L, for all large n.
Then ppr,p is a spectral measure and has a spectrum A = Ly + M* Ly + M*2Lg+ .

Recall that S is defined by Equation (1.3), that is,

(00001

In the end of this section, we will discuss the relationship between D and S, which is an
elementary but useful fact in our investigation.

Lemma 2.5. With the above notation, the following statements hold.

(i) S=2F2.
(ii) S is a complete residue system modulo 272.
(iii) (0p,£S) is a spectral pair.

Proof. By the definition of & and F3, (i) and (ii) are obvious. We now prove (iii).
For any s1 # s» € S, it is easy to check that 3(s; — s2) € F3 + Z2. Using Equation (2.3),
we get mp(5(s1 — s2)) = 0. Therefore, (iii) holds by Lemma 2.3. O

3. Structure of the spectra of pun,p

In this section, we first investigate the structure of the spectra of pa;,p under the
hypothesis that par,p is a spectral measure, and then prove Theorem 1.2. According
to Theorem 1.1, we may assume the expanding matrix M € M>(27Z).

Let A be a spectrum of pp,p with 0 € A, according to Equations (2.4) and (2.5), we
know

oM PA c {oru2 | MY(FF+2%) c | MY(S +22%) c Z2. (3.1)
j=0 §=0
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For any v € Z?, it follows from Lemma 2.5(ii) that there exist s € S and v’ € Z? such
that

v=s+20". (3.2)
It is clear that the expression is unique. By Equations (3.1) and (3.2), we can get that,

for any A € A, there exists a unique s € S such that A = M*(3s + w) for some w € Z2.
Define

Fs:{weZQ:M* (;s+w> eA}. (3.3)

Then we have the following decomposition:

A=) M (;s + rs) : (3.4)

sES

where M*(3s+T'5) = ) if I'; = 0. Moreover, the union is disjoint. As 0 € A, it follows
that

Ty # 0. (3.5)

Lemma 3.1. Let A be a spectrum of pnr,p with 0 € A. If T's is a non-empty set, then
I's is an orthogonal set of un,p.

Proof. Suppose that I'y is a non-empty set for some s € S. For any two dis-
tinct elements A\, Ao € 'y C Z2, it follows from Equation (3.4) that M*(%s + A),

M*(%s+ A2) € A. By Equation (2.5), we have M*(\; — X2) € Z(fins,p). Together with
Equation (2.1) and mp(&) = 1 for any & € Z2, it is easy to get

0=fm,p(M*(A — X2)) =mp(A — A2)ftar, (A1 — A2) = fing,p( A1 — A2).
Thus, A1 — A2 € Z(fiamr,p), which implies that I's is an orthogonal set of par,p. O

The following lemma gives the structure of the spectra of py p.

Lemma 3.2. Let A be a spectrum of ppr,p with 0 € A. Then A has a decomposition

A= @Ms + M*FS> , (3.6)

seS

where I's are also spectra of pyr,p for all s € S.
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Proof. We first prove that T's # @ for all s € S. Let &' = {s € § : 'y # (}. In view of
Equation (3.4), A can be written as

L1
ses’

Then for any ¢ € R?, using Equation (2.1), Theorem 2.1, Lemma 3.1 and the fact that
I, C Z2, we get

1= |+ N)P

NeA
1 2
- Z Z A, <§+M* (23+)\>>
se€S! Ael's
1 2 1 2
=> > |m (M*—ls + g8t >\> fins,p <M*—1§ + 58+ A)
seS! AeTl's

2

>

el
2

2

-5

seS’

<y

seS’

mp (M*1§ + ;s>

1
fine,p (M*1§ +55+ A>

(3.7)

1
mp <M*1£ + 28)

On the other hand, choose £ € M*(R2\ Q?). As Z(mp) = F2 + Z2, it follows that

2
>0 forallsesS. (3.8)

1
o (w64 50)

Following from Lemma 2.5(4ii) and Theorem 2.1 , one may get that

>

seS

2
~1. (3.9)

mp <M*1§ + ;s>

If &' # S, according to Equations (3.8) and (3.9), we deduce that > .o/ [mp(M* ¢ +
%8)‘2 < 1. This contradicts Equation (3.7); therefore, &’ = S, that is, I'; # 0 for all
s€S.

