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Abstract
Machine learning (ML) models have been developed to identify randomised controlled trials (RCTs) to accelerate
systematic reviews (SRs). However, their use has been limited due to concerns about their performance and
practical benefits. We developed a high-recall ensemble learning model using Cochrane RCT data to enhance
the identification of RCTs for rapid title and abstract screening in SRs and evaluated the model externally with
our annotated RCT datasets. Additionally, we assessed the practical impact in terms of labour time savings and
recall improvement under two scenarios: ML-assisted double screening (where ML and one reviewer screened all
citations in parallel) and ML-assisted stepwise screening (where ML flagged all potential RCTs, and at least two
reviewers subsequently filtered the flagged citations). Our model achieved twice the precision compared to the
existing SVM model while maintaining a recall of 0.99 in both internal and external tests. In a practical evaluation
with ML-assisted double screening, our model led to significant labour time savings (average 45.4%) and improved
recall (average 0.998 compared to 0.919 for a single reviewer). In ML-assisted stepwise screening, the model
performed similarly to standard manual screening but with average labour time savings of 74.4%. In conclusion,
compared with existing methods, the proposed model can reduce workload while maintaining comparable recall
when identifying RCTs during the title and abstract screening stages, thereby accelerating SRs. We propose
practical recommendations to effectively apply ML-assisted manual screening when conducting SRs, depending
on reviewer availability (ML-assisted double screening) or time constraints (ML-assisted stepwise screening).

Highlights
What is already known?

• The standard method for retrieving randomised controlled trials (RCTs) from databases during systematic
reviews (SRs) often results in only 7% of retrieved citations being real RCTs. Applying machine learning
(ML) to identify RCTs is a promising solution.
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• Existing ML models have seen limited use due to concerns about their performance and practical benefits,
which have been questioned by SR practitioners.

What is new?

• We developed a new ML model based on the Cochrane Crowd RCT dataset. This model demonstrated
greater workload savings while maintaining a similar recall (0.99) to existing models in both internal and
external evaluations.

• When used to assist in manual screening, our model enabled significant labour time savings and improved
recall.

Potential impact for readers of research synthesis methods?

• This study may be particularly beneficial for SR practitioners using ML methods to identify RCTs, as it
offers a way to accelerate the conduct of SRs.

• Our developed model facilitates workload reduction while minimising the loss of cases, with ML-assisted
manual screening offering a promising option for SR practitioners facing limited resources, such as a
shortage of reviewers or time constraints.

1. Introduction

Systematic reviews (SRs) focused on randomised controlled trials (RCTs) provide valuable evidence for
clinical decision-making.1–4 Most SRs are assembled from numerous scientific citations that are initially
screened by human experts, a process that is both time-consuming and labour-intensive.5–10 Producing
an SR typically takes an average of 67.3 weeks.11 The standard method for retrieving RCTs from
databases often yields results where only 7% of the retrieved citations are real RCTs,12 making accurate
identification of RCTs a crucial task when conducting SRs.13 Although machine learning (ML)14,15

models to accelerate the SR workflow by identifying RCTs have been developed, they are not widely
used in practice due to concerns about their performance and practical benefits.15,16

Existing models12,13,17–20 have made considerable progress in reducing the workload and minimising
missed RCTs, but their performance remains limited; precision is often sacrificed to ensure minimal
missing, resulting in limited workload savings.12,13,17 For example, Thomas et al.13 reported high recall
(0.99) but low precision (0.08) using a Support Vector Machine (SVM) on the Clinical Hedges dataset.
Similarly, Marshall et al.12 obtained comparable results with a convolutional neural network model.
More recently, BERT-based models like BioBERT have improved performance, achieving an F1 score
of 0.91, which highlights the effectiveness of deep learning in RCT identification.20 Hybrid approaches
that combine crowdsourcing with ML have also been explored to enhance efficiency.17 Ensemble
methods, which combine SVM with PubMed publication-type prediction scores, have achieved a recall
of 0.99 and precision of 0.21, demonstrating advances in RCT identification through ML and integrated
techniques.12

