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Abstract Given a Borel probability measure µ on Rn and a real matrix R ∈ Mn(R). We call R a
spectral eigenmatrix of the measure µ if there exists a countable set Λ ⊂ Rn such that the sets EΛ ={
e2πi〈λ,x〉 : λ ∈ Λ

}
and ERΛ =

{
e2πi〈Rλ,x〉 : λ ∈ Λ

}
are both orthonormal bases for the Hilbert

space L2(µ). In this paper, we study the structure of spectral eigenmatrix of the planar self-affine
measure µM,D generated by an expanding integer matrix M ∈ M2(2Z) and the four-elements digit set
D = {(0, 0)t, (1, 0)t, (0, 1)t, (−1,−1)t}. Some sufficient and/or necessary conditions for R to be a spectral
eigenmatrix of µM,D are given.
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1. Introduction

Let µ be a compactly supported Borel probability measure on Rn. We call µ a spectral
measure if there exists a countable set Λ ⊂ Rn such that the set

{
e2πi〈λ,x〉

}
λ∈Λ

forms an

orthogonal basis for L2(µ). The set Λ is then called a spectrum of µ, and we also say that
(µ,Λ) forms a spectral pair. If Ω ⊂ Rn is a Lebesgue measurable set with finite positive
Lebesgue measure and dµ = χΩ dx is a spectral measure, then we call Ω a spectral set.
Classical spectral measures were first introduced by Fuglede [23], and he proposed his
famous conjecture stating that a bounded measurable set Ω ⊂ Rn is a spectral set if and
only if Ω is a translational tile. The conjecture was proven to be false on n ≥ 3 [29, 44],
but it is still open in one and two dimensions, and it is related to the construction of
Gabor and wavelet bases [13, 38, 46].
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The studies entered into the realm of fractals when Jorgensen and Pedersen discovered
that some singular fractal measures can also be spectral [27]. Since then, singular spec-
tral measures have become an active research topic, which involves classifying classes
of measures which are spectral [1, 3, 4, 6, 9, 14–17, 30], finding their possible spectra
[8, 10, 11, 21, 24, 33, 34] and studying all kinds of convergence problems of the associ-
ated Mock Fourier series [19, 40, 41], etc. Many new exotic phenomena which are different
from Lebesgue measures were discovered for singular fractal measures. Here we list some
typical examples; Dai [7] found that the spectra of some singular spectral measures might
have zero Beurling dimension, while the spectra for Lebesgue measures must have pos-
itive Beurling dimension [32]. Strichartz [40, 41] found a large class of singular spectral
measures with uncountably many spectra such that their associated mock Fourier series
of continuous functions converge uniformly, and the mock Fourier series of Lp-functions
converge pointwise almost everywhere; nevertheless, there are also singular spectral mea-
sures and spectra such that the associated Fourier series of continuous function diverges
at some point [19]. These surprising phenomena motivate researchers to find more singu-
lar spectral measures and study their related problems, and it is connected with a number
of areas in mathematics such as number theory, dynamical system, harmonic analysis,
etc. [18, 28, 39]. The following two types of problems are basic in the study of spectrality
of singular measures.

I. Spectral Problems: What kind of measures are spectral measures?
II. Spectral Eigenmatrix Problems: Let µ be a singular spectral measure on Rn.

The spectral eigenmatrix problems contain two themes in general. (1) Fix a spectrum
Λ, find all R ∈ Mn(R) such that RΛ is a spectrum of µ (we call it the first type of
spectral eigenmatrix problems); (2) Find all matrices R ∈ Mn(R) such that RΛ is a
spectrum of µ for some spectrum Λ (we call it the second type of spectral eigenmatrix
problems). In the two cases, R is called a spectral eigenmatrix of µ and Λ is called
a eigenspectrum of µ corresponding to R.

Let M ∈ Mn(R) be an n ×n expanding real matrix (i.e., all the eigenvalues of M have
modulus strictly greater than one), and D ⊂ Rn be a finite digit set. Then there exists a
unique Borel probability measure µM,D, which satisfies that

µM,D(E) =
1

#D

∑
d∈D

µM,D(ME − d) for any Borel set E, (1.1)

where #D denotes the cardinality of D [26]. Moreover, the measure is supported on

T (M,D) =

{ ∞∑
k=1

M−kdk : dk ∈ D

}
:=

∞∑
k=1

M−kD.

We call µM,D a self-affine measure and T (M,D) a self-affine set. In particular, if M
is a multiple of an orthonormal matrix, then µM,D and T (M,D) are called self-similar
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measure and self-similar set, respectively. It is known that a self-affine measure µM,D can
be expressed by the infinite convolution of Dirac measures with equal weights as follows:

µM,D = δM−1D ∗ δM−2D ∗ δM−3D ∗ · · · ,

where ∗ is the convolution sign, δE = 1
#E

∑
e∈E δe for a finite set E and δe is the Dirac

measure at the point e, and the convergence is in the weak sense.
The spectral eigenmatrix problems are also called the scaling matrix problems. The

origin of spectral eigenmatrix problems goes back to Łaba and Wang [30], who first
discovered a countable set Λ such that Λ and 2Λ are spectra of a measure µ. This
surprise discovery attracted many researchers, and a lot of new results about the
spectral eigenmatrix have been obtained. For examples, Dutkay and Jorgensen [17]
proved that R = 5n(n ∈ N+) is a spectral eigenmatrix of µ4,{0,2} for the spectrum

Λ1 :=
∑∞

k=1{0, 1}4k−1 and R = 3n(n ∈ N+) is not a spectral eigenmatrix of µ4,{0,2}
for the spectrum Λ1. Dutkay and Haussermann [18] proved that if p is a prime number
greater than 3, then pnΛ1 is also a spectrum of µ4,{0,2} for any n ≥ 1. He et al. [25] gave
an answer to the spectral eigenmatrix problems (1) about the measure µq,{0,ar,br} for the

spectrum Λ :=
∑∞

k=1{0,±1}qk−1. Fu et al. [22] gave a complete characterization on the
spectral eigenmatrix problems (2) of the Bernoulli convolution µ2k. Wang and Wu [45]
studied the spectral eigenmatrix problems (2) for a class of self-similar spectral measures
with consecutive digits. The known results on spectral eigenvalue problems mainly focus
on self-similar spectral measures in one-dimensional case; however, there are not much
discussions about the spectral eigenmatrix problems in high-dimensional case since the
methods in one dimension are difficult to apply to higher dimensions even for the sim-
ple cases. As far as we know, the only high-dimensional example was by An et al. [2],
who discussed the spectral eigenmatrix problems of the Sierpinski-type measure µM,D

generated by an expanding matrix M = diag[3q, 3q] and D = {(0, 0)t, (0, 1)t, (1, 0)t}.
The planar Cantor-dust measure µM,D′ is the most typical self-affine measure except

for the planar Sierpinski-type measure, and it is generated by an expanding matrix M ∈
M2(Z) and the integer digit set D′ = {(0, 0)t, (α1, α2)

t, (β1, β2)
t, (−α1 −β1,−α2 −β2)

t}.
There are many researches about its spectrality or non-spectrality [35, 37, 42, 43].
Recently, Chen et al.[5] gave the following complete characterization on the spectrality
of µM,D′ .

