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Abstract

Little is known about the interrelationships between maternal and infant erythrocyte-DHA, milk-DHA and maternal adipose tissue

(AT)-DHA contents. We studied these relationships in four tribes in Tanzania (Maasai, Pare, Sengerema and Ukerewe) differing in their

lifetime intakes of fish. Cross-sectional samples were collected at delivery and after 3 d and 3 months of exclusive breast-feeding. We

found that intra-uterine biomagnification is a sign of low maternal DHA status, that genuine biomagnification occurs during lactation,

that lactating mothers with low DHA status cannot augment their infants’ DHA status, and that lactating mothers lose DHA independent

of their DHA status. A maternal erythrocyte-DHA content of 8 wt% was found to correspond with a mature milk-DHA content of

1·0 wt% and with subcutaneous and abdominal (omentum) AT-DHA contents of about 0·39 and 0·52 wt%, respectively. Consequently,

1 wt% DHA might be a target for Western human milk and infant formula that has milk arachidonic acid, EPA and linoleic acid contents

of 0·55, 0·22 and 9·32 wt%, respectively. With increasing DHA status, the erythrocyte-DHA content reaches a plateau of about 9 wt%, and it

plateaus more readily than milk-DHA and AT-DHA contents. Compared with the average Tanzanian-Ukerewe woman, the average

US woman has four times lower AT-DHA content (0·4 v. 0·1 wt%) and five times lower mature milk-DHA output (301 v. 60 mg/d),

which contrasts with her estimated 1·8–2·6 times lower mobilisable AT-DHA content (19 v. 35–50 g).
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The long-chain PUFA (LCP) DHA, EPA and arachidonic acid

(AA) are structural components of membrane phospholipids

and precursors of the biologically highly active eicosanoids,

neuroprotectins, maresins and resolvins(1,2). LCP derive from

endogenous synthesis from the essential fatty acids linoleic

acid (AA) and a-linolenic acid (EPA and DHA) or from diets

containing AA, which is abundant in meat, eggs, poultry and

(lean) fish, and EPA and DHA, which are notably abundant

in (fatty) fish. High DHA contents are found in the retina, cer-

ebral cortex and sperm, while AA is more evenly distributed

among the various organs(3). Low LCP n-3 status may notably

be involved in abnormal neurodevelopment, CVD and psy-

chiatric disease, and many trials have been conducted with

either purified fish oil or purified EPA for the improvement

of neurodevelopment and the primary and secondary preven-

tion of CVD and (neuro)psychiatric disease, including

depression(4) and Alzheimer’s disease(5).

Little is known about the interrelationships between

maternal erythrocyte-DHA, infant erythrocyte-DHA, maternal

adipose tissue (AT)-DHA and milk-DHA contents. For a

greater part, the fetus is dependent on the transplacental

passage of LCP, notably DHA, because of its limited synthesis

capacity in relation to its high needs for growth and develop-

ment. This transplacental passage may cause maternal LCP n-3

depletion, which is notably related to postpartum depression,

while insufficient fetal LCP n-3 accretion is, for example,

related to attention deficit disorder(6) and diseases at later

age(7). At delivery, infants may have higher LCP amounts

in plasma lipid fractions and erythrocytes than their

mothers, which has been coined biomagnification(8,9). LCP

in erythrocytes are generally accepted as reliable markers

of the intermediate-term LCP status(10). The optimal

erythrocyte 2 (EPA þ DHA) content, coined the n-3 index,

for the prevention of CVD(11) and major depressive disorders

and bipolar depression(4,12) has been estimated to be
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about 8 wt%. We have recently calculated that a maternal

erythrocyte-DHA content of about 8 wt% at delivery is likely

to prevent (serious) DHA depletion in lactating women(13).

The AT-DHA and milk-DHA contents that correspond with

this erythrocyte-DHA content are presently unknown.

The essential fatty acids and LCP present in milk derive

either from the diet or from the synthesis of LCP, but mostly

from the maternal AT compartment. Dependent on age, sex

and race/ethnicity, the body fat percentage of US adults is

typically 28·1 % for men and 40 % for women(14), of which

2–5 % is essential fat in men and 10–13 % in women(15).

This renders the remaining potentially mobilisable storage

fat, among the principle sites where LCP are present. Despite

high brain-DHA contents, most DHA is present in the AT. We

have recently estimated that the distribution of whole-body

DHA in a 40-week, 3·5 kg term infant is 50 % in the AT,

23 % in the brain, 21 % in the skeletal muscle and 6·5 % in

the liver, while the percentages of DHA in total fatty acids

in these organs are (in g/100 g fatty acids; wt%) 7·76 (brain),

4·08 (liver), 3·51 (skeletal muscle) and 0·3 (AT) wt%(16).

