
BULL. AUSTRAL. MATH. SOC. 08B15, 06A12

VOL. 42 (1990) [57-70]

ON EQUATIONAL THEORIES OF SEMILATTICES
WITH OPERATORS

J. JEZEK, P. PUDLAK AND J. TTJMA

In 1986, Lampe presented a counterexample to the conjecture that every algebraic
lattice with a compact greatest element is isomorphic to the lattice of extensions
of an equational theory. In this paper we investigate equational theories of semi-
lattices with operators. We construct a class of lattices containing all infinitely
distributive algebraic lattices with a compact greatest element and closed under
the operation of taking the parallel join, such that every element of the class is iso-
morphic to the lattice of equational theories, extending the theory of a semilattice
with operators.

0. INTRODUCTION

The problem of characterising the lattices of subvarieties of a variety of universal
algebras is still open. Some years ago a conjecture was made that a lattice is isomorphic
to the lattice of all extensions of an equational theory (or dually isomorphic to the
lattice of subvarieties of a variety) if and only if it is algebraic and its greatest element
is compact. In [2] and [3] Lampe proved this to be false and found further conditions
that such a lattice must satisfy. The purpose of the present paper is to find a class K
of lattices with the following properties:

(1) every lattice from K is isomorphic to the lattice of equational theories
extending an equational theory;

(2) K contains all infinitely distributive algebraic lattices with compact 1;
(3) the parallel join of any pair of lattices from K belongs to K.

(The parallel join of a pair of lattices L\, Li is defined in this way: it is the lattice
obtained from the disjoint union Lx U L2, in which a ^ b holds if and only if a < 6
holds either in L\ or in Li, by adding a greatest and a least element.)

The class K is constructed in this paper as the class of congruence lattices of
well-behaved 0,1-semilattices with operators. A universal algebra A is said to be well
behaved if its congruence lattice is isomorphic in a canonical way (see Section 1 for a
precise definition) to the lattice of equational theories extending the equational theory
of the algebra obtained from A by considering every element as a nullary operation.
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Let us remark that there are many lattices representable as lattices of extensions
of an equational theory and not belonging to K. This follows from the fact that
congruence lattices of semilattices are rather special; see the papers [1, 4, 6].

The methods used in the present paper are related to those employed in Pigozzi [5].
Strictly speaking, the algebras constructed in that paper are not nominal in our sense,
since not every element serves as a nullary symbol. However, all elements in the algebras
can be expressed by closed terms and thus have their own names. Pigozzi's proof was
later simplified by Tardos and the algebras he constructs are already nominal in our
sense. Also, it seems probable that our methods are related to those in an unpublished
paper of Lampe and Sichler, in which it is proved that every finite distributive lattice
is isomorphic to the lattice of equational theories extending an equational theory (see
a mention in [5]).

1. UNIVERSAL ALGEBRAS

Let A be a universal algebra of similarity type r . Then r + A denotes the disjoint
union of the two types, where A is conceived as a set of nullary operation symbols. By
the nominal expansion of A we shall mean the algebra of type r + A whose r-reduct
coincides with A and in which every element serves as its own name.

In the following let A be an algebra and N be its nominal expansion. Denote by
Con (.4.) the congruence lattice of A (we have Con (.4.) = Con(JV)) and by L(N) the
lattice of the equational theories extending the equational theory Eq (N) of N.

We shall often neglect to specify the similarity type when speaking about terms,
equations, equational theories, et cetera. The convention is that by a term we shall
mean a term of the type of N, and similarly for equations, equational theories, et
cetera. By a strictly constant equation we shall mean an equation, both sides of which
are elements of A; the set of strictly constant equations is thus equal to A2 = N2.

(Equations are identified with the ordered pairs of terms, and an equation (a,b) will
often be denoted by a ss b.)

Let us define a mapping g of L(N) into Con (.4) by g(E) = ED A2. Furthermore,
define two mappings £ j , e2 of Con (A) into L(N) as follows: for a congruence r of
A, let £i(r) be the equational theory generated by r U Eq(iV) and let C2{T) be the
equational theory of N/r.

THEOREM 1 . 1 . Let A be an algebra, and N be its nominal expansion. Then

Q is a complete lattice homomorphism of L(N) onto Con (.4). The mappings £j and
ti are both injective; ej is a complete join-homomorphism and e^ is a complete meet-

homomorphism; for a congruence r, £\{r) is the least and £2{r) is the largest element

of the interval ^ ( r ) in L(N).

PROOF: The fact that g is a complete meet-homomorphism follows immediately
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from the definition of g. In order to prove that it is a complete lattice homomorphism, it
remains to prove that if E is the join of a subset 5 of L{N) then the congruence Q(E) is
contained in the join of the congruences g(H) for H 6 S. Let (a, b) £ g{E) — E D A2.

