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Studies of Kelvin—Helmholtz (KH) instability have typically modelled the initial mean
flow as an isolated stratified shear layer. However, geophysical flows frequently exhibit
multiple layers. As a step towards understanding these flows, we examine the case of two
adjacent stratified shear layers using both linear stability analysis and direct numerical
simulations. With sufficiently large layer separation, the characteristics of instability and
mixing converge towards the familiar KH turbulence, and similarly when the separation
is near zero and the layers add to make a single layer, albeit with a reduced Richardson
number. Here, our focus is on intermediate separations, which produce new and complex
phenomena. As the separation distance D increases from zero to a critical value D,
approximately half the thickness of the shear layer, the growth rate and wavenumber both
decrease monotonically. The minimum Richardson number is relatively low, potentially
inducing pairing, and shear-aligned convective instability (SCI) is the primary mechanism
for transition. Consequently, mixing is relatively strong and efficient. When D ~ D,
billow length is increased but growth is slowed. Despite the modest growth rate, mixing
is strong and efficient, engendered primarily by secondary shear instability manifested
on the braids, and by SCI occurring on the eyelids. Shear-aligned vortices are driven
in part by buoyancy production; however, shear production and vortex stretching are
equally important mechanisms. When D > D., neighbouring billow interactions suppress
the growth of both KH instability and SCI. Strength and efficiency of mixing decrease
abruptly as D, is exceeded. As turbulence decays, layers of marginal instability may arise.
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1. Introduction

The accuracy of large-scale climate and ocean models depends on the parametrization
of turbulent fluxes. Turbulent mixing events are often modelled using idealized shear
instabilities in stratified flows. Shear instability has been observed in the stably stratified
nocturnal atmospheric boundary layer (Newsom & Banta 2003; Smyth, Mayor & Lian
2023) as well as at higher elevations (Fritts ef al. 2023). Shear instability has also been
observed in a variety of oceanic contexts, including equatorial undercurrents (Moum, Nash
& Smyth 2011), flows over sills (Van Haren et al. 2014; Chang et al. 2022), estuarine shear
zones (Geyer et al. 2010; Holleman, Geyer & Ralston 2016; Tu et al. 2022), and the strongly
stratified transition layer within the ocean surface boundary layer (Kaminski ez al. 2021).

Previous theoretical research on shear instabilities has assumed a single, isolated
stratified shear layer (e.g. Caulfield & Peltier 2000; Mashayek & Peltier 2013; Salehipour
& Peltier 2015; Kaminski & Smyth 2019; Lewin & Caulfield 2021; Liu, Kaminski & Smyth
2022, 2023), neglecting the potential influence of nearby flow structures. Our goal here is
to relax the assumption of a single, isolated shear layer. As a starting point, we examine a
pair of shear layers, varying the distance between them and analysing the resulting changes
in the route to turbulence and in the resulting mixing.

This is the third in a sequence of three studies using ensembles of direct numerical
simulations with small, random variations in the initial state. Liu et al (2022)
(hereafter L22) showed that even a slight change in the initial perturbation can lead to
significant variations in turbulence timing and strength due to interactions between the
primary Kelvin—Helmholtz (KH), subharmonic, and three-dimensional (3-D) secondary
instabilities. This resulted in differences of up to a factor of four in the maximum
turbulent kinetic energy, and a factor of two in the potential energy gain due to mixing.
Liu et al. (2023) (hereafter L.23) studied the effects of boundary proximity on KH
instability. Boundary effects have a pronounced effect on the dynamics of KH instability,
influencing its growth, secondary instability, and the resulting turbulent mixing. Notably,
the cumulative mixing efficiency vanishes as the shear layer approaches a solid boundary.
As in L22, these results were sensitive to small changes in the initial conditions,
emphasizing the need to compare ensemble-averaged statistics.

Our work is motivated in part by observations of multiple stratified shear layers in
geophysical fluids at consecutive depths, sometimes in close proximity to each other
(Desaubies & Smith 1982; Alford & Pinkel 2000). Fritts et al. (2003) showed layered
structures in the atmosphere due to shear instability and gravity-wave breaking. Recent
work on stratified shear flows reveals spontaneous organization into layers of quiescent,
strongly stratified fluid and strongly turbulent, weakly stratified fluid (Woods 1968;
Caulfield 2021). We therefore wonder about conditions under which instabilities of nearby
shear layers could interact, and with what effect on instability, turbulence and mixing.

We find that as the separation distance between the two layers decreases to
(approximately) the layer thickness, instability is suppressed. We also show that the
presence of a neighbouring shear layer can excite one of two novel forms of instability,
one stationary and one oscillatory. This distinction has profound effects on the transition
to turbulence and the resulting mixing, including an abrupt change in mixing efficiency,
even when the difference in initial states is small.

In §2 we describe the set-up for our numerical simulations and the choice of the
initial parameter values, as well as the diagnostic tools required for the analysis of 3-D
energetics and mixing. We then describe the effects of neighbouring shear instability on
the linear stability characteristics in § 3, and introduce the stationary and oscillatory modes
of instability. In § 4, we analyse the perturbation kinetic energy budget to explain how a
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Figure 1. Initial mean profile for velocity and buoyancy showing dimensional parameters as defined in (2.1)
and (2.2).

neighbouring shear instability could alter the route to turbulence. In § 5, we describe the
neighbouring effects on the irreversible mixing and mixing efficiency. Conclusions are
summarized in § 6, and possible directions for future research are discussed in § 7.

2. Methodology
2.1. The mathematical model
We begin by considering a stably stratified parallel shear flow,

U*(z) = U; [tanh <ZT) + tanh <%):| (2.1)
and
* _ D* * 4 D*
B*(z) = B} |:tanh (ZT> + tanh (%)] : 2.2)

in which 2U{ and 2B are, respectively, velocity and buoyancy differences across the
individual shear layer, and 2Ai* is its thickness (figure 1). Both stratified shear layers
are at a distance D* from the centre of the domain (so that the distance between the
centres is 2D*). The domain has a vertical extent L} with upper and lower boundaries
at L7 /2. Asterisks indicate dimensional quantities. The Cartesian coordinates are x*
(streamwise), y* (spanwise) and z* (vertical, positive upwards), and the corresponding
velocity components are u*, v* and w*. After non-dimensionalizing velocities by U,
buoyancy by By, lengths by 4*, and times by the advective time scale 4*/Uj, (2.1) and
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Figure 2. The dependence of initial minimum Richardson number Ri,,;,, on D. Here, Riy is 0.16.

(2.2) become
U(z) = B(z) =tanh (z — D) +tanh (z + D). (2.3)

The evolution of the flow is governed by the Boussinesq Navier—Stokes equations, as
well as the equations of buoyancy conservation and mass continuity. Non-dimensionalized,

these are

u . 1 5
— 4+ u-Vu=—-Vp+Rigbz+ — V-u, 2.4)
ot Reg
o uvb Vv2b (2.5)
—4u- = , .
ot Reg Pr
V.u=0, (2.6)

where p is the pressure, and z is the vertical unit vector. The equations involve three
dimensionless parameters: the initial Reynolds number Reyp = Ujh*/v*, where v* is the
kinematic viscosity, the Prandtl number Pr = v*/x*, where «* is the diffusivity, and the
initial bulk Richardson number Rip = Bjh*/ U(’)“z.