In the present study, we explored the interrelationships

between the following: (1) the erythrocyte-DHA contents of

mothers and infants at delivery and 3 months postpartum;

(2) the milk-DHA contents at 3 d and 3 months postpartum;

(3) the maternal subcutaneous and abdominal (omentum)

AT-DHA contents at delivery. Samples were collected from

four tribes in Tanzania differing in their lifetime intakes of

fish: Maasai (no fish); Pare (two to three times fish/week);

Sengerema (four to five times fish/week); Ukerewe (.7 times

fish/week). Data on AT and milk-DHA contents are new,

which part of the data on erythrocytes have been published

previously, although not in relation to the current milk

and AT data(13,17). We were particularly interested in the

following: (1) the magnitudes of the intra-uterine and post-

partum biomagnifications of DHA as a function of the DHA

status; (2) the mature milk-DHA content that is achieved at a

maternal erythrocyte-DHA content of 8 wt%; (3) the AT-DHA

content at which the erythrocyte-DHA content reaches a

plateau; (4) a comparison of the whole-body AT-DHA

contents and milk-DHA outputs of the average Tanzanian-

Ukerewe woman and the average US woman.

Materials and methods

Subjects, diets and cultural habits

As study groups, we selected women and their infants from

four Tanzanian ethnic tribes with different intakes of local

freshwater fish, i.e. the Maasai (no or low fish intake, zero

times/week), a tribe from the Pare Mountains (intermediate

fish intake, two to three times/week), a tribe from Sengerema

(high fish intake, four to five times/week), and a tribe from

Ukerewe (very high fish intake, .7 times/week). The selected

Maasai were Nilotic pastoralists living in ‘bomas’ (villages) in

the Maasai Steppe near Ruvu. Their diet mainly consists of

curdled milk and meat. They have recently included ugali

(maize porridge) in their diet. The consumption of fish is

uncommon, since it is considered inedible. The second

study group consisted of women and infants from two

Bantu tribes, the Pare and the Sambaa, from the Pare Moun-

tains near Same. Their diet mainly consists of vegetables,

beans and fruits with ample amounts of ugali, rice and chapati

(maize flour pancakes) and some meat and fish. The third

study group was the Bantu tribe comprising women and

infants from Sengerema (southern shore of Lake Victoria),

and the fourth study group was the Bantu population compris-

ing women and infants from Ukerewe, an island in Lake

Victoria. Apart from the abundant consumption of fish, the

latter two tribes also consume ugali, muhogo (cassava root),

beans and plantain (baked banana). Importantly, one of the

locally most abundant fish species (a sardine, Rastrineobola

argentea) is eaten as butter to bread, but it is not considered

as a fish by this people, but as a vegetable.

The ethnicity/tribe of each of the study groups was con-

sidered to be homogeneous. Most of the women had a low

socio-economic background, meaning low education levels.

With regard to feeding practice, they were well nourished,

with a low intake of highly refined carbohydrates and regular

intakes of fruits, vegetables and unprocessed meat and

fish. They earned their incomes from pastoralism (Maasai),

agriculture (Pare) or fisheries (Sengerema/Ukerewe). The

study populations had neither possibilities of nor interest in

changing their cultural habits, including their diets. Interviews

with the local hospital staff and the participants confirmed

that neither pregnancy nor lactation was associated with

any change in dietary habits or the prohibition of consump-

tion of certain foods (F Peters, RS Kuipers, FAJ Muskiet,

unpublished results). Therefore, the diets are likely to be

representative of the lifelong dietary habits of each of the

ethnic groups. The use of tobacco and alcohol is almost

non-existent in these populations, especially among women.

Women and infants were included in the study if they were

apparently healthy and well nourished, and women were

included if they had delivered an apparently healthy term

child (37–42 weeks, by estimate) the same day (delivery

group) or 10–20 weeks before their visit to the local hospital

or dispensary (3 months postpartum group). Anthropometric

data and data on fish intake collected using a questionnaire

were obtained from the medical records or through interviews

in Kiswahili. Apart from the measurement of fundal heights,

reliable data on gestational age were not available always,

since some women had no recollection of their last menstrual

period. Devices for echo imaging were either not available or

not operational. Consequently, gestational ages were esti-

mated from the sum of the available data. All the women

gave their informed consent. The study was approved by

the National Institute for Medical Research in Dar-es-Salaam

(NIMR/HQIR.8a/Vol. IX/145, dated 16 June 2003 and NIMR/

HQ/R.8a/Vol. IX/800, dated 8 April 2009) and complied with

the Declaration of Helsinki of 1975 as revised in 2000.

Sample collection and analyses

We collected about 4 ml of EDTA-anticoagulated venous blood

from the mothers and about 4 ml of EDTA-anticoagulated cord

blood at delivery (BD Vacutainer). At 3 months postpartum,
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about 4 ml of EDTA-anticoagulated venous blood were col-

lected from the mothers. About 250ml of EDTA-anticoagulated

blood (250ml paediatric MiniCollect K3EDTA tubes; Greiner

Bio-one) were collected by heel prick from 3-month-old

infants. The samples were stored at 4 8C in the dark and

processed within 2 h of collection. Erythrocytes were isolated

by centrifugation and washed three times with 0·9 % NaCl.

After washing, 200ml of the 50 % haematocrit erythrocyte

suspension (mothers) or the entire erythrocyte suspension

(infants) was transferred into a Teflon-sealable tube (Sovirel).

