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A form of skin-friction drag decomposition is given based on the velocity–vorticity
correlations, 〈vωz〉 and 〈−wωy〉, which represent the advective vorticity transport and
vortex stretching, respectively. This identity provides a perspective to understand the
mechanism of skin-friction drag generation from vortical motions and it has better physical
interpretability compared with some previous studies. The skin-friction coefficients in
incompressible turbulent channel flows at friction Reynolds numbers from 186 to 2003
are divided with this velocity–vorticity correlation-based identity. We mainly focus on the
Reynolds number effects on the contributing terms, their scale-dependence and quadrant
characteristics. Results show that the contributing terms and their proportions exhibit
similarities and the same peak locations across the wall layer. For the first time, we
find that the positive and negative regions in the spanwise pre-multiplied spectra of the
turbulent inertia (〈v′ω′

z〉 + 〈−w′ω′
y〉) can be separated with a universal linear relationship

of λ+z = 3.75y+. The linear relationship is adopted as the criterion to investigate the scale
dependence of the velocity–vorticity coupling structures. It reveals that the negative and
positive structures dominate the generation of friction drag associated with the advective
vorticity transport and vortex stretching, respectively. Moreover, quadrant analyses of
the velocity–vorticity correlations are performed to further examine the friction drag
generation related to different quadrant motions.
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1. Introduction

The friction drag generated by intense turbulent wall-shear stresses exists in numerous
engineering and environmental wall-bounded flows, leading to immense economic costs.
For instance, a 1 % drag reduction for a long-range transport aircraft could increase the
payload by 91 kg at the cruise condition (Meredith 1993; Fan & Li 2019). Therefore,
the reduction of turbulent friction drag is of great importance for energy saving and
commercial value. Strategies to reduce the turbulent friction drag have long been pursued
in industrial designs, which require profound understanding on the generation mechanisms
and contributing factors of the friction drag in wall-bounded turbulence.

By definition, the mean skin-friction drag is the mean shear stress on the wall surface. In
wall-bounded turbulent flows, the near-wall turbulent events are pronouncedly impacted by
the motions in the logarithmic and outer region, especially the large-scale motions (LSMs)
and very-large-scale motions (VLSMs) by means of superposition and modulation (Hoyas
& Jiménez 2006; Mathis et al. 2009). For this reason, it is reasonable that the generation
of mean skin-friction drag is related to the flow motions and quantities across the whole
layer. The first breakthrough towards this theme was made by Fukagata, Iwamoto &
Kasagi (2002), who derived a concise identity (referred to as FIK identity) of skin-friction
coefficient Cf by performing triple integration on the streamwise Reynolds-averaged
Navier–Stokes (RANS) equation. For fully developed turbulent channel flows, on the
premise of homogeneity in streamwise and spanwise directions, the identity is simplified
as

Cf = 6
∫ 1

0
(1 − y)〈−u′v′〉 dy︸ ︷︷ ︸

Cf 1,FIK

+ 6
Reb︸︷︷︸

Cf 2,FIK

. (1.1)

Herein, the streamwise, wall-normal and spanwise directions are denoted by x, y and z,
respectively, and the corresponding velocity components are u, v and w. All quantities
in (1.1) are normalized with u∗

b and h∗, where u∗
b is bulk velocity and h∗ is the

half-channel height. Additionally, Reb = u∗
bh∗/ν∗ is the bulk Reynolds number and ν∗ is

kinematic viscosity. The superscript ∗ denotes a dimensional variable. The angle bracket 〈〉
represents averaging over homogeneous directions (streamwise and spanwise directions)
and time, and primed quantities refer to the fluctuations. In the FIK identity, Cf 1,FIK is
the integral of the Reynolds stress weighted by (1 − y), which measures contribution
from turbulent motions, and Cf 2,FIK is identical to the well-known laminar solution.
Renard & Deck (2016) provided another identity to decompose the skin friction based
on the mean streamwise kinetic-energy budget in an absolute reference frame (named
as RD identity). In their framework, Cf in turbulent channel flows is attributed to the
molecular-viscous-dissipation contribution and the production of the turbulent kinetic
energy.

The FIK and RD identity have been popularly utilized, and alternative forms and
modifications have emerged gradually in the literature. Gomez, Flutet & Sagaut (2009)
derived a compressible form of the FIK identity to investigate the compressibility
effects on skin-friction drag generation. Bannier, Garnier & Sagaut (2015) extended the
FIK identity to complex wall surfaces and investigated the drag-reduction mechanism
of riblet-mounted surfaces. Kametani & Fukagata (2011) and Kametani et al. (2015)
investigated the turbulent boundary layer with wall blowing/suction and evaluated
contributions of each term in the FIK identity. Ricco & Skote (2022) proposed
several alternative integral relations and discussed the feasibility of an arbitrary-fold
multiple integral. Wenzel, Gibis & Kloker (2022) employed a twofold integral to obtain
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Reynolds-number effects on skin-friction drag decomposition

improved FIK-like decomposition identities of Cf and Ch (the heat-transfer coefficient).
Analogously, Xu, Wang & Chen (2022) applied an FIK-like decomposition to investigate
the streamwise evolutions of Cf and Ch in hypersonic transitional and turbulent boundary
layers. Other applications and modifications of the FIK identity can be found from Mehdi
& White (2011), Mehdi et al. (2013), Peet & Sagaut (2009) and Modesti et al. (2018), to
name a few. When it comes to the RD identity, it gives an edge in interpreting skin-friction
generation from the view of energy balance and has also been further developed in recent
years. Wei (2018) verified it in three canonical turbulent wall-bounded flows using direct
numerical simulation (DNS) and experimental data. Li et al. (2019) and Fan, Li & Pirozzoli
(2019b), Fan et al. (2020) extended it to compressible turbulent channel flows, zero- and
adverse-pressure-gradient boundary layers. Additionally, Fan et al. (2022) employed it to
investigate the effects of uniform blowing and suction on the generation of skin friction
over an airfoil.

It is noteworthy that Yoon et al. (2016) proposed a velocity–vorticity-based method
of skin-friction decomposition by performing triple integration on the mean spanwise
vorticity transport equation. For turbulent channel flows, it is expressed as

Cf =
∫ 1

0
2(1 − y)〈v′ω′

z〉 dy︸ ︷︷ ︸
Cf 1,Yoon

+
∫ 1

0
2(1 − y)〈−w′ω′

y〉 dy︸ ︷︷ ︸
Cf 2,Yoon

+ 1
Reb

d〈ωz〉
dy

∣∣∣∣
y=0︸ ︷︷ ︸

Cf 3,Yoon

− 1
Reb

∫ 1

0
2〈ωz〉 dy︸ ︷︷ ︸

Cf 4,Yoon

, (1.2)

where vorticities in streamwise, wall-normal and spanwise directions are denoted by ωx,
ωy and ωz. This identity provides a tool to understand the mechanism of skin-friction
generation from the perspective of vortical motions, yielding contributions of advective
vorticity transport (Cf 1,Yoon), vortex stretching (Cf 2,Yoon) by integrals of velocity-vorticity
correlation, and the viscous effects of the mean vorticity (Cf 3,Yoon and Cf 4,Yoon). A relevant
further application of this identity was carried out in adverse-pressure-gradient turbulent
boundary layers to identify contributions from the large-scale velocity–vorticity correlated
motions to the skin-friction drag (Yoon, Hwang & Sung 2018).

