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Abstract. A Q-curve is an elliptic curve, defined over a number field, that is isogenous to each of its
Galois conjugates. Ribet showed that Serre’s conjectures imply that such curves should be modular.
Let E be an elliptic curve defined over a quadratic field such thatE is 3-isogenous to its Galois
conjugate. We give an algorithm for proving any suchE is modular and give an explicit example
involving a quotient ofJ0(169). As a by-product, we obtain a pair of 19-isogenous elliptic curves,
and relate this to the existence of a rational point of order 19 onJ1(13).
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Let E be an elliptic curve defined overQ and without complex multiplication.E
is called aQ-curve if it is isogenous to each of its Galois conjugates. We say that
E is modular if for someN there is a non-constant morphismJ1(N)! E, where
J1(N) is the Jacobian of the modular curveX1(N). Ribet [12] showed that ifE
is modular, thenE is aQ-curve, and conversely, if Serre’s conjecture 3:2:4? [18]
holds, then allQ-curves are modular. See also [18, Thm. 5]. WhenE is defined over
Q, thenE is automatically aQ-curve, and this reduces to the conjecture that allE
overQ are modular(it can be shown that forE defined overQ, the existence of a
mapJ1(N)! E implies the existence of a mapJ0(N

0)! E for someN 0). Wiles
[27] has proved a general result, extended by Diamond [4], that implies, among
other things, the modularity of all semistable elliptic curves overQ, and also the
modularity of several otherQ-curves. However the method runs into difficulties
when the mod 3 representation is reducible. OverQ, this was handled by the ‘3–
5’ switch [27], which relied on the fact that the elliptic curveX0(15) has finite
Mordell-Weil group overQ. This of course fails over many quadratic fields. Also,
since we are working in the rather restrictive context ofQ-curves, it is not certain
that the ‘3–5’ switch can be applied.

In the following, we start with the family of 3-Q-curves (i.e., the isogeny is of
degree 3) defined over a quadratic fieldK. We consider those that are 3-isogenous
overK to their Galois conjugates, hence have reducible Gal(Q=K)-representations
(which remain reducible when extended to Gal(Q=Q)-representations). Therefore
the general results of Wiles and Diamond do not apply. We describe a general
strategy for proving individual curves in the family are modular. In a sense, such
calculations can be regarded as a check on a consequence of Serre’s conjecture in
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36 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

a case that does not already follow from earlier conjectures such as the Shimura–
Taniyama–Weil conjecture.

We note that the absence in general of a point of order 2 on these curves makes
it difficult, though perhaps not impossible, to apply the method of Faltings-Serre-
Livné [7], which has often been used to prove individual curves modular.

As an example, we treat a particular curve that appears as a quotient ofJ0(169)
and which was discussed briefly by Ribet [12]. As a by-product, we find another
curve to which this curve is 19-isogenous and relate this phenomenon to the
existence of a rational point of order 19 onJ1(13). In fact,J1(13) is isogenous over
Q(�13) to the product of our curve and its Galois conjugate.

1. The family of 3-Q-curves

THEOREM 1.SupposeK = Q(
p
d) is a quadratic field andE is a non-CMQ-

curve defined overK that is 3-isogenous to its Galois conjugate. ThenE has the
form

Em : y2 = x3�
 

15m2

4
� 3mp

d

!
D2x�

 
11m3

4
� 7m2

2
p
d
+
m

2d

!
D3

withD 2 K� andm 2 Q� .

This is proved in [17] by considering a twisted form ofX0(3). Note that changing
D gives twists of the curve and does not affect modularity. For simplicity, we have
suppressedD from the notation forEm.

Note that the conjugate ofE is obtained by changingm to�m andD to�D�,
where� is the non-trivial automorphism ofK.

It is convenient to writem = a=b with (a; b) = 1. Then

j(Em) =
2433a

p
d(5a

p
d� 4b)3

(a
p
d� b)(a

p
d+ b)3

: (�)

The isogeny� from Em to E�
m is defined overK if and only if Norm(D) =

�3A2 for someA 2 K�. If A 2
p
dQ� , then��� = 3, and ifA 2 Q� , then

��� = �3.
From now on, we shall assume that the 3-isogeny is defined overK. For

simplicity, we shall also assume that��� = +3 and thatK is real quadratic. Since
Q(
p
+3) is totally real, it follows from [12, Proposition 3.4; or 14, Sect. 1] thatEm

should arise from the part ofJ1(N) with trivial character, hence fromJ0(N), for
someN . In the cases where other parts ofJ1(N) are needed, the considerations
are similar.