We collected 5 ml of breast milk shortly after delivery (usually

3 d postpartum) and at 3 months postpartum. Following gentle

mixing, 100ml of milk were transferred into a Teflon-sealable

tube (Sovirel). We were able to collect about 1 cm3 of sub-

cutaneous (abdominal wall) and abdominal (omentum) AT

from some of the women during emergency Caesarean

section. Caesarean section was carried out for various reasons,

including fetal distress and obstructed labour. The reasons for

carrying out Caesarean section had not influenced the

general health of the mothers and their infants and were con-

sidered to not have affected the DHA status or the distribution

of DHA across the fetomaternal unit. The AT samples were

transferred into Teflon-sealable tube (Sovirel).

All the Sovirel tubes contained 2 ml of methanol–6 mol/l

HCl (5:1, v/v), 1 mg of butylated hydroxytoluene (antioxidant)

and 50mg of 17:0. They were stored and transported at ambient

temperature to the University Medical Center Groningen

(The Netherlands) for fatty acid analysis. All the samples

were processed and analysed within 9 months of collection.

The partly dissolved AT samples were pottered (Potter appar-

atus), and chloroform–methanol (2:1) was added until a sus-

pension of about 10 ml was obtained. Into a Sovirel tube,

100ml of this solution were transferred, followed by the

addition of 500ml of chloroform and 2 ml of methanol–HCl

(5:1, v/v). All the samples were transmethylated by heating

at 908C for 4 h. Subsequent analysis of fatty acid methyl

esters was carried out by capillary GC/flame ionisation detec-

tion essentially according to previously described pro-

cedures(18). The long-chain fatty acids were quantified on

the basis of the added 17:0. In milk, medium-chain fatty

acids (6:0 up to 14:0) were quantified using 5:0–15:0 as the

internal quantification standards(19). Fatty acid compositions

are expressed in g/100 g fatty acids (wt%).

Estimations of the whole-body adipose tissue-DHA
contents and the milk-DHA outputs

We estimated the total amount of DHA in the mobilisable AT

compartment and the milk-DHA outputs of an average

Tanzanian-Ukerewe woman with an erythrocyte-DHA content

of 8 wt% and compared the outcomes with those of an

average US woman, typically having an erythrocyte-DHA

content of 3·71 wt%. For the Tanzanian-Ukerewe woman, we

used the AT-DHA and mature milk-DHA contents that

corresponded with an erythrocyte-DHA content of 8 wt%.

Her body fat percentage was calculated using the formula of

Deurenberg et al.(20):

Body fat percentage ¼1·20 £ BMI þ 0·23 £ age 2 10·8

£ sex 2 5·4;

where female sex ¼ 0. Her body fat percentage was also

estimated using the formula of Gallagher et al.(21): body fat

percentage ¼ 76–1097·8/BMI þ 0·053 £ age (for females).

The outcomes of the Deurenberg and Gallagher formulas

were averaged. We also used the body fat percentage as genu-

inely measured in 196 well-nourished African women (BMI 22·5

(SD 4·6) kg/m2) living in the pre-urban neighbourhood of Dakar

(Senegal, West Africa), who had a mean age of 29·5 years, a

mean BMI of 22·5 kg/m2 and a mean body fat percentage of

34·2 %, as determined by air-displacement plethysmogra-

phy(22). The essential body fat percentage for women was esti-

mated to be 11·5 % of body weight (mean of 10–13 %(15)). These

data together with a mean fat percentage in the wet AT of

adults(23) allowed us to estimate the percentage and amount

of mobilisable storage fat, the amount and percentage of mobi-

lisable wet AT, and the amount of DHA in mobilisable wet AT.

For the calculation of the colostrum-DHA and mature milk-

DHA outputs, we used the colostrum and mature milk volumes

at day 3 and at 3 months, respectively, as reported by Neville

et al.(24), while the colostrum and mature milk fat contents

were derived from the studies of Jensen(25,26).

For the average US woman, we used the data on mean body

weight, body length and BMI from the NHANES 2003–6 for the

age group 20–39 years(27). The body fat percentage was derived

from the NHANES 1999–2004(14), while the erythrocyte-DHA

content was derived from the ‘Nurses’ Health Study’(28). The

women in the latter study were, on average, 60 years old, but

this was not considered a confounder because of the major influ-

ence of diet on the erythrocyte-DHA content, although fish intake

may increase with age. The AT-DHA content was derived from

the study of Leaf et al.(29). The mature milk-DHA content for the

USA was derived from the study of Brenna et al.(30), while the

colostrum-DHA content was estimated from other countries

that exhibited similar mature milk-DHA contents as the USA(31).

Statistical analyses

Statistical analyses were carried out with SPSS version 18.0

(SPSS, Inc.). Between-group differences were studied with

the Kruskal–Wallis test, followed by analyses with the

Mann–Whitney U test (non-parametric) at P , 0·05. Analyses

of mother–infant pairs were carried out with the Wilcoxon

two-related sample tests. Corrections were made for type 1

errors (Bonferroni correction). Equations were derived from

curve estimation. We used the coefficient of determination

(R 2) to estimate the extent to which a given variable was

explained by another; P , 0·05 was considered significant.

Results

Study groups

We included ninety mother–infant pairs at delivery (six

Maasai, twenty-three Pare, thirty-four Sengerema and

twenty-seven Ukerewe) and 125 other mother–infant pairs

M. F. Luxwolda et al.856
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after about 3 months of exclusive breast-feeding (eight

Maasai, thirty-six Pare, sixty-one Sengerema and twenty

Ukerewe). Their characteristics are summarised in Table 1.