Now we show that I's is a spectrum of p1ps, p for each s € S. Suppose, on the contrary,
that there exists a s9 € S such that I's is not a spectrum of pps, p. Then, by Theorem 2.1,
there must exist & € M*(R?\ Q2) such that

2.

Aelsg

2
<1

N o 1
fia,p (M ey + 250 + )\)
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Hence, using &' = S, Lemma 3.1, Equation (3.9) and the similar argument as
Equation (3.7), we conclude that

L= |aap(o + V)P

MNeA
1\ /? 1 2
:Z mp M*ilfoJrfS Z [15Y85) M*71§o+78+)\
2 ’ 2
seS Aelg
1\ /? 1\
< Y ‘mD (M*1€0 + 25> + ’mD <M*1§0 + 250>
s€S\{so}
1 2
x Y | (M*lfo +5s0+ /\)
)\EFSO
1\ 2
<3 |mo (314 3s) | =1
seS
This is a contradiction, and hence I'; is a spectrum of pys, p for each s € S. O

Now we are in a position to prove Theorem 1.2, which can be seen as an extension of
Lemma 3.2.

Proof of Theorem 1.2. We prove the first result Equation (1.4) by induction. It is
obvious that the assertion holds for n =1 by Lemma 3.2. Now we suppose it holds for
n =m — 1, that is, A has a decomposition

1 1 1
A= U (M* <2511 +211>+M*2 (2512+312>+"'+M*m_1 <251—|—F1)>,

Iexm—1
(3.10)
where 21 = sgr = 0, 25 C 72, Ujessy; = S for J € ¥%, 0 < k < m — 2, and every
I'; is a spectrum of ppr,p with I'y C 72,0 € Fym—1 and sym—1 = 0. For each I'y with
I € ¥ 1 we choose a z; € I'; (choose Zgm—-1 = 0), then all I'y — 2y are also spectra
with 0 € T'; — z;. According to Equation (3.4) and Lemma 3.2, one may conclude that
I'; — z7 has a decomposition

1
I'r—2zr = UM* <281i+rn>, (311)
€D

where UieZ spi =8, Ty C Z2 is a spectrum of tar,p for any ¢ € 3, s;o =0 and 0 € I'yg.
Combining Equations (3.10) and (3.11), we can get

* 1 *2 1 *m—1 1
A= U (M <281|1 +ZI|1> +M (281|2+21|2) +--+M <2$1+ZI)

Iexm—1 jex

1
+M" (2811' + FH)) :
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This shows that Equation (1.4) holds for the case n=m
Now we prove the second result. Suppose there exists n such that A can be decomposed
as the following

1 1
A = U (M* ( S’Ll +z7,1> +M*2 <2si1i2 +Zi1i2) + -

i1i2-'~in62n

*n 1
+M (28i1“‘in +F11ln)> )

where zgx = sgx = son = 0, 255 C 72, Uiensy; =S forany J € ¥F (0< k <n—1) and
each Ty, ..;,, C Z* is a spectrum of jups p with 0 € Dgn. One has

Quagpa©) = D | p(€+X)[*

MNeA

T T E (e =S

Sqp-- ES AEF

Si 8i

wipy . in 2
X ‘mD (gil"'in—l + 12 )) ‘MM,D (éil"'in—l + 712 + )\)‘

S 2 Siq-in 2
3 fmo (=t ) 30 o (S )|
€S

S S;

116 i1in

. Siq--in 2
X Z ’ﬂM,D(fil---in,I—F 12 +)\)’

AEFil...i

n

S 2 i 2
> fmo (are e ) 3 o (S + 5]
sz-lGS S

Sil‘..ine

where &;,...;, | = M*~ ”(E—l—M*( Siy T 2iy) + A M 1( Siyoiy_y T Zigeiy 1))
Also0 € A follows from son =0, 0 € ['gn and sy = 2 = 0 for all 1 <k <n-—1. Hence,
A is a spectrum of pp p with 0 € A. This completes the proof of Theorem 1.2. O

4. Structure of spectral eigenmatrix of punsp

In the present section, we first study the structure of spectral eigenmatrices of pys,p and
then find the conditions for a matrix to be a spectral eigenmatrix of uy,p. Based on
these preparations, we will complete the proofs of Theorems 1.3 and 1.5.

The following lemma is useful for us to study the structure of spectral eigenmatrices.