Theorem 1.1. [5] Let D′ = {(0, 0)t, (α1, α2)
t, (β1, β2)

t, (−α1 − β1,−α2 − β2)
t} be an

integer digit set and M ∈ M2(Z) be an expanding matrix. If α1β2 − α2β1 /∈ 2Z, then
µM,D′ is a spectral measure if and only if M ∈ M2(2Z).

Let

M ∈ M2(2Z) and D =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)}
. (1.2)

The corresponding self-affine measure µM,D is the simplest planar Cantor-dust measure.
Motivated by the above works, our goal in the present paper is to investigate the spectral
structure and spectral eigenvalue problems of µM,D, and we hope that the methods used
in this paper can shed some light on the study of high-dimensional spectral eigenvalue
problems.
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In order to characterize the structure of the spectra of µM,D, we need to introduce
some notation from symbolic dynamical system. Let Σ = {0, 1, 2, 3}, Σ0 = ∅ and Σn =
{i1i2 · · · in : ij ∈ Σ, 1 ≤ j ≤ n} to be the set of all words i1 · · · in with length n ≥ 1.
For any I ∈ Σn and J ∈ Σm, the word IJ is their natural conjunction. In particular,
∅i1 · · · in = i1 · · · in, Ij = i1 · · · inj for all I = i1 · · · in ∈ Σn, n ≥ 1, and 0k = 0 · · · 0︸ ︷︷ ︸

k

. We

define that I|k = i1i2 · · · ik for I = i1i2 · · · in ∈ Σn and k ≤ n.
Let

S =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
1

1

)}
. (1.3)

Then we can state our first result as follows.

Theorem 1.2. Let M ∈ M2(2Z) be an expanding matrix, D be given
by Equation (1.2). If Λ is a spectrum of µM,D with 0 ∈ Λ, then for each n ≥ 1, Λ
has a decomposition

Λ =
⋃

I∈Σn

(
M∗

(
1

2
sI|1 + zI|1

)
+M∗2

(
1

2
sI|2 + zI|2

)
+ · · ·+M∗n

(
1

2
sI + ΓI

))
,

(1.4)
where z0k = s0k = s0n = 0, ∪i∈ΣsJi = S, zJi ⊂ Z2 for every J ∈ Σk, 0 ≤ k ≤ n− 1 and
each ΓI ⊂ Z2 is a spectrum of µM,D with 0 ∈ Γ0n . Conversely, if Λ can be decomposed
into the form of Equation (1.4) for some positive integer n, then Λ is a spectrum of µM,D

with 0 ∈ Λ.

Theorem 1.2 characterizes the structure of the spectra of µM,D, which is useful for us
to find the necessary conditions for a matrix to be a spectral eigenmatrix of µM,D. Our
main results about spectral eigenmatrices are the following three theorems.

Theorem 1.3. Let M ∈ M2(2Z) be an expanding matrix, D be given by Equation (1.2)
and let R ∈ M2(R) and Rk = M∗−kRM∗k for any k ∈ Z. Suppose R is a spectral
eigenmatrix of µM,D, then the following statements hold.

(i) R = 1
lM

∗R′M∗−1 for some l ∈ 2Z+ 1 and R′ ∈ M2(Z) with det(R′) ∈ 2Z+ 1;
(ii) For each k ≥ 0, Rk is a spectral eigenmatrix of µM,D;
(iii) If M = diag[2p, 2q] with pq

gcd(p2,q2)
∈ 2Z+1, then for each k ≥ 0, R−k is a spectral

eigenmatrix of µM,D.

Theorem 1.3 just gives some necessary conditions for a matrix to be a spectral eigen-
matrix of µM,D. For some special case, the sufficient and necessary conditions for the
spectral eigenmatrices of µM,D can be characterized.

Theorem 1.4. Let M = diag[2p, 2q] ∈ M2(2Z) with |p|, |q| > 1, D be given
by Equation (1.2). Suppose R ∈ M2(R) satisfies RM=MR, then R is a spectral
eigenmatrix of µM,D if and only if R ∈ M2(

Z
2Z+1 ) and det(R) ∈ 2Z+1

2Z+1 .
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We remark that the condition |p|, |q| > 1 can be removed in the proof of the necessity
of Theorem 1.4, but this condition plays a key role in constructing the spectrum in the
proof of the sufficiency of Theorem 1.4. For the condition ‘RM =MR’, we do not know
whether it is superfluous. But the following theorem tells us that this condition may be
necessary in Theorem 1.4.

Theorem 1.5. Let M = diag[2p, 2q] ∈ M2(2Z) be an expanding matrix, D be given
by Equation (1.2). Suppose R ∈ M2(R) is a spectral eigenmatrix of µM,D, then the
following statements hold.

(i) If q
gcd(p,q) ∈ 2Z, then R = 1

l

[
a b(pq )

0 d

]
for some integers l, a, d ∈ 2Z+1 and b ∈ Z;

(ii) If p
gcd(p,q) ∈ 2Z, then R = 1

l

[
a 0

c( qp ) d

]
for some integers l, a, d ∈ 2Z+1 and c ∈ Z.

This paper is organized as follows. In § 2, we introduce some basic definitions and
results that will be used in the proof of our main results. In § 3, we study the structure
of the spectra of µM,D and prove Theorem 1.2. In § 4, we will discuss the structure of
the spectral eigenmatrices of µM,D and prove Theorems 1.3 and 1.5. In § 5, we will prove
Theorem 1.4. In § 6, some remarks and open questions related to our main results will
be given.

2. Preliminaries

For a probability measure µ on Rn, the Fourier transform of µ is defined by

µ̂(ξ) =

∫
Rn

e2πi〈x,ξ〉 dµ(x).

It follows from Equations (1.1) and (1.2) that the Fourier transform µ̂M,D of the self-affine
measure µM,D is

µ̂M,D(ξ) =

∫
R2

e2πi〈x,ξ〉 dµM,D(x) =
∞∏
j=1

mD(M∗−jξ), ξ ∈ R2, (2.1)

where M∗ denotes the transposed conjugate of M and

mD(ξ) =
1

#D

∑
d∈D

e2πi〈d,ξ〉 =
1

4

(
1 + e2πiξ1 + e2πiξ2 + e−2πi(ξ1+ξ2)

)
, ξ = (ξ1, ξ2)

t ∈ R2.