There were no between-tribe differences in anthropometrics

for the mothers and infants at delivery, except for a higher

BMI in the Pare women than in the other women at delivery.

The Ukerewe mothers studied at 3 months postpartum were

older than the corresponding Pare and Sengerema mothers

and they were also taller than the Pare mothers. The BMI of

the Maasai mothers was lower than that of the Sengerema

mothers. The Ukerewe mothers who were included at

3 months postpartum had delivered more children than the

Pare and Sengerema mothers. The order of fish consumption

in the study groups was Ukerewe . Sengerema . Pare .

Maasai, both at delivery and at 3 months postpartum.

Erythrocyte-DHA, milk-DHA and adipose tissue-DHA
contents in the mother–infant pairs

Table 2 summarises the medians (ranges) of the erythrocyte-

DHA, milk-DHA and AT-DHA contents of the four tribes at

delivery/3 d postpartum and at 3 months postpartum.

Complete fatty acid compositions are given in Tables S1–S3

(available online). We have previously shown that the

erythrocyte-DHA content increases with increasing fish

intakes(13). At delivery, the Sengerema (P , 0·05) and Ukerewe

(P , 0·001) mothers had higher erythrocyte-DHA contents than

their infants, whereas the erythrocyte-DHA contents of the

Maasai and Pare mothers were insignificantly lower than those

of their infants (intra-uterine biomagnification). At 3 months

postpartum, all the infants had significantly higher erythrocyte-

DHA contents than their mothers, indicating postpartum

biomagnification. In the infant groups, the Maasai infants had

lower erythrocyte-DHA contents at 3 months postpartum than

their counterparts at delivery (P , 0·05). The Pare and Ukerewe

infants at delivery did not exhibit significant differences in

erythrocyte-DHA contents compared with their counterparts at

3 months postpartum, whereas the Sengerema infants had

higher erythrocyte-DHA contents at 3 months postpartum

than the Sengerema infants at delivery (P , 0·05). In all

the populations, the maternal erythrocyte-DHA content at

3 months postpartum was lower than that at delivery, indicating

maternal postpartum DHA depletion, irrespective of the DHA

status at delivery.

The mature milk-DHA content of the Sengerema mothers at

3 months postpartum (0·68 wt%) was lower than their colos-

trum-DHA content (0·81 wt%) (P ¼ 0·047). The mature milk-

DHA content of the Ukerewe mothers (0·96 wt%) at 3 months

postpartum was higher than that of the Sengerema mothers

(P ¼ 0·001). Subcutaneous and abdominal AT-DHA contents

appeared to be dependent on fish intake and increased in the

study groups in the order Sengerema . Pare . Maasai,

although only the differences between the Pare and the Senger-

ema mothers reached significance (P,0·001), possibly because

of the small sample size of the Maasai group.

Table 1. Characteristics of the mother–infant pairs of four Tanzanian tribes studied at delivery or 3 months postpartum

(Number of participants, mean values and standard deviations)

Maasai Pare Sengerema Ukerewe

n Mean SD n Mean SD n Mean SD n Mean SD

Delivery/3 d postpartum
Maternal age (years) 6 23 5 23 24 7 34 24 7 27 26 7
Postpartum weight (kg) 6 53·0 5·7 18 57·7 6·8 31 54·4 10·2 27 54·6 6·0
Height (m) 6 1·59 0·06 21 1·54 0·04 31 1·56 0·06 27 1·57 0·03
BMI (kg/m2) 6 21·0b 2·3 18 24·2a 2·0 31 22·4b 3·3 27 22·2b 2·0
Gravida (n) 6 3 1 23 2 2 34 3 3 27 4 3
Para (n) 6 2 1 23 1 1 34 2 3 27 2 3
Gestational age at birth

(weeks)
1 40·0 0 7 39·9 1·1 28 38·9 1·8 21 38·3 2·7

Fish intake (times/week) 6 0d 0 14 3c 2 30 5b 2 27 7a 0
Infant birth weight (g) 6 3067 467 21 3188 529 34 2947 751 27 2904 751
Male

n 6 22 36 26
% 33 50 58 46

3 months postpartum
Maternal age (years) 8 23a,b 4 36 24b 4 61 24b 6 20 28a 9
Postpartum weight (kg) 8 53·0 5 36 52·9 11·2 61 54·6 10·0 20 56·8 7·6
Height (m) 8 1·59a,b 0·06 36 1·55b 0·07 61 1·56a,b 0·06 20 1·57a 0·07
BMI (kg/m2) 8 20·9b 2·0 36 21·9a,b 4·1 61 22·1a 3·0 20 22·9a,b 2·2
Para (n) 9 3a,b 1 36 2b 1 61 3b 2 20 4a 3
Fish intake (times/week) 8 0d 0 36 3c 2 61 4b 2 20 7a 0
Infant age (weeks) 8 15 4 36 14b 3 61 13b 2 20 12·5 3·8
Male

n 8 36 61 20
% 75 44 55 35

a,b,c,d Mean values with unlike superscript letters were significantly different (P , 0·05).
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Interrelationships between erythrocyte-DHA, milk-DHA
and adipose tissue-DHA contents