Lemma 4.1. Let R € MR) and S be defined by Equation (1.3). Suppose
Uses R (s + 2T5) = S(mod 2Z?) for some I's C Z2, then the following statements hold.
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(i) R e My(5)-
(ii) det(R) € 35+
(i4i) 2RT = 0(mod 222) if 2RT € Z2 with T C Z2.
(iv) For any s € S, there exists a unique s' € S such that R (s + 2I's) = s'(mod 2Z2).

Proof. (i) Write so = (0,0)!, s1 = (1,0)!, s = (0,1)" and s3 = (1,1)". Since
Uses R (s + 2T5) = S(mod 27?), we have U?:o R(s;+2T,) C Z*. For i = 1,2, choosing
z; = (k1i,k2)' € Ts; C 72, there exist v; = (I, 1%)" € 72 such that R(s; + 2z;) = v;.
This is equivalent to

2k +1 2k12
2kar  2koa+1

R

o ll?] . (4.1)

o1 oo

Let [ = (1+2k11)(1+2kas) — 4k k1o It follows from Equation (4.1), v; € Z2 and z; € Z?

that
i he
o1l
This proves (i).

(ii) According to (i), we can let R = }R’, where | € 2Z + 1 and R’ € Ms(Z). As
Uses R (s +2T) = S(mod 2Z?), there must exist V; = (a14,a2;)" € Uyeg (s +205) and
Z; = (h14, ha;)t € Z2 such that RV; = s; + 2Z; for i = 1,2. Thus, one has

Z
27+ 1

2kos + 1 —2k12
—2ko1 2k11 +1

R =

o~ =

Mo ( ).

2hi1+1  2hio
2ha1 2hge +1

R/

a1  a22

a1 alQ] =1

Consequently,

det(R')det | [ 2| | = 1det
az1 a2

This concludes that det(R’) € 2Z + 1. Combining R = R’ and | € 2Z + 1, we derive
det(R) € %. So the assertion follows.

(iii) By (i) and (ii), we let R = 1 R’ with I, det(R’) € 2Z+1 and R’ € M>(Z). Suppose,
on the contrary, that 2RI’ #Z 0(mod 2Z2). Then there exists a vector (I1,l5)t € ' C Z?
such that

2h11 +1 2h12
2hay 2hgo +1

)€2Z+1.

or (1) = (M 2R} for some (b, ho)' € S\ {0} and (ky, ko)t € 22, (4.2)
ls ho + 2k
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Multiplying both sides of Equation (4.2) by I, we have

o (1) = (M t2k)
Iy ha + 2k
It is clear that 2R/ (I1,12)" € 272 since R’ € My(Z). However, the right side of the above

equation belongs to Z?\ 2Z2. This leads to a contradiction, and hence 2RI’ = 0(mod 27Z2).
(iv) Suppose there are s, € S and two distinct (k1,k2)", (ks,k4)! € F56 such that

R(sy + 2(k1, k2)t) = s} (mod 2Z?%) and R(s{ + 2(ks, k4)') = sh(mod 2Z?) for two distinct
s}, s5 € S. By a simple calculation, we have

2R ((:1> _ <23>> = (s, — s})(mod 222) C S\ {0} + 27 C 72,

which contradicts (iii). This ends the proof. O

Recall that 75 = 2{(¢1,65)" : ¢; € {0,1},i = 1,2}. For an integer matrix R with

det(R) € 2Z+ 1, the next lemma shows that RF is invariant in the sense of modulo Z2.
Lemma 4.2. Let R € M2(Z), then RF3 = F3(mod Z?) if and only if det(R) € 2Z+1.

Proof. The sufficiency follows immediately from [36, Proposition 2.2]. For the neces-
sity, we suppose RFs = F2 (mod Z?) and take 'y = {0} in Lemma 4.1. In view of
Lemma 2.5(4) and Lemma 4.1(4i), we deduce that det(R) € 2Z + 1. O

Now, by using Lemmas 3.2 and 4.1, we first prove the results (i) and (ii) of Theorem 1.3.
Theorem 4.3. Let uy, p be defined by Equation (1.1), where M € My(2Z) is an

expanding matriz and D is given by Equation (1.2). Suppose A and RA are spectra of
prr,p with R € Ma(R) and 0 € A, then the following statements hold.

(i) R=31M*R'M*~" for somel € 2Z+ 1 and R' € M>(Z) with det(R') € 2Z + 1.
(i) For anyn > 1, R, = M* "RM*" is a spectral eigenmatriz of p,p.