A stacked ensemble approach, which feeds the outputs of several different fine-tuned BERT models
into a Light Gradient Boosting Machine (LightGBM)21 classifier may enhance RCT identification,
achieving improved precision and a recall rate as high as 0.99. The transformer architecture22 of BERT,
which underpins models like GPT and ChatGPT, supports advanced text understanding capabilities. Its
pre-training23 on diverse corpora allows for effective fine-tuning and robust cross-language capabilities,
which are essential for text classification tasks required in RCT identification.20 The stacked ensemble
method24 is particularly beneficial as it can detect complex patterns in the data that a single model
might overlook, thereby improving overall predictive performance. The combination of LightGBM
with BERT’s advanced text representation capabilities proves highly effective in text classification
tasks, including the detection of fake news.25
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Furthermore, the practical benefits of ML in identifying RCTs for title and abstract screening in
SRs are often questioned by practitioners due to concerns26 about the ‘black-box’ nature of ML.
This opacity can obscure the decision-making process, impacting transparency, and reliability, and
potentially risking the exclusion of key evidence. SRs typically require at least two reviewers during
abstract screening to ensure comprehensiveness27–29; however, this process is time-consuming and
labour-intensive. ML-assisted screening might address these challenges, potentially replacing the need
for a human reviewer.

Few studies have explored the impact of tool-assisted manual screening on practice.26,30–32 Clark
et al.30 reported that an SR could be completed within 2 weeks using a suite of tools, such as the
Word Frequency Analyzer and the Polyglot Search Translator for searching, as well as the SRA Helper
and RobotSearch for screening. Their subsequent study31 demonstrated that teams using these tools
saved 70% of the time on six specific tasks compared to those working manually. Perlman-Arrow
et al.32 conducted a real-world study on the impact of ML assistance, reporting a 45.9% reduction in
the time spent on title and abstract screening compared to manual methods. These studies highlight the
advantages of tool-assisted SRs; however, the presence of various non-ML tools makes it challenging
to discern the specific practical impact of ML on the effectiveness of SRs.

This study aims to (1) develop an ensemble learning model to identify RCTs, (2) evaluate its practical
impact, and (3) provide recommendations for ML-assisted manual screening to facilitate the rapid
conduct of SRs.

2. Methods

We developed and internally evaluated an ensemble learning model using the Cochrane Crowd RCT
dataset. The model was then externally evaluated on two RCT datasets, which included annotations
with screening time. Following this, we assessed the impact of our model in two practical ML-assisted
manual screening scenarios using these newly annotated datasets. The model framework is illustrated
in Figure 1.

2.1. Data sources

2.1.1. Development and internal evaluation dataset
We randomly divided the Cochrane Crowd RCT dataset into three subsets—training, validation,
and internal test sets—at a ratio of 3:1:1 for model training, hyperparameter tuning, and internal

Figure 1. Model Frame.
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performance evaluation, respectively. The dataset comprised 83,968 citations, including IDs, titles,
and abstracts, with 7,356 RCTs (8.8%) and 76,612 not-RCTs (91.2%). The Cochrane Crowd RCT
dataset is a robust and diverse resource, sourced from a global community of volunteers who
contribute to identifying and classifying RCTs from bibliographic sources such as Embase, PubMed,
and ClinicalTrials.gov. The crowd-based annotation process involves volunteers reviewing research
study descriptions, with decisions made by at least two reviewers to determine whether the citations
describe RCTs or not.33

2.1.2. Datasets for external evaluation and assessment of practical impact
To illustrate the practical impact of ML compared with manual screening, we annotated new datasets,
as no existing RCT datasets provided screening times and results for each reviewer. We annotated two
independent RCT datasets, ensuring no overlap between them, with each citation including screening
time and results (see the section “External and practical evaluation datasets” of the Supplementary
Material for further details). These external test datasets were distinct from the Cochrane RCT dataset,
ensuring an unbiased evaluation of the model’s performance on data not included in the original training
or validation process. Each dataset comprised 5,000 citations (published between 2013 and 2022 in
PubMed) in the form of titles and abstracts. One dataset, randomly selected without specific qualifying
topics, was named the CREAT random RCT dataset, while the other, randomly selected from abstracts
containing cancer-related topics, was named the CREAT cancer RCT dataset. CREAT represents our
research team CREAT (Clinical Research, Evaluation and Translation). Standard manual screening was
conducted on these datasets as the gold standard. Paired reviewers independently screened each citation
in parallel for titles and abstracts, with a third trained reviewer resolving any disagreements.