2. Modular Q-curves

We start withE = Em for somem, defined over the quadratic fieldK = Q(
p
d)

of discriminantd, as in Section 1, with the isogeny� defined overK. Our goal
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THE MODULARITY OF SOMEQ-CURVES 37

is to showE is modular. The abelian varietyA = E � E� can be defined over
Q (it is the restriction of scalars fromK to Q of E) and there is an injection
Q(
p

3) ,! EndQ(A) 
 Q (if ��� = �3, then we would have an injection of the
field Q(

p�3) instead).
Such a situation also arises with abelian varieties attached to modular forms.

Let f = q + a2q
2 + a3q

3 + � � � be a normalized Hecke eigenform of weight 2 for
�0(N) and letL = Q(a2; a3; : : :). By [21, Thm. 7.14], there is aQ-simple abelian
varietyAf of dimension[L : Q] with L ,! EndQ(Af )
Q. In fact,Af is a quotient
of J0(N) and the Hecke operatorTp acts as the endomorphism corresponding to
ap 2 L. We could also takeAf to be a quotient ofJ1(N); this would give us an
abelian variety isogenous toAf and would not affect the following (since the map
� below is defined in both situations).

Suppose now that

L = Q(a2; a3; : : :) = Q(
p

3)

and letf 0 = q+a02q
2+a03q

3+ : : :, wherea0n is the Gal(L=Q)-conjugate ofan. Then
f 0 is also a Hecke eigenform for�0(N). Suppose thatf 0 = f 
� =

P
�(n)anq

n,
where� is the quadratic character associated to the quadratic fieldK = Q(

p
d).

Thenf is a modular form with ‘extra twist’ in the sense of Shimura [22] and Ribet
[13]. We assume in addition thatf has no CM. This means that there is no non-
trivial Dirichlet character� such thatap = �(p)ap for almost allp. In particular,
this implies that theQ -factors ofAf do not have CM [24, Prop. 1.6; 14, Cor. 3.5].
As in Shimura [22], there is aK-endomorphism� of Af such that

(1) �2 = d
(2) �Tp = �(p)Tp� for all Hecke operatorsTp, wherep - N is prime
(3) �f =

p
df 0 and�f 0 =

p
df

(4) �� = ��, where� is the non-trivial automorphism ofK.

In fact,� is constructed as follows.
In our case, sincef andf 
� have levelN , we haved2jN . For 16 u 6 d� 1,

let �u =

 
1 u=d

0 1

!
. Then�u�1(N)��1

u = �1(N), so the mapz 7! �u(z) is

an automorphism ofX1(N) and induces a corresponding automorphism of the
JacobianJ1(N). The maps�1; : : : ; �d�1 yield a map

J1(N)! J1(N)� � � � � J1(N):

There is also a map

J1(N)� � � � � J1(N)! J1(N)

defined by(z1; : : : ; zd�1) 7!
P
�(j)zj . The composite of these two maps gives

� : J1(N)! J1(N):
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38 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

An easy calculation shows that�maps a modular form
P
bnq

n tog(�)
P
�(n)bnq

n,
where g(�) =

P
�(j)e2�ij=d =

p
d is the Gauss sum attached to�. Since

f 
 � = f 0; � maps theC -span off; f 0 to itself and satisfies (1), (2), and (3)
on this space. By [1, Lem. 29]),� gives an endomorphism of the space of weight
two cusp forms for�0(N), so� acts onJ0(N). It follows that� gives an endomor-
phism ofAf satisfying these three properties.