Proof. (i). By Lemma 3.2, A can be written as

A= U (;M*s—i—M*FS),

seS

where I'y C Z? are also spectra of uM,p for all s € S. By a simple calculation, we obtain
RM* = M*R; and

1 1
RA =[] (sM*Ris+ M*RiT, ) = | M* | 5Ris+ RiT ) . (4.3)
sEeS 2 s€S 2
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Similarly, by Lemma 3.2, the spectrum RA can also be expressed as follows.
1
RA = M+ (23+F’S) (4.4)

where I, C Z? are also spectra of ups,p for all s € S. It follows from Equations (4.3) and
(4.4) that

1 1
RA = U M* (21%15 + ers) = U M* (25 + F;> . (4.5)

seS seS

This implies that |J,.s R1 (s + 2FS) = Uses (s + QFQ). Using Lemma 4.1, one may easily
get that Ry € Mg(%ﬂ) and det(Ry) = g%ﬁ So we can further find [ € 2Z + 1 such that
IRy € M5(Z) and det(IRy) € 2Z + 1. By the definition of Ry, we have R = } M*R'M*~!
with R = [R;.

(4i). According to Equation (4.5) and Lemma 4.1(7), we get RiT'g = Iy, where Ty
and I', are spectra for py,p with 0 € I'y. This shows that Ry = M* 'RM* is a spectral
eigenmatrix of pps,p. Similarly, we can prove that Ry = M*1RyM* = M*2RM*>
is a spectral eigenmatrix of p1ps p. Hence, by repeating this process many times, R, =
M*~"RM*™" is a spectral eigenmatrix of ps,p for any n > 0.

The proof of Theorem 4.3 is completed. O

Having established the above preparation, now we are in a position to prove
Theorem 1.3.

Proof of Theorem 1.3. The results (i) and (#) can be obtained directly from
Theorem 4.3. We only need to prove (éii). Suppose A and RA are spectra of p p
with 0 € A. We first prove R_; is also a spectral eigenmatrix of up p. According to
M = diag[2p, 2g] and Theorem 4.3, we can let

p
R = }M*R/M*fl — 1 a b(g) ,
l l c(%) d

a b . / g
.4 € Ms(Z) with det(R') € 2Z+1. As T

we can let % = % with aq, 81 € 2Z + 1 and ged(aq, 81) = 1. Define

e ((QU)u(2)uli) =)

By Lemma 4.2, we have A" = (J g (%M*s + M*(vs + A)) for some vy € Z2. Then
Theorem 1.2 shows that A’ is a spectrum of ppr,p and

! __ * k«—1 Al 1 * 0 aﬂl bﬂl aﬂl + bﬁl
RN = M"RM*'A' = oM ((o) U (Cm) U (dm) U (ml N dm) + 2RA>

where [ € 2Z+1 and R’ = € 27+1,
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— }M* aﬁl bﬁl
2 coq  dog

As ay,B1,ad — be € 2Z + 1, it follows that a5 (ad — be) € 2Z 4+ 1. With Lemma 4.2, we
obtain

S+2RA> .

aBy  bB:

cap  dog

S = U (s+228)

seS

for some z, € Z2. Therefore, R_1A’ can be rewritten as

1
R_ N = U <2M*s + M*(z, + RA)> ) (4.6)
sES

This together with Theorem 1.2 shows that R_;A’ is a spectrum of up p and R_; is a
spectral eigenmatrix of f1ps p. So we know that R_; is a spectral eigenmatrix of pps p if R
is a spectral eigenmatrix. Thus, R_5 is also a spectral eigenmatrix of pys, p. By induction,
one may derive that R_j is a spectral eigenmatrix for any k£ € N. This completes the
proof of Theorem 1.3. 0

At the end of this section, we will prove Theorem 1.5.

Proof of Theorem 1.5. Since R is a spectral eigenmatrix, it follows from
Theorem 4.3(i1) that R, = M* "RM™*™ is also a spectral eigenmatrix for any n > 0.

By Theorem 4.3(i), we get R,41 € Ma(

a b
for any n > 0. Let Ry = = with
2Z+1) y 1 L d]

a,b,c,d € Z and l,ad — bc € 2Z + 1. Then, for any n > 0, one has

1[ a b Vi
= M*in M*n = - p M e . 4
e I Lv;)n 7| () o

(4) If ng zdg € 2Z, then Equation (4.7) implies that 2™ |c. According to the arbitrariness
of n, we have c=0.