Fig. 1 shows the positive relationship of maternal erythrocyte-

DHA content at delivery with colostrum-DHA content at 3 d

postpartum for women with high fish intakes (Sengerema,

n 30; R 2 0·510; P , 0·001; Fig. 1(a)), together with the

relationship of maternal erythrocyte-DHA content with

mature milk-DHA content at 3 months postpartum (Senger-

ema (n 47) and Ukerewe (n 20); R 2 0·360; P , 0·001;

Fig. 1(b)). A maternal erythrocyte-DHA content of 8 wt% was

found to correspond with 1 wt% DHA in both colostrum

(Fig. 1(a)) and mature milk (Fig. 1(b)). Fig. 2 shows the posi-

tive, non-linear relationships of the subcutaneous (R 2 0·436;

P , 0·001; Fig. 2(a)) and abdominal (R 2 0·432; P , 0·001;

Fig. 2(b)) AT-DHA contents with the maternal erythrocyte-

DHA contents at delivery. We estimated that a maternal

erythrocyte-DHA content of 8 wt% corresponds with

subcutaneous and abdominal AT-DHA contents of 0·39 and

0·52 wt%, respectively.

Fig. 3 shows the positive, non-linear relationships of the

subcutaneous (R 2 0·193; P ¼ 0·015; Fig. 3(a)) and abdominal

(R 2 0·255; P , 0·004; Fig. 3(b)) AT-DHA contents at delivery

with the colostrum-DHA contents at 3 d postpartum. A

milk-DHA content of 1 wt% was found to correspond with

subcutaneous and abdominal AT-DHA contents of 0·35 and

0·40 wt%, respectively. Fig. 4 shows the positive relationship

between the subcutaneous and abdominal AT-DHA contents

(R 2 0·690; P , 0·001). The abdominal AT-DHA contents

proved to be, on average, 29 (SD 50·8) % (250·0 to 133·3)

higher than the subcutaneous AT-DHA contents (P,0·001).

Estimated milk-DHA output and whole-body adipose
tissue-DHA content

The body fat percentage of the average Tanzanian-Ukerewe

woman amounted to 27·2 when calculated according to the

formula of Deurenberg et al.(20) and 27·9 % when calculated

according to the formula of Gallagher et al.(21), which aver-

aged to 27·5 % (Table 3). The body fat percentage of the 196

women living in the pre-urban neighbourhood of Dakar was

34·2 %(22). Because of the difference when compared with

the above calculations, we employed both the values

(Table 3) to arrive at the indicated amount of mobilisable sto-

rage fat (8·7 and 12·4 kg), percentage of mobilisable wet AT

(20·4 and 29·0 %), and amount of DHA in mobilisable wet

AT (35 and 50 g). The DHA contents in whole-body fat were

60 and 75 g when differences in the DHA contents between

TAG and phospholipids were neglected (data not given in

Table 3). The milk-DHA outputs of the average Tanzanian-

Ukerewe woman were estimated to be 80 mg/d at day 3 and

to be 301 mg/d at 3 months postpartum.

The anthropometric data for the average 20–39-year-old US

woman in the 2003–2006 NHANES(27) were as follows: body

weight 73 kg; body length 163·2 cm; BMI 27·3 kg/m2, while

the body fat percentage in the 1999–2004 NHANES was

37·8 %(14). With these data, we estimated the amount of mobi-

lisable storage fat to be 19·2 kg, the percentage of mobilisableT
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wet AT to be 33·5 %, and the amount of DHA in mobilisable

wet AT to be 19 g. The DHA content in whole-body fat was

28 g when differences in the DHA contents between TAG

and phospholipids were neglected (data not given in

Table 3). The milk-DHA output of the average US woman

was estimated to be 32 mg/d at day 3 and to be 60 mg/d at

3 months postpartum.

Discussion

We investigated DHA contents in the erythrocytes, milk and

AT of mother–infant pairs of four Tanzanian tribes having

lifetime stable dietary habits that reportedly do not change

during pregnancy and lactation. We were interested in the

interrelationships of the DHA contents in these compartments

and notably what amounts of milk-DHA and AT-DHA are

reached at an erythrocyte-DHA content of 8 wt%, which

leads to the lowest risk of CVD and mental illness in Western

populations(11,12). We also compared the estimated mobili-

sable AT-DHA pool size and the milk-DHA outputs of the

average Tanzanian-Ukerewe woman and compared the out-

comes with those of the average US woman.

Biomagnification

The present erythrocyte-DHA content data of mothers and

their children in various Tanzanian tribes confirm our previous

observation(13) that genuine biomagnification of DHA occurs

after birth (Table 2). At delivery, only infants with low DHA

status (Maasai and Pare) tended to have a higher erythro-

cyte-DHA content than their mothers, whereas infants with

high DHA status (Sengerema and Ukerewe) had a lower

erythrocyte-DHA content than their mothers. However, this

situation had changed after 3 months of exclusive breast-

feeding, when all the infants had a higher erythrocyte-DHA

content than their mothers, while all the mothers had a

lower erythrocyte-DHA content. Interestingly, the mothers

with low DHA status (Maasai) were unable to prevent a

decline of their infants’ erythrocyte-DHA content from delivery

to 3 months, while those with intermediate DHA status (Pare)

maintained their infants’ erythrocyte-DHA content and those

with high DHA status maintained (Ukerewe) or augmented

(Sengerema) their infants’ erythrocyte-DHA content. These

observations are consistent with the following: (1) intra-

uterine biomagnification as a sign of low (possibly

insufficient) maternal DHA status; (2) the inability to increase
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postnatal infant erythrocyte-DHA status if the mother has low