Actually, one can perform a fourfold integration
∫ 1

0

∫ y
0

∫ y3
0

∫ y2
0 dy1 dy2 dy3 dy (where

y, y1, y2 and y3 are all wall-normal distances) on the mean spanwise vorticity equation,
to reduce Yoon’s identity to the FIK identity (see Appendix A). However, it is argued
that the triple integral applied in the derivation of the FIK identity has no clear physical
interpretations, including a dimensional problem and a weight factor (1 − y) of Reynolds
stress (Renard & Deck 2016; Wenzel et al. 2022). On one hand, the second integral
multiplies a force (from the first integral) by length and this should have the dimension
of an energy, rather than a velocity as stated by Fukagata et al. (2002). On the other hand,
the weight factor (1 − y) in Cf 1,FIK results from the mathematical derivation (the third
integral) and has no clear explanation in terms of physical processes (Deck et al. 2014;
Renard & Deck 2016; Fan, Cheng & Li 2019a; Li et al. 2019; Fan et al. 2020). It magnifies
the weight of flow information in the near-wall region and attenuates that in the outer layer,
which may require high spatial resolution and accuracy in the vicinity of wall-surface for
both experimental measurements and numerical simulations (Xia, Zhang & Yang 2021).
Moreover, Wenzel et al. (2022) declared that an arbitrary-fold integral would result in an
FIK-like identity according to Cauchy’s formula for repeated integration. Zhang & Xia
(2020) and Wenzel et al. (2022) pointed out that the twofold integral has a more intuitive
physical interpretability than the threefold one on account of the absence of the weight
factor (1 − y) in channel flows. In (1.2), the ill-defined weight factor (1 − y) also appears
in the first two terms, which is consistent with the FIK identity due to the analogous
integration performed. Therefore, in this study, we give an alternative form of skin-friction
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drag decomposition based on the velocity–vorticity correlation. Although it resembles
the identity proposed by Yoon et al. (2016), to some extent, better physics-informed
interpretation could be inferred in this form since it does not suffer from the weight factor
(1 − y) in the integrand.

Additionally, the velocity–vorticity correlations appearing in (1.2), 〈v′ω′
z〉 and 〈−w′ω′

y〉,
play important roles in the dynamics of vortical motions. Tennekes & Lumley (1972) first
uncovered that 〈v′ω′

z〉 is associated with the vortex transport and 〈−w′ω′
y〉 with the vortex

stretching. Simultaneously, 〈−w′ω′
y〉 is hypothesized to be the key factor driving the energy

cascade and angular momentum transferring from large eddies to small ones (Tennekes &
Lumley 1972; Priyadarshana et al. 2007). In incompressible turbulent flows, there exists a
relationship to combine 〈v′ω′

z〉 and 〈−w′ω′
y〉 into the turbulent inertia (TI), i.e.

d〈−u′v′〉
dy

= 〈v′ω′
z〉 + 〈−w′ω′

y〉. (1.3)

TI is the gradient of the Reynolds shear stress in the wall-normal direction. It derives
from the time rate of change of momentum (i.e. inertial) part of the RANS equation (Chin
et al. 2014). In the mean momentum equation, TI acts as the momentum source in the
near-wall region and the momentum sink in the outer layer. Equation (1.3) connects the
mean wall-normal transport of Reynolds shear stress with the vorticity field (Klewicki
1989) and provides a way to understand the generation of TI (Guerrero, Lambert & Chin
2022). Klewicki (2013) evidenced the coexistence of dynamical and vortical processes,
in which the wall-ward momentum transport occur simultaneously with the outward
vorticity transport (dominated by mean spanwise vorticity 〈ωz〉) under the same physical
mechanisms. Three-dimensional vortical structures populate through the whole flow field
especially in the near-wall region, which indicates that the generation of skin-friction drag
is closely related to the vortical motions. In this sense, Yoon’s identity in (1.2) indeed
provides an effective idea to investigate their relationship.

Another objective in this study is to investigate the Reynolds number effects on the
skin-friction-drag generation from the perspective of vortex dynamics. As the Reynolds
number increases, the outer scales (characterized by h∗ and u∗

b) are increasingly larger
than the inner scales (characterized by viscous length scale δ∗

ν and friction velocity u∗
τ )

(Priyadarshana et al. 2007). The contribution of the near-wall small-scale structures to the
skin-friction generation is attenuated, while that of the large-scale motions is enhanced due
to the more intense amplitude modulation and energy superposition effects (Hwang 2013).
Fan et al. (2019a) studied the Reynolds number effects on the terms in the FIK and RD
identity in turbulent channel flows up to Reτ = 5200 (where Reτ = u∗

τ h∗/ν∗ is the friction
Reynolds number). Chin et al. (2014) demonstrated that the streamwise pre-multiplied
co-spectra φv′ω′

z
scaled in inner units exhibits invariance with Reτ , whereas φ−w′ω′

y
shows

non-negligible variations with Reτ .
Based on the aforementioned issues, we are motivated to give a skin-friction

drag decomposition method with more intuitive physical interpretability using
velocity–vorticity correlations, and quantify the contribution as well as investigate the
Reynolds number effects of each individual term. The rest of this paper is organized
as follows. Mathematical derivation and physical explanations are introduced in § 2.
Details of direct numerical simulations of five turbulent channel cases are described
in § 3. In § 4, statistical properties of the decomposed components, including absolute
contribution values and proportions, local large- and small-scale motions contributions,
and quadrant characteristics, are investigated. Particular attention is paid to the effects of
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Reynolds number on the velocity–vorticity integral terms. Finally, concluding remarks are
summarized in § 5.

2. Mathematical approach

The equation of the streamwise mean momentum balance for fully developed
incompressible turbulent channel flows is expressed as

d〈−u′v′〉
dy

+ 1
Reb

d2〈u〉
dy2 + 1

Reb

d〈u〉
dy

∣∣∣∣
y=0

= 0. (2.1)

Hereafter, variables without the superscript ∗ represent non-dimensional quantities
normalized by bulk mean velocity u∗

b and half-channel height h∗, and variables with
the superscript ‘+’ represent non-dimensional quantities normalized by friction velocity
u∗
τ and viscous length scale δ∗

ν , unless otherwise mentioned. With 〈vωz〉 = 〈v′ω′
z〉 and

〈−wωy〉 = 〈−w′ω′
y〉, (1.3) can be re-expressed as

d〈−u′v′〉
dy

= 〈vωz〉 + 〈−wωy〉. (2.2)

Substituting (2.2) into (2.1) and integrating in the wall-normal direction from 0 (wall
surface) to an arbitrary height y ∈ (0, 1], we get∫ y

0
〈vωz〉 dy +

∫ y

0
〈−wωy〉 dy = − 1

Reb

d〈u〉
dy

+ 1
Reb

d〈u〉
dy

∣∣∣∣
y=0

− 1
Reb

y
d〈u〉
dy

∣∣∣∣
y=0

. (2.3)

The skin-friction coefficient is defined as Cf = 〈τ ∗
w〉/(1

2ρ∗u∗2
b ), where τ ∗

w =
μ∗(∂u∗/∂y∗)|y=0 is the wall-shear stress, μ∗ is the dynamic viscosity and ρ∗ is the density.
It has an alternative form Cf = 2(d〈u〉/dy)|y=0/Reb. Substituting it into (2.3), we have

Cf = 2
∫ y

0
〈vωz〉 dy︸ ︷︷ ︸
Cf 1

+ 2
∫ y

0
〈−wωy〉 dy︸ ︷︷ ︸

Cf 2

+ 2
Reb

d〈u〉
dy︸ ︷︷ ︸

Cf 3

+ 2
Reb

y
d〈u〉
dy

∣∣∣∣
y=0︸ ︷︷ ︸

Cf 4

. (2.4)

The first two terms Cf 1 and Cf 2 measure the contribution from advective vorticity transport
and vortex stretching throughout the height interval [0, y] uniformly. Additionally,
Cf 3 represents the non-dimensional mean streamwise shear stress at height y, i.e.
〈τ ∗〉( y)/(1

2ρ∗u∗2
b ), and Cf 4 is simply yCf that will be discussed later. Equation (2.4) can be

generalized to the cases of turbulent pipe and boundary layer flows, which are introduced
in Appendices C and D, respectively.