In general, we define the gradient Richardson number as

3 (b*)ry /07"  3(b)y/0z  N?

@) /3292 0 @(U)ey/02)2  S2 2.7)

Rig(z, 1) =

Here, the notation (-), represents an average over r, where r can encompass any

combination of x, y, z and 7. Also, N? is the squared buoyancy frequency, and S is the
mean shear. The minimum of Ri, with respect to z is denoted as Riy;,(?). In the inviscid
limit, a necessary condition for instability is that Riy,;, be less than 1/4 (Howard 1961;
Miles 1961). For the flow described by (2.3), the initial Ri,,;, increases from Rig/2 to Riy
when D increases from O to infinity (figure 2).

Boundary conditions are periodic in both horizontal directions, with periodicity
intervals L, and L,. The upper and lower boundaries are free-slip (du/0z = dv/dz = 0),
insulating (0b/9dz = 0) and impermeable (w = 0).

A small, random velocity perturbation is incorporated into the initial state (2.3). This
initial perturbation field is purely stochastic and is applied uniformly to all three velocity
components across the computational domain. The maximum amplitude of any single
component is limited to 0.05, equivalent to 2.5 % of the velocity change across each
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(Ly, Lya Lz) (Ny, Nya Nz) Rimin

D
0  (28.56,7.14,30) (576, 144,613)  0.08
0.5 (36.96,9.24,30)  (768,192,613)  0.10
1 (78.54,19.64,30) (1536,384,613) 0.15
2 (29.92,7.48,30) (576, 144,613)  0.16
3 (28.56,7.14,30) (576, 144,613)  0.16
0o (27.76,6.94,20)  (512,128,361)  0.16

Table 1. Parameter values for five 3-member direct numerical simulations ensembles. In all cases, Reg = 1000,
Pr =1, Rip = 0.16. Data for the case D = oo are sourced from L22 and include only a single, isolated shear
layer. The maximum initial random velocity component is 0.05.

shear layer. This magnitude is kept small to ensure that the initial growth phase is
consistent with linear perturbation theory. For each value of D, an ensemble of three cases
is simulated, each using a distinct seed to generate the random velocities (L22).

2.2. Linear stability analysis

To evaluate the linear instabilities, (2.4)—(2.6) are linearized about the initial base flow
(2.3). These equations are then subjected to perturbations induced by small-amplitude,
normal mode disturbances proportional to the real part of a(z) exp (ot + ikx). In this
context, a(z) denotes the vertically varying, complex amplitude of any perturbation
quantity, o stands for the complex exponential growth rate, and k is the wavenumber
in the streamwise direction. The streamwise phase speed is ¢ = io/k. The normal mode
equations are discretized using a Fourier—Galerkin method, yielding a generalized matrix
eigenvalue problem that is solved using standard methods. Details may be found in § 13.3
of Smyth & Carpenter (2019) or in Lian, Smyth & Liu (2020).

2.3. Direct numerical simulations

Simulations are conducted using DIABLO (Taylor 2008), which utilizes a hybrid
implicit—explicit time-stepping scheme with pressure projection. The viscous and diffusive
components are addressed implicitly using a second-order Crank—Nicolson method, while
other terms are explicitly resolved employing a third-order Runge—Kutta—Wray method.
The vertical z direction dependence is discretized using second-order finite differences,
whereas the periodic streamwise and spanwise directions (x, y) are managed using the
Fourier pseudo-spectral method.

To allow subharmonic mode growth, we set the streamwise periodicity interval Ly to
two wavelengths of the fastest-growing KH mode, as determined through linear stability
analysis (§ 2.2). For the development of 3-D secondary instabilities, a spanwise periodicity
interval of Ly, = L,/4 is adequate (e.g. Klaassen & Peltier 1985; Mashayek & Peltier
2013). The domain height is L, = 30 to minimize boundary effects. The computational
grid is uniform and isotropic, and resolves ~2.5 times the Kolmogorov length scale L, =

(Re=3/e)!/*, with e representing a characteristic viscous dissipation rate after turbulence
onset (e.g. Smyth & Moum 2000). Grid sizes are given in table 1.

Given the sensitivity of turbulent flows to initial conditions, we work with ensemble
mean statistics where appropriate. Following L.22, we use an ensemble of three cases at
each separation distance D. Five values of D are considered, for a total of 15 simulations
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(listed in table 1). We also employ a three-member ensemble of simulations of a single
shear layer described in L.22 to represent the limiting case D — oo.

To maintain our primary focus on the influence of the adjacent shear layer, we keep the
initial state parameters, specifically the Richardson, Reynolds and Prandtl numbers, fixed.
The choice Riy = 0.16 is large enough for the pairing instability (e.g. Klaassen & Peltier
1989) to be damped by stratification when Ri,;, = Rig (i.e. for large D). In all cases, we
set Rep = 1000 and Pr = 1. While smaller than would be typical in nature, these values
reflect a necessary compromise dictated by computational resource constraints.

2.4. Diagnostics

The total velocity field can be decomposed into a horizontally averaged component,
referred to as the mean flow, and a perturbation

u(x,y, z,0) = UeW +u/(x,y,2,1), where U(z, 1) = (u) (2.8)

Xy

with é® the unit vector in the streamwise direction. Following Caulfield & Peltier
(2000), the perturbation velocity is further subdivided into two-dimensional (2-D) and
3-D components:

u'(x,y,2, 1) = uzg + uzg, (2.9)

where

u(x,z, 1) = (u), — Ue™ and w3g(x,y,z,0) =u—uyg—Ue® =u— (u)y .

(2.10a,b)
Similarly, the buoyancy field can be decomposed as
b(x,y,z,t) = B+ (x,y,z,1), where B(z,1) = (b)y, (2.11)
bza(x,y,z,1) = b — (b),. (2.12)
The total kinetic energy can now be partitioned as
H=F+K, H =Ko+ Hsa. (2.13a,b)

where

j = %(Dz)m Fog = %(u%d + v%d + W%d)xz» H3q = %(ugd + v%d + W%d)xyv
(2.14a—c)

These constituent kinetic energies #, &', Frq and Hi3g can be identified as the
horizontally averaged kinetic energy associated with the mean flow, the turbulent kinetic
energy, and the kinetic energy related to 2-D and 3-D motions. We denote the instances in
time when F#54 and H#3,4 reach their maximum values as >4 and t34, respectively.

