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Summary

Boric acid (BA) is an important mineral for plants, animals and humans that assists metabolic
function and has both positive and negative effects on biological systems. The present study
aimed to investigate the effects of different concentrations of BA added to the culture media, the
quality and in vitro development potential of mouse embryos. Superovulated C57Bl6/6j female
mice were sacrificed ~18 hours after human chorionic gonadotropin (hCG) injection. Single-
cell-stage embryos were collected from the oviduct, divided into experiment groups and
cultured in embryo medium with supplemented BAþ in 5% CO2 at 37 °C until 96 hours at the
blastocyst stage. The blastocyst development rates of 0, 1.62× 10−1, 1.62× 10−2, 1.62× 10−3 and
1.62 × 10−4 μM BA were 51.52%, 73.47%, 77.36% and 81.13%, respectively. The in vitro
development rates were significantly higher in the 1.62× 10−3 (p< 0.05) and 1.62× 10−4 μMBA
groups than in the control group (p< 0.001). These results indicated that low BA doses
influenced embryo development by positively affecting in vitro development rates, embryo
cell numbers, biochemical parameters and development at the molecular level by pluripotent
and antioxidant genes. Therefore, BA seems to play an important role on in vitro embryo
development.

Introduction

Reproductive biotechnology studies focus on such topics as the collection of greater numbers of
embryos, the long-term storage of embryos (cryopreservation), embryo culture, the genetic
diagnosis of embryos and embryo transfer (Taşkın et al., 2020). The development of embryos
in vitro is affected by, among other factors, the composition of the culture medium (nutritional
minerals, protein sources, etc.), atmospheric conditions (CO2 and O2 proportions), ambient
temperature, the osmotic pressure of the culture medium, the volume of culture drops and
embryo manipulation (Quinn and Harlow, 1978). Embryos are exposed to severe oxidative
stress under in vitro culture conditions, and the resulting reactive oxygen species can damage
in vitro embryo development. The specific conditions of an embryo culture can affect the
blastocyst quality and cell counts (Umaoka et al., 1992; Smith, 2001). Antioxidants act as free
radical scavengers, protecting cells or reducing the damage caused by free radicals. The addition
of antioxidants to the embryo culture medium has been shown to improve in vitro embryo
development (Zarbakhsh, 2021). While some free radical scavenging antioxidants in follicular
fluids can protect oocytes against oxidative stress under in vivo conditions (Wang et al., 2002),
this antioxidant environment is weaker under in vitro culture conditions, exposing oocytes or
embryos to severe oxidative stress (Nagina et al., 2016). The most effective approach to
overcoming this problem involves the supplementation of the culture medium with antioxidant
agents.

Boron (B) is an essential trace element for the metabolism of plants, animals and humans.
Boric acid (BA) is a Lewis acid that plays an important role in the regulation of many enzymes,
cell proliferation and development, and energy metabolism. Generally, B exists in the
environment in an oxidized state, which is BA. After being taken into the body, it quickly enters
the bloodstream and is excreted without accumulation. BA contains approximately 17.5% B
(Nielsen, 2000; Nielsen, 2008; Sogut et al., 2015). It is not an antioxidant but rather plays a role in
controlling the antioxidation system. In addition to being used for its antioxidant effect, and as
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an anti-inflammatory and anti-cancer agent, BA has also been
reported to positively affect embryonic and bone development, the
immune system, and psychomotor and cognitive functions (Nielsen,
2000; Henderson et al., 2009; Sogut et al., 2015; Hazman et al., 2018;
Cikler-Dulger and Sogut, 2020). Recent studies have focused on the
potential beneficial effects of BA in rat Sertoli andmouse Leydig cells
and Angora Buck, Ram Sperm, and fetal embryo development
(Tirpan and Tekin, 2015; Ince et al., 2016; Lu et al., 2020; Yalcin and
Abudayyak, 2020). The B concentration in serum is 0.22 micro-
grams ml−1 (Laurent-Pettersson et al., 1992).

This investigation aimed to monitor embryo development and
optimize beneficial therapeutic supplemental BA to in vitromouse
embryo cultures. To this end, in vitro development rates, embryo
development quality, total oxidative stress, and antioxidant levels
and the developmental pathways of embryos derived through
different supplemental BA preparations of the embryo culture
medium were investigated.

Materials and method

BA supplementation

The purity of the BA (Merck catalogue number:100165) was
<= 100, and the molecule weight was 61.83. The stock solution was
1.62 × 10−2 μM BA. Experimental solutions were prepared by
adding 0, 10 and 1 ml of stock for a final volume of 100 ml media,
thus creating from 1.62 × 10−3 to 1.62 × 10−4 uM BA embryo
culture. The culture media and final supplemented media were not
analysed for BA. The experimental BA concentrations had BA
values that were additional to the unknown concentrations of the
culture media.

