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Abstract. A Q-curve is an elliptic curve, defined over a number field, that is isogenous to each of its
Galois conjugates. Ribet showed that Serre’s conjectures imply that such curves should be modular.
Let E be an elliptic curve defined over a quadratic field such fidas 3-isogenous to its Galois
conjugate. We give an algorithm for proving any sughis modular and give an explicit example
involving a quotient of/p(169). As a by-product, we obtain a pair of 19-isogenous elliptic curves,
and relate this to the existence of a rational point of order 19,¢h3).
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Let E be an elliptic curve defined ové€r and without complex multiplication®

is called aQ-curve if it is isogenous to each of its Galois conjugates. We say that
E is modular if for soméV there is a non-constant morphisio(N) — E, where
J1(NN) is the Jacobian of the modular cunkg (V). Ribet [12] showed that iZ

is modular, ther¥ is aQ-curve, and conversely, if Serre’s conjectur2.3, [18]
holds, then al@y-curves are modular. See also [18, Thm. 5]. Whda defined over

Q, thenE is automatically aQ-curve, and this reduces to the conjecture thakall
overQ are modulafit can be shown that foE defined over, the existence of a
mapJi(N) — E implies the existence of amalp(N') — E for someN’). Wiles

[27] has proved a general result, extended by Diamond [4], that implies, among
other things, the modularity of all semistable elliptic curves d@yeand also the
modularity of several othe@-curves. However the method runs into difficulties
when the mod 3 representation is reducible. Qyethis was handled by the ‘3—

5" switch [27], which relied on the fact that the elliptic cury&(15) has finite
Mordell-Weil group overQ. This of course fails over many quadratic fields. Also,
since we are working in the rather restrictive contex@eafurves, it is not certain
that the ‘3-5’ switch can be applied.

In the following, we start with the family of &-curves (i.e., the isogeny is of
degree 3) defined over a quadratic fi&dd We consider those that are 3-isogenous
overK to their Galois conjugates, hence have reduciblé@ak )-representations
(which remain reducible when extended to G5lQ)-representations). Therefore
the general results of Wiles and Diamond do not apply. We describe a general
strategy for proving individual curves in the family are modular. In a sense, such
calculations can be regarded as a check on a consequence of Serre’s conjecture in
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a case that does not already follow from earlier conjectures such as the Shimura—
Taniyama—Weil conjecture.

We note that the absence in general of a point of order 2 on these curves makes
it difficult, though perhaps not impossible, to apply the method of Faltings-Serre-
Livné [7], which has often been used to prove individual curves modular.

As an example, we treat a particular curve that appears as a quoti#ji169)
and which was discussed briefly by Ribet [12]. As a by-product, we find another
curve to which this curve is 19-isogenous and relate this phenomenon to the
existence of a rational point of order 19 é1(13). In fact,J,(13) is isogenous over
Q(¢13) to the product of our curve and its Galois conjugate.

1. The family of 3-Q-curves

THEOREM 1.SupposeX = Q(V/d) is a quadratic field and? is a non-CMQ-
curve defined oveK that is 3-isogenous to its Galois conjugate. Tliehas the

form
15m2 3m 11m®  7m?2 m
Ep:y? =2 — — | D% — - ——+—|D?
/ ( 4 \/a> ( 4 2Jd 2

with D € K* andm € Q*.

Thisis provedin [17] by considering a twisted formX(3). Note that changing
D gives twists of the curve and does not affect modularity. For simplicity, we have
suppressed from the notation foiz,,, .

Note that the conjugate @ is obtained by changing. to —m andD to — D7,
whereo is the non-trivial automorphism df .

It is convenient to writen = a/b with (a,b) = 1. Then

() = 24334/ d(5av/d — 4b)3 )
Em) = A= b)(avd + )3

The isogenyu from E,,, to EZ, is defined ovelrk if and only if Norm(D) =
—342 for someA € K*. If A € VdQ*, thenu”y = 3, and if A € Q*, then
pop = =3.