Quantification of irreversible mixing involves decomposing the total potential energy
P = —Rig (bz)xy, into available and background components, P = %, + HA,. The
background potential energy 93, is the minimum potential energy achievable by
adiabatically rearranging the buoyancy field into a statically stable state b* (Winters
et al. 1995; Tseng & Ferziger 2001). After computing the total and background potential
energies, the available potential energy is determined from the residual, &%, = &P — %A,.
Here, 9%, represents the potential energy available for conversion to kinetic energy, arising
from lateral variations in buoyancy or statically unstable regions.
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The irreversible mixing rate due to fluid motions is defined as

d
M= d—gf -2, (2.15)

where

. Riy (btop - bbottom)

Dp
Reg PrL,

(2.16)

refers to the rate at which the potential energy of a statically stable buoyancy distribution
would increase solely due to diffusion of the mean buoyancy profile in the absence of any
fluid motion.

There exists a variety of definitions for mixing efficiency in the literature (e.g. Gregg
et al. 2018). Here, we define the instantaneous mixing efficiency as

M

- , 2.17
M+ € @17

i

where € = (2/Re)(sjjsij)xy; 18 the total dissipation rate, and s; = (du;/dx; + du;/0x;)/2
is the strain rate tensor. The mixing efficiency quantifies the fraction of energy directed
towards irreversible mixing to the total kinetic energy loss that is irreversibly lost to friction
(Peltier & Caulfield 2003). The cumulative mixing efficiency serves as a valuable measure
for quantifying the overall efficiency of the entire mixing process, and is defined as

e = —p—" —, (2.18)

t i

where 7; ~ 2 is the initial time after the model adjustment period, and # is the final time
of the integral at which ./ = Z),.

An alternative quantifier of mixing that readily shows the spatial structure is the
perturbation buoyancy variance dissipation rate, defined as

2 Rig

Py Vb2, (2.19)

X'y, z,0) =

where b’ is the buoyancy perturbation, representing the deviation from the horizontal mean
buoyancy.

The evolution equation for the kinetic energy of 3-D perturbations can be expressed in
the form (Caulfield & Peltier 2000)

1 d
= — % 2.20
03d 29y di 3d (2.20)
= Raq + Sthig + H3q + 3qa + D3, (2.21)

where the first two terms represent the 3-D perturbation kinetic energy extraction from
the background mean shear and the background 2-D KH billow by means of Reynolds
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stresses, respectively defined as

1 U
R34 = — <u3dW3d —> , (2.22)
2H 34 0z Xz
1 dung 3W2d>>
Sthig = ——— (usgw + . 2.23
3d g < 3d 3d< a2 T (2.23)

The third term represents the stretching deformation of the 3-D motions and is defined as

1 /1 durg  Owag
g = ——— |~ (ugd . wgd) Td _ 9W2d ) (2.24)
2%3[1 2 ox 9z Xz

The final two terms are the buoyancy production term and the negative-definite viscous
dissipation term associated with 3-D perturbations, and are defined respectively as

Rio

VAYES g (b3aw3d)xyzs (2.25)
1
D3g = —m (8iSij) xyzs (2.26)

where s;; is the strain rate tensor of the 3-D motions. The time at which o34 is a maximum
is defined as #,,,. The enstrophy in the three vorticity components is defined as

2y = %(a)%), Zy = %(CU)Z;)’ zZ, = %(wf), (2.27a—c)
where
dw  dv u Jow Jv  du
Wy === wy=———— and o =_—— - (2.28a—¢)
dy 0z dz  Ox ox dy

3. The primary linear instability

In the extreme cases, D = 0 and D — 00, (2.3) is equivalent to one or two isolated shear
layers that produce standard KH instabilities (e.g. Hazel 1972; Smyth & Carpenter 2019)
if Rig < 1/4. In the previously unexplored cases with finite, non-zero D, (2.3) represents
a superposition of two shear layers whose modes of instability interact in complex ways.

In the case D = 0, (2.3) becomes U(z) = B(z) = 2tanh (z), i.e. the two shear layers
sum to make a single stratified shear layer with doubled shear and stratification (dark blue
curve in figure 3). The corresponding Ri;, is Rig/2 = 0.08. The dominant mode is the
stationary KH mode, with a fastest-growing wavenumber 0.44. We term this a stationary
mode because there is only a single fastest-growing mode for a given initial state. (This
is in contrast to oscillatory instability, discussed below, which is a superposition of two
modes with equal growth rates but different phase speeds.) In the reference frame assumed
here, the phase speed of the stationary mode is zero, while the two phase speeds of the
oscillatory mode are opposites.

As D increases to tanh ™! \/T/3 (approximately 0.66), the single shear maximum at z =
0 widens (light blue curve in figure 3b). Therefore, the wavenumber of the fastest-growing
mode decreases, the growth rate decreases (figure 4, red curve), and Riy;, increases
(figure 3(c), light blue curve). The corresponding mode is a continuation of the stationary
mode found at D = 0 as discussed above. It may be thought of as a KH-like instability of
the two shear layers in toto, rather than of one or the other layer.
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Figure 3. Profiles of (a) horizontally averaged velocity and buoyancy, (b) mean velocity and mean buoyancy

gradient, and (c) gradient Richardson number. The vertical dashed line in (c¢) shows Rip, and the vertical solid
line denotes the stability criterion 1/4.

[ 7025

E40.20

0.10
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0
0 0.2 0.4 0.6 0.8 1.0

Figure 4. Stability diagram showing the transition from the stationary mode to the oscillatory mode as D
increases, with Re = 1000, Pr = 1, Rip = 0.16, and boundaries at z = £L,/2 = £15. Colours and black
contours represent the growth rate of the fastest-growing mode on the k—D plane. The contour interval is 0.02.
White contours show the (positive) phase velocity. The horizontal dashed line denotes the critical distance D,
(= 1.06). Stars highlight the cases D = 0.5 and D = 2, where the eigenfunctions of the fastest-growing modes
are shown in figure 7.
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Ri
Figure 5. The dependence of critical distance D, on Rig. The corresponding D, for Rig = 0.16 is ~1.06, as
shown by the red dot.

If D slightly exceeds tanh ™! \/T/3, then two small shear maxima appear slightly above
and below z = 0. These produce two inflectional instabilities having equal (though small)
growth rates, and equal but opposite phase velocities. (Only the positive phase velocity
is shown in figure 4.) Combined, these modes result in an oscillatory instability. As
D increases further, the oscillatory and stationary modes coexist (figure 4). The shear
maxima become weaker but more distinct (green curve in figure 3b). The growth rate of
the oscillatory mode increases, while that of the stationary mode continues to decrease
(figure 4). The two modes attain equal growth rates at a critical separation distance
D = D., with D, = 1.06 in the present case, Ri,;;; = 0.16 (dashed horizontal lines in
figures 4 and 5). More generally, D, decreases slightly with increasing Rig (figure 5).