(i) If o5ty € 24, similar to (i), we can derive that b=0 by Equation (4.7) and the
arbitrariness of n.

Hence, we complete the proof of Theorem 1.5. d

5. Exchangeable spectral eigenmatrix

In this section, we consider a special kind of spectral eigenmatrix of ps,p, which can
be exchanged with matrix M, and then complete the proof of Theorem 1.4. We first
consider the sufficiency of Theorem 1.4 whose main idea comes from [22]. We extend it
to the two-dimensional case.
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Throughout this section, we let M = diag[2p,2¢] with integers |p|,|q] > 1, D =

{ (8) , (é) , <(1)> , (1) } and the measure ppy p is defined by Equation (1.1).

Lemma 5.1. For any infinite word w = wowy --- € {—1, 1}, the set

A (M, MF3) = ZwJMJMs] s; € F,meN (5.1)
7=0

is a spectrum of the measure pr,p.

Proof. It is easy to know that (M, D, M F3) and (M, D, —M F3) are Hadamard triples.
For any integer m > 1,]b] > 1, ¢; € {0,1}, 1 < i < m and infinite word w = wowy - -+ €

{_1’ 1}N7

L

C/J\l\D

(o)
’(2b)‘<m+1)wobcl + (20) " wibcy + -+ + (2b) T wiber | < Z
k=1

Then the set

2 2 2 2
M (M) 4 M () o+ M0 € |53 [ ]

is separated from the set Z(fias,p) by a distance 6 > %, uniformly in m, for all m > 1.
By Lemma 2.4, we know A, (M, MF3) is a spectrum of s p. O

Lemma 5.2. Let R € M3(Z) be a non-singular matriz that can be exchanged with M.
Then each element x € T(M,-+MRF3) has a unique expansion in base M.

Proof. Assume that there are two distinct sequence with infinite words {c; =
(xj’l,xjyz)t}z?';l and {c} = (x3»717m;-,2)t 22, in +F2 such that

0 . e .
> M7 Rc; =) M Rc]. (5.2)
i=0 j=0

Since M = diag[2p,2q] and MR = RM, a simple calculation gives M 7R = RM 7 for
each j € N. Let ¢ be the smallest integer such that ¢; # ¢}, without loss of generality we
assume ¢ 7# Ty 1. From the first coordinate of Equation (5.2), we have

o~ Ltj1 — Lrtil
Tia =Ty = Y 3(2—)] (5.3)
i=1 P
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Observing Equation (5.3), the left hand must be chosen from {1, +1}, but

oo

IR EDS Losi<l
= (2p)J = 2Ipl T2 -1 =352
which is impossible. This ends the proof. O

Lemma 5.3. Let R € M(Z) be a matriz with det(R) € 2Z+ 1. Then for any element
x € T(M,£MRF3)N Z(jirr,p), the expansion of T cannot be finite.

Proof. Suppose, on the contrary, that there exists a * € T(M, M RF3) N Z(finr,p)
whose expansion is finite, that is,  can be written as
n
x =Y MRe; (5.4)

J=0

for some ¢; € +F2,0<j <n—1, and ¢, € +F2. Combining this with Equation (2.4),
there exist v € F3 + Z? and positive integer k such that

M*v ="M/ Re;.
j=0
Consequently,
M*"y = Re,, + MRe, 1 + -+ -+ M™Rey.
Since det(R) € 27Z + 1, it follows from Lemma 4.2 that Re, € F2 + Z2. Then the right
hand of the above equation belongs to Fi + Z?, but M = diag[2p,2q| implies the left

hand M**+"v € 72, which is a contradiction. Hence, any x € T(M,+MRF2) N Z(firr,p)
has an infinite expansion. O

Fix a matrix R € M»(Z) with det(R) € 2Z + 1. For any positive integers K and N, we
define

Sk.N(R) = MRF;+M?RF; +- -+ MNRF; — (M RFZ +-- -+ MKV RFZ) (5.5)
and
Dgn=D+MD+ -+ MEN-Dp, (5.6)

Applying Lemma 2.3, one may get that (M(K+N),DK7N,SK7N(R)) form a Hadamard
triple and the measure par,p = pyK+N D N Based on these, we prove the following.
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Theorem 5.4. There exist two positive integers Ky and Ny such that
T(M*¥0tNo Sy, ny(R)) is separated from the set Z(fing,p) by a distance 6 > 0. Moreover,
the set A(MKO“'NO,SKOWO (R)) is a spectrum of the measure fin,p-

Proof. First, we prove that there exist two positive integers K¢ and N such that
T(MR0TN0, S ng (R)) N Z(fiar,p) = 0.