Several remarks about (2.4) need to be elucidated. Initially, the first two terms on the
right-hand side, Cf 1 and Cf 2, are exactly equivalent to the Reynolds shear stress (two
times) at height y. Decomposing the Reynolds stress into Cf 1 and Cf 2 provides a way to
understand how the vortical motions fundamentally contribute to the skin friction. For the
integral in Cf 1 and Cf 2, the upper bound is not necessarily 1 (Mehdi et al. 2013) and even
the lower bound is not necessarily 0 (Xia et al. 2021). In this study, integration from the
wall surface to an arbitrary height is applied to weight all contributions in this interval.

Additionally, by multiplying (1 − y) and integrating in y over [0, 1], (2.4) is transformed
to the standard FIK identity (1.1) (see Appendix B), indicating that they are intrinsically
consistent. The typical difference between (2.4) and other classic skin-friction coefficient
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Case Reτ Reb Nx Nz Ny L∗
x/h∗ L∗

z /h∗ L∗
y/h∗ 	y+

min 	y+
max

Re180 186 2928 768 512 97 12π 4π 2 0.0964 5.89
Re350 359 6219 1024 768 193 8π 3π 2 0.0469 5.73
Re550 547 10 060 1536 1536 257 8π 4π 2 0.0412 6.71
Re950 934 18 535 3072 2304 385 8π 3π 2 0.0313 7.64
Re2000 2003 43 635 6144 4608 633 8π 3π 2 0.323 8.89

Table 1. Simulation parameters of the DNS database. Here, Nx, Nz and Ny are grid numbers in the streamwise,
spanwise and wall-normal direction, respectively; L∗

x , L∗
z and L∗

y are sizes of the computation domain in three
directions. The 	y+

min and 	y+
max are the finest and coarsest grid spacings in the wall-normal direction.

identifiers, such as proposed by Mehdi et al. (2013), Yoon et al. (2016) and Ricco & Skote
(2022), is the absence of integrand factor (1 − y), or equivalently, one less performance
of integration over [0, 1] (Ricco & Skote 2022; Wenzel et al. 2022). As mentioned in the
introduction, these FIK-like identities suffer from the ill-defined physical interpretation
caused by the factor (1 − y) in the integrand. Here, (2.4) without (1 − y) evaluates
contributions at each height uniformly.

One may be confused by Cf 4 in (2.4), as it is simply yCf . An explicit expression
could be obtained if we move Cf 4 to the left-hand side of (2.4). However, this will
cause singularity at y = 1. According to the derivation in Appendix A, we find an
equality relation: (d〈u〉/dy)|y=0 = (d〈ωz〉/dy)|y=0. The last term in (2.4) can be rewritten
as Cf 4 = (2/Reb)y(d〈ωz〉/dy)|y=0. In this sense, Cf 4 can be explained as the weighted
mean vorticity gradient at the wall. The weight factor y is the consequence of wall-normal
integration to an arbitrary height. Therefore, Cf 4 could also be interpreted as the
accumulative effect of the wall-surface mean vorticity gradient below y. The expression
Cf 4 = (2/Reb)y(d〈ωz〉/dy)|y=0 is akin to Cf 3,Yoon = (1/Reb)(d〈ωz〉/dy)|y=0 in the study
by Yoon et al. (2016). They interpreted Cf 3,Yoon as ‘the viscous effects of the mean
vorticity, i.e. the molecular diffusion at the wall’. Term Cf 3,Yoon is not weighted by y, as
the outermost integral of the triple integration was performed from the wall to the central
plane.

As a final note about (2.4), the derivation of (2.4) requires: (i) the homogeneity in the
streamwise and spanwise directions; and (ii) the zero mean of v and w at each height.
Therefore, (2.4) is unable to handle cases that do not meet these two requirements, for
instance, turbulent flows with wall blowing/suction or riblet-mounted surfaces.

3. DNS database

We use the DNS database of turbulent channel flows built by Jiménez (Del Álamo &
Jiménez 2003; Del Álamo et al. 2004; Hoyas & Jiménez 2006). Five cases covering
a relatively wide Reynolds number range (Reτ = 186 − 2003) are taken into account.
Simulation parameters are summarized in table 1. It has been demonstrated that the
scale of VLSMs is no larger than around 2h∗ in the spanwise direction and 10h∗
in the streamwise direction (Lozano-Durán & Jiménez 2014). Thus, the sizes of the
computational domains are large enough to capture VLSMs and relatively smaller scale
motions.
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Figure 1. (a) Profiles of Cf estimated by (2.4) and Cf ,ref (nearest dashed lines) directly calculated by
Cf ,ref = 2Re2

τ /Re2
b. (b) Relative errors between Cf and Cf ,ref .

4. Results and discussion

Detailed descriptions and interpretations of the results are presented in this section.
Profiles of Cf 1 and Cf 2 and their proportions based on (2.4) are given in § 4.1. Section
4.2 provides the spanwise co-spectra of velocity–vorticity correlations and corresponding
scale-dependence of the contributing terms at different Reynolds numbers. Section 4.3
describes the quadrant decomposition of the velocity–vorticity correlations and their
relations with the skin-friction drag generation.

4.1. Statistics of the decomposition
Figure 1(a) shows the variation of Cf calculated by (2.4) as a function of y, compared
with the reference ones directly calculated by Cf ,ref = 〈τ ∗

w〉/(1
2ρ∗u∗2

b ) = 2Re2
τ /Re2

b.
Theoretically, the Cf calculated by (2.4) should remain constant regardless of the
wall-normal location and match its reference value. Figure 1(b) shows the relative errors
between Cf and Cf ,ref , ECf ( y) = [Cf ( y) − Cf ,ref ]/Cf ,ref . It can be seen that the errors
are limited within −2.5 % ≤ ECf ≤ 1 %. Overall, the relative errors are acceptable, which
validates the skin-friction drag decomposition method in (2.4) and lays the foundation for
the further discussions.

Figure 2 shows the proportion profiles of the terms in (2.4) as a function of y+ for the
Re950 case. Similar trends are observed in other cases and not shown here for the sake
of simplicity. Here, Cf 3 dominates the contributions in the viscous sublayer and decreases
rapidly away from the wall. It is quite natural since Cf 3 equals to the non-dimensional mean
streamwise shear stress 〈τ ∗〉( y)/(1

2ρ∗u∗2
b ), which goes to Cf when y → 0 and descends

fast when y goes out of the near-wall region. Furthermore, Cf 4 is mathematically equal to
yCf , so its proportion scales up from 0 to 100 % and exhibits an exponential curve in the
single logarithmic coordinate. Regarding Cf 1 and Cf 2, the primary focuses in this study,
we will present their specific trends and Reynolds number effects in the following.

Figure 3 illustrates the value profiles of Cf 1 and Cf 2 as a function of inner scale y+. In
figure 3(a), Cf 1 holds negative values for all cases at most wall-normal distances except for
the near-wall region where there appears a merely positive peak. Figure 3(b) reveals that
Cf 2 is totally positive. It seems that at y = 1, either Cf 1 or Cf 2 at all Reynolds numbers
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Figure 2. Proportion profiles of the contributing terms in (2.4) for case Re950.
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Figure 3. Value profiles of (a) Cf 1 and (b) Cf 2 versus y+.

converge to an approximately constant value, but opposite, i.e. −0.008 for Cf 1 and 0.008
for Cf 2. According to (2.2), we have Cf 1 + Cf 2 = 2〈−u′v′〉 and 〈−u′v′〉 = 0 at y = 1, so it
is a direct consequence that the converged value of Cf 1 equals to that of −Cf 2. The nearly
constant converged value for all cases may indicate that the accumulated intensities, to
some extent, are not sensitive to Reynolds numbers (at least for the five cases considered
in this study).