At higher D (approximately 1.2 in our case), the stationary mode is stabilized, while
the growth rate of the oscillatory mode continues to increase with increasing D (figure 4).
When D = 3, for example, the two shear maxima are separated by a weakly stratified
layer (orange curve in figure 3). The resulting pair of modes have equal growth rates and
opposite phase velocities. They combine to form the oscillatory mode. As D — oo, the
upper and lower instabilities that form the oscillatory mode are independent, stationary
KH modes with unequal phase speeds.

We next explore the effects of varying Rip (figure 6). When D = 0, the stability
boundary for the two superimposed shear layers can be written as Riy = 2k(1 — k),
neglecting viscosity and assuming an infinite domain (e.g. Smyth & Carpenter 2019).
This results in the instability criterion Riy < 1/2. Figure 6(a) depicts the growth rate in
the k—Rij plane. (Positive values lying outside the theoretical stability boundary are an
artefact of the finite vertical domain size; cf. Hazel 1972.) The stationary mode dominates
for D = 0 and 0.5 (figures 6a,b). As D increases from O to 0.5, the unstable modes shift
towards lower wavenumbers. When D = 1, the stationary mode is the fastest-growing
mode, and its associated fastest-growing wavenumber decreases to less than 0.2 for all
Rig (figure 6¢). At higher wavenumbers, the oscillatory mode dominates. With an increase
in D to 3, the upper and lower shear layers become widely separated, resulting in the
disappearance of the stationary mode and the dominance of the oscillatory mode (see
figure 6d). The stability boundary under the inviscid limit, depicted as the dashed curve,
aligns well with the numerical results. This alignment suggests that, at least within the
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Figure 6. Stability diagram illustrating the transition from the stationary mode (SM) to the oscillatory mode
(OM) as D increases, with Re = 1000, Pr = 1, and boundaries at z = £L,/2 = £15. Colours and black
contours represent the growth rate on the k—D plane for different values of D: (a) D=0, (b) D =0.5,
(¢) D =1, and (d) D = 3. The fastest growth rate at each k, Rig is shown. The contour interval is 0.02. White
contours represent the corresponding frequency o;. The red curve denotes the fastest-growing mode at each
Rip. Dashed curves show the inviscid stability boundary for an infinite domain, Rip = 2k(1 — k) when D =0
in (a), and Rip = k(1 — k) for the single tanh profile considered in (d). The horizontal dashed line and solid
line show Rip = 0.16 and Rip = 0.25, respectively.

linear regime, the configuration with D = 3 resembles a pair of isolated shear layers. To
summarize, figure 6 shows that the modal structure in the linear regime is remarkably
insensitive to the choice of Rip; at each D, we see only the expected decrease of growth
rate with increasing Rip. In what follows, we will focus on the case Rip = 0.16.

‘We next examine the vertical structures of typical stationary and oscillatory modes. The
eigenfunction of the stationary mode at D = 0.5 (figure 7a) displays symmetry about z =
0, characteristic of KH instability (e.g. Smyth & Peltier 1989). The corresponding phase
speed is zero (figure 7a). When D = 2, modes are associated with the upper and lower
shear layers. The corresponding eigenfunctions are reflections of each other about z =0
(figures 7b,c). While upper and lower modes share identical growth rates o, their phase
speeds are equal but opposite, so that their sum has an oscillatory, standing-wave-like
character.

To close this section, we discuss the mechanisms that cause growth rates to decrease as
D approaches D.. As D — D, from above, the oscillatory mode is damped. To explain,
we invoke the wave resonance mechanism for piecewise linear shear layers (Heifetz
et al. 2004; Carpenter et al. 2013; Heifetz & Guha 2019; Smyth & Carpenter 2019).
The schematic representation in figure 8(a) shows a piecewise linear velocity profile
with four kinks (i.e. vorticity discontinuities). Correspondingly, figure 8(b) depicts the
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Figure 7. (a) Magnitudes of the vertical velocity eigenfunction w for the fastest-growing mode when D =
0.5. This mode corresponds to a stationary KH-like instability. (b,c) Magnitudes of the vertical velocity
eigenfunction for the upper and lower modes when D = 2. Both of these modes are oscillatory, exhibiting
identical growth rates o, and phase speeds ¢, of equal magnitude but opposite signs.

vorticity wave associated with each kink, showing phase-locking between wave 1 and
wave 2, as well as between wave 3 and wave 4, each in the phase configuration that
is optimal for resonant amplification. This results in the growth of two trains of KH
billows, corresponding to the oscillatory instability discussed above. When D is finite,
an added interaction occurs between wave 2 and wave 3. (Interactions between waves 1
and 3, 2 and 4, and 1 and 4 are present but weaker when D > D..) The phase relationship
between these waves now varies in time, owing to their opposing horizontal propagation.
Figure 8(b) provides an example. In this particular configuration, waves 2 and 3 force each
other in their own directions. The opposite can be true for other phase relationships that
occur as the waves pass each other. Regardless of the horizontal propagation, waves 2
and 3 consistently perturb each other’s phases, so that they cannot remain phase-locked
in the optimal configuration for resonance, and the growth rate is thus reduced. This
destructive interference increases as D decreases until D = tanh~! \/T/3, at which point
the oscillatory mode vanishes, leaving only the stationary mode.

The damping that we find as D — D, from below (figure 4) is unsurprising because the
shear maximum at z = 0 weakens (figure 3(b), compare dark blue and light blue curves),
but it can also be understood in terms of wave resonance. The resonance between wave
1 and wave 2, as well as between wave 3 and wave 4, diminishes due to the disturbances
between waves 2 and 3 described above. However, resonance between wave 1 and wave
4 remains strong, leading to the development of a KH-like instability. As D — D_, the
separation between wave 1 and wave 4 increases, rendering resonance less effective.
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Figure 8. (a) Piecewise linear background velocity profile. (b) Vorticity wave field diagram. Waves 1 and 2
resonate to create the upper KH-like instability. The phase difference 0.35m is optimal for growth. The same
is true for waves 3 and 4, which create the lower KH-like instability. The main interaction between these
two instabilities involves waves 2 and 3. Counter-rotating vorticity perturbation causes alternately upward and
downward motion (black solid arrows). These motions induce vertical motions to the nearby waves (black
dashed arrows). Therefore, the interaction accelerates the upper wave to the left (blue arrows) and the lower
wave to the right (red arrows).

4. The route to turbulence
4.1. Overview of the nonlinear development

In this subsection, we look beyond the linear regime to examine the various secondary
instabilities that emerge at different separation distances D and trigger the transition
to turbulence (see examples in figure 9). In all cases, the initial condition consists of
an unstable parallel shear flow whose primary instability grows to form 2-D periodic
laminar vortices. These vortices attain maximum kinetic energy at t = to4 (figures 9a,e,i).
As expected, the wavelength is largest (among these three examples) for D = 1, and
smallest for D = 2, where two trains of billows combine to form the oscillatory instability
(figure 9i). In the oscillatory case, D = 2, the growth rate and the time of turbulence
onset are sensitive to the details of the initial perturbations, as is evident in the contrast
between the upper and lower billow trains (figures 9i,j). The evolution progresses at a
comparatively slower rate for D = 1, consistent with its relatively small linear growth rate,
while growth is faster for D = 0.5 (compare the values of 4 between cases). During
this progression, various secondary instabilities emerge, facilitating the breakdown of
the primary KH billows (e.g. figures 9b,f, ). This breakdown leads to the generation of
turbulence (e.g. at t = t34, figures 9c¢,g,k). Following the turbulent mixing phase, the flow
relaminarizes (figures 9d,h.[).