2.2. Model development

We developed an ensemble learning model that integrates multiple base models to identify RCTs in
SRs (see the section “Model development” of the Supplementary Material for further details). The
ensemble model employed was LightGBM. The base models consisted of four BERT variants, all
with the same structure and uncased vocabulary list but pretrained on different datasets, resulting
in varying initial parameters. These models included BioBERT-BU,34 BlueBERT-BUP,35 BlueBERT-
BUPM,35 and BERT-BU23 (see the section “Detail of different pretrained datasets of BERT models”
in the Supplementary Material). The model development proceeded in three stages. The first stage
involved fine-tuning the four BERT models using citation text as features to identify RCTs on the same
training set. The second stage entailed training LightGBM with the classification results from the four
BERT models as features on the training set. In the final stage, we fine-tuned the hyperparameters of
LightGBM, including learning rate, tree complexity, and regularisation, to optimise the area under the
curve (AUC) during cross-validation on the training set. After optimisation, we calibrated the cutoff on
the validation set, prioritising a high recall (0.99) while maximising precision based on the precision-
recall curve, to ensure comprehensive identification of all true RCTs while minimising workload.

2.3. Model evaluation

2.3.1. Algorithmic evaluation
Algorithmic evaluation: prior to cutoff adjustment. We performed an algorithmic evaluation of our
model (balance) with a 0.5 cutoff to assess its capability to enhance RCT identification. Before adjusting
the cutoff, we evaluated the base BERT models and introduced an ensemble voting method Vote on
the internal test set for comparison. To identify RCTs, the voting method Vote generates a score by
averaging the prediction probabilities. For this evaluation, the voting method Vote (balance) used a
0.5 cutoff. We used standard manual screening as a benchmark to evaluate our model, applying both
ML evaluation metrics (precision, recall, and F1 score) and epidemiological metrics (sensitivity and
specificity). Recall and sensitivity are included to reflect the dual terminology of ML and epidemiology,
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despite being equivalent measures. Further details of these metrics can be found in the section
“Algorithmic evaluation” of the Supplementary Material.

Algorithmic evaluation: post cutoff adjustment. After hyperparameter tuning, we identified the
optimal cutoff value for our model using the validation set and uniformly applied this value to evaluate
model performance on both internal and external test sets. This evaluation aimed to demonstrate
the model’s potential to improve the RCT screening process, focusing on enhancing precision while
maintaining a high recall rate of 0.99, which is crucial for capturing the maximum number of relevant
RCTs.

To validate the model’s robustness across diverse data environments, we assessed its performance
on both internal and external test datasets. With the adjusted cutoff value, we benchmarked our model
against two established methods: the voting method Vote and a high-recall SVM13 model (details of
which are provided in the section on “Model evaluation” of the Supplementary Material). The voting
method Vote modified the cutoff value on the validation set, prioritising a high recall (0.99) while
maximising precision based on the precision-recall curve, to ensure comprehensive identification of
all true RCTs while minimising workload. These comparisons provided performance baselines, using
both algorithmic and practical evaluation metrics (e.g., workload saving; further details of “Practical
evaluation” are shown in the Supplementary Material).

2.3.2 Evaluation of practical impact
We assessed the practical impact of our model on the external test sets across two potential ML-assisted
manual screening scenarios: ML-assisted double screening (Figure 2a) and ML-assisted stepwise
screening (Figure 2b). Using standard manual screening as a benchmark (Figure 2), we established
reference points for evaluating practical impact in terms of accuracy (with a focus on epidemiological
metrics, particularly sensitivity) and labour saving (including labour time per scenario and labour time
saving, detailed in the section “Labour saving” of the Supplementary Material).