DHA status; (3) the importance of DHA notably after

delivery(13,32–34); (4) a deterioration of the maternal DHA

status during lactation that is independent of the prepreg-

nancy DHA status. Consistent with the notion that a major

proportion of at least linoleic acid (70 %) and AA (90 %) in

milk derives from AT stores(9), we found that mothers who

were unable to augment their infants’ DHA content during

lactation had the lowest AT-DHA contents (Maasai), while

those who were able to maintain their infants’ erythrocyte-

DHA content (Ukerewe) or even augment it (Sengerema)

had the highest AT-DHA contents (Table 2).

A drop in infant erythrocyte-DHA content after delivery may

obviously be prevented by maternal DHA supplementation,

since oral supplementation leads to a rapid dose-dependent

response of the milk-DHA(35). This strategy may, however,

be distinct from the lifetime high DHA consumption, as prac-

tised by, for example, the Tanzanian-Ukerewe mothers. The

difference becomes reflected in the steepness of the DHA

dose v. milk-DHA response curves in which the curve for life-

time intake is steeper than the one derived from a 12-week

DHA supplementation study(36). The fetomaternal unit has

an enormous DHA distribution volume and equilibration of

a DHA supplement among the maternal organs and possibly,

to a lesser extent, the infant organs, may take a considerable

time. The AT compartment exhibits the ‘last-in first-out’

phenomenon(37), while there is also selective mobilisation of

the individual fatty acids from AT, possibly because the

(more polar) PUFA in TAG have a tendency to accumulate

at the surface of the AT TAG droplet(38). This implies that nota-

bly the infant (via the milk) and the easily accessible organs of

the mother would benefit first and also that AT locations with

a low turnover (e.g. essential fat) and the maternal brain

would benefit last. It has been estimated that the half-life of

DHA in the adult human brain approximates 2·5 years(39),

which suggests that more than a decade of supplementation

is needed to reach a new equilibrium in the maternal brain(40).

Milk-DHA content of 1 wt% might be optimal for
(Western) infants

We found that a maternal erythrocyte-DHA content of 8 wt%

corresponds with a (mature) milk-DHA content of about

1·0 wt% (Fig. 1(a) and (b)) and subcutaneous and abdominal
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AT-DHA contents of about 0·39 and 0·52 wt%, respectively

(Fig. 2(a) and (b)). A colostrum-DHA content of 1 wt% was

also found to correspond with subcutaneous and abdominal

AT-DHA contents in the same order of magnitude (0·35 and

0·40 wt%, respectively; Fig. 3(a) and (b)). These interrelation-

ships seem valid, since they derive from populations who

are at equilibrium because of their lifetime stable dietary

habits. They remain, however, no more than mean estimates,

since the relationships were subject to considerable inter-

individual scatter. It has been shown that an n-3 index

(i.e. erythrocyte-(EPA þ DHA) content) of 8 % in Western

populations is associated with the lowest cardiovascular

risk(11) and lowest psychiatric disease risk(12). The erythro-

cyte-DHA content constitutes the major part of this index.

One may consequently argue that 1 wt% DHA in human

milk is the optimum content for Western infants, which

coincides with a maternal AT-DHA contents of about 0·40 wt%

DHA. With this combination and continuing maternal dietary

habits, infants also achieve an erythrocyte-DHA content of

8 wt% after 3 months of lactation (Table 2), but probably

much sooner.

Recommendations have been made previously for adults,

pregnant and lactating women, and infants separately, without

consideration that these life stages and physiological con-

ditions are intimately connected. The current recommendation

for formula-fed infants is at least 0·2 wt% DHA to achieve

benefits on functional end points, but no more than 0·5 wt%

DHA because systematic evaluation above this level has not

been published(41). First of all, this recommendation is not

in line with the advisory of 200 mg DHA per d for lactating

women, since a maternal dietary intake of 200 mg already cor-

responds to 0.52 wt% in her milk; so in practice, those two

recommendations simply are at odds with each other.

Second, it ignores the observation that intakes of up to 1 g

DHA by lactating women have been studied without signifi-

cant adverse effects(36). Third, higher recommendations than

the presently encountered are in agreement with our deri-

vation from the water–land ecosystem(42–45). Finally, much

higher maternal milk contents have been observed in perfectly

healthy populations. For instance, milk-DHA levels compar-

ably high as those in Tanzanian-Ukerewe women have been

reported to be present in the colostrum of Japanese mothers

(1·1 wt%)(46), while Arctic Canadian (1·4 wt%)(47) and Kerewe

women in a previous study (1·8 wt%)(48) have been reported

to exhibit even higher mature milk-DHA levels.