(a) If T(M,£=MRFZ) N Z(jrr,p) = 0, we take Ko = Ny = 1. Then it is easy to see
that T(ZWKO'HVO7 SKOvNO(R)) n Z(ﬂM7D) = 0.

(b) U T(M,+MRF2)NZ(jfiar.p) # 0. Let A be the set of all point in T'(M, =M RF2)N
Z(fsar,p), which has infinitely many positive terms in its expansion. By Lemma 5.3, we
know that the expansion of the point in B := (T(M,+MRF3) N Z(im,p)) \ A has
infinitely many negative terms. Since the zero set Z(fips,p) is uniformly discrete and
T(M,+MRF%) is a compact set, we know T'(M,+MRF3) N Z(fips,p) # O contains at
most finitely many points and A, B are also finite sets. So, for every point € A, we can
find an integer N, such that there exists a positive term in the expansion of x, with its
index no more than N,. We let Ny = max{N, : ¢ € A} and Ny = 1 when A = (). We can
also find a positive number K, such that there exists a negative term in the expansion
of x € B with its index in [Ny + 1, Ng + Kz]. We let Ko = max{K : 2 € B} and Ky =1
when B = (). By Lemma 5.2, one has T(M*0+tNo, Sy~ (R)) N Z(fins,p) = 0.

Second, note that T(M¥o+tNo Sy n (R)) is a compact set and Z(fin,p) is a
uniform  discrete set, then T(MX0tNo Sp N (R)) N Z(jfis,p) = 0 implies that
T(M*¥0tNo Sk, ny(R)) is separated from the sets Z(fia,p) by a distance § > 0.

A(M*EotNo, SKo.No (R)) is a spectrum of the measure pp,p following from
Lemma 2.4. O

More generally, one can similarly get the general version of Theorem 5.4.

Theorem 5.5. Let {Ry}}_, be a sequence of integer matrices which can be exchanged
with M. Suppose det(Ry) € 2Z + 1 for all 1 < k < n, then there exists a spectrum A of
par,p such that R1A, RaA, ..., RyA are spectra of piar,p.

Proof. Let C = J,_, (T(M,£MR,F3) N Z(firr,n)), and let A be the set of all point
in C which has infinitely many positive terms in its expansion. Then the expansion of the
point in set B = C\ A has infinitely many negative terms by Lemma 5.3. Using the same
argument as in the proof of Theorem 5.4, we can find two positive integers K¢ and Ny
such that all A(MK0+N0 , SKq.Ng (Rk)) are spectra of pps p, and A(MK0+N07 SKg.Ng (E))
with identity matrix E is also a spectrum of pps p by Lemma 5.1.

Let A = A(MKOJFNO,SKO’NO(E)). Since RpyM = MRy, the above argument shows
that A’ and R\ = A(MK0+N0, SKO,NO(Rk)) are spectra of ppp forall 1 <k <n. O

In fact, Theorem 5.5 tells us that if integer matrices R;, Rs can be exchanged with M
and det(R;), det(Ry) € 2Z + 1, then Ry R, " is a spectral eigenmatrix. This is the key to
proving the sufficiency of Theorem 1.4. Next, we will consider the necessity of spectral
eigenmatrix of s p.
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Let A and RA be spectra of the measure ps p. By Lemma 3.2, we have

1 * * * 1
A:U(2M3+M FS) and RA= (M (23+Fg), (5.7)

seS seS

with T'y, I, C Z2. Since RM = MR,

1 1
RA = U (2M*R8 + M*RFS) = U M* (233 + RPS> : (5.8)

seS SES

It follows from Equations (5.7) and (5.8) that

RA = [ M~ (;RS—I—RFS) =J M (;Hr;).

seS seS

This implies that

U R(s+21.) = | (s+21%). (5.9)

seS s€ES
Then the following lemma follows immediately from Lemma 4.1.