In Vitro dose selection by MTT testing

Before starting the animal studies, the therapeutic dose was first
determined in vitro to determine the beneficial dose of BA (using
the 3R model of replacement, reduction and refinement). U2-OS
(human osteosarcoma) cells were used for the cytotoxicity assay,
this being the cell line most suitable for reproductive studies due to
its pluripotency-like stem cells. Accordingly, 4000 cells/well were
seeded into clear 96-well plates and grown for 48 hours, after which
the cells were treated with BA in 13 different supplemental BA
preparations (from 1.62 × 10−4 to 1.62 × 104) in which the final
solvent (DMSO) concentration was adjusted to 0.5% (v/v)
(Figure 1). The cells were incubated for another 48 hours, after
which cell viability was determined using tetrazolium dye 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT)
salt. MTT is the substrate of the mitochondrial enzymes and
converts to insoluble purple colour formazan. After 48 hours, the
MTT:DMEM mixture was replaced with the medium and
incubated for four hours. The intensity of the purple colouring
was measured to determine cell viability (Doruk et al., 2020). Cells
with MTT reagent medium were replaced with DMSO:EtOH
(50:50) mixture to dissolve the formazan salt. Finally, the
absorbance of the wells was measured at 570 nm using a
spectrophotometer. As a positive control, the cells were treated
with a final 5% DMSO concentration (known as toxic to cells). The
experiment was repeated twice in triplicate.

Animal experimentation and ethical approval

C57Bl/6j mouse strains were used in this study. The animals were
kept under a 12:12 light–dark cycle in a room with 55 ± 10%

humidity at a temperature of 22 ± 2 °C in the Animal Research
Laboratory of the Koç University Translational Medical Center
(KUTTAM), Istanbul, Turkey, and provided with pellets (Special
Diets Services; UK), bedding (TAPVEI®, Estonia), and filtered
potable water ad libitum. All experiments withmice were approved
by the Koç University Animal Experiments Local Ethics
Committee (Approval No: 2021-05).

Superovulation and embryo culture

First, an intraperitoneal (IP) injection of 10 IU of pregnant mare
serum gonadotropin (Sigma G4877-PMSG) was administered to
the female mice at between 12:00 and 13:00, followed 48 hours later
by 10 IU of human chorionic gonadotropin (Organon-hCG),
administered intraperitoneally between 12:00 and 13:00. The mice
were then mated with males of the same strain. The next day, at
08:00, vaginal plug control was performed. The superovulated
female mice were sacrificed, and the embryos were collected
through the rupture of the oviduct ampullae. After washing three
times in 80 IU/mL hyaluronidase (Sigma H-3506)þ 4 mg/mL
bovine serum albumin (BSA) (SigmaA-3311) þ Human Tubal
Fluid þ HEPES-buffered (HTF, global total w/ HEPES) medium,
the embryos were washed again in Hepes buffer medium
supplemented with 4 mg/mL BSA.

At least 2 h before embryo collection, the culture media was
kept in high humidity incubator at 37 °C in 5% CO2 for air gassing.
The collected embryos were kept in culture (LifeGlobal Media,
LGGG-020) medium (4 mg/ml BSA Fraction V. A3311) for
60 minutes in an incubator at 37 ºC with 5% CO2 for quality
assessment. Selected, good-quality embryos were then cultured in a
Life Global medium (4 mg/ml BSA) supplemented with 0
(control), 1.62 × 10−1, 1.62 × 10−2, 1.62 × 10−3 and 1.62 × 10−4

μMBA in an incubator at 37 ºC with 5% CO2 (Taskin et al., 2019).

Differential labelling of inner cell mass (ICM) and
trophectoderm (TE) nuclei

The blastocysts were kept in 100 μg/ml propidium iodide (PI) þ
HTF Hepes buffer mediumþ 1% TritonX100 (Sigma CAS No.
9002-93-1) solution for 10–12 seconds, then transferred to a 100
μg/ml 100% ethanol (EMPROVE) þ25 μg/ml Hoechst 33258
(H1398, Molecular Probes, Inc.) solution and incubated overnight
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Figure 1. In vitro toxicity and determination of the beneficial BA dose by MTT testing:
cell viability of 13 different BA doses 48 hours after exposure were evaluated, revealing
that 4 doses (1.62×10−1, 1.62×10−2, 1.62×10−3 and 1.62×10−4 μM BA) BA negatively
affected (*p< 0.05, **p< 0.01 and ***p < 0.001). 1.62×10−1, 1.62×10−2, 1.62×10−3 and
1.62×10−4 μM BA).
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at 4 °C. A 5-μl glycerol drop was placed on the slide to fix the
blastocysts, which were transferred into the drop and covered with
a coverslip. In the prepared blastocyst cell staining samples, the cell
counts of trophectoderm (TE) and inner cell mass (ICM) were
calculated under an inverted microscope with red and blue
fluorescent attachments (Taskin et al., 2019; Mallol et al., 2013).