Denote Z(µ̂) = {x ∈ R2 : µ̂(x) = 0} to be the zero set of µ̂. For convenience, we let

F2
2 =

1

2

{
(`1, `2)

t : `i ∈ {0, 1}, i = 1, 2
}

and F̊2
2 := F2

2 \ {0}. (2.2)
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It follows from Equations (2.2) and (2.1) that

Z(mD) = F̊2
2 + Z2, (2.3)

Z(µ̂M,D) =
∞⋃
j=1

M∗j(Z(mD)) =
∞⋃
j=1

M∗j(F̊2
2 + Z2). (2.4)

For a probability measure µ on Rn and a countable set Λ ⊂ Rn, it is easy to check
that the family EΛ := {e2πi〈λ,x〉 : λ ∈ Λ} forms an orthogonal set for L2(µ), which is
equivalent to the condition that

(Λ− Λ) \ {0} ⊂ Z(µ̂). (2.5)

We call Λ an orthogonal set (respectively, spectrum) of µ if EΛ forms an orthogonal
system (respectively, Fourier basis) for L2(µ). Since the properties of orthogonal set (or
spectrum) are invariant under a translation, it will be convenient to assume that 0 ∈ Λ,
and hence Λ ⊂ (Λ− Λ).
Let

Qµ,Λ(ξ) =
∑
λ∈Λ

|µ̂(ξ + λ)|2, ξ ∈ Rn. (2.6)

The well-known result of Jorgensen and Pedersen [27, Lemma 4.2] shows that Qµ,Λ(ξ) is
an entire function if Λ is an orthogonal set of µ. The following provides a universal test,
which allows us to decide whether an orthogonal set Λ is a spectrum of the measure µ.

Theorem 2.1. [27] Let µ be a Borel probability measure with compact support on Rn,
and let Λ ⊂ Rn be a countable set. Then

(i) Λ is an orthogonal set of µ if and only if Qµ,Λ(ξ) ≤ 1 for ξ ∈ Rn.
(ii) Λ is a spectrum of µ if and only if Qµ,Λ(ξ) ≡ 1 for ξ ∈ Rn.

In the study of the spectrality of self-affine measures, the concept of Hadamard triple
plays an important role. To the best of our knowledge, almost all spectra of self-affine
measures are generated by Hadamard triples.

Definition 2.2. Let M ∈ Mn(Z) be an expanding integer matrix, and let D,L ⊂ Zn be
two finite digit sets with the same cardinality. We say that the pair (M,D) is admissible
if the matrix

HM−1D,L :=
1√
#D

[
e2πi〈M

−1d,l〉
]
d∈D,l∈L

is unitary, that is, HM−1D,LH
∗
M−1D,L

= I#D. In this case, we call the triple (M,D,L)

a Hadamard triple and also call (M−1D,L) a compatible pair.
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Lemma 2.3. [12, 20] Let M ∈ Mn(Z) be an expanding integer matrix, and let D,L ⊂
Zn be two finite digit sets with the same cardinality. Then the following statements are
equivalent.

(i) (M,D,L) is a Hadamard triple.
(ii) mD(M∗−1(l1 − l2)) = 0 for any l1 6= l2 ∈ L.
(iii) (δM−1D, L) is a spectral pair.

Moreover, if (M,D,L) is a Hadamard triple, then for any n ≥ 1, (Mn, Dn, Ln) is a
Hadamard triple where Dn := D +MD +M2D + · · ·+Mn−1D and Ln := L+M∗L+
M∗2L+ · · ·+M∗(n−1)L.

Lemma 2.4. [40] Let µM,D be defined by Equation (1.1), and (M−1D,Lk) be compat-
ible pairs with 0 ∈ Lk, k ≥ 1. Suppose that the set of zeros of the Fourier transform µ̂M,D

is uniformly disjoint from the sets M∗−nL1+M∗−(n−1)L2+ · · ·+M∗−1Ln for all large n.
Then µM,D is a spectral measure and has a spectrum Λ = L1 +M∗L2 +M∗2L3 + · · · .

Recall that S is defined by Equation (1.3), that is,

S =

{(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
1

1

)}
.

In the end of this section, we will discuss the relationship between D and S, which is an
elementary but useful fact in our investigation.

Lemma 2.5. With the above notation, the following statements hold.

(i) S = 2F2
2 .

(ii) S is a complete residue system modulo 2Z2.
(iii) (δD, 1

2S) is a spectral pair.

Proof. By the definition of S and F2
2 , (i) and (ii) are obvious. We now prove (iii).

For any s1 6= s2 ∈ S, it is easy to check that 1
2 (s1 − s2) ∈ F̊2

2 +Z2. Using Equation (2.3),
we get mD(12 (s1 − s2)) = 0. Therefore, (iii) holds by Lemma 2.3. �

3. Structure of the spectra of µM,D

In this section, we first investigate the structure of the spectra of µM,D under the
hypothesis that µM,D is a spectral measure, and then prove Theorem 1.2. According
to Theorem 1.1, we may assume the expanding matrix M ∈ M2(2Z).
Let Λ be a spectrum of µM,D with 0 ∈ Λ, according to Equations (2.4) and (2.5), we

know

2M∗−1Λ ⊂ {0} ∪ 2
∞⋃
j=0

M∗j(F̊2
2 + Z2) ⊂

∞⋃
j=0

M∗j(S + 2Z2) ⊂ Z2. (3.1)
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For any v ∈ Z2, it follows from Lemma 2.5(ii) that there exist s ∈ S and v′ ∈ Z2 such
that

v = s+ 2v′. (3.2)

It is clear that the expression is unique. By Equations (3.1) and (3.2), we can get that,
for any λ ∈ Λ, there exists a unique s ∈ S such that λ = M∗(12s + ω) for some ω ∈ Z2.
Define

Γs =

{
ω ∈ Z2 : M∗

(
1

2
s+ ω

)
∈ Λ

}
. (3.3)

Then we have the following decomposition:

Λ =
⋃
s∈S

M∗
(
1

2
s+ Γs

)
, (3.4)

where M∗(12s + Γs) = ∅ if Γs = ∅. Moreover, the union is disjoint. As 0 ∈ Λ, it follows
that

Γ0 6= ∅. (3.5)

Lemma 3.1. Let Λ be a spectrum of µM,D with 0 ∈ Λ. If Γs is a non-empty set, then
Γs is an orthogonal set of µM,D.

Proof. Suppose that Γs is a non-empty set for some s ∈ S. For any two dis-
tinct elements λ1, λ2 ∈ Γs ⊂ Z2, it follows from Equation (3.4) that M∗(12s + λ1),
M∗( 12s + λ2) ∈ Λ. By Equation (2.5), we have M∗(λ1 − λ2) ∈ Z(µ̂M,D). Together with
Equation (2.1) and mD(ξ) = 1 for any ξ ∈ Z2, it is easy to get

0 = µ̂M,D(M∗(λ1 − λ2)) = mD(λ1 − λ2)µ̂M,D(λ1 − λ2) = µ̂M,D(λ1 − λ2).

Thus, λ1 − λ2 ∈ Z(µ̂M,D), which implies that Γs is an orthogonal set of µM,D. �

The following lemma gives the structure of the spectra of µM,D.

Lemma 3.2. Let Λ be a spectrum of µM,D with 0 ∈ Λ. Then Λ has a decomposition

Λ =
⋃
s∈S

(
1

2
M∗s+M∗Γs

)
, (3.6)

where Γs are also spectra of µM,D for all s ∈ S.
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Proof. We first prove that Γs 6= ∅ for all s ∈ S. Let S ′ = {s ∈ S : Γs 6= ∅}. In view of
Equation (3.4), Λ can be written as

Λ =
⋃
s∈S′

M∗
(
1

2
s+ Γs

)
.