Lemma 5.6. Suppose R € My(R) is a spectral eigenmatriz of pay,p with RM= MR,

then R € My(5ft) and det(R) € Z2£L.

We have all ingredients for the proof of Theorem 1.4.

Proof of Theorem 1.4. Sufficiency. Since R € MQ(%) and det(R) € %ﬁ, we
a b

can assume R = % with a,b,c,d € Z and [, ad—bc € 27+ 1. Let Ry = @ b] and
c

c d
Ry = [FE, then det(Ry),det(R2) € 2Z + 1. By Theorem 5.5, there exists a discrete set A
such that A, RiA and RyA are spectra of pps p. Let A’ = RoA. Then A’ and RA' = R1A
are spectra of j1pr, p, which shows that R is a spectral eigenmatrix of s, p.

Necessity. The necessity of the theorem can be directly derived from Lemma 5.6. [J

6. Concluding remarks

In the present section, we will give some remarks and open questions related to our main
results.

For the diagonal matrix M = diag[2p, 2¢] with |p|, |¢| > 1, Theorem 1.4 characterizes
the spectral eigenmatrix of pps, p that can be exchanged with M. In the case m €
27, Theorem 1.5 tells us that the spectral eigenmatrix of py,p must be a triangular
matrix. Moreover, if we can further prove that the spectral eigenmatrix in Theorem 1.4
is a diagonal matrix, we can completely characterize the spectral eigenmatrix of pipr p.

It is natural for us to consider the following question.
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Q1: Let M = diag[2p,2q] € M>(2Z) with two different integers |p|,|¢] > 1 and

m € 2Z, D be given by Equation (1.2). If R € M>(R) is a spectral eigenma-

trix of ppr,p, whether R is a diagonal matrix? More general, if |p| # |g|, whether R is
also a diagonal matrix?

a b

Let M = diag[2p, 2q] with |p|,|q| > 1 and ged(p,q) = 1, and let R = d] € My (2),

b(4)k
(2) ] If 0 € A and RA are spectra of pp p, then

Cc

then Ry, = M*~*RM** = “
()"

Equation (4.5) implies that

2M*'RA = | J By (si +21%) = | (si + 2T) € 22, (6.1)
1EX €Y

where Ujexs; = S, I';, T are spectra of iy p foralli € . Let A = %M*{()\lru o)ty

by Equation (6.1), we have
} c 72
n=1
This shows that ¢ | cA1, and p | bAg, for all n.
Choose z; € Z? such that 0 € (I'; — 2;). From Lemmas 3.2 and 4.1 and Equation (6.1),

it is easy to get (I'; — 2;) and R1(I'; — 2;) are spectra of p1ar, p. Using Equation (4.5) again,
we have

a)\ln + %)\Qn

OIM*IRA = Ri{(Min, Aan)t 12, =
1{(A1n, A2n) Flq { D\t Ao

oM Ry(T; — z;) = | J Ra(s; +2T;) = | (s; +2I;) € Z°. (6.2)
jex jes
Similarly, if we let (I — z;) = $M*{(71;,72;)}32,, then Equation (6.2) implies ¢ | ¢,
and p? | byz; for all j. Continuing this process, we can see that the spectrum A increases
rapidly if bc # 0. This is quite different from the spectrum that appeared in the previous
references, although we cannot prove that RA is not a spectrum of pr p.
Based on the above analysis, the following conjecture may be a reasonable conjecture
to this end.

2|

Conjecture. Let M = diag[2p,2q] € M2(2Z) with |p| # |g| > 1, D be given by
Equation (1.2). Then R € M>(R) is a spectral eigenmatriz of pa,p if and only if R =
1diagla, d] for some integers t,a,d € 2Z + 1.

It is worth noting that the matrix M = diag[2p,2q] given in Theorem 1.4 satisfies
[pl, lg| > 1, which is only used in the proof of the sufficiency. If |p| = |¢| =1, then D is a
complete set of coset representatives of Z™/MZ™. By the results of Lagarias and Wang
[31], the attractor T (M, D) is a self-affine tile and pas p is the normalized Lebesgue
measure supported on T'(M, D). It is interesting for us to answer the following question:
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Q2: Let M € M5(2Z) with det(M) = 4 and D be given by Equation (1.2). What are

the sufficient and necessary conditions for R € Ms(R) to be a spectral eigenmatrix of
?
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