From now on, we shall assume that the 3-isogeny is defined &BveFor
simplicity, we shall also assume thet;, = +3 and thatK is real quadratic. Since
Q(v/+3) is totally real, it follows from [12, Proposition 3.4; or 14, Sect. 1] thgt
should arise from the part of (V) with trivial character, hence fronk(V), for
someN. In the cases where other parts.af N) are needed, the considerations
are similar.

2. Modular Q-curves

We start withE = E,, for somem, defined over the quadratic field = Q(v/d)
of discriminantd, as in Section 1, with the isogenydefined overK. Our goal
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is to showE is modular. The abelian variety = E x E° can be defined over
Q (it is the restriction of scalars fronX to Q of E) and there is an injection
Q(V3) — Endy(A4) ® Q (if u”u = —3, then we would have an injection of the
field Q(v/—3) instead).

Such a situation also arises with abelian varieties attached to modular forms.
Let f = q + a2q® + a3q¢® + - - - be a normalized Hecke eigenform of weight 2 for
[o(N) and letL = Q(az,as,...). By [21, Thm. 7.14], there is @simple abelian
variety A ¢ of dimensior{L: Q] with L — Endy(A;) ® Q. In fact, A is a quotient
of Jo(N) and the Hecke operatdl, acts as the endomorphism corresponding to
ap € L. We could also takel ; to be a quotient off1(V); this would give us an
abelian variety isogenous t; and would not affect the following (since the map
n below is defined in both situations).

Suppose now that

L = Q(az,as,...) = Q(V3)

and letf’ = q+abq®+asq>+. . ., whered!, is the Gal L /Q)-conjugate of,,. Then
f'is also a Hecke eigenform falp( V). Suppose that’ = f @ x = 5 x(n)anq",
wherey is the quadratic character associated to the quadraticKieted Q(v/d).
Thenf is a modular form with ‘extra twist’ in the sense of Shimura [22] and Ribet
[13]. We assume in addition thgthas no CM. This means that there is no non-
trivial Dirichlet charactek) such thaia, = ¢(p)a, for almost allp. In particular,
this implies that th&-factors ofA ¢ do not have CM [24, Prop. 1.6; 14, Cor. 3.5].
As in Shimura [22], there is &-endomorphismy of A, such that

1) n*=d
(2) nT,, = x(p)Tpn for all Hecke operatorg),, wherep { N is prime
(3) nf = Vdf'andnf' = Vdf

(4) n° = —n, whereo is the non-trivial automorphism df .

In fact, 5 is constructed as follows.

In our case, sincg andf ® x have levelv, we havei2|N. Forl<uw<d—1,
1u/d
0 1
an automorphism of;(N) and induces a corresponding automorphism of the
Jacobian/i(N). The mapsy, . . ., ag—1 Yield a map

let a, = . Thena,I'1(N)a;t = T'1(N), so the map: — a,(2) is

J1I(N) = Ji(N) X --- x J1(N).
There is also a map
J1(N) x -+ x Ji(N) = Ji(N)
defined by(z1, ..., z4-1) — > x(J)z;. The composite of these two maps gives

n: Ji(N) = Ji(N).
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An easy calculation shows thataps a modular forny, b,¢" tog(x) > x(n)bnq",
whereg(x) = S x(j) €/ = \/d is the Gauss sum attached {0 Since
f®x = f',n maps theC-span off, f’ to itself and satisfies (1), (2), and (3)
on this space. By [1, Lem. 29}y, gives an endomorphism of the space of weight
two cusp forms fol'o(V), son acts onJy(N). It follows thatn gives an endomor-
phism of A satisfying these three properties.