Then for any ξ ∈ R2, using Equation (2.1), Theorem 2.1, Lemma 3.1 and the fact that
Γs ⊂ Z2, we get

1 ≡
∑
λ′∈Λ

|µ̂M,D(ξ + λ′)|2

=
∑
s∈S′

∑
λ∈Γs

∣∣∣∣µ̂M,D

(
ξ +M∗

(
1

2
s+ λ

))∣∣∣∣2

=
∑
s∈S′

∑
λ∈Γs

∣∣∣∣mD

(
M∗−1ξ +

1

2
s+ λ

)∣∣∣∣2 ∣∣∣∣µ̂M,D

(
M∗−1ξ +

1

2
s+ λ

)∣∣∣∣2

=
∑
s∈S′

∣∣∣∣mD

(
M∗−1ξ +

1

2
s

)∣∣∣∣2 ∑
λ∈Γs

∣∣∣∣µ̂M,D

(
M∗−1ξ +

1

2
s+ λ

)∣∣∣∣2

≤
∑
s∈S′

∣∣∣∣mD

(
M∗−1ξ +

1

2
s

)∣∣∣∣2 . (3.7)

On the other hand, choose ξ ∈ M∗(R2 \Q2). As Z(mD) = F̊2
2 + Z2, it follows that

∣∣∣∣mD

(
M∗−1ξ +

1

2
s

)∣∣∣∣2 > 0 for all s ∈ S. (3.8)

Following from Lemma 2.5(iii) and Theorem 2.1 , one may get that

∑
s∈S

∣∣∣∣mD

(
M∗−1ξ +

1

2
s

)∣∣∣∣2 = 1. (3.9)

If S ′ 6= S, according to Equations (3.8) and (3.9), we deduce that
∑

s∈S′ |mD(M∗−1ξ +
1
2s)|

2 < 1. This contradicts Equation (3.7); therefore, S ′ = S, that is, Γs 6= ∅ for all
s ∈ S.
Now we show that Γs is a spectrum of µM,D for each s ∈ S. Suppose, on the contrary,

that there exists a s0 ∈ S such that Γs0
is not a spectrum of µM,D. Then, by Theorem 2.1,

there must exist ξ0 ∈ M∗(R2 \Q2) such that

∑
λ∈Γs0

∣∣∣∣µ̂M,D

(
M∗−1ξ0 +

1

2
s0 + λ

)∣∣∣∣2 < 1.
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Hence, using S ′ = S, Lemma 3.1, Equation (3.9) and the similar argument as
Equation (3.7), we conclude that

1 =
∑
λ′∈Λ

|µ̂M,D(ξ0 + λ′)|2

=
∑
s∈S

∣∣∣∣mD

(
M∗−1ξ0 +

1

2
s

)∣∣∣∣2 ∑
λ∈Γs

∣∣∣∣µ̂M,D

(
M∗−1ξ0 +

1

2
s+ λ

)∣∣∣∣2
≤

∑
s∈S\{s0}

∣∣∣∣mD

(
M∗−1ξ0 +

1

2
s

)∣∣∣∣2 + ∣∣∣∣mD

(
M∗−1ξ0 +

1

2
s0

)∣∣∣∣2

×
∑

λ∈Γs0

∣∣∣∣µ̂M,D

(
M∗−1ξ0 +

1

2
s0 + λ

)∣∣∣∣2

<
∑
s∈S

∣∣∣∣mD

(
M∗−1ξ0 +

1

2
s

)∣∣∣∣2 = 1.

This is a contradiction, and hence Γs is a spectrum of µM,D for each s ∈ S. �

Now we are in a position to prove Theorem 1.2, which can be seen as an extension of
Lemma 3.2.

Proof of Theorem 1.2. We prove the first result Equation (1.4) by induction. It is
obvious that the assertion holds for n =1 by Lemma 3.2. Now we suppose it holds for
n = m− 1, that is, Λ has a decomposition

Λ =
⋃

I∈Σm−1

(
M∗

(
1

2
sI|1 + zI|1

)
+M∗2

(
1

2
sI|2 + zI|2

)
+ · · ·+M∗m−1

(
1

2
sI + ΓI

))
,

(3.10)
where z0k = s0k = 0, zJi ⊂ Z2, ∪i∈ΣsJi = S for J ∈ Σk, 0 ≤ k ≤ m − 2, and every
ΓI is a spectrum of µM,D with ΓI ⊂ Z2, 0 ∈ Γ0m−1 and s0m−1 = 0. For each ΓI with
I ∈ Σm−1, we choose a zI ∈ ΓI (choose z0m−1 = 0), then all ΓI − zI are also spectra
with 0 ∈ ΓI − zI . According to Equation (3.4) and Lemma 3.2, one may conclude that
ΓI − zI has a decomposition

ΓI − zI =
⋃
i∈Σ

M∗
(
1

2
sIi + ΓIi

)
, (3.11)

where
⋃

i∈Σ sIi = S, ΓIi ⊂ Z2 is a spectrum of µM,D for any i ∈ Σ, sI0 = 0 and 0 ∈ ΓI0.
Combining Equations (3.10) and (3.11), we can get

Λ =
⋃

I∈Σm−1,i∈Σ

(
M∗

(
1

2
sI|1 + zI|1

)
+M∗2

(
1

2
sI|2 + zI|2

)
+ · · ·+M∗m−1

(
1

2
sI + zI

)

+M∗m
(
1

2
sIi + ΓIi

))
.
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This shows that Equation (1.4) holds for the case n =m.
Now we prove the second result. Suppose there exists n such that Λ can be decomposed

as the following

Λ =
⋃

i1i2···in∈Σn

(
M∗

(
1

2
si1 + zi1

)
+M∗2

(
1

2
si1i2 + zi1i2

)
+ · · ·

+M∗n
(
1

2
si1···in + Γi1···in

))
,

where z0k = s0k = s0n = 0, zJi ⊂ Z2, ∪i∈ΣsJi = S for any J ∈ Σk (0 ≤ k ≤ n− 1) and
each Γi1···in ⊂ Z2 is a spectrum of µM,D with 0 ∈ Γ0n . One has

QµM,D,Λ(ξ) =
∑
λ′∈Λ

∣∣µ̂M,D(ξ + λ′)
∣∣2

=
∑

si1
∈S

· · ·
∑

si1···in∈S

∑
λ∈Γi1···in

∣∣∣mD

(
M∗−1ξ +

si1
2

)∣∣∣2 · · ·
×
∣∣∣mD

(
ξi1···in−1

+
si1···in

2

)∣∣∣2 ∣∣∣µ̂M,D

(
ξi1···in−1

+
si1···in

2
+ λ
)∣∣∣2

=
∑

si1
∈S

∣∣∣mD

(
M∗−1ξ +

si1
2

)∣∣∣2 · · · ∑
si1···in∈S

∣∣∣mD

(
ξi1···in−1

+
si1···in

2

)∣∣∣2
×

∑
λ∈Γi1···in

∣∣∣µ̂M,D

(
ξi1···in−1

+
si1···in

2
+ λ
)∣∣∣2

=
∑

si1
∈S

∣∣∣mD

(
M∗−1ξ +

si1
2

)∣∣∣2 · · · ∑
si1···in∈S

∣∣∣mD

(
ξi1···in−1

+
si1···in

2

)∣∣∣2
= · · ·
= 1,

where ξi1···in−1
= M∗−n

(
ξ +M∗( 12si1 + zi1) + · · · +M∗n−1(12si1···in−1

+ zi1···in−1
)
)
.