That the incidence of atherosclerotic disease in traditionally

living Maasai with much lower erythrocyte-DHA status than

8wt% (Table 2) and a milk-DHA content of only 0·20wt%(48) is,

nevertheless, low is testimony of a much more complicated risk

profile than might emerge from the study of a single nutrient for

the prevention of cardiovascular risk. For instance(49), the
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traditionally living Maasai consume healthier diets in general and

therefore probably have a less disturbed intestinal flora(50), a high

level of physical activity, sufficient sleep and no Western lifestyle-

associated stress, while smoking and obesity (Table 2) are rare.

Their low DHA intake is accompanied by a low intake of linoleic

acid from refined vegetable oils(13). A high intake of linoleic acid

adversely affects theEPAandDHAstatus(51),while ameta-analysis

of randomised controlled trials has shown that the replacement of

SFA with linoleic acid leads to a borderline insignificant higher

cardiovascular risk(52). Consequently, milk-DHA content should

preferably be in balance with the content of other milk fatty

acids, notably EPA, AA and linoleic acid, and we, therefore,

suggest taking the milk fatty acids of the Ukerewe women as a

combination that reads as follows: 0·96wt% DHA; 0·55wt% AA;

0·22wt% EPA; 9·32wt% linoleic acid (Table S3, available online).

Interrelationships between DHA contents of erythrocytes,
milk, subcutaneous adipose tissue and abdominal
adipose tissue

Maternal erythrocyte-DHA (Fig. 2) and milk-DHA (Fig. 3)

contents exhibited non-linear relationships with subcutaneous

and abdominal AT-DHA contents, suggesting that some

degree of DHA saturation takes place in erythrocytes and

milk at high AT-DHA levels. When compared with each

other, it seems that maternal erythrocyte-DHA saturates at

lower DHA status than milk-DHA (Fig. 1), which may be in

line with a more important functional role of DHA in erythro-

cyte membranes, e.g. maintenance of fluidity, flexibility and

membrane-bound protein functions. Gibson et al.(53)

showed that with increasing maternal DHA intakes, the

milk-DHA content continues to increase, but that from

about 0·8 wt% DHA in milk, corresponding with an infant

erythrocyte-DHA content of approximately 9 wt% (with a

maximum of 12 wt%), no appreciable change occurs in the

infant erythrocyte-DHA content. Similar apparent saturation

of the adult erythrocyte-DHA was observed in the present

study, where, with increasing AT-DHA contents in the

Maasai, Pare and Sengerema women, maternal erythrocyte-

DHA content seemed to reach a plateau of about 9 wt%

(Fig. 2), while even higher individual maternal erythrocyte-

DHA (up to 11·10 wt%) and infant erythrocyte-DHA (up to

10·98 wt%) contents were reached in the Ukerewe women

(Table 2). An individual maximum erythrocyte-DHA content

of about 11–12 wt% is also in agreement with our previous

study, where the maximum content was 11·2 wt%(54). It is plaus-

ible that the erythrocyte-DHA content levels off with increasing

DHA status, while this may be the case for the AT-DHA content

to a much lesser extent. A consequence might be that the eryth-

rocyte-DHA content in the high range may become a less

reliable proxy for estimating whole-body, notably AT, DHA con-

tents. However, it should be noted that each of the encountered

relationships was subject to considerable scatter with few

subjects having very high AT-DHA contents, while a more

active turnover of AT and de novo fatty acid synthesis in preg-

nancy may preclude extrapolation to the non-pregnant

conditions.

On average, about 17 % higher DHA content in abdominal

(omental) AT, compared with that in subcutaneous AT, also

resulted from considerable scatter (Fig. 4), with a tendency

of higher omental AT-DHA contents notably at high DHA

status. Visceral AT, in contrast to subcutaneous AT, drains

directly through the portal circulation to the liver and is meta-

bolically more active with, for example, higher lipogenic and

lipolytic activities and higher capacity for the generation of

NEFA and glucose uptake(55,56). The remarkably small

Table 3. Estimated milk-DHA output and whole-body adipose tissue DHA content for an average Tanzanian-Ukerewe woman compared with an
average US woman

Dimension Tanzanian-Ukerewe Reference Average US Reference

Age (years) 26 Table 1 20–39
Body weight (kg) 54·6 Table 1 73 (27)
Body length (cm) 157 Table 1 163·2 (27)
BMI (kg/m2) 22·2 Table 1 27·3 (27)
Erythrocyte-DHA content (wt%) 8·0 Fig. 1 3·71 (28)
Body fat percentage (%) 27·5/34·2 (20–22) 37·8 (14)
Essential body fat percentage (%) 11·5 (15) 11·5 (15)
Storage fat percentage (mobilisable) (%) 16·0/22·7 26·3
Storage fat (mobilisable) (kg) 8·7/12·4 19·2
Percentage of fat in adult wet adipose tissue (%) 78·4 (23) 78·4 (23)
Mobilisable wet adipose tissue (kg) 11·1/15·8 24·5
Percentage of mobilisable wet adipose tissue (%) 20·4/29·0 33·5
Percentage of DHA in adipose tissue fat (g/100 g FA) 0·40 Fig. 3 0·10 (29)
DHA in mobilisable wet adipose tissue (g) 35/50 19
Colostrum volume at day 3 (ml/d) 393 (24) 393 (24)
Colostrum fat concentration at day 3 (g/l) 20·4 (25) 20·4 (25)
Colostrum-DHA content at day 3 (g/100 g FA) 1·0 Fig. 1 0·4 (31)
Colostrum-DHA output (mg/d) 80 32
Mature milk volume at 3 months (ml) 772 (24) 772 (24)
Mature milk fat content at 3 months (g/l) 39·0 (26) 39·0 (26)
Mature milk-DHA content at 3 months (g/100 g FA) 1·0 Fig. 1 0·2 (30)
Mature milk-DHA output (mg/d) 301 60