Property (4) can be verified as in [22], but instead we use an argument inspired
by one in [15]. Since all endomorphisms df; are defined oveq, this holds
for n. As we shall see below, the existencerp$atisfying (1), (2), (3) implies
that A, is isogenous ove to the product of two elliptic curveg and E, that
are isogenous to each other. Therefore, since we are not dealing with CM curves,
EndAf) ® Q ~ M>(Q). Letg be a Galois automorphism of the field of definition
of End(Ay). Theng induces an automorphism 81>(Q). By the Noether-Skolem
theorem, this is an inner automorphism, so there existsG L,(Q) such thaty
induces the map: — eme 1. The fieldL = Q(v/3) injects into Endy(Af) ® Q
via the Hecke operators, gohencee, commutes with the action di. SinceL is
its own commutator inV/>(Q), we havee € L. Sincey is of finite ordere” is in
the center of\/»(Q), namelyQ, for somek > 1. SinceL is totally real, it follows
easily (for example, use [6, Chap. VIII, Sect. 9]) that Q* ore € v/3Q*. Since
Q* acts trivially, there are two choices for Therefore all endomorphisms dfy,
in particularn, are defined over a quadratic field.

Supposek; # K. Choosep 1 N such thatp splits in K1 but is inert in K.
Choose a prime of Q overp and letF' be the Frobenius farin Gal(Q/Q). Then
F is trivial on K1, so it commutes withy. Let A, be the reduction oft ; modulo

p. In End A ;) we have the relatiod’? — T,,F + p = 0. Therefore,
0= (F? - T,F +p)n = n(F? + T,F +p).

Multiplying by n and using the fact that E(Leif) has noZ-torsion, we obtain
F? 4 T,F +p = 0. Since it is possible to choopesuch thaff}, # 0 on A (the set
of p with a,, = 0 has density 0 [19]), we have a contradiction. Thereféfe= K.

Now apply a similar argumentwith'; = K and choosg such thatits Frobenius
F equalsc on K and such thafl;, # 0 on A;. Theno? is trivial on K, hence
commutes witly. The above argument yields6 nF2+n"TpF+np. Multiplying
by n and comparing with the original equation multiplied &yields nn°T, =
—dT). SinceTp2 € Z for all p, we may multiply on the right by}, and remove
the integer to obtainn” = —d = n?. Multiplying by 7 and dividing byd yields
n” = —n, in EndAy). Since the map Erfdl;) — EndAy) is injective, we
obtain (4).

The existence of allows us to decomposé; over K as isogenous to a product
of two elliptic curves:

Ap ~ E' x B2,
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Since we need to do calculations with these curves, we show how tcEéimd
E? explicitly, at least when there is a Hecke operator satisfygﬁg: 30nAy.

If pt N anda, ¢ Q thena, = x(p)a, = —ay, SOa, = rv/3 with r € Q.
Assume that there exisgswith r = +1, SOaIZ, = 3. By assumption, Nor(D) =
—3dA% for someA; € Q*. This may be rewritten to yield that 3 is a norm from

Q(+/d); in other words, there exist,y € Q such that 3= z? — dy?. Let z be a
common denominator far andy and let

e=z(T, +yn+z) € ENdAy).
Thene? = 2zze. We havee’ = e — 2zyn sinceT), is defined over. Let
E'=ApfeA;,  E?= Ap/e’ Ay.

ThenE? is the Galois conjugate df*. SinceT,e = T, andT,e’ = €T}, the
Hecke operatof}, induces maps

r B < E? and 7°: E? - E*

with 797 = 3 € End(E?). Since the cardinalities of the kernelsofindr” are
equal;r andr? must be 3-isogenies. Therefaf? is a 3Q-curve, so it is given by
Theorem 1.

We claim that the natural map

c Ay — B x E?
Y Ag

is an isogeny. Supposgis in the kernel of). Then@ € eAy, so(2zz —e)Q = 0.
Similarly, @ € e Ay, so (2zx — e + 2yzn)Q = 0. Therefore gzn@) = 0 and
hence Zzd() = 0. It follows that the kernel is finite. Sine€nP; + enP, maps to
(e“nP1,enPs) = 2zyd(—P1, P,), the surjectivity of follows from the divisibility
of A;. Thereforey is an isogeny.

In order to show that the original elliptic curve is modular, it is necessary to

(1) find the correct modular forrfi, and
(2) show that the correspondirdg}, or its conjugates?, is isogenous td.