Also 0 ∈ Λ follows from s0n = 0, 0 ∈ Γ0n and s0k = z0k = 0 for all 1 ≤ k ≤ n− 1. Hence,
Λ is a spectrum of µM,D with 0 ∈ Λ. This completes the proof of Theorem 1.2. �

4. Structure of spectral eigenmatrix of µM,D

In the present section, we first study the structure of spectral eigenmatrices of µM,D and
then find the conditions for a matrix to be a spectral eigenmatrix of µM,D. Based on
these preparations, we will complete the proofs of Theorems 1.3 and 1.5.
The following lemma is useful for us to study the structure of spectral eigenmatrices.

Lemma 4.1. Let R ∈ M2(R) and S be defined by Equation (1.3). Suppose⋃
s∈S R (s+ 2Γs) ≡ S(mod 2Z2) for some Γs ⊂ Z2, then the following statements hold.
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(i) R ∈ M2(
Z

2Z+1 ).

(ii) det(R) ∈ 2Z+1
2Z+1 .

(iii) 2RΓ ≡ 0(mod 2Z2) if 2RΓ ⊂ Z2 with Γ ⊂ Z2.
(iv) For any s ∈ S, there exists a unique s′ ∈ S such that R (s+ 2Γs) ≡ s′(mod 2Z2).

Proof. (i) Write s0 = (0, 0)t, s1 = (1, 0)t, s2 = (0, 1)t and s3 = (1, 1)t. Since⋃
s∈S R (s+ 2Γs) ≡ S(mod 2Z2), we have

⋃3
i=0 R

(
si +2Γsi

)
⊂ Z2. For i = 1, 2, choosing

zi = (k1i, k2i)
t ∈ Γsi

⊂ Z2, there exist vi = (l1i, l2i)
t ∈ Z2 such that R(si + 2zi) = vi.

This is equivalent to

R

[
2k11 + 1 2k12
2k21 2k22 + 1

]
=

[
l11 l12
l21 l22

]
. (4.1)

Let l = (1+2k11)(1+2k22)−4k21k12. It follows from Equation (4.1), vi ∈ Z2 and zi ∈ Z2

that

R =
1

l

[
l11 l12
l21 l22

][
2k22 + 1 −2k12
−2k21 2k11 + 1

]
∈ M2(

Z
2Z+ 1

).

This proves (i).
(ii) According to (i), we can let R = 1

lR
′, where l ∈ 2Z + 1 and R′ ∈ M2(Z). As⋃

s∈S R (s+ 2Γs) ≡ S(mod 2Z2), there must exist Vi = (a1i, a2i)
t ∈

⋃
s∈S (s+ 2Γs) and

Zi = (h1i, h2i)
t ∈ Z2 such that RVi = si + 2Zi for i = 1, 2. Thus, one has

R′

[
a11 a12
a21 a22

]
= l

[
2h11 + 1 2h12

2h21 2h22 + 1

]
.

Consequently,

det(R′) det

([
a11 a12
a21 a22

])
= l det

([
2h11 + 1 2h12

2h21 2h22 + 1

])
∈ 2Z+ 1.

This concludes that det(R′) ∈ 2Z + 1. Combining R = 1
lR

′ and l ∈ 2Z + 1, we derive

det(R) ∈ 2Z+1
2Z+1 . So the assertion follows.

(iii) By (i) and (ii), we let R = 1
lR

′ with l, det(R′) ∈ 2Z+1 and R′ ∈ M2(Z). Suppose,
on the contrary, that 2RΓ 6≡ 0(mod 2Z2). Then there exists a vector (l1, l2)

t ∈ Γ ⊂ Z2

such that

2R

(
l1
l2

)
=

(
h1 + 2k1
h2 + 2k2

)
for some (h1, h2)

t ∈ S \ {0} and (k1, k2)
t ∈ Z2. (4.2)
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Multiplying both sides of Equation (4.2) by l, we have

2R′

(
l1
l2

)
= l

(
h1 + 2k1
h2 + 2k2

)
.

It is clear that 2R′(l1, l2)
t ∈ 2Z2 since R′ ∈ M2(Z). However, the right side of the above

equation belongs to Z2\2Z2. This leads to a contradiction, and hence 2RΓ ≡ 0(mod 2Z2).
(iv) Suppose there are s′0 ∈ S and two distinct (k1, k2)

t, (k3, k4)
t ∈ Γs′0

such that

R(s′0 + 2(k1, k2)
t) = s′1(mod 2Z2) and R(s′0 + 2(k3, k4)

t) = s′2(mod 2Z2) for two distinct
s′1, s

′
2 ∈ S. By a simple calculation, we have

2R

((
k1
k2

)
−

(
k3
k4

))
≡ (s′1 − s′2)(mod 2Z2) ⊂ S \ {0}+ 2Z2 ⊂ Z2,

which contradicts (iii). This ends the proof. �

Recall that F2
2 = 1

2

{
(`1, `2)

t : `i ∈ {0, 1}, i = 1, 2
}
. For an integer matrix R with

det(R) ∈ 2Z+1, the next lemma shows that RF2
2 is invariant in the sense of modulo Z2.

Lemma 4.2. Let R ∈ M2(Z), then RF2
2 = F2

2 (mod Z2) if and only if det(R) ∈ 2Z+1.

Proof. The sufficiency follows immediately from [36, Proposition 2.2]. For the neces-
sity, we suppose RF2

2 = F2
2 (mod Z2) and take Γs = {0} in Lemma 4.1. In view of

Lemma 2.5(i) and Lemma 4.1(ii), we deduce that det(R) ∈ 2Z+ 1. �

Now, by using Lemmas 3.2 and 4.1, we first prove the results (i) and (ii) of Theorem 1.3.

Theorem 4.3. Let µM,D be defined by Equation (1.1), where M ∈ M2(2Z) is an
expanding matrix and D is given by Equation (1.2). Suppose Λ and RΛ are spectra of
µM,D with R ∈ M2(R) and 0 ∈ Λ, then the following statements hold.

(i) R = 1
lM

∗R′M∗−1 for some l ∈ 2Z+ 1 and R′ ∈ M2(Z) with det(R′) ∈ 2Z+ 1.
(ii) For any n ≥ 1, Rn = M∗−nRM∗n is a spectral eigenmatrix of µM,D.