Secondary instabilities that govern the evolution of isolated KH billows at different
values of Riy;;, have been explored in previous research (e.g. Davis & Peltier 1979;
Klaassen & Peltier 1985, 1991; Mashayek & Peltier 2012a,b, 2013, L22). In §§4.2 and
4.3, we focus on secondary instabilities that contribute to 3-D perturbation kinetic energy
in the regimes D > D, and D < D., wherein the linear development is dominated by
the oscillatory and stationary modes, respectively. Pertinent examples include the central
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Figure 9. Cross-sections through the 3-D buoyancy field for example cases with (a—d) D = 0.5, (e-h) D =1,
and (i-l) D = 2, at successive times as indicated. The buoyancy values plotted range from —1.5 (blue) to 1.5
(red). Snapshots in (a,e,i) correspond to t = 24, in (c,g,k) to t = 34, and in (d,h,]) to t = tr, the time when
M= D).

core instability (CCI, e.g. Klaassen & Peltier 1991, L.23), which is catalysed by the initial
growth of the KH instability, and the shear-aligned convective instability (SCI, e.g. Davis
& Peltier 1979; Klaassen & Peltier 1985), which manifests when KH billows reach a
sufficient size to overturn the buoyancy structure. In §4.4, we discuss 2-D secondary
instabilities: the secondary shear instability (SSI) of the braids and pairing of adjacent
billows (visible in figures 9(f) and 9(b), respectively).

4.2. Regime D > D,

We examine the regime D > D, using ensembles of simulations with D — oo, D =3
and D = 2 as examples. When the shear layers are infinitely separated (D — 00), they are
independent of each other, and each exhibits the standard KH instability (e.g. L22). The
3-D perturbation kinetic energy #34 (figure 10a) is created mostly by shear production
R34, which draws energy from the mean flow (blue curve). The growth of %#34 can be
attributed to the sinusoidal distortion of the spanwise vortex tube at the core of each
nascent KH billow, which redirects spanwise (y) vorticity towards the x—z plane. The tilt of
the sinusoidal distortion is such that the Reynolds stress (u34w3q4) .y, becomes negative (see
figure 14 of Lasheras & Choi (1988), figure 9 of Smyth & Winters (2003), or figure 8 of
Smyth 2006). This negative 3-D stress field works with the positive mean shear dU/dz to
generate 3-D kinetic energy. By t = f,, (the time of maximum 3-D growth), dU/dz is no
longer a maximum in the billow core, but the Reynolds stress is. Therefore, the dominant
contributor to energy growth, quantified by A£34, arises in this region. We identify this
mode as the CCL

The buoyancy production #3, (red curve) is positive but much smaller than %34. In the
current case with Rip = 0.16, previous work suggests that the SCI (signalled by positive
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Figure 10. Time variation of terms of the o34 equation (2.21) when (@) D = oo, (b) D = 3, and (c) D = 2. All
curves are ensemble averaged. Vertical dashed lines show the time at which the growth 03,4 is a maximum. Note
that the time for each ensemble case is shifted, such that the 3-D growth rate 034 is a maximum at ¢ — #,,, = 0.
Terms except for 03,4 are obtained from cubic spline fits.

#34) should be suppressed. Based on secondary stability analysis, the SCI grows only
when 0.065 < Rip < 0.13 (Klaassen & Peltier 1991). The dominance of shear production
R34 and suppression of buoyancy production 7#3; when D — oo are also consistent with
the findings of Mashayek, Caulfield & Peltier (2013), particularly in their case Rip = 0.16,
Re = 6000.

As the separation distance between two shear layers is decreased from infinity to values
approaching D, (e.g. our examples D = 3 and 2), interactions become evident. When D =
3, the evolution of each perturbation energy term resembles the infinite separation case
(compare figures 10a,b), suggesting only a weak interaction between the upper and lower
instabilities. When D = 2, &3, remains the dominant term (i.e. the principal secondary
instability is still the CCI); however, a reduction in #34 (figure 10c) is observed. At t =
ts,,, for example, the reduction is ~40 % compared to case D — oo. This reduction can be
attributed to the close proximity of the shear layers, which results in additional suppression
of SCI beyond the inherent effects of high Ri,;,. Because the upper and lower billows
co-rotate, roll-up is suppressed, reducing overturning. This is reminiscent of the effect of
a nearby boundary on the SCI (L23).
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Figure 11. Asin figure 10, but with D = 0.

4.3. Regime D < D,

We now examine distinctions that arise when D < D, using examples D = 0, 0.5 and 1.
When D = 0, the two shear layers add to form a single shear layer with Ri,;;, = Rig/2 =
0.08. Thus the instability behaves similarly to a weakly stratified shear instability, and we
expect to encounter the SCI. During the earliest stage of 3-D growth (t — #5,, ~ —18 to
—6), the #34 budget is dominated by the shear production term %34 due to the CCIL. By
t ~ tgy,, the billow has rolled up enough to form convectively unstable layers. Consistent
with the low initial Ri,,;,, the SCI is now the principal secondary instability that breaks
down the KH billow structure. This is indicated in the %3, budget (figure 11) by increased
values of #34 as well as $%34 and &34. One would expect the buoyancy production term
34 to be substantial due to the prevailing influence of the SCI (Caulfield & Peltier 2000,
L23). Surprisingly, both §7%34 and &34 exhibit larger magnitudes than #3, (figure 11a).
This finding is distinguished from previous studies (Mashayek & Peltier 2013, L.23), where
buoyancy production dominated in the presence of the SCI. This may reflect a difference
in the initial perturbations; the buoyancy field was perturbed in the previous studies but
not in the present work.

When D is slightly above O (typified here by D = 0.5), Riy,;, is small enough that the
KH billow is again susceptible to SCI (Klaassen & Peltier 1991). During the initial growth
phase (dot-dashed line in figure 12a), large positive values of &3, concentrate in the
billow core, indicating the CCI. This mechanism can be discerned qualitatively in the
spanwise-averaged x—z representation of £z, (figure 12(b), region 1). Simultaneously,
small areas of positive $%34 manifest at the upper and lower extents of the billows
(figure 12(c), region 2). Moreover, positive &3, emerges along the braids (figure 12(d),
region 3). These results are associated with the mechanism illustrated in figure 12 of
Lasheras & Choi (1988), which shows that vortex filaments present in the braids undergo
amplification through stretching along the principal plane of positive strain. These vortex
filaments eventually envelop the spanwise vortex tubes of the central core, resulting in
positive 8734 in the upper and lower regions of each billow, and positive /3,4 at the braids.
Owing to the wrapping of these vortex filaments, the spanwise vortex tubes undulate
(figure 14 in Lasheras & Choi 1988), creating positive &34 in the core. Nonetheless, §734
is mostly negative in the braids and in the billow cores, leading to an overall negative
volume average (dashed line in figure 12a). Positive #34 in the eyelids (region 4 of
figure 12¢) indicates the SCIL.