Moreover, both Cf 1 and Cf 2 exhibit more gentle slopes at higher Reτ , which indicates
that the integrands of Cf 1 and Cf 2, i.e. the velocity–vorticity correlations, tend to be
less intense at higher Reτ , as shown in figure 4. Integration of each curve returns to the
corresponding individual skin-friction drag coefficient term. Profiles of all cases reach
local peaks at the same wall-normal distance, and the peak values are inclined to be smaller
at higher Reynolds numbers. Tennekes & Lumley (1972) stated that 〈vωz〉 and 〈−wωy〉
are body forces in the streamwise direction associated with transport and stretching of
vorticity, respectively. This was in tune with another understanding that they are the
streamwise component of the Lamb vector. As shown in figure 4(a), the negative 〈vωz〉 in
most of the wall-normal distance apart from the near-wall region represents the streamwise
deceleration arising from the vortex transport. The streamwise deceleration contributes
negatively to the generation of skin friction. Meanwhile, the positive 〈−wωy〉 (figure 4b)
reflects the streamwise acceleration that contributes positively to the skin friction.
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100 101 102

y+
103 100 101 102

y+
103

–200

–150

–100

C
f1

/C
f  

(%
)

C
f2

/C
f  

(%
)

–50

0

50
(a) (b)

0

50

100

150

200

250

Re180
Re350
Re550

Re2000
Re950

Figure 5. Proportion profiles of (a) Cf 1/Cf and (b) Cf 2/Cf versus y+.

This coheres with the four-layer model of the dynamical and vortical processes proposed
by Klewicki (2013), in which the stretching vortices were surmised to act as a momentum
source in the inner region and the advecting vortices as the momentum sink above the
inner region. Although the positive value concentrates in the region where y < 0.3 (not
marked in this figure) for all Reynolds numbers, it makes the decisive contribution on the
overall positive Cf 2. In other words, the streamwise acceleration below y = 0.3 caused by
the vortex stretching is the critical factor contributing to the skin friction.

Figure 5 shows the proportions of Cf 1 and Cf 2 to Cf , which measure their relative
contributions. In figure 5(a), a plausible collapse emerges among curves of Cf 1/Cf versus
y+. The values at y = 1 decrease with Reτ , owing to the nearly constant Cf 1 there and the
descent of Cf with the increase of Reτ . A similar trend of Cf 2/Cf at y = 1 is observed
in figure 5(b). Higher proportion at high Reτ suggests relatively more active vortical
contributions of Cf 1 and Cf 2.

Moreover, end points in figure 5(b) appear to be aligned on the semi-logarithmic
coordinate, then a natural inference is that 1/Cf may be linearly related to lg Reτ .
Figure 6(a) presents the value of 1/Cf versus Reτ in log scale. A well-fitted relation is
obtained as

Cf = 1
110.62 lg Reτ − 130.63

. (4.1)
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Figure 6. Variation of Cf as a function of (a) Reτ and (b) Reb. (�) Actual computed value for each case.
(a) Fitted line (– –) by the five cases; (b) reference line (– –) of Dean (1978), Cf = 0.073 × (2Reb)

−0.25.

The R-squared value is 0.9955, suggesting a good fitting effect. Another classic prediction
of Cf as a function of Reb (Dean 1978), Cf = 0.073 × (2Reb)

−0.25, is also plotted in
figure 6(b), with the R-squared value being 0.9752, slightly lower than that of the fitted
line (4.1).

4.2. Pre-multiplied spanwise co-spectra and positive/negative structure contributions
As the Reynolds number increases, the inner and outer scale separation becomes
more profound in wall-bounded turbulent flows (Jiménez 2018). The scale separation
is associated with the population of energy-containing eddies in the logarithmic region
(Lozano-Durán, Bae & Encinar 2020), and the generation of LSMs and VLSMs in the
logarithmic and outer region (Del Álamo et al. 2004; Hutchins & Marusic 2007; Sillero,
Jiménez & Moser 2013). The LSMs and VLSMs exert footprints and modulations on
the near-wall flow quantities and further on the skin-friction drag. Therefore, extracting
large-scale motions is significant to investigate the generation mechanism of skin-friction
drag.

To divide the small- and large-scale structures with the low-pass spatial filtering,
an appropriate cutoff wavelength needs to be determined. Actually, there was no strict
standard for selecting the cutoff wavelength. The criterion λ∗z = αh∗ is widely adopted to
investigate the velocity structures, where α is a parameter of order O(1) selected differently
in previous studies (Hutchins & Marusic 2007; Lee & Moser 2019; Doohan, Willis &
Hwang 2021). With respect to the co-spectra of velocity–vorticity correlations, coupling
the dynamics of velocity and vorticity structures, the low-pass filter with this cutoff
wavelength fails to properly extract the small- and large-scale motions, see Appendix E.

Here, we attempt to use an alternative filtering criterion to separate the scales of
velocity–vorticity correlations based on the spanwise pre-multiplied co-spectra of the
turbulent inertia, ykzφTI . Figure 7 displays ykzφTI for all cases, where kz = 2π/λz is the
spanwise wavenumber, λz is the spanwise wavelength and φTI is the spanwise co-spectra

calculated by φTI = ∂Re(−û′v̂′)/∂y. The variables with a hat represent their Fourier
transform, the complex number with an overbar represents its conjugate and Re means
taking the real part. Chin et al. (2014) studied the streamwise co-spectra of the turbulent
inertia and separated the large-/small-scale motions by streamwise scale. However, if the
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Figure 7. Spanwise pre-multiplied co-spectra of the turbulent inertia ykzφTI for increasing Reynolds number
in panels (a–e). The dashed line indicates λ+z = 3.75y+.

streamwise Fourier mode is used, it is difficult to distinguish the inter-scale energy transfer
(like the scale interaction) from the intra-scale one (like the self-sustaining process). The
spanwise Fourier mode could avoid this problem (Hwang 2015; Cho, Hwang & Choi
2018), so we use the spanwise co-spectra instead of the streamwise ones here.

In figure 7, it is interesting to find that the spectral space is clearly divided into two
individual negative and positive regions, with a linear relationship of λ+z = 3.75y+ (the
dashed lines). The positive and negative regions also appear to be scaled linearly with
distance from the wall. These features do not vary with Reynolds number, and the linear
relationship of λ+z = 3.75y+ seems to be universal and not sensitive to the Reynolds
number.

To analyse the connection between the turbulent inertia and Reynolds stress, we show
their co-spectra, i.e. ykzφTI and kzφ−u′v′ , in figure 8 for case Re2000. By definition, ykzφTI
is the wall-normal gradient of kzφ−u′v′ (with a logarithmic scale in y+). Therefore, the
positive region in ykzφTI means that the Reynolds stress at the given spanwise scale is
amplified in the wall-normal direction, and vice versa. The dividing line λ+z = 3.75y+ in
ykzφTI corresponds to the ridge line in kzφ−u′v′ , indicating the linear spanwise scale growth
of the Reynolds stress with the distance from the wall.

In the study of De Giovanetti, Hwang & Choi (2016), three energy-containing motions
were clearly identified from the Reynolds stress co-spectra. (i) The motions at λ+z ≈ 100
are composed of the near-wall streaks and the quasi-streamwise vortices. The inner
positive and negative peaks of the TI co-spectra are also at the scale λ+z ≈ 100. (ii)
The motions at the outer length scale λz ≈ 1.5 are represented by the VLSMs (outer
streaks) and the LSMs (outer streamwise vortical structures). (iii) At the log-layer length
scale between λ+z ≈ 100 and λz ≈ 1.5, the motions with λz growing linearly with y are
self-similar to one another, in accordance with the attached eddy hypothesis proposed by
Townsend (1976). These features can also be identified in the TI co-spectra. The scales
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Figure 8. Spanwise pre-multiplied co-spectra of (a) the Reynolds stress kzφ−u′v′ and (b) the turbulent inertia
ykzφTI for case Re2000. The dashed diagonal indicates λ+z = 3.75y+.

of the energy-containing motions are universal at different Reynolds numbers, thus not
shown for brevity.