Property (4) can be verified as in [22], but instead we use an argument inspired
by one in [15]. Since all endomorphisms ofAf are defined overQ , this holds
for �. As we shall see below, the existence of� satisfying (1), (2), (3) implies
thatAf is isogenous overQ to the product of two elliptic curvesE1 andE2 that
are isogenous to each other. Therefore, since we are not dealing with CM curves,
End(Af )
 Q 'M2(Q). Let g be a Galois automorphism of the field of definition
of End(Af ). Theng induces an automorphism ofM2(Q). By the Noether-Skolem
theorem, this is an inner automorphism, so there existse 2 GL2(Q) such thatg
induces the mapm 7! eme�1. The fieldL = Q(

p
3) injects into End=Q(Af )
 Q

via the Hecke operators, sog, hencee, commutes with the action ofL. SinceL is
its own commutator inM2(Q), we havee 2 L. Sinceg is of finite order,ek is in
the center ofM2(Q), namelyQ, for somek > 1. SinceL is totally real, it follows
easily (for example, use [6, Chap. VIII, Sect. 9]) thate 2 Q� or e 2 p3Q� . Since
Q� acts trivially, there are two choices forg. Therefore all endomorphisms ofAf ,
in particular�, are defined over a quadratic fieldK1.

SupposeK1 6= K. Choosep - N such thatp splits inK1 but is inert inK.
Choose a primep of Q overp and letF be the Frobenius forp in Gal(Q=Q). Then
F is trivial onK1, so it commutes with�. Let ~Af be the reduction ofAf modulo
p. In End( ~Af ) we have the relationF 2� TpF + p = 0. Therefore,

0 = (F 2 � TpF + p)� = �(F 2 + TpF + p):

Multiplying by � and using the fact that End( ~Af ) has noZ-torsion, we obtain
F 2+TpF + p = 0. Since it is possible to choosep such thatTp 6= 0 onAf (the set
of p with ap = 0 has density 0 [19]), we have a contradiction. ThereforeK1 = K.

Now apply a similar argument withK1 = K and choosep such that its Frobenius
F equals� onK and such thatTp 6= 0 onAf . Then�2 is trivial onK, hence
commutes with�. The above argument yields 0= �F 2+��TpF +�p. Multiplying
by � and comparing with the original equation multiplied byd yields ���Tp =
�dTp. SinceT 2

p 2 Z for all p, we may multiply on the right byTp and remove
the integer to obtain��� = �d = �2. Multiplying by � and dividing byd yields
�� = ��, in End( ~Af ). Since the map End(Af ) ! End( ~Af ) is injective, we
obtain (4).

The existence of� allows us to decomposeAf overK as isogenous to a product
of two elliptic curves:

Af � E1 �E2:
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THE MODULARITY OF SOMEQ-CURVES 39

Since we need to do calculations with these curves, we show how to giveE1 and
E2 explicitly, at least when there is a Hecke operator satisfyingT 2

p = 3 onAf .
If p - N andap =2 Q, thena0p = �(p)ap = �ap, soap = r

p
3 with r 2 Q.

Assume that there existsp with r = �1, soa2
p = 3. By assumption, Norm(D) =

�3dA2
1 for someA1 2 Q� . This may be rewritten to yield that 3 is a norm from

Q(
p
d); in other words, there existx; y 2 Q such that 3= x2 � dy2. Let z be a

common denominator forx andy and let

e = z(Tp + y� + x) 2 End(Af ):

Thene2 = 2zxe. We havee� = e� 2zy� sinceTp is defined overQ. Let

E1 = Af=eAf ; E2 = Af=e
�Af :

ThenE2 is the Galois conjugate ofE1. SinceTpe = e�Tp andTpe� = eTp, the
Hecke operatorTp induces maps

� : E1 ! E2 and �� : E2 ! E1

with ��� = 3 2 End(E1). Since the cardinalities of the kernels of� and�� are
equal,� and�� must be 3-isogenies. ThereforeE1 is a 3-Q-curve, so it is given by
Theorem 1.

We claim that the natural map

 : Af ! E1 �E2

is an isogeny. SupposeQ is in the kernel of . ThenQ 2 eAf , so(2zx� e)Q = 0.
Similarly, Q 2 e�Af , so (2zx � e + 2yz�)Q = 0. Therefore 2yz�Q = 0 and
hence 2yzdQ = 0. It follows that the kernel is finite. Sincee��P1 + e�P2 maps to
(e��P1; e�P2) = 2zyd(�P1; P2), the surjectivity of follows from the divisibility
of Af . Therefore is an isogeny.

In order to show that the original elliptic curveE is modular, it is necessary to

(1) find the correct modular formf , and
(2) show that the correspondingE1, or its conjugateE2, is isogenous toE.