At t = t4,,, similar to D = 0, #34 is smaller than both 8%34 and 34 (figure 12a).
The SCI induces the formation of shear-aligned convective rolls, consistent with increased
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Figure 12. Dominant stationary mode when D = 0.5. (a) As in figure 10. Vertical dot-dashed line and dashed
line show the times at  — f5,, = —11 and 0, respectively. (b—e) Spatial distribution of each energy term: R34,
8734, 34 and 34, respectively, at f5,, = —11 (dot-dashed line in a). (f—i) Same at t — #,,, = 0 (dashed line
in a).

buoyancy production #3, (figure 12(i), region 7). Positive 8734 coincides with these
convective rolls (region 5), suggesting that the SCI could be responsible for its generation.
During the early growth phase, #3,4 (region 4) begins to increase on the eyelids of each
billow, whereas &7 3, remains small or negative in that area (figure 12¢). This implies that
as time progresses, the increase in positive $%34 on the eyelids results from the formation
of shear-aligned convective rolls with circulations tilted against the 2-D shear (figure 13).
Vortex tubes at the periphery of the billows also undergo stretching, as quantified by /3.
Stretching occurs when denser fluid descends on the upper right portion of the billow under
the action of gravity, while lighter fluid ascends on the lower left (figure 12(%), region 6).

During this phase of maximum growth, negative %3, emerges at the margins of the
billows (figure 12f). Consequently, the volume-averaged value is negative (figure 12(a),
indicated by the blue curve at t = #,,,). This suggests that the background mean flow
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Figure 13. Schematic showing shear-aligned convective rolls tilting and stretching to form positive §7%34 and
34, respectively.
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Figure 14. Dominant stationary mode when D = 1. As in figure 10.

contributes little to the 3-D perturbation kinetic energy in this instance. Instead, the
perturbation energy is partially created by buoyancy production, but is predominantly due
to shear production and the stretching of vortex tubes as discussed above.

In the case D = 1, although the oscillatory mode is unstable, the dynamics is governed
primarily by the stationary mode. The perturbation energy terms evolve similarly to the
case D = 0.5 (compare figures 12(a) and 14). This is interesting because Riyi, = 0.15,
which is outside the range 0.065-0.13 where the SCI is expected based on secondary
stability analysis of an isolated shear layer (Klaassen & Peltier 1991), yet the roll motions
are visible, for example, on the right-hand face of figure 9(f). We conclude that as in the
case D = 0.5, the SCI gives rise to shear-aligned convection rolls, consistent with positive
values of #3,. The dominant source terms are again $/%34 and &3, (figure 14).

4.4. The SSI and pairing

We discuss the SSI and pairing separately as they affect %34 negligibly. The SSI grows
on the braids of the primary billows where the flow is nearly parallel and the shear is
intensified by the strain of the large billows (Corcos & Sherman 1976; Staquet 1995; Smyth
2003; Mashayek & Peltier 2012a). Staquet (1995) and Smyth (2003) find that the SSI
tends to occur at higher Reg. When D < D, the initial mean flow resembles a single shear
layer with increased thickness and velocity change, i.e. with a larger Reynolds number.
Therefore, the SSI may occur, depending on the initial noise field. An example is seen in
figure 9(f). This secondary instability plays a notable role in generating turbulent mixing
(to be discussed in § 5). Att = t,,,, when 034 is a maximum, the enstrophy of the spanwise
component Z, (figure 15b) is significantly stronger than that of the other two components
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Figure 15. Spatial distribution of enstrophy during and after maximum secondary instability growth. Data are
from a sample simulation in the D = 1 ensemble: (a,c) x and z components combined; (b,d) y component.
(a,b) are both at t — t5,, = 0, and (c,d) are at t — t,,, = 7. Horizontal streaks are artefacts of limited spatial
resolution.

combined, Z, + Z, (figure 15a). The same is true for later times (figures 15(c,d) in the
SSI-affected region), further confirming the 2-D nature of the SSI.

Secondary billows can be created either in pairs straddling the braid stagnation point or
individually (Smyth 2003), as seen at t — f,,, = 7 in figure 15(d). Between the large billow
cores, a pair of smaller billows emerges at the stagnation point. The pair eventually merges
and becomes a larger single vortex, which then creates its own tertiary shear instability in
its surroundings, a vivid illustration of a self-similar downscale energy cascade. Other
secondary billows developed away from the stagnation point are advected outwards by the
extensional strain.

Vortex pairing is also affected by a nearby shear layer. Pairing is more likely to occur
when D is small (e.g. D = 0 and 0.5), due to small Ri,,;, (figure 9b). L22 found that pairing
is laminar (i.e. it occurs prior to the onset of turbulence) in cases with Riy;, less than
0.14, and we expected this to remain true in the present cases where Riy,;, is considerably
smaller. However, figure 9(c) indicates turbulent pairing. This is likely due to the difference
in shape between the present shear layer and the single hyperbolic tangent profile assumed
in L22. When D ~ 0, pairing precedes the onset of the SSI, leading to the disappearance
of alternate braids. Subsequently, if the braids are not yet turbulent, then the SSI is likely
to appear. The timing of turbulence onset, which itself depends on the choice of initial
perturbation (L22), partly determines the occurrence of pairing and the SSI.

5. Turbulent mixing

A neighbouring unstable shear layer could influence turbulent mixing through its impact
on the route to turbulence. We test this possibility by investigating three mixing properties:
the mixing rate ./, the dissipation rate €, and the mixing efficiency n, in both
instantaneous (figure 16) and cumulative (figure 18) forms.
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Figure 16. Time variation of the instantaneous (a) mixing rate, (b) total dissipation of the kinetic energy, and
(c) mixing efficiency, with varying D. For clarity, only one ensemble member is included for each case of
different D. Note that the magnitude and timing of the peak can be slightly different, but the overall trend is
similar between the ensemble cases. The solid and dashed black curves are the case with the isolated shear
layer. A running mean is carried out for all curves. Diamonds correspond to the snapshots in figure 17.

5.1. Instantaneous mixing properties

We first examine cases with an isolated shear layer, namely, D = 0 and D — oo, to set
the stage for cases with D ~ O(1). When D = 0, mixing efficiency peaks as the billows
roll up (¢ ~ 60, black curve in figure 16c). At this pre-turbulent stage, the mixing rate
is large (figure 16a) due to sharp scalar gradients, while the dissipation rate (figure 16b)
remains small, and mixing efficiency is therefore large (Winters et al. 1995; Caulfield
& Peltier 2000; Smyth & Moum 2001; Smyth 2020). Subsequently, the billow structure
collapses due to the SCI (§ 4), leading to an increase in both mixing and dissipation rates.
Thus mixing efficiency is reduced at ¢ ~ 70 as the flow becomes turbulent. As the billows
pair and merge into a single large vortex (¢ ~ 110), the mixing and dissipation rates begin
to rise.