There exists a finite sequence uo,...,Uk of terms such that UQ = a, Uk = b and
(v.i-i,Ui) 6 Ei for some Ei e S, for any i — l , . . . , f c . Take an element c £ A and
define a substitution / by f(x) = c for all variables x. The sequence Vi — f(u{) has
the properties vo = a, Vk = b and (w<_i,Vi) € E{C\A2 — g(Ei) for all x. It follows that
(a, b) belongs to the join of the congruences g(H).

It is clear from the definitions that r = e 2 ( r )n J 4 2 for any congruence r. From this
we get r = g(ei{r)) and also r = p(ei ( r ) ) , since clearly £i(r) Q £i(r). I n particular,
the mapping g is surjective and both e\ and £2 are injective.

Evidently, e j(r) is the least equational theory that is mapped onto r by g. In order
to prove that £2(r) i s *n e largest one, let E be any equational theory with g(E) = r

and take an equation (u, v) £ E. We need to show that (u, v) is satisfied in N/r. Let /
be a homomorphism of the algebra of terms into N and denote by g the substitution,
mapping every variable x onto f(x). It is easy to see that both (f(u),g(u)) and
(/(v) i ff(v)) are satisfied in N and so belong to E\ since (g(u), g(v)) € E, we get
(/(u)> /(*>)) € EH A2 and consequently (f(u), f(v)) £ r. Consequently, h(u) = h(v)

for any homomorphism h of the algebra of terms into N/r.

It is not difficult to show that if <p is a complete lattice homomorphism of a complete
lattice Li onto a complete lattice Li then the two mappings, assigning to any element
a £ Li the least and the greatest element of the interval <p~1(a), are a complete join
homomorphism and a complete meet homomorphism, respectively. U

Let an algebra A be given and let N be its nominal expansion. An equation is
said to be a consequence of a set of equations 5 if it belongs to the equational theory
generated by 5UEq(JV) . An equation is said to be good (more precisely, .A-good) if it
is a consequence of the set of its own strictly constant consequences.

THEOREM 1.2 . The ofllowing are equivalent for an algebra. A with nominal
expansion N:

(1) for any congruence r of A there exists a unique equational theory E

extending Eq (JV) suci that r = E D A2;

(2) tie mappings ei and £2 defined above coincide and are an isomorphism

o/Con(i4) onto L(N);

(3) every equation is A-good.

PROOF: The equivalence of (1) and (2) follows from Theorem 1.1; condition (3) is
a reformulation. D

An algebra A is said to be well-behaved if it satisfies the equivalent conditions of
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Theorem 1.2. So, if A is & well-behaved algebra then the congruence lattice of A is
isomorphic to the lattice of equational theories extending Eq (N) (and consequently
dually isomorphic to the lattice of subvarieties of the variety generated by N).

THEOREM 1 . 3 . Let A be an algebra and N be its nominal expansion. Let f(x)
and g{x) be two terms containing no other variable than x. The equation f(x) w g(x)
is A-good if and only if it is a consequence of the set of equations {/(a) « g(a);a G A}.

PROOF: Only the direct implication needs to be proved. Let (u,v) be a strictly
constant consequence of (/(«), g{x)). Then there exists a derivation of this equation,
a finite sequence of terms «0,•••,«* such that u0 = « !«* = v, and if t G l,...,Jfe
then either (tij_i,U{) G Eq(iV) or w,- can be obtained from u;_i by replacing either
an occurrence of a subterm f(t) by g(t) or an occurrence of g(t) by f(t), for a term
t. Take a substitution <p mapping all the variables onto a constant from A. The
sequence ip(uo),... ,<p(uk) is a derivation with the following properties: <P(UQ) = u;
tp(v.k) = »; if i € l , . . . , l t then either (y?(ui_i), <p(ui)) £ Eq(iV) or ip(v.i) can be
obtained from y>(ui_i) by replacing either an occurrence of a subterm f(<p(t)) by
g(<f(i)) or an occurrence of g(<p(t)) by f(tp(t)). But (f{t), a) G Eq(iV) for some
a G A and we have proved that each strictly constant consequence of (/(«), g(x)) is
a consequence of the set {(/(a), </(a));o G A} (with respect to Eq(iV)). It follows
that if (/(x), </(*)) is a consequence of its strictly constant consequences then it is a
consequence of the set {(/(a), g(a));a G A}. D

2. SEMILATTICES WITH OPERATORS

By a semilattice with operators we mean an algebra A = A(A,F) such that A(A)
is a semilattice and F is a set of unary operations, acting as endomorphisms of A(A).
If A(A) contains the least and the greatest elements then A(A, F) is said to be a 0,1-
semilattice with operators; the two extreme elements are denoted by 0.̂  and 1^, or
just by 0 and 1. For c £ A, we denote by kc the constant unary operation on A with
value c, and by mc the endomorphism a —» a Ac.