We start with (1). Let̀ be any prime. Attached tof is an irreducible�-adic
Galois representation

�f : Gal(Q=Q) ! GL2(Q `)

such that

Tr(�f (Frobp)) = ap and det(�f (Frobp)) = p
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40 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

for all primesp - `N (where Frobp denotes any choice of Frobenius element).
The restriction of�f to Gal(Q=K) is equivalent to the representation�E1 on the
`-adic Tate module ofE1 (which is equivalent to that forE2 sinceE1 andE2 are
isogenous overK).

For the lemma below, we need the commuting algebra of�f (Gal(Q=K)) to be
the scalar matrices. This can be shown using the results of [14]. Alternatively, by
[16, Thm. 3.1], we may assume that` is such that�f (Gal(Q=K)) � GL2(Z`), and
hence�f gives an absolutely irreducible representation of Gal(Q=K).

Whenp = pp
0 splits inK, Frobp 2 Gal(Q=K). Moreover,ap = a0p, soap 2 Z.

In addition,

Tr(�E1(Frobp)) = p+ 1� #(E1 modp);

and similarly for our original curveE.
By counting points onEmodp for various splitp, we can find several coefficients

of the desired modular formf . It is worth pointing out that this procedure can only
give usa2

p for the inertp. This corresponds to the fact thatap = �a0p for thesep,
and�f and�f 0 are equivalent on Gal(Q=K), so we cannot expect to remove the
ambiguity in sign.

Using modular symbols, one can find the Hecke eigenforms for�0(N). Among
these, there should be two with the appropriate values ofap, namelyf andf 0. In
fact, there cannot be any eigenform other thanf andf 0 with the same values of
ap for all split p, so sufficient computation will eventually single outf andf 0.
Namely, the Frobenius elements for the split primes are dense in Gal(Q=K), so
any representation of Gal(Q=K) is determined up to equivalence by theseap. The
uniqueness of the pair(f; f 0) now follows from the following.

LEMMA. Let � : Gal(Q=K) ! GLn(F ) be an absolutely irreducible represen-
tation, whereF is a field. Then� has at most two extensions to a representation of
Gal(Q=Q).

Proof. Let ~�be an extension of�and let�denote any extension of the non-trivial
element� 2 Gal(K=Q) to an element of Gal(Q=Q). We have�g��1 2 Gal(Q=K)
for all g 2 Gal(Q=K), and�(�g��1) = ~�(�)�(g)~�(�)�1. Therefore the matrix
~�(�) intertwines two absolutely irreducible representations and hence is determined
up to a scalar. Since~�(�)2 = �(�2), this scalar is determined up to sign. Since~� is
determined by~�(�), there are at most two choices for~�. 2

Since the coefficients of the modular form are determined by the Galois representa-
tion (use ‘multiplicity one’ to include the bad primes), the two possible extensions
of the Galois representation correspond tof andf 0, if they actually exist, and so
it is possible to determine uniquely the pair(f; f 0). Moreover,f 
 � will have the
same values ofap for split p and in the cases we need will also be a newform for
�0(N). Sincef 
 � 6= f (since we are not in a CM situation; moreover, the CM
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THE MODULARITY OF SOMEQ-CURVES 41

case can be handled by other methods; see [14]), we must havef 
 � = f 0, as
desired.

We are now in the following situation. We have a modular formf and a corre-
sponding elliptic curveE1, which we know to be modular. We knowf explicitly,
but we do not have an exact equation forE1, though a numerical approximation
can be calculated. For our original elliptic curveE, we of course have an exact
equation, but we do not have a modular form, though we know many coefficients
of the supposed modular form. We want to match up the two situations by showing
thatE andE1 are isogenous.

SinceE1 is a 3-Q-curve, it is on the list in Theorem 1. The idea is to exhibit
the finitely manyj-invariants that allow the appropriate reduction properties, and
hence obtain a finite list of possible values ofj(E1). Sincej(E1) can be computed
numerically very accurately, we can determine the exact value from this list. If it
agrees withj(E), we are done since thenE andE1 areQ -isomorphic. If not, we
need to look for an isogeny. Since we now knowj(E1) exactly, this task is much
easier.