Considering that λ+z = 3.75y+ is not sensitive to the Reynolds number and the turbulent
inertia combines the dynamics of velocity–vorticity correlations (see (1.3)), we employ
λ+z = 3.75y+ as the filtering criterion to extract the structures associated with the positive
and negative contributions to the skin-friction drag generation. A similar criterion with a
varying cutoff wavelength is also applied by Chan, Schlatter & Chin (2021) to distinguish
the large- and small-scale components of inter-scale transport of Reynolds shear stress.
In this work, we address these two separated regions as positive structures (PSs) and
negative structures (NSs), and they also imply the local large- and small-scale structures,
respectively. Since the turbulent inertia indicates the streamwise body force, it could be
inferred that the PSs lead to the streamwise acceleration and the NSs are associated with
the streamwise retardation.

Recall from (2.2), the spanwise pre-multiplied co-spectra of the turbulent inertia can
also be decomposed into that of vωz and −wωy, i.e. ykzφvωz and ykzφ−wωy , which are
displayed in figure 9 for the cases of Re180, Re950 and Re2000. Similar features are
observed in the other two cases, but not shown here for brevity. We find that ykzφvωz is
dominated by negative values, with a peak at y+ = 10–30 and λ+z = 100, regardless of
the Reynolds numbers. The peak of ykzφ−wωy locates at the same wall-normal position
and spanwise wavelength as ykzφvωz , but with opposite sign. The filtering criterion
λ+z = 3.75y+ is plotted in figure 9 as dashed lines. Several noticeable features can be
observed by using this varying cutoff wavelength: (i) in terms of ykzφvωz , the cutoff line
roughly goes through the negative peak and a spoon-handle-shaped extension of negative
motions in the outer region distributes along this line; (ii) two weak positive areas are
assigned in PSs as well as a negative part populated at y+ = 10–50 (which presents a bit of
an extension towards local larger scale); (iii) negative part of ykzφ−wωy is assigned in NSs,
while motions in PSs contribute positively to skin-friction drag apart from a negative part
in the outer region above the line. The dominant negative ykzφvωz and positive ykzφ−wωy
also support the four-layer model given by Klewicki (2013).

Priyadarshana et al. (2007) stated that the co-spectra of velocity–vorticity correlations
tend to gain peaks at wavelengths near the peaks of individual components (velocity and
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(c, f ) Re2000. The dashed line indicates λ+z = 3.75y+.

vorticity itself) at a fixed wall-normal distance. According to this, we can interpret the
attribution of the inner peak and outer extension of velocity–vorticity co-spectra. On one
hand, the inner peak of the co-spectra with approximately constant position and length
scale at different Reynolds numbers, as displayed in figure 9, is probably related to the
vorticity component, since vortical motions approximately maintain a relatively small
scale as Reynolds number increases. On the other hand, as Reynolds number increases,
the co-spectra extend to the outer region with considerable energy. This may be attributed
to the velocity structures, in terms of LSMs and VLSMs populating in the outer region,
especially at high Reynolds numbers.

At a fixed y+, 〈vωz〉 and 〈−wωy〉 of PSs and NSs can be obtained by integrating the
respective co-spectra along λ+z > 3.75y+ and λ+z < 3.75y+. Their profiles multiplied by y
are shown in figure 10. Two positive peaks of y〈vωz〉PS in figure 10(a) are associated with
the two weak positive areas in the near-wall and logarithmic region, respectively; whereas
the intense minimum at y+ ≈ 20 is related to the extension of local negative events towards
larger scale, see figures 9(a)–9(c). In figure 10(b), y〈vωz〉NS stays negative now that the
positive areas are all assigned in PSs, and the local minimum at y+ = 42 is relevant to
the negative peak of ykzφvωz . Likewise, the positions of the maximum in figures 10(c)
and 10(d) are also associated with the local inner peaks of ykzφ−wωy , and almost positive
values in figure 10(c) correspond to aforementioned feature (iii). Each curve reaches the
maximum or minimum at a constant wall-normal position in the near-wall region in
figure 10, indicating that the structures are well scaled by inner units. Additionally, profiles
in figures 10(b) and 10(d) at higher Reynolds number appear to form plateaus in part of
the logarithmic region (referenced by the red dashed line), implying that 〈vωz〉NS and
〈−wωy〉NS are inversely proportional to the wall-normal distance.

Overall, it is clear that lower Reynolds number leads to a greater absolute value
in inner peaks and outer region (versus y, not shown here). As mentioned in § 4.1,
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Cf 1 and Cf 2 converge to the approximately same respective value for all cases, which
means double integrals of the pre-multiplied co-spectra ykzφvωz (figures 9a–9c) and
ykzφ−wωy (figures 9d–9 f ) on the full plane are respectively equal. Nevertheless, with
Reynolds number increasing, more larger-scale motions, whether positive or negative,
occur and manifest as the extension in the logarithm region, taking up a certain proportion
and hence draining peaks in the inner and outer region.

Regarding Cf 1 and Cf 2, they can be further divided into two parts by integrating the
velocity–vorticity correlations in PSs and NSs, viz.,

CPS
f 1 ( y+) =

∫ y+

0

∫
λ+z >3.75y+

ykzφvωz d ln λ+z d ln y+, (4.2a)

CNS
f 1 ( y+) =

∫ y+

0

∫
λ+z <3.75y+

ykzφvωz d ln λ+z d ln y+, (4.2b)

CPS
f 2 ( y+) =

∫ y+

0

∫
λ+z >3.75y+

ykzφ−wωy d ln λ+z d ln y+, (4.2c)

CNS
f 2 ( y+) =

∫ y+

0

∫
λ+z <3.75y+

ykzφ−wωy d ln λ+z d ln y+. (4.2d)
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in panels (b) and (d) is a reference line for log-law.

Profiles of CPS
fi and CNS

fi (i = 1, 2) can be found in Appendix F. Here, the contributions
are divided by Cf to discuss the Reynolds number effects in the proportion of individual
contribution. Figure 11 shows the profiles of CPS

fi /Cf and CNS
fi /Cf as a function of y+.

As a consequence of the dominant position of CNS
f 1 in Cf 1 and CPS

f 2 in Cf 2, proportion
CNS

f 1 /Cf and CPS
f 2 /Cf collapse better with Cf 1/Cf and Cf 2/Cf , respectively. Compared

with figure 5, figure 11(b) reveals less distinctions (which are caused by CPS
f 1 ) at different

Reynolds numbers, which means that the contribution proportion of local small-scale
advective vorticity transport on the skin friction is less influenced by Reynolds number in
inner units. Moreover, a log-law occurs in the logarithmic region (referenced by the nearby
red dashed line). However, according to the plateaus in figure 10(b), the better log-law
only occurs at higher Reynolds number, and the worse fitting in lower Reynolds number is
weakened by overlapped curves. An analogous log-law appears in Cf 2/Cf (figure 11d) at
higher Reynolds number.

In the inner region, compared with the distinction peaks of CPS
fi and CNS

fi (i = 1, 2),
especially CPS

f 1 and CNS
f 2 (see Appendix F), their proportions to Cf appear to collapse well,

suggesting the insensitivity to Reynolds number. In the outer region, although almost all
the four components in figure 11 occupy a higher proportion with the increase of Reynolds
number, the total Cf presents an opposite trend, indicating that the local small-/large-scale
advective vorticity transport and vortex stretching cancel each other out to a larger extent.
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Figure 12. JPDFs normalized by each maximum of v′ω′
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panel represent 0.9, 0.6 and 0.3 from inside out. The top plot in each panel presents the marginal distributions
(normalized by each maximum) of corresponding r.m.s.-normalized velocity fluctuation, and the right plot in
each panel presents those of r.m.s.-normalized vorticity fluctuation.

4.3. Quadrant analyses
Quadrant decomposition of the velocity–vorticity correlations (v′ω′

z and w′ω′
y) is

performed to further investigate the friction drag generation linked to different quadrant
motions. To provide a visual perspective of the quadrant motions, the joint probability
distribution functions (JPDFs) of v′ω′

z and w′ω′
y are investigated at some wall-normal

distances. Note that the components in the velocity–vorticity correlations are rewritten
into corresponding fluctuations, the reason for which will be discussed later. We use the
velocity component as the horizontal axis and vorticity component as the vertical axis to
identify the quadrant.