In the following let A = A(A,F) be a 0,1-semilattice with operators and N be its
nominal expansion.

We denote by F' the least set of unary operations on A containing F, the identity,
all the constant unary operations and closed under superposition and the forming of
meets. Every element of F' is an endomorphism of A(A). For any / G F' and any
variable z , the expression f(x) can be considered as a term in an obvious way; this
term is uniquely determined up to the equational theory of N.

THEOREM 2 . 1 . Let A - A(A,F) be a 0,1 -semilattice with operators. Then A
is well-behaved if and only if all the equations f(x) RS g(x), where f,g€.F' and x is
a variable, are A-good.
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PROOF: The direct implication follows from Theorem 1.2. In order to prove the
converse, let (f(x),g(x)) be good for any f,g € F' and let (M,«) be an arbitrary
equation; we are going to prove that (u,v) is good. Since any term t is equivalent,
modulo Eq(iV), to the term t A p(x) where p is the constant unary operation with
value 1 and x is an arbitrary variable, we can suppose that var (u) = var (v); moreover,
we can suppose that u = / i (* i ) A • • • A fn(xn) and v = Si(xi) A • • • A gn(xn) for some
pairwise distinct variables xi,..., xn and endomorphisms fi,gi€F'. For t = 1 , . . . ,n
put Ui = / i ( l )A- • -A/!_i( l )A/ i (xi)A/n-^l jA. • -A/ n ( l ) and v{ = 5 i ( l )A- • .A$i-i(l)A
<7»(s») A flf<+1(l) A • • • A <7n(l) • The equations («*,«<) are clearly consequences of («,»);
each of them is a consequence of its own strictly constant consequences, since it is of the
form (pi(zi), qi(xi)) for p;, g< € F';aad (u,v) is aconsequenceof ( u i , « i ) , . . . ,(un,t>n),
since the equations (u, ui A • • • A u n ) and («, t>i A • • • A vn) belong to Eq (JV). D

A pair (f,g) of operations from F' is said to be good if the equation f(x) « g(x),
where x is any variable, is good.

THEOREM 2 . 2 . Let A = A(A, F) be a 0,1-semiiatlice with operators and let f,
g, h be three unary operators from F'. The following assertions are true:

(1) If either f or g is constant then (f,g) is good.
(2) If (/ A g,f) and ( / A g,g) are both good then {f,g) is good.
(3) If f ^ g < /i and if both (f,g) and (g, h) are good then (/, h) is good.
(4) If there exist elements c,d € A such that c as d is a consequence of

f(x) ss g(x) and

/(a) = /(a) A e,

g(a) = ff(a) A c,

/(a) Ad = ff(a) A d

for all a £ A then (f,g) is good.
(5) If there exist two elements c,d G A such that c » <4 is a consequence of

f(x) ss g(x) and c ^ /(a) ^ d and c < g(a) < d for all a 6 A then (/,</)
is good.

(6) Let the range of / be a two-element set {a, 6} with a < b and the range
of g be a two-element set {c,d} with c < d. If either f~1(J>) ^ 5-1((i)
or a A d= bAc then (f,g) is a good pair.

PROOF: (1) If / is constant with value c then f(x) w p(a;) is equivalent to c w
5(0) w s( l ) . The assertions (2), (3), (4) and (5) are also obvious. Let us prove (6).
If f~1{b) ^ flf-1(d) then clearly f(x) a g(x) is a consequence of its own consequences
a « c Rs 6 w d. Let / - 1 (6) = 5-1(d) and a A d = b A c. Then the equations
/(*) A d a s(x) A 6, f(x) A 6 ss /(x) and g(x) A d « 5(3) belong to Eq(7\r), so that
/(z) ~ 5(z) is a consequence of b RJ d. D
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3. REPRESENTING INFINITELY DISTRIBUTIVE ALGEBRAIC LATTICES

WITH COMPACT 1

THEOREM 3 . 1 . Every infinitely distributive algebraic lattice with compact 1 is

isomorphic to the congruence lattice of a well-behaved 0,1-semilattice with operators.