3. The general case

E1 is given by Theorem 1, soE1 = Em for somem = a=b and a suitable choice
of D. The curveE1 is a quotient overK of J1(N) and hence has good reduction
outside the set of primes dividingN . Therefore the norm of the denominator of
j(E1) divides a power ofN . A standard calculation shows that the only common
factors of the numerator and denominator of the expression(�) for thej-invariant
are composed of primes dividing 6

p
d, so we find that(da2� b2)4 divides a power

of 6dN . LetS be the set of rational primes dividing 6dN . Then

da2 � b2 = �
Y
p2S

pgp

for some exponentsgp > 0.
Let p 62 S and letp be a prime ofK abovep. Supposepja. SinceE1 has good

reduction atp, there is a Weierstrass model forE1 with good reduction atp. In
particular, there is a choice ofD in Theorem 1 such that the equation is integral at
p, so

0 6 vp

  
15m2

4
� 3mp

d

!
D2

!
= vp(a) + 2vp(D)

and

0 6 vp

  
11m3

4
� 7m2

2
p
d
+
m

2d

!
D3

!
= vp(a) + 3vp(D):
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42 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

Since at least one of the coefficients of the Weierstrass model must be prime top,
we havevp(D) 6 0 andvp(a) = �3vp(D). Sincevp(a) is a multiple of 3 for all
suchp, it follows that

a = ce3 with cj(6dN)2; c; e 2 Z:

Note that there are only finitely many possible values ofc.
Lettingx = e2; y = b; k = �Q pgp yields

(y +
p
�k)(y �

p
�k) = dc2x3:

Standard techniques (see, for example, [26]) reduce this to a finite set of equations
of the form

F (X;Y ) =
Y
p2S

pfp ;

whereX;Y 2 Z andfp 2 Z>0 are allowed to vary, and whereF is a cubic form.
For example, one such equation is obtained as follows. Write�k = s2` with

` squarefree. Suppose` > 0 and letu + v
p
` be the fundamental unit ofQ(

p
`).

Assume for simplicity thatdc2 is a cube. Then one equation that arises is

y + s
p
` = y +

p
�k = (X + Y

p
`)3(u+ v

p
`);

hence

s = (X3 + 3XY 2`)v + (3X2Y + Y 3`)u
def
= F (X;Y ):

Other equations are obtaining by varying the power of the fundamental unit and
by introducing contributions from suitable representatives of the ideal class group.
Note that the prime factors ofs divide k, hence are inS. Since there are only
finitely many possibilities for̀, and the class number of eachQ(

p
`) is finite, there

are only finitely many suchF ’s, and they can be given explicitly.
Each such equation can be solved explicitly by the techniques of [25]. Therefore

it is possible to make a finite list of possible values ofm = a=b.
Note that the list ofm obtained by the above method gives a set of curvesEm

defined overK, and this set contains the set of curves that are quotients of the
givenJ1(N).

4. A more restricted case

If all the prime factors ofN ramify or are inert inK, then the following result
shows that thej-invariant is an algebraic integer. If we calculatej(E1) and its
conjugatej(E2) sufficiently accurately, we can therefore determine the minimal
polynomial ofj(E1) exactly inZ[X] and therefore evaluatej(E1) exactly.
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THE MODULARITY OF SOMEQ-CURVES 43

PROPOSITION.LetE be a 3-Q-curve defined over a quadratic fieldK. Letp be
a prime that is inert or ramified inK. Then thej-invariant ofE is integral atp.

Proof. j(E) has the form(�) for suitable relatively prime integersa; b. Letp be
the prime ofK abovep and supposevp(a

p
d�b) > 0 (equivalently,vp(a

p
d+b) >

0, sincep doesn’t split).
If p 6= 2 ramifies, thenpjd, so pjb. Since (a; b) = 1, we havep - a, so

vp(a
p
d � b) = 1. Similarly, vp(a

p
d + b) = 1. Therefore the power ofp fromp

d and(5a
p
d� 4b)3 in the numerator cancels thep4 in the denominator, soj is

p-integral.
If p 6= 2 is inert, thenvp(a

p
d � b) > 0 impliesp divides botha andb, which

is impossible.
A similar argument handles the casep = 2. 2

The above proof is clearly the ‘wrong’ one, and the proposition cries out for gener-
alization. Bjorn Poonen remedied these matters by supplying us with the following.
In particular, it gives a much more intrinsic proof of the above proposition.