We start with (1). Let be any prime. Attached t@ is an irreducible\-adic
Galois representation

ps: GallQ/Q) — GL(Qy)

such that

Tr(ps(Frob,)) =a, and detps(Frob,)) =p
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for all primesp /N (where Frol denotes any choice of Frobenius element).
The restriction ofp; to GalQ/K) is equivalent to the representatipp: on the
¢-adic Tate module ofz* (which is equivalent to that foE? sinceE* and E? are
isogenous ovekK).

For the lemma below, we need the commuting algebras6Gal(Q/K)) to be
the scalar matrices. This can be shown using the results of [14]. Alternatively, by
[16, Thm. 3.1], we may assume ttfais such thap(Gal(@/K)) 2 GL(Z.), and
hencep; gives an absolutely irreducible representation of( GAK).

Whenp = pp’ splits in K, Frob, € Gal(Q/K). Moreover,a, = a,, SOa,, € Z.
In addition,

Tr(pp(Frob,)) = p + 1 — #(E* modp),

and similarly for our original curve.

By counting points o modp for various splip, we can find several coefficients
of the desired modular forrfi. It is worth pointing out that this procedure can only
give u5a12, for the inertp. This corresponds to the fact thgt = —a;, for thesep,
andpy andp are equivalent on GaR/K), so we cannot expect to remove the
ambiguity in sign.

Using modular symbols, one can find the Hecke eigenformB#av). Among
these, there should be two with the appropriate values ofiamelyf and f’. In
fact, there cannot be any eigenform other thfaand f’ with the same values of
a,, for all split p, so sufficient computation will eventually single ofitand f'.
Namely, the Frobenius elements for the split primes are dense {@&d), so
any representation of G&/ K) is determined up to equivalence by theseThe
uniqueness of the pafif, /') now follows from the following.

LEMMA. Letp: Gal(Q/K) — GL,(F) be an absolutely irreducible represen-
tation, whereF' is a field. Therp has at most two extensions to a representation of
Gal@/Q).

Proof. Letpbe anextension gfand let- denote any extension of the non-trivial
elementr € Gal(K/Q) to an element of G&D/Q). We havergo—! € Gal(Q/K)
for all g € Gal[@/K), andp(ogo—r) = p(o)p(g9)p(c)~L. Therefore the matrix
p(o) intertwines two absolutely irreducible representations and hence is determined
up to a scalar. Sincg&o)? = p(o?), this scalar is determined up to sign. Sipde
determined by(c), there are at most two choices far O

Since the coefficients of the modular form are determined by the Galois representa-
tion (use ‘multiplicity one’ to include the bad primes), the two possible extensions
of the Galois representation correspond‘tand f, if they actually exist, and so

it is possible to determine uniquely the péft /). Moreover,f ® x will have the

same values af,, for splitp and in the cases we need will also be a newform for
[To(N). Sincef ® x # f (since we are not in a CM situation; moreover, the CM
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case can be handled by other methods; see [14]), we mustfhave = f/, as
desired.

We are now in the following situation. We have a modular fgriand a corre-
sponding elliptic curveZ?, which we know to be modular. We knoyvexplicitly,
but we do not have an exact equation fo¥, though a numerical approximation
can be calculated. For our original elliptic cur#g we of course have an exact
equation, but we do not have a modular form, though we know many coefficients
of the supposed modular form. We want to match up the two situations by showing
that £ andE* are isogenous.

SinceE! is a 3Q-curve, it is on the list in Theorem 1. The idea is to exhibit
the finitely manyj-invariants that allow the appropriate reduction properties, and
hence obtain a finite list of possible valuesi¢E?). Sincej(E*) can be computed
numerically very accurately, we can determine the exact value from this list. If it
agrees withj(F), we are done since thei and E* areQ-isomorphic. If not, we
need to look for an isogeny. Since we now knpii!) exactly, this task is much
easier.