PROOF: It is well known that every infinitely distributive algebraic lattice is iso-
morphic to the lattice of hereditary subsets of a partially ordered set P ( < ) . If the
greatest element of the lattice is compact then it is easy to see that P contains only a
finite number of maximal elements p\,..., p n and that for every a £ P there exists an
i with a ^ pi. Put

for any t = 1 , . . . , n , so that Px = {a € P;a < p j and P - Pi U P2 U . . . U Pn U
{p 1 ? . . . ,pn} is a disjoint union. Take a new element Po £ P, put L = P U {po} and
define a partial ordering X on L as follows: po is the least element of L with respect
to •<; if a £ P,- U {p;} and b £ Pj U {pj} then a •< b if and only if either a = 6 or i < j
or t = j and b — pi. Clearly, L is a lattice; denote by A and V its lattice operations.

For b, c, d E L define a mapping /HIC,<J of X into itself by

f
= i

i , for 6 ^ a,

a A c otherwise.

Denote by H the set of the mappings hb>c,d such that b > d in P, d E Pi and
c = Pt-i for some i € { 1 , . . . , n} . It is easy to verify that H is a set of endomorphisms
of£(A). D

L E M M A 1 . For h b i C t d e H a n d a e L w e h a v e

( 1 ) hbiCid(a) A d = hbtCtd(a),

(2) hbtCid(a)Ac = aAc,

(3) />W(«Ai) = ^ » .

PROOF: We omit this since it is easy.

LEMMA 2 . The congruence lattice of L(A,H) is isomorphic to the lattice of hered-

itary subsets of P (^ ) •

PROOF: For a congruence r of L(A,H) denote by h(r) the set of the elements
a £ P such that (o,6) £ r for an element b covered by a in £(d) . Then A(r) is a
hereditary subset of P , since if (a, 6) 6 r where b is covered by a in L(^) and a' 6 P
is an element with a' < a in P then we can take an element b' £ L covered by a' and
the operator hayiai maps (a,b) onto (a',b'), so that (o',6') £ r and we get a' £ /t(r).

Conversely, for any hereditary subset U of P(^) denote by co(?7) the set of the
ordered pairs (a, 6) £ L2 such that b is covered by a in L and a £ U; and denote by
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c(U) the equivalence generated by co(U). In order to prove that c{U) is a congruence

of L(A,H), it is sufficient to show that if (0,6) G CQ(U) then (o A z,b A z) G c(U) for

any z G L and (fep,?.r(«), kp^rff l ) e idL Uco(U) U {(a, 6)} for any / i p , , , r G # . The

first assertion is trivial in all cases except for the case when a = pi, b, z G Pi and b ^ z;

but then (a A z,b A z) — (z,Pt-i)» P«-i is covered by z in X(^) and z £ H (since H

is hereditary and z < a £ H), so that (z,pj_!) G Co(i7). In order to prove the second

assertion, let (Ap,g,r(o)» hp,q,r(b)) belong to neither idx, nor {a, b}. Then a = p and

ClPi9.'-(a)» ^p,9,r(&)) = ( r i ? ) € co(t7), since r < a and H is hereditary.

The mappings h and c are clearly both order-preserving and it remains to prove

h(c(U)) = U and c(h{r)) — r. The first assertion follows from the fact (which is easy

to prove) that if (a, b) £ c(U) and 6 is covered by a in L(<) then (a, b) € co(U). In

order to prove the second assertion, it is sufficient to show that if (a,b) E co(h(r)) then

(a, 6) G T . We have a 6 M7*) an<^ s o there exists an element 6' covered by a in J J ( ^ )

with (0,6') £ r . If 6 = 6' then we are through; so, let b ^ b'. Then a = p; for some

i > 0; the operator ha,pi_1,b' maps a onto 6' and b' onto p , _ i , so that (fc',p;_i) 6 r ;

we get (a,pi_i) 6 r and consequently (a,b) £ r. U

It follows that the originally given infinitely distributive algebraic lattice with com-

pact 1 is isomorphic to the congruence lattice of L(A,H) and so it remains to prove

that this semilattice with operators is well-behaved.

Denote by F the union of H with {kc;c £ L} and {mc;c € L}.

LEMMA 3 . F is closed under superposition.

PROOF: Take two operators /i6,c,d and m e from F. If d •< e then /itlC,d(a) A e =

hb,c,d(a) Ad A e — htlCtd(a) Ad — ht,lC<d(a), so tha t me o ht,>c,d — hb,c,d- In the contrary

case we have eAd •< c and so h\,^Cid{a)Ae — /i(,)C|tj(a)A(£Ae = /ii,Cld(a)AcAe = aAcAe,

so that m e o hbtCt<t = m c A e .

We have AfclC)(j(a A e) = /ij,lC,d(a) A ht,iCid(e) and so it follows from what we have

already proved that /i&,c,d ° tne € F.