Based on the peaks in figure 4, three typical locations at y+ = 6, 17 and 25 are selected
to check the JPDFs of v′ω′

z and w′ω′
y, as displayed in figure 12. Figure 12(a) shows JPDFs

of v′ω′
z at y+ = 6 for all cases. The contour lines are normalized by each maximum value,

and the axes are normalized by the root mean square (r.m.s.) of corresponding fluctuations.
The normalized JPDFs contours have a nice collapse at different Reynolds numbers and are
ellipse-like in shape whose major axes distribute along the first and third quadrants, leading
to the JPDFs extension and dominantly distributing in these two quadrants (especially
the first quadrant). Figure 12(a) reveals that the small positive v′ω′

z at y+ = 6 is mainly
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dominated by the upward anticlockwise-rotating motions (v′ > 0 and ω′
z > 0). A similar

conclusion can be found by Chin et al. (2014), in which both JPDFs and weighted JPDFs
(figures 6 and 7 in Chin et al. (2014)) were investigated to demonstrate this point. However,
something wrong might exist in figure 6 of Chin et al. (2014), for instance, where the core
of JPDF occurred at the third quadrant and the PDF of ω′

z was positively skewed. The sign
of ω′

z is consistent with that of −∂u′/∂y in the near-wall region, as ω′
z = ∂v′/∂x − ∂u′/∂y.

Generally, a positively skewed distribution of τ ′
w is observed (e.g. Cheng et al. 2020),

which suggests that the PDF of ω′
z is negatively skewed, as shown in the right panel of

figure 12(a). The PDF of v′ is also plotted in the top panel of figure 12(a), showing its
relatively symmetric feature.

Figure 12(b) shows JPDFs of v′ω′
z at y+ = 25. There exist the core and prominent

extension in the second quadrant (v′ < 0 & ω′
z > 0) which is connected with the downward

anticlockwise-rotating motions contributing to the negative peak of v′ω′
z most. Chin et al.

(2014) pointed out that it could be viewed as the head of hairpin vortices advecting
outwards, but this interpretation was based on the improper JPDF that the sign of the
axes was opposite. The negative skewness of ω′

z is still obvious in the right plot, while the
distribution of v′ is relatively symmetric.

The JPDFs of w′ω′
y at y+ = 17 are plotted in figure 12(c). Nice centre symmetry

about the original point is observed. The dominant second and fourth quadrant motions
are related to a couple of counter-rotating normal vortices who move oppositely in the
spanwise direction. In addition, compared with ω′

z, the distribution of ω′
y(= ∂u′/∂z −

∂w′/∂x) presents good symmetry owing to the homogeneity in the streamwise and
spanwise directions.

Having investigated the schematic JPDFs of v′ω′
z and w′ω′

y at specific positions, we then
focus on the quantitative intensity of v′ω′

z and w′ω′
y in each quadrant, i.e. 〈v′ω′

z〉Qi and
〈−w′ω′

y〉Qi, where i = 1–4 and 〈ϕ〉Qi = ∑
j ϕj|ϕj∈Qi/N (N is total mesh number at each

height). The benefit of this definition of quadrant ensemble average rather than divided
by N|ϕj∈Qi is to ensure 〈ϕ〉 = ∑

i〈ϕ〉Qi. The reason why we adopt the velocity–vorticity
correlations with fluctuation components is that the quadrant analyses are based on the
concept of joint distribution of fluctuations and 〈vωz〉Qi /=〈v′ω′

z〉Qi on account of ω̄z /= 0.
Corresponding CQi

f 1 and CQi
f 2 are defined as

CQi
f 1 =

∫ y

0
y〈v′ω′

z〉Qi d ln y, (4.3a)

CQi
f 2 =

∫ y

0
y〈−w′ω′

y〉Qi d ln y. (4.3b)

Figure 13 shows the profiles of 〈v′ω′
z〉Qi and 〈−w′ω′

y〉Qi multiplied by y for case
Re950. The results of other cases are not shown here because of high resemblance.
All pre-multiplied 〈v′ω′

z〉Qi (figure 13a) reach a mutual inhibition and consequently, by
contrast, pre-multiplied 〈v′ω′

z〉 is of relatively small amplitude above the inner region,
where v′ω′

z in Q2 and Q4 (especially Q4) seems to be slightly in the lead compared with
Q3 and Q1, promoting Cf 1 to be negative. Here, Q2 and Q4 correspond to downward
anticlockwise-rotating motions and upward clockwise-rotating motions, respectively, with
the latter inhibiting skin-friction drag most.

In terms of 〈−w′ω′
y〉Qi (figure 13b), it is obvious that 〈−w′ω′

y〉Q2 and 〈−w′ω′
y〉Q4

collapse perfectly, and so do 〈−w′ω′
y〉Q1 and 〈−w′ω′

y〉Q3. This collapse is due to the
symmetry of the value distribution of w′ and ω′

y, as shown in the top and right plots of
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Figure 13. Profiles of (a) y〈v′ω′
z〉Qi and (b) y〈−w′ω′

y〉Qi (i = 1 − 4) versus y for case Re950.

figure 12(c), and this symmetry holds throughout the whole channel height. Here, CQi
f 2

is the integral of 〈−w′ω′
y〉Qi, and accordingly, it collapses perfectly as well, which is not

observed in Cf 1 on account of the asymmetry of ω′
z. Additionally, despite symmetry of w′

and ω′
y, they are not necessarily independent and their joint distributions exhibit a central

symmetry but not necessarily a uniform symmetry. That is to say, Q2 and Q4 distribute
necessarily symmetrically, and so do Q1 and Q3, but Q1 and Q2 are not necessarily
symmetric. For example, there is a degree of skewness where Q2 and Q4 are a bit more
intense than Q1 and Q3 in the region where y < 0.3, leading to the positive 〈−w′ω′

y〉,
especially in the near-wall region (as shown in figure 12c). The skewness is approximately
negligible in the vicinity of the zero point (y = 0.3) of 〈−w′ω′

y〉 and the JPDF is relatively
uniform there.

Profiles of pre-multiplied 〈v′ω′
z〉Qi and 〈−w′ω′

y〉Qi as well as corresponding proportion

of CQi
f 1 and CQi

f 2 to Cf are shown for all Reynolds numbers in figure 14. By reason of the
symmetry of the distributions of w′ and ω′

y mentioned above, profiles of 〈−w′ω′
y〉Qi gain

excellent collapse in diagonal quadrants as shown in figures 14(b-i,b-iii), 14(b-ii,b-iv),
14(d-i,d-iii) and 14(d-ii,d-iv). This is not remarkable in v′ω′

z. Additionally, it is obvious
that all quantities are amplified with the increase of Reynolds number (see figure 14a,b),
of which the root cause is that the high Reynolds number excites more intense fluctuations,
thus 〈v′ω′

z〉Qi and 〈−w′ω′
y〉Qi could reach larger values. Furthermore, the proportion

profiles of CQi
f 1 and CQi

f 2 follow the same rule (see figure 14c,d).
It seems that all pre-multiplied quadrant velocity–vorticity correlations in figure 14

reach the extreme value at the position around y = 0.48 at all Reynolds numbers,
suggesting that near this position, all quadrant motions are scaled with the outer units
and approximately contribute most to the skin-friction drag, but as shown in figure 13,
all quadrant motions reach a balance here and consequently no prominent feature occurs
for the total pre-multiplied correlations at this position. In addition, according to figure 3,
total Cf 1 and Cf 2 converge to the same respective value at y = 1 for all cases, indicating
that amplifications of quadrant quantities at higher Reynolds number almost cancel each
other out in the vicinity of the central plane. Figure 15 displays CQi

f 1 and CQi
f 2 (i = 1 − 4) at

y = 1 for all cases. Each profile exhibits the approximately linear growth as the increase
of Reynolds number. Because of the nearly constant convergent value of Cf 1 and Cf 2, the
summation of all profiles in each of figures 15(a) and 15(b) is constant.
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Figure 14. Profiles of (a-i) y〈v′ω′
z〉Qi, (b-i) y〈−w′ω′

y〉Qi, (c-i) CQi
f 1 /Cf and (d-i) CQi

f 2 /Cf (i = 1 − 4) versus y for
all five cases: (�) Re180, (
) Re350, (×) Re550, (+) Re950, (◦) Re2000. Arrows represent that the Reynolds
number increases.
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5. Concluding remarks

In the present study, we have given a form of skin-friction drag decomposition (2.4)
based on the velocity–vorticity correlations. Better physics-informed interpretation could
be inferred from this form since it does not suffer from the weight factor (1 − y) appearing
in other FIK-like identities. By using cases of incompressible turbulent channel flows at
friction Reynolds numbers from 186 to 2003, we investigate the Reynolds number effects
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on the contributing terms, their scale-dependence and quadrant characteristics. The key
findings are summarized as follows.