Proof. (i). By Lemma 3.2, Λ can be written as

Λ =
⋃
s∈S

(
1

2
M∗s+M∗Γs

)
,

where Γs ⊂ Z2 are also spectra of µM,D for all s ∈ S. By a simple calculation, we obtain
RM∗ = M∗R1 and

RΛ =
⋃
s∈S

(
1

2
M∗R1s+M∗R1Γs

)
=
⋃
s∈S

M∗
(
1

2
R1s+R1Γs

)
. (4.3)
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Similarly, by Lemma 3.2, the spectrum RΛ can also be expressed as follows.

RΛ =
⋃

M∗
(
1

2
s+ Γ′

s

)
(4.4)

where Γ′
s ⊂ Z2 are also spectra of µM,D for all s ∈ S. It follows from Equations (4.3) and

(4.4) that

RΛ =
⋃
s∈S

M∗
(
1

2
R1s+R1Γs

)
=
⋃
s∈S

M∗
(
1

2
s+ Γ′

s

)
. (4.5)

This implies that
⋃

s∈S R1

(
s+2Γs

)
=
⋃

s∈S
(
s+2Γ′

s

)
. Using Lemma 4.1, one may easily

get that R1 ∈ M2(
Z

2Z+1 ) and det(R1) =
2Z+1
2Z+1 . So we can further find l ∈ 2Z+1 such that

lR1 ∈ M2(Z) and det(lR1) ∈ 2Z+1. By the definition of R1, we have R = 1
lM

∗R′M∗−1

with R′ = lR1.
(ii). According to Equation (4.5) and Lemma 4.1(iii), we get R1Γ0 = Γ′

0, where Γ0

and Γ′
0 are spectra for µM,D with 0 ∈ Γ′

0. This shows that R1 = M∗−1RM∗ is a spectral
eigenmatrix of µM,D. Similarly, we can prove that R2 = M∗−1R1M

∗ = M∗−2RM∗2

is a spectral eigenmatrix of µM,D. Hence, by repeating this process many times, Rn =
M∗−nRM∗n is a spectral eigenmatrix of µM,D for any n ≥ 0.
The proof of Theorem 4.3 is completed. �

Having established the above preparation, now we are in a position to prove
Theorem 1.3.

Proof of Theorem 1.3. The results (i) and (ii) can be obtained directly from
Theorem 4.3. We only need to prove (iii). Suppose Λ and RΛ are spectra of µM,D

with 0 ∈ Λ. We first prove R−1 is also a spectral eigenmatrix of µM,D. According to
M = diag[2p, 2q] and Theorem 4.3, we can let

R =
1

l
M∗R′M∗−1 =

1

l

[
a b(pq )

c( qp ) d

]
,

where l ∈ 2Z+1 and R′ =

[
a b

c d

]
∈ M2(Z) with det(R′) ∈ 2Z+1. As pq

gcd(p2,q2)
∈ 2Z+1,

we can let q
p =

α1
β1

with α1, β1 ∈ 2Z+ 1 and gcd(α1, β1) = 1. Define

Λ′ =
1

2
M∗

((
0

0

)⋃(
lβ1

0

)⋃(
0

lα1

)⋃(
lβ1

lα1

)
+ 2Λ

)
.

By Lemma 4.2, we have Λ′ =
⋃

s∈S
(
1
2M

∗s + M∗(vs + Λ)
)
for some vs ∈ Z2. Then

Theorem 1.2 shows that Λ′ is a spectrum of µM,D and

R−1Λ
′ = M∗RM∗−1Λ′ =

1

2
M∗

((
0

0

)⋃(
aβ1

cα1

)⋃(
bβ1

dα1

)⋃(
aβ1 + bβ1

cα1 + dα1

)
+ 2RΛ

)
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=
1

2
M∗

([
aβ1 bβ1

cα1 dα1

]
S + 2RΛ

)
.

As α1, β1, ad− bc ∈ 2Z+ 1, it follows that α1β1(ad− bc) ∈ 2Z+ 1. With Lemma 4.2, we
obtain [

aβ1 bβ1

cα1 dα1

]
S =

⋃
s∈S

(
s+ 2zs

)
for some zs ∈ Z2. Therefore, R−1Λ

′ can be rewritten as

R−1Λ
′ =

⋃
s∈S

(
1

2
M∗s+M∗(zs +RΛ)

)
. (4.6)

This together with Theorem 1.2 shows that R−1Λ
′ is a spectrum of µM,D and R−1 is a

spectral eigenmatrix of µM,D. So we know that R−1 is a spectral eigenmatrix of µM,D if R
is a spectral eigenmatrix. Thus, R−2 is also a spectral eigenmatrix of µM,D. By induction,
one may derive that R−k is a spectral eigenmatrix for any k ∈ N. This completes the
proof of Theorem 1.3. �

At the end of this section, we will prove Theorem 1.5.

Proof of Theorem 1.5. Since R is a spectral eigenmatrix, it follows from
Theorem 4.3(ii) that Rn = M∗−nRM∗n is also a spectral eigenmatrix for any n ≥ 0.

By Theorem 4.3(i), we get Rn+1 ∈ M2(
Z

2Z+1 ) for any n ≥ 0. Let R1 = 1
l

[
a b

c d

]
with

a, b, c, d ∈ Z and l, ad− bc ∈ 2Z+ 1. Then, for any n ≥ 0, one has

Rn+1 = M∗−nR1M
∗n =

1

l

[
a b( qp )

n

c(pq )
n d

]
∈ M2

(
Z

2Z+ 1

)
. (4.7)

(i) If q
gcd(p,q) ∈ 2Z, then Equation (4.7) implies that 2n|c. According to the arbitrariness

of n, we have c=0.
(ii) If p

gcd(p,q) ∈ 2Z, similar to (i), we can derive that b=0 by Equation (4.7) and the

arbitrariness of n.
Hence, we complete the proof of Theorem 1.5. �

5. Exchangeable spectral eigenmatrix

In this section, we consider a special kind of spectral eigenmatrix of µM,D, which can
be exchanged with matrix M, and then complete the proof of Theorem 1.4. We first
consider the sufficiency of Theorem 1.4 whose main idea comes from [22]. We extend it
to the two-dimensional case.
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Throughout this section, we let M = diag[2p, 2q] with integers |p|, |q| > 1, D ={(
0

0

)
,

(
1

0

)
,

(
0

1

)
,

(
−1

−1

)}
and the measure µM,D is defined by Equation (1.1).

Lemma 5.1. For any infinite word w = w0w1 · · · ∈ {−1, 1}N, the set

Λw(M,MF2
2 ) =


m∑
j=0

wjM
jMsj : sj ∈ F2

2 ,m ∈ N

 (5.1)

is a spectrum of the measure µM,D.

Proof. It is easy to know that (M,D,MF2
2 ) and (M,D,−MF2

2 ) are Hadamard triples.
For any integer m ≥ 1, |b| > 1, ci ∈ {0, 1}, 1 ≤ i ≤ m and infinite word w = w0w1 · · · ∈
{−1, 1}N,

∣∣(2b)−(m+1)w0bc1 + (2b)−mw1bc2 + · · ·+ (2b)−1wmbcm
∣∣ ≤ ∞∑

k=1

|b|
(2|b|)k

≤ 2

3
.