PROPOSITION.LetE be an elliptic curve defined over a normal number fieldK.
Let p be a rational prime and letp be a prime ofK abovep. Let� 2 Gal(K=Q)
and assume�(p) = p. SupposeE� is `-isogenous toE for some non-squarè.
Thenj(E) is integral atp.

Proof. CompleteK atp. If j(E) is not integral atp, thenE overQ p is analytic-
ally isomorphic toQ�p =q

Z for someq. The assumptions imply that� induces an
automorphism of the completion ofK, andE� overQ p is analytically isomorphic
to Q

�
p =�(q)

Z. The fact thatE andE� are isogenous implies thatqm = �(q)n for
some integersm;n [20, IV-34]; moreover,mn=` is a rational square. Sinceq and
�(q) have the same valuation,m = n, which is impossible. 2

5. An example, Part I

We illustrate the above with the casem = 1=11; d = 13;D = 143� 55
p

13 in
Theorem 1, so we start with

E = E1=11: y2 = x3 +
�12285+ 3483

p
13

2
x� 270270+ 74844

p
13:

Tate’s algorithm shows that the conductor overK of E is the ideal (13). By [9,
Prop. 1], the conductor overQ of the abelian varietyE �E� is 169, so we expect
E to be a quotient ofJ1(169). SinceQ(

p
3) is totally real,E should be a quotient

of J0(169) [12, Prop. 3.4; 14, Sect. 1]. A calculation with modular symbols shows
that there is a modular form

f = q +
p

3q2 + 2q3 + q4 �
p

3q5 + � � �
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44 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

and thatf andf 0 are the only eigenforms with the correct coefficients. Moreover,
f 0 = f 
�, where� is the quadratic character mod 13. From the above, we obtain
an elliptic curveE1 (the existence ofE1 in this case was proved by Ribet [12]).
Below, we calculate

j(E1) ' �62947:470268: : : and j(E2) ' 1184:470268: : : :

Within the accuracy of our calculations, these equalj(E�) andj(E), respectively,
which are roots of the polynomial

X2 + 61763X � 74559407:

BothE1 andE2 are defined overK = Q(
p

13), soj(E1) andj(E2) are conjugate
algebraic numbers in this field. They are algebraic integers by the proposition
of Section 4. Therefore,j(E1) + j(E2) andj(E1)j(E2), which are numerically
approximated by�61763 and�74559407, respectively, are actually equal to these
numbers. Thereforej(E2) = j(E). This provesE = E1=11 is modular.

The calculation of thej-invariants can be done as follows. Consider, for example
E1 = Af=eAf , wheree = T2+�+4. The cotangent space ofAf can be identified
with C f + C f 0 , and the tangent spaceT consists of the linear functionals on this
space. Let(g; y) denote the pairing between the span off; f 0 andT . There is a
map� : �0(169) ! T with �(
)(g) =

R

z

z
g dz, for any fixedz in the upper half

plane, andT =�(�0(169)) ' Af . Let

h =
p

13f � (4�
p

3)f 0:

Theneh = 0 (this determinesh up to a scalar multiple), so(h; eT ) = 0. Consider
the map : T ! C given byy 7! (h; y), and letL =  (�(�0(169))). ThenL is a
lattice inC andC =L ' E.

Modular symbols, as in [2, 3], can be used to find aZ-basis of�(�0(169)), and
of  (�(�0(169))). This gives us the periods ofE1. It is then straightforward to
calculate thej-invariant (see for example [2]).

6. An example, Part II

We now turn to the technique of Section 3, applied to the same example. As
mentioned at the end of that section, we will actually obtain allEm overQ(

p
13)

that are quotients ofJ1(169). In this case there are exactly two pairs of curves.
They are isogenous, soE1 is automatically isogenous to each of these. We therefore
identifyE1 up to isogeny without ever calculating its periods, etc. This of course
happens becauseJ0(169) has exactly one 2-dimensionalQ-simple factor.