Standard manual screening scenario as the benchmark. In the standard manual screening scenario,
the process involves paired reviewers independently screening citations in parallel. When their results
are consistent, the RCT identification result is taken from the first reviewer. If their results are
inconsistent, a third reviewer resolves the disagreement.

We used standard manual screening as a benchmark to calculate both algorithmic and practical
evaluation metrics across two separate external test sets. As illustrated in Figure 2, labour time is
measured as the cumulative time taken by the paired reviewers. If the paired reviewers’ results are
inconsistent, the labour time is increased by the duration required for a third reviewer to mediate and
resolve the disagreement.

ML-assisted double screening scenario. In the ML-assisted double-screening scenario, the process
is as follows: the ML model and a single reviewer independently screen citations in parallel. When their
results are consistent, the RCT identification result is taken from the single reviewer. When their results
are inconsistent, a third reviewer resolves the disagreement. As illustrated in Figure 2, the labour time
is measured as the cumulative time taken by the single reviewer. If the single reviewer’s results do not
align with the ML model’s, the labour time is increased by the duration required for a third reviewer to
mediate and resolve the disagreement.

To enhance the reliability of the efficacy evaluation for the ML-assisted double screening method,
we conducted two independent tests on the same external test sets, each with a different single reviewer
working in parallel with the ML model. Any disagreements were resolved by a third reviewer. We
simulated the performance of the single reviewer by using outcomes from one of the reviewers involved
in the standard screening process.

Additionally, we performed two tests of the single reviewer screening scenario on the same sets
to compare the effects of ML-assisted double screening. For each test, we evaluated the performance
of the single reviewer using outcomes from the single reviewer involved in the ML-assisted double
screening. The labour time for the single-reviewer screening scenario was determined by aggregating
the time spent by that reviewer.
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Figure 2. Overview of workflow and labour time in different screening scenario.
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ML-assisted stepwise screening scenario. In the ML-assisted stepwise screening scenario, the
process involves two steps. In the first step, the ML model screens all citations and flags potential
RCTs. In the second step, human reviewers conduct standard manual screening of the flagged citations.

We applied this screening method once to two separate external test sets. The performance of
standard manual screening on the flagged citations was assessed using outcomes from the standard
screening process. As depicted in Figure 2, the new labour time reflects the time spent on manual
screening of citations identified as RCTs by the ML model.

3. Results

3.1. Algorithmic evaluation

3.1.1. Algorithmic evaluation: prior to cutoff adjustment
At this stage, prior to any adjustment of the cutoff, our model demonstrated strong algorithmic
performance. It achieved a recall of 0.902, a precision of 0.953, and an F1-score of 0.927 on the internal
test dataset from the Cochrane Crowd RCT dataset. Our model outperformed all baseline models (see
Table 1), with an F1-score of 0.927 compared to 0.922 for the best baseline models, and a recall of
0.902 compared to 0.889 for the best baseline models.

3.1.2. Algorithmic evaluation: post cutoff adjustment
As shown in Table 2, after adjusting the cutoff, our model maintained a high recall rate of 0.99 while
achieving precision scores of 0.353, 0.483, and 0.400 across the Cochrane, CREAT random, and
CREAT cancer datasets, respectively. These precision scores significantly surpass those of the SVM
and Vote methods, effectively reducing false positives. Additionally, our model delivered substantial
workload savings, reducing the manual review effort by 75.3%, 73.9%, and 86.4% for the respective
datasets. This demonstrates the model’s ability to streamline the RCT screening process by enhancing
precision and efficiency while preserving a high recall rate of 0.99.

3.2. Evaluation of practical impact

The evaluation of the impact of ML in two practical scenarios is presented in Table 3. Figure 3 visually
represents the labour time across different screening scenarios for the CREAT random and CREAT
cancer RCT datasets.

3.2.1. Standard manual screening scenario as the benchmark
In the standard manual screening scenario, the results indicated that screening 5,000 citations, which
included 632 RCTs in the CREAT random RCT dataset and 338 RCTs in the CREAT cancer

Table 1. Algorithmic evaluation of models on the internal test from Cochrane Crowd RCT dataset.