In the case D — 00, Riy, doubles to 0.16. Therefore, mixing is visibly weaker than
at D = 0 (compare black solid and dashed curves in figure 16a). However, since the
dissipation rate is also smaller, the peak mixing efficiency at ¢ ~ 208 (1; = 0.63) for
D — oo is not very different from the peak value for D = 0 at r ~ 62 (; = 0.78). The
two peaks of . are associated respectively with the breakdown of the billow and with
mixing due to fully developed turbulence (cf. Kaminski & Smyth 2019, L.23).

When D = 0.5, the mixing characteristics resemble those at D = 0. Mixing efficiency
exhibits a peak during roll-up (as t = 76, marked by the blue diamond in figure 16¢). Strong
mixing, quantified by the buoyancy variance dissipation rate x’ (2.19), begins along the
braids and extends inwards through overturned layers surrounding the core (figure 17a).
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Figure 17. An x-z slice of the buoyancy variance dissipation rate log x’ when the instantaneous mixing
efficiency 7; is a maximum for (@) D = 0.5, (b) D = 1, (¢) D = 2, and (d) D = 3. The snapshots for different D
cases correspond to the diamond symbols in figure 16. In (), horizontal streaks are artefacts of limited spatial
resolution.

When D = 1, the time at which the billows roll up is the latest compared with other cases
of D, consistent with its smallest growth rate (figure 4). The increase of mixing efficiency
begins at t ~ 180 (red curve in figure 16¢). Subsequently, the mixing rate increases rapidly
due to the amplifying KH billow. At ¢ = 217, the 2-D kinetic energy reaches its maximum,
while dissipation remains relatively weak, accounting for the highly efficient mixing.
Before the SCI collapses the KH billow structure, the SSI emerges along the braids.
The emergence of the SSI leads to a surge of highly efficient mixing (¢ = 215-235 in
figure 16a). Mixing is most intense in the braids, where it coincides with the secondary KH
billows (figure 17b), and is most efficient at t = 235 (red diamond) because the secondary
billows have not yet become turbulent, with n; ~ 0.8 (figure 16¢).

The SSI billows travel along the braids towards the primary KH billow, and then
intermingle with the shear-aligned convective rolls at the eyelids (at x = 40, figure 17b).
The primary KH billow then collapses, and the flow becomes more turbulent (z ~ 250).
At this time, the mixing and dissipation rates approach their peak values, coinciding with
a precipitous drop in the mixing efficiency (figure 16¢).

The regime D > D,, in which the oscillatory instability dominates (§ 3), is typified
here by the cases D = 2 and D = 3. Both the mixing rate and dissipation rate are weak
compared to cases where stationary mode dominates, e.g. D = 0, 0.5 and 1 (figures 16a,b).
This weakening is due to the stronger stratification, which tends to damp both the SCI and
pairing. In addition, the mutual interference of neighbouring billows suppresses the growth
of the primary KH instability, leading to reduced overturning and 3-D convection, hence
smaller . (compare D = 2 and D = oo in figure 18a).

While the general pattern of mixing, dissipation, and mixing efficiency remains largely
consistent across all cases when D > D¢, there is a reduction in mixing efficiency as D —
D7 (compare peak values for D = oo, D =3 and D =2 in figure 16¢). This reduction
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Figure 18. Dependence of (a) cumulative mixing, (b) cumulative dissipation, and (¢) cumulative mixing
efficiency on D. All ensemble cases are plotted. Red curves are the ensemble mean. The end time for the time
integral is when /# = 9),. The vertical dashed lines denote the critical separation distance D.. The horizontal
line denotes the canonical 1, = 1/6 suggested by Osborn (1980).

mainly reflects the diminished mixing rate ./# observed at smaller values of D. As shown
in figures 17(c) and 17(d), x’ is less pronounced in case D = 2 compared to case D = 3.
This suggests that as the nonlinear interaction between the upper and lower shear layers
intensifies, mixing is suppressed.

5.2. Cumulative mixing properties

We next investigate the dependence of the cumulative mixing (), dissipation (¢.) and
mixing efficiency (1.) on the separation distance D. When D < D, the net mixing and
dissipation are ~1 order of magnitude larger than when D > D, (figures 18a,b). There
is less disparity in 7., indicating an approximate balance between mixing and dissipation
that tends to preserve mixing efficiency. Even so, mixing is typically more efficient by a
factor ~2 when D < D, compared to when D > D.. At the extremes D = 0 and D — oo,
1. takes the high values (0.3-0.4) expected for an isolated shear layer (Winters et al. 1995;
Caulfield & Peltier 2000; Smyth, Moum & Caldwell 2001).

In the oscillatory regime, the overall reduction in total amount of mixing as D
approaches D, from above may be attributed to the suppression of both the primary KH
instability (due to interference between neighbouring billows impeding the phase-locking
of resonant waves, as discussed in § 3) and secondary instabilities. The SCI, which plays
a major role in driving mixing, can be impacted by both the reduced overturning in the
suppressed primary KH instability and the neighbouring effect (§ 4.2). This suppression
of the SCI becomes more pronounced as D — D, potentially leading to a complete
prevention of mixing — auxiliary simulations with D = 1.5, not shown here, failed to
generated detectable instability or mixing. While ., decreases as D — D, there is little
corresponding change in total dissipation (figure 18b), leading to an overall decrease in
mixing efficiency.

In the stationary regime D < D,, there is a slight tendency towards stronger mixing
and dissipation (figures 18a,b) with decreasing D. This is likely associated with the slight
reduction of Ri,;;,.

5.3. Emergence of marginal instability

Geophysical stratified shear flows are often in a state of marginal instability (MI), wherein
the mean flow fluctuates around a stability boundary approximated by Ri, = 1/4 (see
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Figure 19. Horizontally averaged time series of (a—c) Ri,, (d-f) N?, and (g—i) S%. The symbol x indicates the
potential location for MI to occur.

Smyth (2020), for a recent review). In the present simulations, we find MI-like behaviour
when D = 2 (figures 19b,e,h). As turbulence decays (z ~ 250), a layer of near-critical Ri,
(i.e. clustered around a value near 1/4) emerges around z = 0 (figure 19(b), symbol x).
This near-critical Ri, corresponds to a new stratified shear layer that forms between the two
original layers (figures 19¢,/) as mixing brings fluid from the upper and lower turbulent
layers into close contact in the middle region, leading to local amplification of the mean
buoyancy and velocity gradients.