Then the set

M−mw0(MF2
2 ) +M−m+1w1(MF2

2 ) + · · ·+M−1wm(MF2
2 ) ⊂

[
−2

3
,
2

3

]
×
[
−2

3
,
2

3

]

is separated from the set Z(µ̂M,D) by a distance δ ≥ 1
3 , uniformly in m, for all m ≥ 1.

By Lemma 2.4, we know Λw(M,MF2
2 ) is a spectrum of µM,D. �

Lemma 5.2. Let R ∈ M2(Z) be a non-singular matrix that can be exchanged with M.
Then each element x ∈ T (M,±MRF2

2 ) has a unique expansion in base M.

Proof. Assume that there are two distinct sequence with infinite words {cj =
(xj,1, xj,2)

t}∞j=1 and {c′j = (x′
j,1, x

′
j,2)

t}∞j=1 in ±F2
2 such that

∞∑
j=0

M−jRcj =
∞∑
j=0

M−jRc′j . (5.2)

Since M = diag[2p, 2q] and MR=RM, a simple calculation gives M−jR = RM−j for
each j ∈ N. Let t be the smallest integer such that ct 6= c′t, without loss of generality we
assume xt,1 6= x′

t,1. From the first coordinate of Equation (5.2), we have

xt,1 − x′
t,1 =

∞∑
j=1

x′
t+j,1 − xt+j,1

(2p)j
. (5.3)
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Observing Equation (5.3), the left hand must be chosen from {±1
2 ,±1}, but

∣∣∣∣ ∞∑
j=1

x′
t+j,1 − xt+j,1

(2p)j

∣∣∣∣ ≤ ∞∑
j=1

1

(2|p|)j
=

1

2|p| − 1
≤ 1

3
<

1

2
,

which is impossible. This ends the proof. �

Lemma 5.3. Let R ∈ M2(Z) be a matrix with det(R) ∈ 2Z+1. Then for any element
x ∈ T (M,±MRF2

2 ) ∩ Z(µ̂M,D), the expansion of x cannot be finite.

Proof. Suppose, on the contrary, that there exists a x ∈ T (M,±MRF2
2 ) ∩ Z(µ̂M,D)

whose expansion is finite, that is, x can be written as

x =
n∑

j=0

M−jRcj (5.4)

for some cj ∈ ±F2
2 , 0 ≤ j ≤ n− 1, and cn ∈ ±F̊2

2 . Combining this with Equation (2.4),

there exist ν ∈ F̊2
2 + Z2 and positive integer k such that

Mkν =
n∑

j=0

M−jRcj .

Consequently,

Mk+nν = Rcn +MRcn−1 + · · ·+MnRc0.

Since det(R) ∈ 2Z + 1, it follows from Lemma 4.2 that Rcn ∈ F̊2
2 + Z2. Then the right

hand of the above equation belongs to F̊2
2 + Z2, but M = diag[2p, 2q] implies the left

hand Mk+nν ∈ Z2, which is a contradiction. Hence, any x ∈ T (M,±MRF2
2 )∩Z(µ̂M,D)

has an infinite expansion. �

Fix a matrix R ∈ M2(Z) with det(R) ∈ 2Z+1. For any positive integers K and N, we
define

SK,N (R) = MRF2
2 +M2RF2

2 + · · ·+MKRF2
2 −

(
MK+1RF2

2 + · · ·+MK+NRF2
2

)
(5.5)

and

DK,N = D +MD + · · ·+M (K+N−1)D. (5.6)

Applying Lemma 2.3, one may get that (M (K+N), DK,N , SK,N (R)) form a Hadamard
triple and the measure µM,D = µMK+N,DK,N

. Based on these, we prove the following.
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Theorem 5.4. There exist two positive integers K0 and N0 such that
T (MK0+N0 , SK0,N0

(R)) is separated from the set Z(µ̂M,D) by a distance δ > 0. Moreover,

the set Λ
(
MK0+N0 , SK0,N0

(R)
)
is a spectrum of the measure µM,D.

Proof. First, we prove that there exist two positive integers K 0 and N 0 such that

T (MK0+N0 , SK0,N0
(R)) ∩ Z(µ̂M,D) = ∅.

(a) If T (M,±MRF2
2 ) ∩ Z(µ̂M,D) = ∅, we take K0 = N0 = 1. Then it is easy to see

that T (MK0+N0 , SK0,N0
(R)) ∩ Z(µ̂M,D) = ∅.

(b) If T (M,±MRF2
2 )∩Z(µ̂M,D) 6= ∅. Let A be the set of all point in T (M,±MRF2

2 )∩
Z(µ̂M,D), which has infinitely many positive terms in its expansion. By Lemma 5.3, we
know that the expansion of the point in B :=

(
T (M,±MRF2

2 ) ∩ Z(µ̂M,D)
)
\ A has

infinitely many negative terms. Since the zero set Z(µ̂M,D) is uniformly discrete and
T (M,±MRF2

2 ) is a compact set, we know T (M,±MRF2
2 ) ∩ Z(µ̂M,D) 6= ∅ contains at

most finitely many points and A,B are also finite sets. So, for every point x ∈ A, we can
find an integer Nx such that there exists a positive term in the expansion of x , with its
index no more than Nx. We let N0 = max{Nx : x ∈ A} and N0 = 1 when A = ∅. We can
also find a positive number Kx such that there exists a negative term in the expansion
of x ∈ B with its index in [N0 +1, N0 +Kx]. We let K0 = max{Kx : x ∈ B} and K0 = 1
when B = ∅. By Lemma 5.2, one has T (MK0+N0 , SK0,N0

(R)) ∩ Z(µ̂M,D) = ∅.
Second, note that T (MK0+N0 , SK0,N0

(R)) is a compact set and Z(µ̂M,D) is a

uniform discrete set, then T (MK0+N0 , SK0,N0
(R)) ∩ Z(µ̂M,D) = ∅ implies that

T (MK0+N0 , SK0,N0
(R)) is separated from the sets Z(µ̂M,D) by a distance δ > 0.

Λ
(
MK0+N0 , SK0,N0

(R)
)

is a spectrum of the measure µM,D following from
Lemma 2.4. �

More generally, one can similarly get the general version of Theorem 5.4.

Theorem 5.5. Let {Rk}nk=1 be a sequence of integer matrices which can be exchanged
with M. Suppose det(Rk) ∈ 2Z + 1 for all 1 ≤ k ≤ n, then there exists a spectrum Λ of
µM,D such that R1Λ,R2Λ, . . . ,RnΛ are spectra of µM,D.