3. The general case

Elis given by Theorem 1, s&! = E,, for somem = a/b and a suitable choice
of D. The curveFE! is a quotient ovek of .J;(N) and hence has good reduction
outside the set of primes dividiny. Therefore the norm of the denominator of
j(EY) divides a power ofV. A standard calculation shows that the only common
factors of the numerator and denominator of the expregsipfor the j-invariant
are composed of primes dividing/@, so we find thatda? — v?)* divides a power

of 6dN. Let S be the set of rational primes dividing/&'. Then

da® — b* =+ [ p*
peS

for some exponentig, > 0.

Letp ¢ S and letp be a prime ofK” abovep. Suppose|a. SinceE* has good
reduction atp, there is a Weierstrass model f&* with good reduction ag. In
particular, there is a choice @ in Theorem 1 such that the equation is integral at
p, SO

0< v, ((152”2 - 3—\}%) D2> = vy(a) + 2v,(D)

7m? m

11m3
0< v, ((T "oV + 2_d> D3> = vp(a) + 3v, (D).
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Since at least one of the coefficients of the Weierstrass model must be prime to
we havev, (D) < 0 andv,(a) = —3v,(D). Sincev,(a) is a multiple of 3 for all
suchp, it follows that

a = ce2 with ¢|(6dN)?, ¢,e € Z.

Note that there are only finitely many possible values.of
Lettingz = e,y = b,k = +[] p¥ yields

(y + V=h)(y — V—k) = dc*z”.

Standard techniques (see, for example, [26]) reduce this to a finite set of equations
of the form

F(X,Y) = prpa
peS

whereX,Y € Z andf, € Zoare allowed to vary, and whefeis a cubic form.
For example, one such equation is obtained as follows. Wiite= s2¢ with

¢ squarefree. Suppoge> 0 and letu + vv/Z be the fundamental unit af(/?).

Assume for simplicity thatlc? is a cube. Then one equation that arises is

y+ sVl =y+vV—k = (X +YV0)3u+ Vi),

hence
s = (X3 +3XY20)0 + (3X2Y + Y30)u & F(X,Y).

Other equations are obtaining by varying the power of the fundamental unit and
by introducing contributions from suitable representatives of the ideal class group.
Note that the prime factors of divide £, hence are inS. Since there are only
finitely many possibilities fof, and the class number of eaghy/¢) is finite, there
are only finitely many sucl’s, and they can be given explicitly.

Each such equation can be solved explicitly by the techniques of [25]. Therefore
it is possible to make a finite list of possible valuesof= a/b.

Note that the list ofn obtained by the above method gives a set of cufugs
defined overK, and this set contains the set of curves that are quotients of the
given.Ji(N).

4. A more restricted case

If all the prime factors ofN ramify or are inert inK, then the following result
shows that the-invariant is an algebraic integer. If we calculgtgz?) and its
conjugatej (E?) sufficiently accurately, we can therefore determine the minimal
polynomial of;(E') exactly inZ[X] and therefore evaluaggé E*) exactly.
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PROPOSITION.Let E be a 3Q-curve defined over a quadratic field. Letp be
a prime that is inert or ramified itk. Then thej-invariant of E is integral atp.
Proof. j(E) has the forn{x) for suitable relatively prime integetsb. Letp be

the prime ofK” abovep and suppose, (av/d—b) > 0 (equivalentlyp, (av/d-+b) >
0, sincep doesn't split).

If p # 2 ramifies, therp|d, so p|b. Since(a,b) = 1, we havep { a, SO
v,(av/d — b) = 1. Similarly, v,(av/d + b) = 1. Therefore the power gf from
vd and(5av/d — 4b)2 in the numerator cancels tpé in the denominator, spis

p-integral.

If p # 2 s inert, thery, (av/d — b) > 0 impliesp divides botha andb, which
is impossible.

A similar argument handles the case- 2. O

The above proofis clearly the ‘wrong’ one, and the proposition cries out for gener-
alization. Bjorn Poonen remedied these matters by supplying us with the following.
In particular, it gives a much more intrinsic proof of the above proposition.