(i) Cf 1, which is generated from the advective vorticity transport (vωz), contributes
negatively to the skin friction except in the near-wall region; whereas Cf 2, which is
associated with the vortex stretching (−wωy), is overall positive. The negative 〈vωz〉
characterizes the streamwise deceleration (or the momentum sink) arising from the
vortex transport. Reversely, the positive 〈−wωy〉 reflects the streamwise acceleration
(or the momentum source). The pre-multiplied intensities of 〈vωz〉 and 〈−wωy〉
reach peaks at positions that are independent on the Reynolds number, where they
locally contribute most to Cf 1 and Cf 2, respectively. At y = 1, either Cf 1 or Cf 2
converges to an approximately constant value regardless of the Reynolds number.

(ii) It is found that the spanwise pre-multiplied co-spectra of the turbulent inertia is
clearly divided into individual positive and negative regions, with a universal linear
relationship of λ+z = 3.75y+ for all cases. The scaling law could be observed in
the co-spectra of both the Reynolds stress and the turbulent inertia, indicating the
connection with the self-similar energy-containing motions predicted by the attached
eddy hypothesis. We adopt this varying cutoff wavelength as a scale separation
strategy, to decompose the turbulent motions into positive (PSs) and negative
(NSs) structures. Results show that the advective vorticity transport is principally
responsible for NSs acting as the momentum sink, while the vortex stretching is
the main cause of PSs acting as the momentum source. From another perspective,
NSs and PSs also represent the local small- and large-scale motions, respectively,
suggesting that the advective vorticity transport is statistically in smaller scale, while
the vortex stretching process is quite the contrary. Consequently, NSs and PSs play
the dominant role in the generation of Cf 1 and Cf 2, respectively. Extreme points of
pre-multiplied 〈vωz〉 and 〈−wωy〉 of PSs and NSs are connected with peaks in the
corresponding spanwise pre-multiplied co-spectra in the inner region and consistent
at different Reynolds numbers. Moreover, a log-law occurs in profiles of CNS

f 1 and
CNS

f 2 in the logarithmic region only at high Reynolds numbers.
(iii) The joint probability distribution functions (JPDFs) of the velocity–vorticity

correlations (v′ω′
z and w′ω′

y) in the inner region exhibit skewness in the quadrants,
which is directly linked to the inner peaks of correlations. The second and fourth
quadrant motions of w′ω′

y are dominant at y+ = 17, which is related to the generation
mechanism of vortex stretching. As the wall-normal distance increases, JPDFs tend
to be more uniform, especially for w′ω′

y. Additionally, 〈v′ω′
z〉Qi and 〈−w′ω′

y〉Qi are
enhanced with the increase of Reynolds number by reason that the high Reynolds
number excites more intense fluctuations. Nevertheless, intensities of all quadrants
reach a mutual inhibition and consequently their summations vary in relatively small
amplitudes. Their integrals, i.e. CQi

f 1 and CQi
f 2 , and proportions to Cf also share the

same conclusion.
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Appendix A. Reduce Yoon’s identity to the FIK identity

One can perform a fourfold integration
∫ 1

0

∫ y
0

∫ y3
0

∫ y2
0 dy1 dy2 dy3 dy (where y, y1, y2 and

y3 are all wall-normal distances) to the mean spanwise vorticity equation, to reduce Yoon’s
identity to the FIK identity. We give a brief proof here.

The mean spanwise vorticity equation is expressed as

d〈vωz〉
dy

+ d〈−wωy〉
dy

− 1
Reb

d2〈ωz〉
dy2 = 0. (A1)

Performing the first integration
∫ y2

0 dy1 to (A1), we obtain

〈vωz〉 + 〈−wωy〉 − 1
Reb

d〈ωz〉
dy

+ 1
Reb

d〈ωz〉
dy

∣∣∣∣
y=0

= 0. (A2)

Substituting the turbulent inertia decomposition (2.2) as well as 〈ωz〉 = −d〈u〉/dy into
(A2), we have

d〈−u′v′〉
dy

+ 1
Reb

d2〈u〉
dy2 + 1

Reb

d〈ωz〉
dy

∣∣∣∣
y=0

= 0. (A3)

Comparing (A3) with the equation of the streamwise mean momentum balance (2.1), we
can find that (d〈u〉/dy)|y=0 = (d〈ωz〉/dy)|y=0. This indicates that (A3) (i.e. the integral of
(A1)) is equivalent to (2.1). Applying the remaining triple integration

∫ 1
0

∫ y
0

∫ y3
0 dy2 dy3 dy

to (A3) is also equivalent to applying that to (2.1), which is the exact derivation of the FIK
identity by Fukagata et al. (2002). Consequently, the fourfold integration of the mean
vorticity equation reduces Yoon’s identity to the FIK identity.

Appendix B. Reduce identity (2.4) to the FIK identity

To transform (2.4) to the FIK identity, we first rewrite (2.4) (by substituting (2.2)) as

Cf = 2〈−u′v′〉 + 2
Reb

d〈u〉
dy

+ yCf . (B1)

Multiplying (B1) by (1 − y) and integrating it in y over [0, 1], we obtain∫ 1

0
(1 − y)2Cf dy = 2

∫ 1

0
(1 − y)〈−u′v′〉 dy + 2

Reb

∫ 1

0
(1 − y)

d〈u〉
dy

dy. (B2)

Note that the second term in right-hand side of (B2) can be computed by integration by
parts: ∫ 1

0
(1 − y)

d〈u〉
dy

dy = (1 − y)〈u〉
∣∣∣∣∣
y=1

y=0

+
∫ 1

0
〈u〉 dy = 1. (B3)

Then (B2) is simplified to

1
3

Cf = 2
∫ 1

0
(1 − y)〈−u′v′〉 dy + 2

Reb
, (B4)

which is identical to the FIK identity (1.1).
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Appendix C. Form of (2.4) in the case of turbulent pipe flows

A similar identity can be derived also in the case of turbulent pipe flows. In this
appendix, some notation and symbols are different from the main text. We use x, r and
θ to represent the streamwise, radial and azimuthal directions, respectively. Velocities
in these three directions are ux, ur and uθ . Corresponding vorticities are ωx, ωr and
ωθ . The angle bracket 〈〉 represents averaging over homogeneous directions (streamwise
and azimuthal directions) and time. Here, R∗ is the radius of the pipe and Reb =
u∗

bR∗/ν∗ is the bulk Reynolds number. Variables without the superscript ∗ represent
non-dimensional quantities normalized by u∗

b and R∗. Wall-shear stress is written as
τ ∗

w = −μ∗(∂u∗
x/∂r∗)|r=1. Notation and symbols without mentions are consistent with

those in the main text.
We start from the dimensional streamwise mean momentum balance for fully developed

incompressible turbulent pipe flows:

d〈−u′
xu′

r〉∗
dr∗ + 〈−u′

xu′
r〉∗

r∗ − 1
ρ∗

〈
∂p∗

∂x∗

〉
+ ν∗ 1

r∗
d

dr∗

(
r∗ d〈u∗

x〉
dr∗

)
= 0, (C1)

where p∗ is pressure. By the force balance in the streamwise direction, we have
−πR∗2〈∂p∗/∂x∗〉 = 2πR∗〈τ ∗

w〉. Substituting this relation into (C1), we obtain the
non-dimensional equation

d〈−u′
xu′

r〉
dr

+ 〈−u′
xu′

r〉
r

− 2
Reb

d〈ux〉
dr

∣∣∣∣
r=1

+ 1
Reb

(
1
r

d〈ux〉
dr

+ d2〈ux〉
dr2

)
= 0. (C2)