Total Algorithmic evaluation

Model citations RCTs Specificity Recall/sensitivity Precision F1 score

BioBERT-BU 16,795 1472 0.996 0.875 0.953 0.912
BlueBERT-BUP 0.995 0.874 0.946 0.909
BlueBERT-BUPM 0.993 0.889 0.929 0.909
BERT-BU 0.994 0.889 0.938 0.912
Vote (balance) 0.996 0.889 0.958 0.922
Our model (balance) 0.996 0.902 0.953 0.927
Note: The “total citations” column represents the total number of citations in the internal test dataset from Cochrane Crowd RCT dataset. The
“RCTs” column indicates the number of citations that were identified as RCT in the internal test dataset from Cochrane Crowd RCT dataset.
Bolded values are used to highlight key performance metrics that are particularly significant in the context of our study.
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Table 2. Single Model Performance in RCT Identifying: Algorithmic evaluation and practical evaluation on the internal and external test datasets.

Algorithmic evaluation Practical evaluation

Dataset Model Total citations RCTs Specificity Recall/sensitivity Precision F1score Workload saving (%)

Cochrane data SVM 16,795 1472 0.567 0.994 0.181 0.306 51.8
Vote 0.772 0.995 0.295 0.455 70.4

Our model 0.825 0.995 0.353 0.521 75.3
CREAT random RCT data SVM 5,000 632 0.520 0.998 0.231 0.376 45.5

Vote 0.675 0.998 0.308 0.471 59.0
Our model 0.846 0.997 0.483 0.651 73.9

CREAT cancer RCT data SVM 5,000 338 0.646 0.976 0.167 0.285 60.4
Vote 0.717 0.997 0.203 0.338 66.8

Our model 0.926 0.994 0.400 0.570 86.4
Note: In Table 2, the bolded values highlight the improvements in sensitivity, specificity, and workload saving achieved by our model over existing methods like the SVM and Vote ensemble.
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Table 3. Comparative analysis of epidemiological metrics and labour time in screening scenarios for practical evaluation.

Epidemiological metrics Labour saving
Average (first, second) Average (first, second)

Model Dataset Sensitivity Specificity Labour time per scenario(h) Labour time saving (%)

Single reviewer CREAT random
RCT dataset

0.927 (0.973,0.881) 0.985 (0.980,0.990) 17.62 (17.37,17.87) 52.0 (52.7,51.3)

CREAT cancer
RCT dataset

0.911 (0.944,0.879) 0.988 (0.986,0.991) 17.77 (17.79,17.74) 51.5 (51.4,51.6)

Average of these
two datasets #

0.919 0.987 17.70 51.7

ML-assisted double
screening

CREAT random
RCT dataset

0.998 (0.997,1.000) 0.986 (0.981,0.991) 20.17 (19.79,20.55) 45.1 (46.1,44.0)

CREAT cancer
RCT dataset

0.998 (0.997,1.000) 0.990 (0.987,0.992) 19.84 (19.74,19.94) 45.8 (46.1,45.6)

Average of these
two datasets #

0.998 0.988 20.00 45.4

ML-assisted stepwise
screening

CREAT random
RCT dataset*

0.997 1.000 11.20 69.5

CREAT cancer
RCT dataset*

0.994 1.000 7.59 79.3

Average of these
two datasets #

0.996 1.000 9.39 74.4

Note: Average (first, second): Since we conducted two tests of single reviewer screening and ML-assisted double screening, this represents the result from the first test, the result from the second test, and average
values of the results from these two tests. ‘*’: Because we only conducted one test of single ML-assisted stepwise screening, there is only one set of results. The symbol ‘#’ represents the mean performance across
two datasets.
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Figure 3. Comparative analysis of labor time saved (%) compared to standard manual screening
across different screening scenarios.