First we need to be a little more explicit in the argument of Section 3. LetEm

be a 3-Q-curve overQ(
p

13) arising as a quotient ofJ0(169). Considerj(Em),
which is given by(�). An easy calculation shows that gcd(5

p
13a�4b;

p
13a+ b)
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divides 9
p

13 and that gcd(5
p

13a � 4b;
p

13a � b) divides
p

13. Write 3 =
(4+

p
13)(4�p13) = ��. Since(a; b) = 1, at most one of�; � dividesa

p
13�b,

and since the denominator ofj(Em) cannot contain� or�, it follows thata
p

13�b
contains at most�3 or �3. If a; b are of opposite parity, then 2 does not divide
a
p

13� b. If they have the same parity, they must be odd, so(a
p

13� b)=2 is
integral, and must be prime to 2 in order to keep 2 out of the denominator of
j(Em). Finally,vp13(a

p
13� b) = 1 or 0, depending on whether 13 does or does

not divideb.
Putting everything together, we have

13a2� b2 = �2�3�13


with � = 0;2; 0 6 � 6 3, and
 = 0;1. From the above,a = ce3 with e 2 Z,
so we may rewrite this as 13c2e6 � b2 = �2�3�13
 . It seems best at this point to
let x1 = e2 and obtain 13c2x3

1 � b2 = �2�3�13
 . Note that we have the auxiliary
conditions that(b; cx1) = 1 andcj(2�3�13)2. Multiply by c2

1, wherec1 is an integer
chosen so that 13c2

1c
2 is a cube. A straightforward calculation yields the equation

x3� y2 = �2�
0

3�
0

13

0

;

where�0 = 0;2;4; �0 = 0;1;2;3;4; 
0 = 0;2;3;4. For example, if� = 0 then
�0 = 0;2;4, while if � = 2 thenc is odd, hencec0 is odd, so�0 = 2.

Of course,x andy are to be integers. We also have 13jx. In fact,x = 13�square,
and

m = �
q
x3=13

y
:

Using the method of Gebel–Pethŏ–Zimmer [5], Josef Gebel computed the inte-
ger points on these curvesY 2 = X3 + k for the 120 possible values ofk. In the
table below, we list all solutions with bothX > 500 andjY j > 10000 (the smaller
solutions are easily found by computer; those withX < 0 correspond tok with
the opposite sign).

Only k = 18252 yields any values ofm that yield suitable values ofj(Em),
and rather surprisingly it yields two pairs:

m = �1=11 and m = �1331=4799;

which come from the point (13, 143) and from the point listed in the table. The
valuesm = 1=11 and�1=11 correspond to our original elliptic curveE and
its conjugate (and their twists). The other values yield values ofj(Em) that are
numerically different fromj(E1) andj(E2). This gives another verification thatE
is modular and is isomorphic toE2. But what if we had started withE corresponding
to the second value ofm? All the calculations would be the same as above and
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Table I.

k X �Y

�676 901 27045
�26364 832 23998

�3084588 3549 211419
�711828 637 16055

�12338352 2028 91260
1028196 660 16986

18252 1573 62387
54756 39672 7901802

316368 897 26871
219024 585 14157

37015056 279864 148054140

we would obtainE1 = E1=11. If E1331=4799 is a modular elliptic curve, it must be
isogenous toE1=11.

A calculation yieldsj(�1) = j(E1=11) with

�1 = 1
2 + i0:58684446: : : ;

andj(�2) = j(E�1331=4799) with

�2 = 1
2 + i8:09413792: : :

Supposej(�1) andj(�2) andj-invariants ofn-isogenous elliptic curves. Then

there is a matrix
�
x

z

y

w

�
of determinantn such that

x�1 + y

z�1 + w
= �2:

Writing �j = 1
2 + itj and looking at real and imaginary parts, we obtain

�2x� 4y + z + 2w = 4zt1t2 and (2x� z)t1 = (z + 2w)t2:

If z 6= 0 thent1t2 is rational. If 2x � z 6= 0, thent1=t2 rational. If both of these
happen, then�1 and�2 are imaginary quadratic. Since the elliptic curves we are
considering do not have CM, this is ruled out. Therefore eitherz = 0 or 2x = z.

In our case,t1t2 ' 4:75000, which we suspect equals 19/4, so we should have
2x = z, and hencez + 2w = 0. Substituting into the first of the above equations
yields�z � 4y = 19z. If we takez = 2, thenx = 1; y = �10, andw = �1. The
resulting matrix has determinant 19, and it maps�1 to �2, within the accuracy of our
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computations. Therefore we suspect thatE1=11 andE�1331=4799 are 19-isogenous.
F. Morain was able to show that this is indeed the case, using the formulas for
isogenies that he developed for primality testing [10].