PROPOSITION.Let E be an elliptic curve defined over a normal number figld
Letp be a rational prime and lei be a prime ofK abovep. Leto € Gal(K/Q)

and assume (p) = p. Supposer? is /-isogenous taZ for some non-squaré

Thenj(E) is integral atp.

Proof. CompleteX atp. If j(E) is notintegral ap, thenE overQ, is analytic-
ally isomorphic to@; /q” for someq. The assumptions imply that induces an
automorphism of the completion &f, andE” overQ, is analytically isomorphic

to @; /o(q)%. The fact that? and E” are isogenous implies that’ = o(q)" for
some integers, n [20, IV-34]; moreovernn /£ is a rational square. Singeand
o(q) have the same valuatiom, = n, which is impossible. O

5. Anexample, Part |

We illustrate the above with the case = 1/11,d = 13,D = 143— 55/13 in
Theorem 1, so we start with

3 —122854 3483/13
+
2
Tate’s algorithm shows that the conductor o¥epf E is the ideal (13). By [9,

Prop. 1], the conductor ove} of the abelian varietyy x E7 is 169, so we expect

E to be a quotient of/1(169). SinceQ(+/3) is totally real,E should be a quotient

of Jo(169) [12, Prop. 3.4; 14, Sect. 1]. A calculation with modular symbols shows
that there is a modular form

f=a+V3@+2¢3+q" = V3 +---

E=Eyn iy’ =ux x — 270270+ 74844/13,
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and thatf and f’ are the only eigenforms with the correct coefficients. Moreover,
f' = f ® x, wherey is the quadratic character mod 13. From the above, we obtain
an elliptic curveE! (the existence of?* in this case was proved by Ribet [12]).
Below, we calculate

j(EY) ~ —62947470268 .. and j(E?) ~ 1184470268 .. .

Within the accuracy of our calculations, these eq&l”) andj(E), respectively,
which are roots of the polynomial

X2 4 61763 — 74559407

Both E* andE? are defined ovek = Q(v/13), soj(E*) and;j(E?) are conjugate
algebraic numbers in this field. They are algebraic integers by the proposition
of Section 4. Thereforgi( E*) + j(E?) andj(E')j(E?), which are numerically
approximated by-61763 and-74559407, respectively, are actually equal to these
numbers. Thereforg( E?) = j(E). This provest = FE1/11 1s modular.

The calculation of thg-invariants can be done as follows. Consider, for example
E' = A;/eAy, wheree = T, +n + 4. The cotangent space af can be identified
with Cf + Cf’, and the tangent spageconsists of the linear functionals on this
space. Lefg,y) denote the pairing between the spanfof’ and7. There is a
map¢: ['o(169 — T with ¢(v)(g) = [)° g dz, for any fixedz in the upper half
plane, and/ /$(o(169)) ~ Ay. Let

h=V13f — (4—V3)f".

Theneh = 0 (this determineé up to a scalar multiple), s@i, e7) = 0. Consider
the mapy: 7 — C given byy — (h,y), and letL = (¢$(I'o(169))). ThenL is a
lattice inC andC/L ~ E.

Modular symbols, as in [2, 3], can be used to fird-hasis ofp(I'0(169)), and
of (¢(T'o(169))). This gives us the periods @". It is then straightforward to
calculate theg-invariant (see for example [2]).

6. Anexample, Partll

We now turn to the technique of Section 3, applied to the same example. As
mentioned at the end of that section, we will actually obtairfz]l overQ(+/13)
that are quotients of1(169). In this case there are exactly two pairs of curves.
They are isogenous, $0' is automatically isogenous to each of these. We therefore
identify E* up to isogeny without ever calculating its periods, etc. This of course
happens becausi(169) has exactly one 2-dimension@simple factor.