Proof. Let C =
⋃n

k=1

(
T (M,±MRkF2

2 ) ∩ Z(µ̂M,D)
)
, and let A be the set of all point

in C which has infinitely many positive terms in its expansion. Then the expansion of the
point in set B = C \A has infinitely many negative terms by Lemma 5.3. Using the same
argument as in the proof of Theorem 5.4, we can find two positive integers K 0 and N 0

such that all Λ
(
MK0+N0 , SK0,N0

(Rk)
)
are spectra of µM,D, and Λ

(
MK0+N0 , SK0,N0

(E)
)

with identity matrix E is also a spectrum of µM,D by Lemma 5.1.
Let Λ′ = Λ

(
MK0+N0 , SK0,N0

(E)
)
. Since RkM = MRk, the above argument shows

that Λ′ and RkΛ
′ = Λ

(
MK0+N0 , SK0,N0

(Rk)
)
are spectra of µM,D for all 1 ≤ k ≤ n. �

In fact, Theorem 5.5 tells us that if integer matrices R1, R2 can be exchanged with M
and det(R1),det(R2) ∈ 2Z+ 1, then R1R

−1
2 is a spectral eigenmatrix. This is the key to

proving the sufficiency of Theorem 1.4. Next, we will consider the necessity of spectral
eigenmatrix of µM,D.
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Let Λ and RΛ be spectra of the measure µM,D. By Lemma 3.2, we have

Λ =
⋃
s∈S

(
1

2
M∗s+M∗Γs

)
and RΛ =

⋃
s∈S

M∗
(
1

2
s+ Γ′

s

)
, (5.7)

with Γs,Γ
′
s ⊂ Z2. Since RM =MR,

RΛ =
⋃
s∈S

(
1

2
M∗Rs+M∗RΓs

)
=
⋃
s∈S

M∗
(
1

2
Rs+RΓs

)
. (5.8)

It follows from Equations (5.7) and (5.8) that

RΛ =
⋃
s∈S

M∗
(
1

2
Rs+RΓs

)
=
⋃
s∈S

M∗
(
1

2
s+ Γ′

s

)
.

This implies that ⋃
s∈S

R
(
s+ 2Γs

)
=
⋃
s∈S

(
s+ 2Γ′

s

)
. (5.9)

Then the following lemma follows immediately from Lemma 4.1.

Lemma 5.6. Suppose R ∈ M2(R) is a spectral eigenmatrix of µM,D with RM=MR,
then R ∈ M2(

Z
2Z+1 ) and det(R) ∈ 2Z+1

2Z+1 .

We have all ingredients for the proof of Theorem 1.4.

Proof of Theorem 1.4. Sufficiency. Since R ∈ M2(
Z

2Z+1 ) and det(R) ∈ 2Z+1
2Z+1 , we

can assume R = 1
l

[
a b

c d

]
with a, b, c, d ∈ Z and l, ad−bc ∈ 2Z+1. Let R1 =

[
a b

c d

]
and

R2 = lE, then det(R1), det(R2) ∈ 2Z+ 1. By Theorem 5.5, there exists a discrete set Λ
such that Λ, R1Λ and R2Λ are spectra of µM,D. Let Λ′ = R2Λ. Then Λ′ and RΛ′ = R1Λ
are spectra of µM,D, which shows that R is a spectral eigenmatrix of µM,D.
Necessity. The necessity of the theorem can be directly derived from Lemma 5.6. �

6. Concluding remarks

In the present section, we will give some remarks and open questions related to our main
results.
For the diagonal matrix M = diag[2p, 2q] with |p|, |q| > 1, Theorem 1.4 characterizes

the spectral eigenmatrix of µM,D that can be exchanged with M. In the case pq

gcd(p2,q2)
∈

2Z, Theorem 1.5 tells us that the spectral eigenmatrix of µM,D must be a triangular
matrix. Moreover, if we can further prove that the spectral eigenmatrix in Theorem 1.4
is a diagonal matrix, we can completely characterize the spectral eigenmatrix of µM,D.
It is natural for us to consider the following question.
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Q1: Let M = diag[2p, 2q] ∈ M2(2Z) with two different integers |p|, |q| > 1 and
pq

gcd(p2,q2)
∈ 2Z, D be given by Equation (1.2). If R ∈ M2(R) is a spectral eigenma-

trix of µM,D, whether R is a diagonal matrix? More general, if |p| 6= |q|, whether R is
also a diagonal matrix?

Let M = diag[2p, 2q] with |p|, |q| > 1 and gcd(p, q) = 1, and let R =

[
a b

c d

]
∈ M2(Z),

then Rk = M∗−kRM∗k =

[
a b( qp )

k

c(pq )
k d

]
. If 0 ∈ Λ and RΛ are spectra of µM,D, then

Equation (4.5) implies that

2M∗−1RΛ =
⋃
i∈Σ

R1

(
si + 2Γi

)
=
⋃
i∈Σ

(
si + 2Γ′

i

)
⊂ Z2, (6.1)

where ∪i∈Σsi = S, Γi,Γ
′
i are spectra of µM,D for all i ∈ Σ. Let Λ = 1

2M
∗{(λ1n, λ2n)

t}∞n=1,
by Equation (6.1), we have

2M∗−1RΛ = R1{(λ1n, λ2n)
t}∞n=1 =

{[
aλ1n + bq

p λ2n

cp
q λ1n + dλ2n

]}∞

n=1

⊂ Z2.

This shows that q | cλ1n and p | bλ2n for all n.
Choose zi ∈ Z2 such that 0 ∈ (Γi − zi). From Lemmas 3.2 and 4.1 and Equation (6.1),

it is easy to get (Γi−zi) and R1(Γi−zi) are spectra of µM,D. Using Equation (4.5) again,
we have

2M∗−1R1(Γi − zi) =
⋃
j∈Σ

R2

(
sj + 2Γij

)
=
⋃
j∈Σ

(
sj + 2Γ′

ij

)
⊂ Z2. (6.2)

Similarly, if we let (Γi − zi) =
1
2M

∗{(γ1j , γ2j)t}∞j=1, then Equation (6.2) implies q2 | cγ1j
and p2 | bγ2j for all j. Continuing this process, we can see that the spectrum Λ increases
rapidly if bc 6=0. This is quite different from the spectrum that appeared in the previous
references, although we cannot prove that RΛ is not a spectrum of µM,D.
Based on the above analysis, the following conjecture may be a reasonable conjecture

to this end.

Conjecture. Let M = diag[2p, 2q] ∈ M2(2Z) with |p| 6= |q| > 1, D be given by
Equation (1.2). Then R ∈ M2(R) is a spectral eigenmatrix of µM,D if and only if R =
1
t diag[a, d] for some integers t, a, d ∈ 2Z+ 1.

It is worth noting that the matrix M = diag[2p, 2q] given in Theorem 1.4 satisfies
|p|, |q| > 1, which is only used in the proof of the sufficiency. If |p| = |q| = 1, then D is a
complete set of coset representatives of Zn/MZn. By the results of Lagarias and Wang
[31], the attractor T (M,D) is a self-affine tile and µM,D is the normalized Lebesgue
measure supported on T (M,D). It is interesting for us to answer the following question:
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Q2: Let M ∈ M2(2Z) with det(M) = 4 and D be given by Equation (1.2). What are
the sufficient and necessary conditions for R ∈ M2(R) to be a spectral eigenmatrix of
µM,D?
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