7. The 19-isogeny

The reader might recall thatJ1(13) has a rational point of order 19 [11]. Moreover,
Mazur and Tate [8] showed that a twisted form ofJ1(13) decomposes into the
product of two elliptic curves overQ(

p
13). It is reasonable to guess therefore that

J1(13) is Q -isogenous to our abelian varietyAf . In fact, this is the case.
Let be the character mod 13 such that (2) = �12. There is a modular form

g = q + (�1� �6)q
2 + (�2+ 2�6)q

3 + � � � =
X

bnq
n

of level 13 and character 8. The numbers (n)2bn are the coefficients of a modular
form of level 169 with character 6, which is the quadratic character mod 13. This
modular form corresponds to a 2-dimensional abelian variety that splits into two
elliptic curves overQ(

p
13). However, the coefficients of the modular form lie in

Q(
p�3), and we have a modular form with character; so we need to twist again,

either by 3 or by 9 to get rid of the quadratic character. It turns out that 9 gives
the correct choice of signs (the other choice gives the conjugate formf 0), and we
find that

 (n)5bn = an:

Therefore, for any suitable primè, the`-adic representations of Gal(Q=Q(�13))
on the Tate modules ofJ1(13) andAf are equivalent, so the abelian varieties are
isogenous overQ(�13). The rational point of order 19 onJ1(13) should correspond
(unless it is in the kernel of the isogeny) to a point of order 19 onAf on which
Gal(Q=Q) acts via the character 5. This point should yield corresponding points
on the elliptic curvesE1 andE2.

LetP = (x; y), where

x = �120� 45(�13 + ��1
13 )� 72(�2

13 + ��2
13 )

�9(�3
13 + ��3

13 )� 9(�4
13 + ��4

13 )

y = 108(4(�13� ��1
13 ) + 5(�2

13� ��2
13 ) + 8(�3

13� ��3
13 )

+4(�4
13� ��4

13 ) + 6(�5
13� ��5

13 )� (�6
13� ��6

13 )):

Let �4 : �13 7! �4
13 be a generator of Gal(Q(�13)=Q(

p
13)). Then 19P = 0 onE1

and�4(P ) = 8P (note that 8 mod 19 has multiplicative order 6). Of course�2,
which generates Gal(Q(�13)=Q), mapsP to a point of order 19 on the conjugate
curveE2.
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The pointP was found using PARI as follows. Because complex conjuga-
tion should act via an odd character, they-coordinate ofP should be imaginary.
ThereforeP should correspond to 1/19 of an imaginary period ofE1. Also, the
Gal(Q(�13)=Q(

p
13))-conjugates ofP are 8P;82P = 7P;18P;11P , and 12P , and

the remaining Gal(Q(�13)=Q)-conjugates lie among similarly computed points on
E2. Trying the various possibilities (does�4(P ) = 8P or ��1

4 (P ) = 8P ; which
point onE2 is �2(P )?), and solving for the coefficients of�j13� �

�j
13 , eventually

yields the above value forP .
We can use this to give another proof thatE1=11 and E�1331=4799 are 19-

isogenous. Since the subgroup ofE1=11 generated byP is rational overQ(
p

13),
we see thatE1=11 has aQ(

p
13)-isogeny of degree 19, the only question being what

curve is it isogenous to. IfE1=11 is 19-isogenous to itself or to its conjugate, then
it has an endomorphism of degree 19 or 57, which is impossible sinceE1=11 does
not have CM. The 19-isogenous curve still has a 3-isogeny with its conjugate, and
has the same reduction properties asE1, so it must be on our list. Therefore, we
find thatE1=11 must be 19-isogenous toE�1331=4799 or its conjugate. The method
used above to predict thatE�1=11 andE1331=4799 are 19-isogenous can be used to
show thatE1=11 and the conjugate ofE�1331=4799are not 19-isogenous; namely, the
method yields only finitely many possibilities for the matrix of determinant�19,
and none of these maps one� to the other. ThereforeE1=11 andE�1331=4799 must
be 19-isogenous, as desired.
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