First we need to be a little more explicit in the argument of Section 3H,gt
be a 3@Q-curve overQ(y/13) arising as a quotient ofy(169). Consider;(E,,),
which is given by(x). An easy calculation shows that &a/13a — 4b, v/13a + b)
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divides 9/13 and that gctbv/13a — 4b,v/13a — b) divides v/13. Write 3 =
(4++/13)(4—+/13) = 77. Since(a, b) = 1, at most one of, 7 dividesa/13—b,
and since the denominator (fF,,,) cannot contaim or 7, it follows thata/13—b
contains at most or 73. If a,b are of opposite parity, then 2 does not divide
av/13 + b. If they have the same parity, they must be odd{&913 + b)/2 is
integral, and must be prime to 2 in order to keep 2 out of the denominator of
j(Em). Finally,v_s3(av/18—b) = 1 or 0, depending on whether 13 does or does
not divideb.

Putting everything together, we have

1302 — b2 = +2°3°13

with @ = 0,2;0 < # < 3, andy = 0,1. From the abovey = ce with e € 7,

So we may rewrite this as #3:° — b2 = +£223°13. It seems best at this point to
letz; = ¢? and obtain 1&z3 — b? = £23%13". Note that we have the auxiliary
conditions thafb, cz1) = 1 andc|(2-3-13)2. Multiply by ¢, wherec; is an integer
chosen so that £3¢? is a cube. A straightforward calculation yields the equation

73— y? = 4293713,
wherea’ = 0,2,4,3 = 0,1,2,3,4,74 = 0,2,3,4. For example, it = 0 then

o =0,2,4, while if « = 2 thencis odd, hence’ is odd, sao’ = 2.
Of coursey andy are to be integers. We also haveé4.3n fact,z = 13-square,

and
\/23/13
m ==+ / .

)

Using the method of Gebel-PéthZimmer [5], Josef Gebel computed the inte-
ger points on these curvé®® = X3 + k for the 120 possible values &f In the
table below, we list all solutions with botki > 500 andY’| > 10000 (the smaller
solutions are easily found by computer; those with< 0 correspond td& with
the opposite sign).

Only k = 18252 yields any values of. that yield suitable values of(E,,),
and rather surprisingly it yields two pairs:

m = +1/11 and m = +£1331/4799

which come from the point (13, 143) and from the point listed in the table. The
valuesm = 1/11 and—1/11 correspond to our original elliptic curn& and

its conjugate (and their twists). The other values yield valuef Bf,) that are
numerically different fromj(EY) and;(E?). This gives another verification that

is modular and is isomorphic f6°. But what if we had started with corresponding

to the second value of,? All the calculations would be the same as above and
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Table I.
k X +Y
—676 901 27045
—26364 832 23998
—3084588 3549 211419
—711828 637 16055
—12338352 2028 91260
1028196 660 16986
18252 1573 62387
54756 39672 7901802
316368 897 26871
219024 585 14157
37015056 279864 148054140

we would obtainE! = FE1/11. If E1331/4799 1S @ modular elliptic curve, it must be
isogenous td7y /1.
A calculation yieldsj(r1) = j(E1/11) with

71 = 1 +i0.58684446. .,
and;(r2) = j(E_13314799) With
7o = 5 +i8.09413792..

Supposegi(m1) andj(m2) andj-invariants ofn-isogenous elliptic curves. Then
there is a matri>(f 3)) of determinant: such that

T+ Y
— =T
271 +w

Writing 7; = % +4t; and looking at real and imaginary parts, we obtain
—2r — 4y + 2+ 2w = 4zt1t, and (2z — 2)t1 = (2 + 2w)to.

If z # 0 thentst, is rational. If 2z — z # 0, thenty /¢, rational. If both of these
happen, them; andr, are imaginary quadratic. Since the elliptic curves we are
considering do not have CM, this is ruled out. Therefore either0 or 2r = 2.

In our caset1t, ~ 4.75000, which we suspect equals 19/4, so we should have
2r = z, and hence + 2w = 0. Substituting into the first of the above equations
yields—z — 4y = 19. If we takez = 2, thenz = 1,y = —10, andw = —1. The
resulting matrix has determinant 19, and it map® 7, within the accuracy of our
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computations. Therefore we suspect that;; and E_1331/4799 are 19-isogenous.
F. Morain was able to show that this is indeed the case, using the formulas for
isogenies that he developed for primality testing [10].