The MI appears only in a restricted range of D, namely when the instability is in
the oscillatory regime (D > D) but D is not much greater than D.. Conversely, for
D < D, the mixing characteristics resemble those of a typical KH instability, where both
stratification and shear are smoothed due to strong overturning (figures 19d,g). This leads
to an increase of Ri, towards a stable state (figure 19a). When D is much greater than
D., e.g. D = 3, the upper and lower shear layers remain too distant to overlap despite
their expansion. Consequently, the weakly stratified and weakly sheared middle layer (at
z = 0) persists (figures 19f,7) such that Ri, is much greater than 1/4 (figure 19¢).

6. Summary

We have investigated the instabilities of a pair of shear layers. When the layers are either
unseparated or separate to an infinite extent, flow evolution is driven by the classical
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KH instability. Our primary focus, however, is cases characterized by a finite, non-zero
separation distance D.

In the small-amplitude limit, we find two distinct regimes: (1) a stationary mode, defined
by a unique maximum growth rate, dominates when D < D, (where D, ~ 1 is the critical
separation distance); and (2) an oscillatory mode, consisting of two modes with equal

growth rates and different phase speeds, becomes unstable when D > tanh~! \/1/3, and
dominates when D > D.. As D — D, from below, the stationary mode is damped because
the shear maximum weakens. As D — D, from above, damping of the oscillatory mode
can be understood in terms of the resonant interaction of vorticity waves.

The presence of a neighbouring shear layer alters mixing and its efficiency by
introducing an alternative route to turbulence. We have extended our analysis beyond
the linear regime by conducting an ensemble of three direct numerical simulations,
with different initial perturbations, for each of five values of the separation distance D.
The presence of a neighbouring shear layer exerts a profound influence on the evolution
and wavelength of the primary instability as well as the amplitude of the resulting KH
billows. The KH instability evolves most rapidly when D is close to 0, consistent with
its largest growth rate. As D increases from 0 to D, the evolution of the instability is
prolonged (consistent with its decreasing growth rate), and the wavelength and amplitude
of the KH billows increase. As D increases further from D, to infinity, the evolution time
and wavelength of the instability converge to values characteristic of an isolated shear
layer.

The value of Ri,;, is higher in the oscillatory regime (D > D.) and lower in the
stationary regime (D < D). Important differences in both the route to turbulence and
the resulting mixing can be traced back to this distinction. In the oscillatory regime,
Rinin =~ Rip, the SCI is suppressed due to both the influence of stratification (Klaassen
& Peltier 1991) and interference from the adjacent shear layer. The CCI is now dominant.
Mixing is relatively weak and inefficient. When the separation between the upper and
lower shear layers is sufficiently small, a new shear layer, exhibiting MI, forms between
them.

In the stationary regime (D < D.), Riy, is lower and the instability resembles a weakly
stratified KH instability with large amplitude. The SCI creates shear-aligned convective
rolls, leading to an increase in buoyancy production (similar to previous studies, e.g.
Caulfield & Peltier 2000, L23). Additionally, owing to weak stratification, billows are
likely to pair. As D approaches D, from below, buoyancy production becomes less
important while shear production and gravitational stretching take over as the primary
mechanisms of 3-D growth. The SSI, while not contributing directly to 3-D perturbation
kinetic energy, plays a significant role in generating turbulence.

The stationary mode leads to strong and efficient mixing. At the transition to the
oscillatory regime, the cumulative mixing rate, dissipation rate and mixing efficiency all
decrease abruptly (figure 18¢), showing that mixing properties can be sensitive to small
changes in the initial mean flow.

7. Future directions

In this study, the initial parameters Rip, Rep and Pr remain constant, with our primary
focus on the impact of separation distances. Changing these parameters will alter the
transition process in various ways. For example, a different Rip may alter the growth of
KH instability, subharmonic instability and 3-D secondary instabilities. Turbulent mixing
and the potential for marginal instability would consequently be affected in ways that are
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difficult to anticipate. Moreover, varying Rip while fixing Ri,,;, could isolate the effect of
the separation distance D.

Increasing Reg is essential for simulating geophysical flows. This increase introduces
a variety of secondary instabilities, which could be affected by the presence of a
neighbouring shear instability. The increase of Reg facilitates exploration of approaching
the critical separation distance (D ~ D,), as the KH instability may transition to turbulence
even when heavily damped by a neighbouring instability.

While Pr =1 is applicable to air, higher values are more realistic for water. A higher
Pr opens the possibility of a Holmboe-like instability when the mean buoyancy changes
more abruptly with height than does velocity. Future studies will explore interactions of
nearby Holmboe instability. This may give rise not only to KH-like instability (involving
vorticity wave interaction) and Holmboe-like instability (involving vorticity and gravity
wave interaction) but also to Taylor—Caulfield instability (interaction between two gravity
waves; see Lee & Caulfield 2001; Smyth & Carpenter 2019), depending on the separation
distance. Moreover, the scouring motion induced by Holmboe waves could be affected by
the adjacent shear instability.

The variability in mixing parameters at varying separation distances has significant
implications for the estimation of mixing in geophysical flows, particularly those
characterized by the presence of neighbouring shear instabilities (e.g. Desaubies & Smith
1982; Moum et al. 2011). For the parameter values used here, the mixing efficiency ranges
from ~0.14 to ~0.37, depending on the separation distance (figure 18c¢). Under different
initial parameters or varied profile structures, such as asymmetrical velocity and buoyancy
profiles (e.g. Olsthoorn, Kaminski & Robb 2023), the resulting mixing could also be
substantially affected by a neighbouring instability.

The exploration of the parameter space will ultimately support a comprehensive
parametrization framework for capturing the influence of neighbouring shear layers in
a larger-scale model. A future goal is to explore these effects in a multi-layer context, such
as the interaction of breaking internal waves at ocean ridges and seamounts.

Pre-existing turbulence exerts a substantial influence on KH instabilities (Brucker &
Sarkar 2007; Kaminski & Smyth 2019). Furthermore, the onset timing of shear-driven
turbulence is inherently arbitrary, making the simultaneous instability of two adjacent
shear layers an atypical scenario. This highlights the potential impact of a near-field
turbulent event on pre-turbulent shear instabilities. Such events may alter the development
of turbulence in an adjacent shear layer.

Forced stratified flows may organize into layers consisting of neighbouring strongly
stratified interfaces separated by regions of weak stratification, and a significant effort has
been made to understand the circumstances under which these layers form and survive
(Caulfield 2021; Petropoulos, Mashayek & Caulfield 2023). While layered structures
may be robust in certain scenarios, particularly in high-Pr and double-diffusive flows
(Timmermans et al. 2008; Taylor & Zhou 2017), in other scenarios they are prone
to destruction by shear. Recent efforts have described, for example, the interaction
between double-diffusive staircase structures and shear-driven turbulence (e.g. Bebieva &
Speer 2019; Brown & Radko 2022). In the present problem, increasing the number of
layers could provide insight into the development of turbulence in these multilayered flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.387.
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