Now take two operators /i6lCld, /if jC',d' G -f • If 6 2? d' then

hb,c,d(hbi,c>,d'{a)) = hb,c,d(h.b',c',d'(a) A d') = hbfitd(hb,>c/tdi(a)) A hbt

— hbtC<d{hbi<ci idi(a)) AcAd' = hbitCi}di Ac Ad1

so that hbiCid o hbittjdi G F by the above finished part of the proof. If b = d' then

hb,c,d ° hb',ci,d' = hb',c,d,

since for 6' •< a we have

^ . c d ^ . ^ . d ^ a ) ) - hb>c<d(d') = hbtCid(b) = d
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and otherwise

hb,c,d(hyt<j,rf/(a)) = /n,c,d(a A c') = a A c' A c = a A c.

If b •< d' then H e 1 and

hb,c,d(hb',c',d'{&)) = Vc.d^&V.d ' fa) A 6) = hb,c,d(hbiiCi<di(a) Ac' Ab)

= hb,c,d(a A c' A 6) = hb,c,d{a A 6) = hb,c,d(a)>

so tha t AfclCld o fcy.c'.d' — /»6,c,d. D

LEMMA 4 . F is closed under meets.

PROOF: Let /ifc,c,d and h,b>tCf,d' t*e two elements of 27 and e be an element of L.
It is easy to prove, using Lemma 1, that hbtC,d A ke belongs to F. Further, we have
hb,c,d A id i = hbvd,c,d and it remains to consider the meet hbtC,d A &i»,el,rf' • If d -< d'
then d •< c1 and

»,c/,d'(o) = /i6,c,d(o) A d A /i(,/|C/idi(a) = /i6,c,d(a) Ad Ac' A hy<ci<di{a)

= hb,c,d(a) A d A c' A a = /i6iCij(a) AdAa- hblC<d(a) A a,

so that

/n,,c,d A hb'tCitd' — hb,c,d A i d i £ F .

If d = d' then c = c' and /ifc)Cld A Afc/lC'|(j' = /i(>vb',c,<l • H d, d' are incomparable then

dAd'—c — c' a n d so / i4 i C | ( j (a) A / i k i c i | ( J / ( a ) = hblCtd(a) A hy^^^a) AdAd' = aAc,so

that hb,c,d A fty.c'.d' = idj Afcc. U

LEMMA 5 . H' = F.

PROOF: It follows from Lemmas 3 and 4. U

LEMMA 6 . L(A,F) is well-behaved.

PROOF: By 2.1 it is sufficient to prove that the equation f(x) w g(x), for any
/ , g £ F, is good. Denote by C the set of strictly constant consequences of this
equation; we need to prove that f{x) « g(x) belongs to the equational theory generated
by the union of C with the set of equations satisfied in the nominal expansion of
L{A,F).

Consider first the case when / = hf,iCid and g = ^f^.d' • We have

(d,d') = (f(pn),g(pn))£C.

If d, d' are incomparable in L{<) then c = c' = d A d' and so the equations c w d w
c' wd' belong to C.

If d^d'

then c -< d X c' -< d\ (c, d) = (/(d), «/(d)) e C

and so the equations c m d ta c' fa d'
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belong to C again. If d' -< d, we can proceed similarly. If d = d! then c = c'; we
can suppose that b -ft. b'; then (c,d) — (/(&')> 5(&')) e ^ anc^ w e s e e ^ a t *be equations
c w d fa c' w d' belong to C in any case. On the other hand, each of the following
equations is either satisfied in the nominal expansion of L(A,F) or is an immediate
consequence of c fa d fa c' w d':

hb,c,d(x) w hi>,c,d(x) AdKi hb,cAx) A c a i A c a i A c ' « . . . « hb',c',d'{x)-

It remains to consider the case when / = /i6,c,d and g = ma. Since (d, a) =
(/(?«)> 9(Pn)), the equations a fa d and a A d « d belong to C. We further have
(c,a A <£) = {f(d), g{d)) and so c ss d « a belong to C. On the other hand, each of
the following equations is either satisfied in the nominal expansion of X(A, F) or is an
immediate consequence of cfadfaa:

This ends the proof of Theorem 3.1.

4. A N AUXILIARY CONSTRUCTION

In this section let S(A, F) be a 0,1-semilattice with operators such that F = F'.
Put T = SU { I T } where IT is a new element not belonging to 5 (the greatest element
of S will be denoted by Is)- Define a semilattice operation A on T in such a way that
5(A) becomes a subsemilattice of T(A) and I T becomes the greatest element of T(A).
For every / € F define an endomorphism / ' of T(A) by /* D / and / " ( I T ) = / ( I s ) -
For every (possibly empty) filter X of S(A) define an endomorphism ex of T(A) by

= 1
1T fora6XU{lT},
1 «. •

Is otherwise.
Put F* = { / * ; / € F} and denote by G the union of F* with {idT} and the set of

the operators ex, where X runs over arbitrary filters of L(A).