RCT dataset, took 36.71 h for the random dataset and 36.63 h for the cancer dataset, respectively.
Individually, a reviewer took an average of 12.71 s to screen a citation in the random dataset and 12.81 s
in the cancer dataset.
3.2.2. ML-assisted double screening scenario
We conducted two tests of ML-assisted double screening on the CREAT cancer RCT dataset and the
CREAT random RCT dataset. Our model achieved a higher recall rate than single reviewers, with an
average improvement from 0.919 to 0.998. Specifically, the average recall was 0.998 for ML-assisted
double screening versus 0.927 for single reviewer screening on the CREAT cancer dataset, and 0.999
versus 0.911 on the CREAT random RCT dataset. However, this improvement in recall resulted in a
modest reduction in labour time savings, averaging 45.3% compared to 51.7% for the single reviewer
scenario. In detail, the labour time savings were 45.1% versus 52.0% for the CREAT random dataset
and 45.8% versus 51.5% for the CREAT cancer dataset. Figure 3 illustrates these findings, with the
labour time savings for ML-assisted double screening denoted by a relatively shorter bar, indicating a
more efficient labour time requirement compared to the standard screening method.

3.2.3. ML-assisted stepwise screening scenario
In the ML-assisted stepwise screening scenario, our model performed comparably to standard manual
screening while achieving substantial labour time savings, averaging 74.4%. Specifically, the savings
were 69.5% for the CREAT random RCT dataset and 79.3% for the CREAT cancer dataset. Figure 3
highlights the labour time savings for this scenario, showing ML-assisted stepwise screening with the
shortest bar, indicating it as the most time-efficient method among those evaluated.

4. Discussion

4.1. Recommendations for applying ML in identifying RCTs for rapid title and abstract screening
in SRs

Based on the varying requirements of different application scenarios, we offer recommendations for 2
ML-assisted manual screening approaches, as outlined in Table 4.

When the number of reviewers available for SRs is limited, ML-assisted double screening is a
promising solution. This method reduces labour time by half and outperforms a single reviewer.
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Table 4. Recommendations for SR reviewers to apply ML-assisted manual screening to identify RCTs
for rapid title and abstract screening in SRs.

Application scenarios Limited the number of reviewers Limited time

Application ML-assisted double screening ML-assisted stepwise screening
Implementation Replace one human reviewer with

ML in standard manual screening
Step 1: Use the model to screen all

the citations
Step 2: Conduct standard manual
screening on the citations included
by ML

Effect
• Reduces labour time by nearly half
• Higher recall than a single human

reviewer

• Reduces labour time by nearly
three-fourths

• Performance close to that of stan-
dard manual screening

Limitation When human reviewers and models
misclassify simultaneously, real
RCTs are lost.

When the model misclassifies RCTs,
real RCTs is lost.

Suggestions Human reviewers should have
extensive screening experience.

Randomly sample the citations
excluded by the model to check
for missing.

Reviewers engaged in double screening with ML should have extensive screening experience to
minimise the risk of missing real RCTs. Our model is designed to enhance precision while maintaining a
high recall of 0.99, thus ensuring minimal omission of real RCTs and reducing workload. Consequently,
the individual consistency between our model and human reviewers in double screening is not very
high, but it effectively serves as a useful alert mechanism.

When time constraints are a significant factor in conducting an SR (e.g., for rapid reviews36), ML-
assisted stepwise screening can reduce labour time by three-fourths while performing comparably to
standard manual screening. To prevent missing real RCTs, random sampling of citations excluded by
the model should be conducted.

4.2. Main findings and implications

The main findings of this study are as follows. (1) The LightGBM model, which integrates multiple
BERT models, demonstrated superior performance in identifying RCTs compared to the existing high-
recall SVM model. It reduced the workload significantly while maintaining similar high recall in both
internal and external tests. (2) The model showed promising results in 2 ML-assisted manual screening
scenarios. In the ML-assisted double screening scenario, it reduced labour time by half and increased
the recall compared to a single reviewer. In the ML-assisted stepwise screening scenario, it cut labour
time by three-fourths while achieving performance comparable to standard manual screening. (3)
Recommendations for ML-assisted manual screening in rapid title and abstract screening for SRs were
provided, highlighting the potential benefits of integrating ML techniques in these processes.

4.2.1. Improved workload savings with minimal missing cases in RCTs identification in SRs
Our results demonstrate that the ensemble model, which integrates various BERT models, consistently
provides a higher recall than individual BERT models. The different BERT base models, pre-trained on
diverse datasets, capture distinct aspects of the underlying patterns and discriminative properties. This
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allows ensemble learning to extract and interpret semantics from citations more effectively, resulting in
more accurate RCT identification.