Determination of oxidant and antioxidant levels from mouse
embryos

Total antioxidant status (TAS), total oxidant status (TOS) and
oxidative stress index (OSI) were detected as described previously
(Söğüt et al., 2021) using commercial assay kits (Rel Assay
Diagnostics, Gaziantep, Turkey) in phosphate-buffered saline
(PBS). Briefly, antioxidants convert the 2, 2’-azino-bis (3-ethyl-
benzthiazoline-6-sulphonic acid) (ABTS) radical from a dark blue-
green hue to a colourless reduced ABTS form. The sample’s TAS
level (mmol Trolox eq/L) is correlated with the change in
absorbance at 660 nm. The ferrous ioneo-dianisidine complex is
oxidized to the ferric ion by oxidants present in the sample. In an
acidic media, the ferric ion and xylenol orange form a colourful
complex. The sample TOS levels (μmol H2O2 eq/L) was correlated
with the change in absorbance at 530 nm. The OSI levels (arbitrary
unit) in the sample were detected as the ratio of the TOS level to the
TAS level.

Quantitative real-time polymerase chain reaction
(qRT-PCR) analysis

RNA isolation was performed using a Quick-RNA® Kit (Macharey-
Nagel) following the manufacturer’s instructions. RNA measure-
ment was performed using Nanodrop (ThermoScientific) with a
spectrophotometric reading at 260 nm. A 250 ng cDNApreparation
was obtained through the reverse transcription of RNA using M-
MLVReverse Transcriptase. The relativemRNA expression levels of
glutathione peroxidase 1 (GPX1), glutathione peroxidase 4 (GPX4),
CDX2, superoxide dismutase 1 (SOD1), superoxide dismutase 2
(SOD2), CDX2 and NANOG genes were determined using a Light
Cycler® 480 SYBR Green I Master (Taskin et al., 2019) (Table 1).

Statistical assessment of results

IBM SPSS Statistics forWindows (Version 24.0. Armonk, NY: IBM
Corp.) was used for the statistical assessment of the results with
sufficient repetitions. The results were evaluated with a one-way
ANOVA and Bonferroni post hoc test. A p-value of <0.05
was considered statistically significant. All the experiments were
repeated three times.

Results

Determination of the BA dose by In Vitro cytotoxicity

The cytotoxic effects of the 13 different BA doses were evaluated
after 48 hours of exposure, revealing that 1.62 × 103, 4.04 × 103,
8.09 × 103 and 1.62 × 104 μM BA significant negatively affected
(p< 0.05) both cell viability and cell count, while 1.62 × 10−2,
1.62 × 10−3 and 1.62 × 10−4 μM BA were nontoxic (Figure 1).

Embryo culture

There was a statistically significant difference between the control
group and the 1.62 × 10−3 (p< 0.05) and 1.62 × 10−4 (p< 0.001)
μM BA groups (Figure 2). The difference between the control
group and the 1.62 × 10−1 and 1.62 × 10−2 μM BA groups was
insignificant (p> 0.05) (Figure 2).

Results of cell counting by differential staining

The mean cell and inner cell counts differed significantly between,
1.62 × 10−3 (p< 0.05) and 1.62 × 10−2 (p< 0.01) μM BA groups
and the control group. There was a significant difference in the
mean TE cell count between the 1.62 × 10−2 and 1.62 × 10−4 μM
BA groups and the control group (p< 0.05) (Figure 3).

Oxidant and antioxidant levels

A comparison of TOS levels revealed a statistical difference
between the control group and the 1.62 × 10−4 μM groups

Table 1. Quantitative real-time polymerase chain reaction primers list

Gene Forward primer Reverse primer

NANOG GCGGACTGTGTGTTCTCTCAGGC TTCCAGATCCGTTCACCAGATAG

CDX-2 GCAGTCCCTAGGAAGCCAAGTGA CTCTCGGAGAGCCCGAGTGTG

SOD1 TGCGTGCTGAAGGGCGAC GTCCTGACAACACAACCTGGTTC

SOD2 GGAGCAAGGTCGCTTACAGA GTGCTCCCACACGTCAATC

GPx1 TGTTTGAGAAGTGCGAAG GTGTTGGCAAGGCATTCC

GPx4 TAAGAACGGCTGCGTGGT GTAGGGGCACACACTTGTAGG

setartne
mpolevedtsycotsalB
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Figure 2. Effect of supplemental BA on in vitro development rates of mouse embryo:
effect of BA on blastocyst mouse embryo development rates (*p < 0.05 and ***p<
0.001). 1.62×10−3, and 1.62×10−4 μM BA doses beneficial mouse embryo development.
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(Figure 4A). A comparison of TAS levels showed no significant
difference between the control group and the 1.62 × 10−2 μM BA
group (p> 0.05) (Figure 4B). The comparison of OSI levels did not
reveal any statistical difference between the control group and the
1.62× 10−1, 1.62× 10−2, 1.62× 10−3 and 1.62× 10−4 μMBAgroups
(p> 0.05) (Figure 4C).