THEOREM 4 . 1 . The congruence lattice of T{A,G) is isomorphic to the
congruence lattice of S(A,F) with a new least element added. We have G' — G
and T(A,G) is well-behaved whenever S(A,F) is.

PROOF: For a congruence r of 5(A) denote by r* the equivalence on T having
the same blocks as r with the exception of the block B containing 1^, which is replaced
by B U { I T } - It is easy to verify that r* is a congruence of T(A,G) and that every
congruence of T(A,G), with the exception of idr, is of this form. The first assertion
follows and the rest of the proof will be divided into several parts.
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LEMMA 1. G' = G.

PROOF: The set G is closed under the meets and superposition, as

/* Aidr = (/Aids)*,

ex A ey = eXnv,

r°g' = (f°9)',
/ * oex = */(is)>

ex o f* - et-i(a) for /(Is) 6 X,

ex°r = kls for / ( I S ) * * ,

ex o ey = liT for u / 0,
ex o ey = ey for u = 0.

Moreover, (7 contains the identity and all constants. U

Denote by r the type of the nominal expansion of S(A,F) and by r* the type of
the nominal expansion of T(A,G). For any r-term t denote by t* the term obtained
from t by replacing any / 6 F with /* and denote by / + the term obtained from t*
by replacing any variable x with i AI5.

If we say that an equation is satisfied in S, or in T, we mean that it is satisfied in
the nominal expansion of S(A,F), or of T(A,G), respectively.

LEMMA 2. Let t = t (x! , . . . ,x n ) bear-term. Then t(ax,..., an) = <*(o1(... ,an)
tor any elements a\,..., an G S. The equation <* A l j « t+ is satisfied in T.

PROOF: It is easy by induction of the length of t. D

LEMMA 3 . Let t « u be an equation satisfied in S. Then t+ w tt+ is satisfied in
T.

PROOF: It follows from Lemma 2. D

LEMMA 4 . If S(A,F) is well-behaved then T(A,G) is well-behaved, also.

PROOF: Let p,q be two operators from G such that p < q. By 2.1 and 2.2(2)
it is sufficient to prove that the equation p(x) w g(x) is good (with respect to T =
T(A,G)). Denote by C the set of the strictly constant equations j>(d) ss 9(0) with
a £ T and p(a) ^ q(a) and by Y the equational theory generated by C together with
the equational theory of the nominal expansion of T(A,G). We need to prove that
p(x) w q(x) belongs to Y.

Consider first the case when p = /* and q = g* for some f,g € F. Clearly, the
set C coincides with the set of the strictly constant equations f(a) RS g(a) where a
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runs over S with / ( a ) ^ <j(a). Since S(A,F) is well-behaved, by 1.3 there exists a
derivation of f[x) as g{x) from C and the equations satisfied in S; this means that
there exists a finite sequence to,... ,tm of r-terms such that to = /(*)> tm — g{x) and,
for any i G { l , . . . , m } , either ti—i ~ ti is satisfied in S or £; can be obtained from
U-i by replacing a constant 6 with a constant a, for an equation a w 6 belonging to
C U C " 1 . If t;_i w <j is satisfied in S then the equation tf_% w <+ is satisfied in T by
Lemma 3 and thus belongs to Y. If U results from U-i by replacing a constant with
a constant, then the same holds for the terms ft and tf_1 and so t'l_1 w tf belongs to
Y again. From this we get, by transitivity, that f(x) « g(x) belongs to Y. We have
f(x)+ = f*{x A l s ) and g(x)+ = g*(x A 15); since the equations f*(x) « /*(x A l s )
and g*(x) ss 5*(x A I s ) are satisfied in T, it follows that the equation f*(x) w <7*(z),
that is, the equation p(x) w g(s)> belongs to V. D

Next consider the case when p = /* for some / 6 F and g = idy. Put r = id s .

We have p < r ^ g; by what we have already proved, the pair (p,r) is good and so, by

2.2(3), it is sufficient to prove that (r,q) is good. However, the equation r(z) ss q(x)

is a consequence of its strictly constant consequence I s ^ I T -

If p = /* and q = ex then p(x) w g(z) is a consequence of its strictly constant

consequence /(0) ss I T -

If p = ex and q = ey where JC, y are two distinct filters then p(x) w g(z) is a

consequence of its strictly constant consequence I s « I T -

If p = idy and g = ex then p(x) « g(z) is a consequence of its strictly constant

consequence O w l j .