Previous studies13,18,3,7 have employed SVMs to reduce workload and minimise missing cases, but
these approaches often overlooked semantic information, limiting their effectiveness. By adjusting
the cutoff value of our model to achieve a sensitivity/recall of 0.99, we improved performance
significantly compared to existing high-recall SVM models. Our modified model achieved a three-
fourths reduction in workload while maintaining the same level of sensitivity (0.99) in both internal and
external evaluations. The BERT ensemble leverages advanced language understanding capabilities to
capture the semantic richness and contextual nuances of medical literature. Its deep learning framework
facilitates sophisticated feature extraction and representation, which is crucial for complex classification
tasks such as RCT identification. Additionally, the ensemble’s combined learning approach addresses
individual model weaknesses, enhancing overall accuracy.

4.2.2. Impact of our model in two practical scenarios
Our model demonstrated a promising impact on newly annotated RCT datasets in two potential
ML-assisted manual screening scenarios: ML-assisted double screening and ML-assisted stepwise
screening.

ML-assisted double-screening scenario. In this scenario, our model achieved a higher recall than a
single human reviewer while reducing labour time by nearly half. Although single-reviewer screening
could accelerate the process, it is not recommended by guidelines due to the increased risk of missing
studies and potential bias.28,29 ML-assisted double screening offers a solution by improving recall while
maintaining similar labour time. Discrepancies between the single reviewer’s results and those of the
ML model are resolved by a third-party reviewer, ensuring no RCTs are overlooked.

For cases missed by ML-assisted double screening, a thorough review of full texts confirmed that
none were RCTs. These omissions were due to the information available in titles and abstracts being
insufficient to accurately determine the study type, thus highlighting the limitations of relying solely on
these sources for classification.

ML-assisted stepwise screening scenario. The ML-assisted stepwise screening scenario performed
comparably to standard manual screening, with a labour time saving of three-fourths. This approach
significantly reduces the workload by excluding citations through ML screening before manual review.
However, there is a risk of missing important information, making it crucial to use a model with high
recall to ensure that real RCTs are not overlooked. This scenario is particularly beneficial for rapid
reviews when time is constrained.

4.3. Strengths

A key strength of our study is that the developed model outperformed the high-recall SVM model
across diverse datasets, achieving greater workload reduction with minimal missing cases. We also
annotated two new RCT datasets, demonstrating the practical benefits of ML-assisted manual screening.
To our knowledge, no previous studies have directly compared the impact of ML on labour time and
recall improvement with human reviewers. Our findings provide reviewers with insights into the actual
benefits of ML. Additionally, we offer recommendations to assist reviewers in applying ML effectively,
ensuring the timely completion of SRs.

4.4. Limitations

This study has several limitations. Firstly, our model is limited to identifying English RCTs and may not
apply to languages with non-Latin alphabets due to the constraints of BERT’s tokenizer. Additionally,
the model’s complexity requires substantial computational resources, resulting in longer training and
prediction times compared to a single BERT model or an SVM model. However, a notable advantage
is the reduced need for data pre-processing compared to SVM models, which enhances efficiency and

https://doi.org/10.1017/rsm.2025.3 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.3


362 Qin et al.

reduces computational demands. There is also a risk of performance overestimation due to overlap with
BERT’s pre-training datasets, particularly with external PubMed datasets from 2012–2023. Finally, it
is crucial to validate the applicability of ML-assisted strategies and their recall thresholds with new
data to ensure their continued effectiveness, especially when applied to datasets that differ significantly
from the Cochrane RCT dataset used in our study.

5. Conclusions

In conclusion, we developed an ensemble learning model that integrates multiple BERT models. This
model effectively identifies RCTs for the rapid title and abstract screening in SRs, significantly reducing
workload and minimising missed cases. Our findings suggest that ML-assisted double screening is
a promising solution when the number of reviewers is limited. Additionally, ML-assisted stepwise
screening proves valuable when time constraints are present in producing SRs.
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