Quantitative real-time PCR

We performed qPCR analyses of the control and BA-treated
blastocysts to evaluate whether the observed changes in the cell
counts of TE and ICM within the embryo were reflected in
the expression of the respective genes in these two structures.
The BA-treated embryos were seen to significantly upregulate the
expression of CDX2, a TE cell marker (Figure 5A), and NANOG,
an ICM marker (Figure 5D) (p< 0.05). The oxidative stress
marker genes GPX1, SOD1 and SOD2 (Figure 5B,E,F) differed
significantly between the BA-treated groups and the control
group (p< 0.05). Furthermore, the level of GPX4 – a marker
gene identifying the negative effect of oxidative stress – was
significantly lower in the BA-treated groups than in the control
groups (p< 0.05).

Discussion

In the first study reported in the literature, BA was added to two-
cell mouse embryo cultures until the blastocyst stage. The results
showed that additions of 6 μMand 1mMBA did not affect embryo
development, while 2 to 10 mM B had a negative effect on embryo
development (Lanoue et al., 1998). In our study, we used BA from
the one-cell stage up to the blastocyst stage, and lower doses
correlated with higher significant embryo development. Rowe and
Eckhert (1999) showed that B is essential for fertilization and
promotes blastocyst development of zebrafish embryos. They used
a low dose of B (1 × 10−1 μM). BA contains only 17.5% B and was
used in five different supplemental preparations. We used BA in
mouse embryos and found that low doses supported more effective
mouse blastocyst development and a higher quantity of embryos
by cell number. We also determined the genetic pathways affected
by the blastocyst development and how the related antioxidant
systems affect this, depending on the dose.

In a previous study examining the effect of B-supplemented
feed on the embryonic development ofmice, doses of 0.04, 2.05 and
11.8 μg B/g-diet were administered, and the negative effects on the
in vitro development of embryos collected from those fed 0.04 μg
B/g-diet were established (Lu et al. 2020). In the present study, to
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Figure 3. Effect of BA on mouse embryo cell count by differential staining; (A) effect of BA on inner cell mass (ICM) mean numbers of mouse blastocysts; (B) effect of BA on
trophectoderm cell (TE) mean numbers of mouse blastocysts; (C) effect of BA on total cell mean numbers of mouse blastocysts.
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Figure 4. Oxidant and antioxidant effects of different doses of BA onmouse embryo. (A) total oxidant status (TOS, μmol H2O2 eq/L), (B) total antioxidant status (TAS, mmol Trolox
eq/L) and (C) oxidative stress index (OSI, arbitrary unit) (*p< 0.05, **p < 0.01 and ***p< 0.001).
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our knowledge, the first of its kind in the literature, low doses
(1.62 × 10−1, 1.62 × 10−2, 1.62 × 10−3 and 1.62 × 10−4 μM) of BA
were added to the culture medium to understand the effects on
embryo development and its mechanism.

Ince et al. (2018) found that feeding rats B via a gavage tube
(0.04 and 2.05 g) for 14 days improved gene expression
(HEX, NANOG and OCT-3/4) in the early embryonic period
after conception and improved the fetal development of the rats.
Similarly, our study found increased NANOG levels were
significantly associated with embryo development when compared
to the control group.

Nguyen et al. (2009) investigated Nrf2 activation and response
element by oxidative stress. The effect of BA activation of Nrf2 is a
system that controls how B prevents DNA damage and antioxidant
status (Yamada and Eckhert, 2019). NrF2 activation governs self-
renewal and pluripotency in human embryonic cells (Jang et al.
2014). In the present study, it was shown that BA supports embryo
development and protects DNA cells. BA has supported embryo
development by the pluripotent gene levels of CDX2 and NANOG.
BA has been shown to support pluripotent cell development
through the NrF2 system.

In conclusion, the use of low-dose BA positively affects embryo
development. The findings of the present study can be used for the
development of amodel for use in veterinary and clinical medicine.
Embryo production is vital in farm animals (cattle, sheep, etc.).
Increasing the production of healthy embryos through the use of

BA can contribute to the improvement and development of
livestock. Future research exploring the effects of BA-supple-
mented culture media on in vitro and in vivo embryo development
together with studies of such processes as embryo cryopreserva-
tion, somatic cell nuclear transfer (SCNT), in vitro fertilization
(IVF) and intracytoplasmic sperm injection (ICSI) would further
contribute to the literature.
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