Like (2.2) in turbulent channel flows, there is also a decomposition of the turbulent
inertia in the pipe flows:

d〈−u′
xu′

r〉
dr

+ 〈−u′
xu′

r〉
r

= 〈urωθ 〉 + 〈−uθωr〉. (C3)

Substituting (C3) into (C2) and integrating in the radial direction from an arbitrary radius
r ∈ (0, 1) to r = 1 (wall surface), we get∫ 1

r
〈urωθ 〉 dr +

∫ 1

r
〈−uθωr〉 dr − 1

Reb

d〈ux〉
dr

− 2
Reb

(1 − r)
d〈ux〉

dr

∣∣∣∣
r=1

+ 1
Reb

∫ 1

r

1
r

d〈ux〉
dr

dr + 1
Reb

d〈ux〉
dr

∣∣∣∣
r=1

= 0. (C4)

The skin-friction coefficient can be calculated by Cf = −2(d〈ux〉/dr)|r=1/Reb.
Substituting it into (C4), we have

Cf = 2
∫ 1

r
〈urωθ 〉 dr︸ ︷︷ ︸
Cf 1

+ 2
∫ 1

r
〈−uθωr〉 dr︸ ︷︷ ︸

Cf 2

− 2
Reb

d〈ux〉
dr︸ ︷︷ ︸

Cf 3

− 4
Reb

(1 − r)
d〈ux〉

dr

∣∣∣∣
r=1︸ ︷︷ ︸

Cf 4

+ 2
Reb

∫ 1

r

1
r

d〈ux〉
dr

dr︸ ︷︷ ︸
Cf 5

. (C5)

This equation is another form of (2.4) in the case of turbulent pipe flows. The first
four terms in the right-hand side of (C5) are similar to those in (2.4) with respect to
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forms and interpretations. There is an additional term Cf 5, whose appearance is due to
the Laplacian operator in the cylindrical coordinates, as stated by Yoon et al. (2016). By
virtue of 〈ux〉 decreasing along the radial direction, Cf 5 contributes negatively to the skin
friction. Similar to (2.4), the applicable scope of (C5) should satisfy: (i) the homogeneity
in the streamwise and azimuthal directions, and (ii) the zero mean of ur and uθ at each
radius.

Appendix D. Form of (2.4) in the case of turbulent boundary layer flows

In this appendix, we consider the case of turbulent boundary layer flows. The
non-dimensional streamwise mean momentum balance for turbulent boundary layer flows
is written as

− ∂〈u2〉
∂x

+ ∂〈−uv〉
∂y

−
〈
∂p
∂x

〉
+ 1

Reδ

(
∂2〈u〉
∂x2 + ∂2〈u〉

∂y2

)
= 0. (D1)

The angle bracket 〈 〉 used here represents averaging over spanwise direction and
time. Additionally, p is pressure; Reδ = u∗

0δ
∗/ν∗ is the Reynolds number; δ∗ is the

boundary-layer thickness (rather than the displacement thickness, as the asterisk means
dimensional here) and u∗

0 is the free stream velocity. Variables without the superscript
∗ represent non-dimensional quantities normalized by u∗

0 and δ∗. Notation and symbols
without mentions are consistent with those in the main text.

The second term in the left-hand side of (D1) is not strictly equal to the turbulent inertia,
but the error is negligible. We decompose it like the turbulent inertia, while there is a
difference from that in channel flows (2.2) on account of the existence of the streamwise
gradient:

∂〈−uv〉
∂y

= 〈vωz〉 + 〈−wωy〉 + 1
2

∂

∂x
〈u2 − v2 − w2〉. (D2)

Substituting (D2) into (D1), we get

〈vωz〉 + 〈−wωy〉 + 1
Reδ

∂2〈u〉
∂y2 +

〈
−∂p

∂x

〉
+ Ix = 0, (D3)

where

Ix = 1
Reδ

∂2〈u〉
∂x2 − ∂〈E〉

∂x
(D4)

is an extra term owing to inhomogeneity in the streamwise direction, and E = 1
2(u2 +

v2 + w2) is the kinetic energy. Integrating (D3) in the wall-normal direction from 0 to an
arbitrary height y ∈ (0, 1] and substituting Cf = 2(∂〈u〉/∂y)|y=0/Reδ , we can obtain

Cf = 2
∫ y

0
〈vωz〉 dy︸ ︷︷ ︸
Cf 1

+ 2
∫ y

0
〈−wωy〉 dy︸ ︷︷ ︸

Cf 2

+ 2
Reδ

∂〈u〉
∂y︸ ︷︷ ︸

Cf 3

+ 2
∫ y

0

〈
−∂p

∂x

〉
dy︸ ︷︷ ︸

Cf 4

+ 2
∫ y

0
Ix dy︸ ︷︷ ︸

Cf 5

.

(D5)

This equation is another form of (2.4) in the case of boundary layer flows. The first
three terms in the right-hand side of (D5) are similar to those in (2.4) with respect to
forms and interpretations. Here, Cf 4 in (D5) represents contributions of pressure gradient
to the skin friction and Cf 5 measures contributions of the inhomogeneous effect in the
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Figure 16. Pre-multiplied spanwise co-spectra (a–c) ykzφvωz and (d– f ) ykzφ−wωy . (a,d) Re180; (b,e) Re950;
(c, f ) Re2000. The red dashed line indicates λ∗z = 0.5h∗.

streamwise direction. Compared with (2.4), each decomposition term and Cf in (D5) are
also functions of x, since we did not take the average over the streamwise direction. The
applicable scope of (D5) should satisfy the homogeneity in the spanwise direction.

Appendix E. Filtering strategy using the constant cutoff wavelength

The cutoff wavelength α = 0.5 is plotted as red dashed lines in pre-multiplied spanwise
co-spectra of vωz and −wωy, see figure 16. With respect to the co-spectra of
velocity–vorticity correlations, coupling the dynamics of velocity and vorticity structures,
the low-pass filter with this cutoff wavelength fails to properly extract the small- and
large-scale motions, since the proportion of scales larger than λ∗z = αh∗ appears to merely
change while part of the smaller scales keeps growing with the increase of Reτ , regardless
of different α.

Appendix F. Profiles of CPS
fi and CNS

fi (i = 1, 2)

Profiles of Cf 1 and Cf 2 in PSs and NSs are displayed in figure 17. Owing to the
counteracting effect of positive and negative events in PSs, the range of CPS

f 1 is smaller than
CNS

f 1 , indicating that CNS
f 1 contributes to the majority of Cf 1. In contrast, CPS

f 2 contributes
most to Cf 2. By definition, NSs actually correspond to the local smaller-scale motions,
which principally contribute negatively to Cf . However, it might not be a feasible approach
to retard skin-friction drag by attempting to intensify motions in NSs (granted that this
could be accomplished), since Cf 1 + Cf 2 is essentially the Reynolds stress at height y (0
at y = 1) and when NSs are intensified, PSs will also come along to ensure the summation
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is equal to the Reynolds stress. Now that the drag reduction strategy is not the issue of this
work, we will not concentrate on this too much.
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