7. The 19-isogeny

The reader might recall thd (13) has a rational point of order 19 [11]. Moreover,
Mazur and Tate [8] showed that a twisted form.Bf13) decomposes into the
product of two elliptic curves ove(1/13). It is reasonable to guess therefore that
J1(13) is Q-isogenous to our abelian variety;. In fact, this is the case.

Let be the character mod 13 such thigR) = (1. There is a modular form

g=q+ (-1-(e)® + (—2+ Ae)® +--- =Y _ bug"

of level 13 and characteg®. The numbersg(n)?b,, are the coefficients of a modular
form of level 169 with charactef®, which is the quadratic character mod 13. This
modular form corresponds to a 2-dimensional abelian variety that splits into two
elliptic curves overQ(v/13). However, the coefficients of the modular form lie in
Q(v/—3), and we have a modular form with character; so we need to twist again,
either byy® or by+/° to get rid of the quadratic character. It turns out #hagives

the correct choice of signs (the other choice gives the conjugate fOrrand we

find that

()b, = an.

Therefore, for any suitable primg the /-adic representations of Gal/Q({13))
on the Tate modules of;(13) and A are equivalent, so the abelian varieties are
isogenous ove®((13). The rational point of order 19 af (13) should correspond
(unless it is in the kernel of the isogeny) to a point of order 194gnon which
Gal(Q/Q) acts via the character®. This point should yield corresponding points
on the elliptic curves! and E2.

Let P = (z,y), where

x = —120—45(C13+ ¢3h) — 72K+ (D)
—9(¢H+ () — A¢Ta + (13

y = 108(4(C13 — (13) + 5(¢F — (1) + 8¢ — (13)
+4(CHs — G + 6(¢Ts — Gi3) — ((B— ()-

Letoy: (13 — (15 be a generator of GA((13)/Q(v/13)). Then 1P = 0 on E*
andoy4(P) = 8P (note that 8 mod 19 has multiplicative order 6). Of courge
which generates G@b(¢13)/Q), mapsP to a point of order 19 on the conjugate
curveE2.

https://doi.org/10.1023/A:1000210813088 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000210813088

48 BOYD B. ROBERTS AND LAWRENCE C. WASHINGTON

The pointP was found using PARI as follows. Because complex conjuga-
tion should act via an odd character, theoordinate ofP should be imaginary.
ThereforeP should correspond to 1/19 of an imaginary period@dt Also, the
Gal(Q(¢13)/Q(v/13))-conjugates oP are &, 8°P = 7P, 18P, 11P, and 1P, and
the remaining G&lQ(¢13)/Q)-conjugates lie among similarly computed points on
E?. Trying the various possibilities (does(P) = 8P or o, 1(P) = 8P; which
point on E2 is o2(P)?), and solving for the coefficients of; + ¢4, eventually
yields the above value fap.

We can use this to give another proof thf;;; and E_;33y/4799 are 19-

isogenous. Since the subgroupfof;1; generated by is rational overQ(v/13),

we see that/; /11 has aQ(v/13)-isogeny of degree 19, the only question being what
curve is it isogenous to. IF/1, is 19-isogenous to itself or to its conjugate, then
it has an endomorphism of degree 19 or 57, which is impossible #ipge does
not have CM. The 19-isogenous curve still has a 3-isogeny with its conjugate, and
has the same reduction properties/s so it must be on our list. Therefore, we
find thatEy /11 must be 19-isogenous #0_1331/4799 O its conjugate. The method
used above to predict th#t_;,1; and Fy33y/4799 are 19-isogenous can be used to
show thatt; /1; and the conjugate df_1331/4799@re not 19-isogenous; namely, the
method yields only finitely many possibilities for the matrix of determinah®,

and none of these maps oneo the other. Therefor&' ;1 and E_1331/4799 Must

be 19-isogenous, as desired.
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