This ends the proof of Theorem 4.1. D

5. T H E PARALLEL JOIN

In this section let Si(A,Fi) and 52(A,ir2) be two 0,1-semilattices with operators
such that F[ - Fi and F± = F2, and denote by Ti(A,Gi) and T2(A,G2) the operator
semilattices constructed from 5j and S2 as in Section 4.

Put U(A) = Ti(A) x T2(A). If / i is an endomorphism of Tj(A) and f2 is an

endomorphism of T"2(A) then f\ x / 2 denotes (there is a little inconsistency) the endo-

morphism / of Z7(A) defined by f(a,b) = (/ i(a), /2(6)); if Qi and Q2 are two sets of

endomorphisms on T\ and T2 then <5i xQ 2 denotes the set {/j x / 2 ; / i 6 ( ? i , / 2 6 Q2}-

Recall that ka denotes the constant endomorphism with value a; in order to avoid

too many indices in formulas, we shall sometimes denote it simply by a. For a,b € Si
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(where i 6 {1,2}) such that a < b, define an endomorphism kati, of Tj by

ka,b{c) = "• for c € Si,

ka,b{lTi) = b.

Put H = {ka>bx ke-ta,be 5 i , c e S2,a<b}\j{kc xka>b;ce Su a,b 6 S2, a < 6}U

{/ x idT,; / 6 Gj} U {idTx xf;fe G2}U {ex x lTi;X € Jk} U {lTl x ex; JT € ^ 2 }

where ^i is the set of filters of Si{A).

THEOREM 5 . 1 . The congruence lattice of U(A, H) is isomorphic to the parallel
join of the congruence lattices of Si(A,Fi) and S2(A,F2). If both Si(A,Fi) and
S2(A,F2) are weii-beiaved tiien U(A,H) is well-behaved, as well.

PROOF: For a congruence r of S1(A,F1) we can define a congruence 3 of U{A,H)
by ((a, 6), (c, d)) G a if and only if 6 = d and either 6 ̂  IT, or (a, c) 6 r*. In a similar
way each congruence on S2(A,F2) gives a congruence of U(A,H) and it is not difficult
to prove that any nonextreme congruence of U(A, H) is of one of these two kinds. From
this the first assertion follows. Let now both Si(A,Fi) be well-behaved; we are going
to show that U(A, H) is well-behaved, too.

Recall that H' denotes the closure, under superposition and meets, of H together
with the set of the constant operators and the identity on U. For i = 1, 2 denote
by Mi the set of all endomorphisms of Ti(A), by Ni the set of the endomorphisms of
T;(A) mapping T,- into 5,-, by Ei the set of the endomorphisms ex for a filter X of
Si(A) and by Ki the union of Ei with the set of constant endomorphisms of Ti.

LEMMA 1 . H' C (Mi X Na)\J(G1 x { id 3 i } )U( i f i x E2).

PROOF: Denote the right side by Ho. Each of the three sets of operators is clearly
closed under superposition and meets and Ho contains H, all the constants and the
identity on U. Further, we have

(Mi x N2)AH0 C Mi X NJt

(Gi X {id}) A (tfi x Ei) C Gx x {id},

(Mi X JVj)off0 C M, x Nt,

( d x {id}) o (Mi x N7) CM1XN2,

{Kx x Et) o (Mi x JVj) C (Mi x N3) U (tfi x E2),

( d x{id})o(ii: l xE})CKx xE2,

(Ki x Ei) o (Gi x {id}) a , x Ei.

D
LEMMA 2 . Let f £ H'. Then f -px q for some p and q; if g(lT j) = 1T, tiien

p £ ( ? i and either g = idj1, or q = ex for some filter X of S2{A).

PROOF: It follows from Lemma 1. U

https://doi.org/10.1017/S0004972700028148 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028148


[13] Equational theories of semilattices 69

Let pi x 91 and P2 x q2 be two operators from H' such that pi < P2 and 91 ^ 92.
By 2.2(2) and 2.1 it remains to prove that the equation (px x qi)(x) « (p2 x q2)(x) is
good. Denote by C the set of strictly constant consequences of this equation and by
Z the equational theory of the nominal expansion of U(A,H). We need to prove that
(Pi x 9i)(x) ~ (?2 x Q2){x) belongs to the equational theory generated by C U Z.

Consider first the case when p\ ^ P2 and qi ^ 92 • It follows from px ^ p%

that there exist elements a,b £ Ti and c £ T2 such that a ^ b and (a, c) w (&,c)
belongs to C . Using the operator ex x 1T3 f°r a n appropriate X we get from this that
( I S ^ I T J ) « ( I T J . I T , ) belongs to C. Quite similarly, ( l T l , l s , ) « ( I T J . I T J ) belongs
to C . Using the operators fcOit x kc and Jfec x fco,4, it is now easy to see that Oi/ ~ 1[/
belongs to C. The equation (pi x 9i)(*) « (?2 x q2)(%) (or any equation at all) is a
consequence of Oy « l y .

Next consider the case when pj ^ p 2 , 91 = q2 = q and 9(1T2 ) ^ 1T2 • Similarly as
in the previous case, the equation ( 0 T J ) 9 ( 1 T J ) ) W ( 1 T 1 » 9 ( 1 T J ) ) belongs to C . Further,
the equations

(Pi X g)(se) w (pi x fl)(x) A (1TM9(1T,)) ,

(pj X g)(a) * (pj x 9)(x) A ( l T l , 9 (1T, ))>

(pi X 9)(x) A (0 r i , g ( l T 2 ) ) « ( j H X «)(iE) A ( 0 T I , « ( 1 T , ) ) « (0Tl X q)(x)

} belong to Z ; now it is clear that the equation ( 0 ^ , 9(1T3 )) ~ ( ITI ) QO-T2 )) belongs to

the equational theory generated by C U Z.

Since the case when pi — p2 is analogous, it now remains to consider the case

when pi ^ P2, 91 = 92 = 9 and 9(1TJ) = 1T2 • By Lemma 2 we have pi,p2 £ Gi and

9 £ {id} U E2 .
Let 9 ^ id, so that 9 € E2. By Lemma 1 we have pi,p2 £ Kx. Denote by a

the least element in the range of pi and by 6 the greatest element in the range of
P2 • Considering the various cases for pi,p2 £ K\, it is easy to verify that a w b is a
strictly constant consequence of Pi(x) ~ p2{x); similarly, ( a , l r 2 ) « (6, 1T 3 ) is a strictly
constant consequence of (pi x q)(x) w (p2 X q){x). Since the equations

(p, X 9 ) (B)«(P , xq)(x)A{b,lT,),

(p3 X g)(a:) « (p3 X q){x) A ( 6 , I T , ) ,

(pi X})(j!)A(a,lr])«(P3 X9)(i)A(a,lTl)Ri(a,g(i))

belong to Z, it follows that the equation (pi x g)(z) ~ (p2 x q)(x) belongs to the
equational theory generated by C U Z.

It remains to consider the case when 9 = idy3 . For every term t in the signature
Ti of the nominal expansion of Ti(A,(?i) define a term V in the signature r of the
nominal expansion of U(A,H) in the following way: V is obtained from t by replacing
any unary operation symbol / £ G\ with / x idy2 and any nullary symbol a £ Tj
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with (a, 1 T 2 ) - It is easy to prove by induction on the length of t, that if t is a TI-
term containing no other variable than x and if we are given an element (o, b) of U,
then t'((a,b)) = (<(a),6) in the case when x occurs in t and t'((a,b)) = (t(a), 1T7)
in the opposite case. Since (by Theorem 4.1) Ti(A,Gi) is well-behaved, the equation
Pi(x) « P2(x) is good; by 1.3 there exists a finite sequence UQ, ... ,um of Tj-terms such
that uo = P i ( s ) , um = P2(x) and such that for any i £ { l , . . . , m } either u<_i ss Ui
is satisfied in the nominal expansion of Ti(A,Gi) or U{ results from Uj_i by replacing
an occurrence of b with a, for an equation a w 6 belonging to M U M~l where
M = {(pi(c), p2(c));c G T±}. We can suppose that the terms ua,... ,um contain no
other variables than x (since in the opposite case we could replace all the other variables
by x ) and that x occurs in every one of the terms u o , . . . , um (since otherwise we could
replace the derivation uo,... ,um by uOluo A fc, u\ A k,... ,um A k, um where k is the
constant operator with value 1 ^ ). If i is such that !!,•_! w u,- is satisfied in the nominal
expansion of Ti(A,Gi) then u|_j w u'{ belongs to Z, since for any (a,b) E U we have
itj_1((a, b)) = (ui_i(a),b) — (ui(a),b) - uj((o,6)) by the assertion that was above
proved by induction on the length of a term. If w; results from u,_i by replacement
of a nullary symbol a with 6, for (a,b) £ M U M - 1 , then u\ results from uj_j by
replacement of ( a , ^ ) with (b, 1T 2 ) J

 a n d (aAT2) ** (^)1T 2 ) clearly belongs to C. We
see that for any i £ { 1 , . . . ,m} the equation uj_j w uj belongs to the equational theory
generated by C L) Z. Consequently, the equation (pi x q)(x) w (p2 x q){x), which is
nothing else than u'o ss u'm, belongs to the equational theory too. D
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