FA, fatty acid.
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differences between the DHA contents of omental and

subcutaneous AT might suggest that the women in the present

study with lifetime stable dietary habits are at a high degree of

DHA equilibrium, with little influence of dilution by de novo

synthesised fatty acids in the more metabolically active omen-

tal AT. However, no appreciable differences in DHA contents

between omental and subcutaneous AT have also been

observed previously in overweight and obese

Spanish patients(57,58), but in contrast to subcutaneous

AT-DHA content, an inverse relationship of omental AT DHA

with waist:hip ratio and visceral abdominal area has been

observed(57), suggesting that subjects with low central

adiposity have a higher omental AT-DHA content, but not a

higher subcutaneous AT-DHA content.

The mature milk-DHA content of the average US woman(30)

and her subcutaneous AT-DHA content(29) and also the milk-

DHA and AT-DHA contents of French women at day 5 of

lactation as reported by Martin et al.(59) fitted reasonably

well with the relationships between the milk-DHA and

AT-DHA contents observed in the present study (Fig. 3),

although each of these data points from the literature was at

the lower end of the curve (Table 2). Leaf et al.(29)

supplemented fifteen men and women, some of them patients

with dyslipidaemic disorders, with a minimum of 10 g fish oil

containing 1·8 g EPA and 1·0 g DHA/d for 22 months (12–27

months) to achieve a subcutaneous AT-DHA content of

0·7 wt%. This amount is in the high range of the data given

in Table 2 and may provide some insights into the amounts

of EPA þ DHA consumed by the average Tanzanian-Ukerewe

woman who has an estimated subcutaneous AT-DHA content

half that amount (0·37 wt%). In this context, there might not be

a difference between the LCP n-3 bioavailability from fish-oil

supplements and that from fish, since the intake of 485 mg

EPA þ DHA/d from fish or fish oil for 16 weeks was equally

effective in increasing the EPA þ DHA content in erythrocytes

and plasma phospholipids(60). However, the comparison

might in reality be much more complex, for example, due to

differences between the Tanzanian women and Western

women in distribution volumes, body fat percentages,

consumption of other fatty acids (e.g. linoleic acid) and the

intake of (low-glycaemic index) carbohydrates, which may

stimulate de novo fatty acid synthesis.

Estimated milk-DHA output and whole-body adipose
tissue-DHA content

We estimated that, when compared with the average US

woman, the average Tanzanian-Ukerewe woman has about

2·2 times higher erythrocyte-DHA content, 1·8–2·6 times

higher DHA amounts in mobilisable AT (in g), and about 2·5

and 5·0 times higher DHA outputs via colostrum and mature

milk, respectively (Table 3). These values correspond with

about 1·5–2·2 times higher amounts of mobilisable wet AT

(in kg) in the average US woman, which dilutes her

AT-DHA content four times, compared with the average

Tanzanian-Ukerewe woman. The comparisons of the amounts

of AT DHA and AT might be somewhat confounded by racial

differences, because, at a given BMI, the Black population has

lower fat mass(61). Nevertheless, the four times higher dilution

of DHA in the mobilisable AT of the average US woman might

be an important reason for her five times lower mature

milk-DHA output and contrasts with her ‘only’ 1·8–2·6 times

lower total DHA content in mobilisable AT. Selective

mobilisation of DHA from AT has been suggested pre-

viously(38,62,63), but in the case of American women, this is

apparently of insufficient magnitude to compensate for their

relatively lower AT-DHA content.

Because of the seemingly more important influence of

dilution, and not due to the total amount of DHA in mobilisa-

ble AT, this situation might be considered as a state of ‘DHA

starvation in the midst of plenty’, because sizeable stores

are present but poorly available for transfer into the milk.

Theoretically, the amount of mobilisable DHA in the AT of

the average Western woman could support lactation at a

level of 1 wt% milk-DHA for 63 d. Insufficient mobilisation,

for example, caused by insufficient postpartum loss of the

AT that is gained during pregnancy(64), retained during

lactation(65) or already present before conception, might

also play a role in Western women. We have recently

observed that pregnant Tanzanian women have 55% higher

25-hydroxyvitamin D (25(OH)D) than non-pregnant women

and mothers shortly after delivery(16). No such increases in

25(OH)D amounts have been reported for Western women,

who typically do not change their 25(OH)D intakes during

pregnancy or even experience a decrease(66). Therefore,

more intense mobilisation of vitamin D, and also of DHA,

from AT during pregnancy of Tanzanian women is conceiva-

ble. Also vitamin D becomes stored in AT, vitamin D in

serum and AT are correlated(67) and fasting causes vitamin D

mobilisation in rats(68). Circulating 25(OH)D is inversely

related to body fat percentage(69) and overweight and obese

persons have lower 25(OH)D amounts. The high degree of

AT turnover during pregnancy, where we deal with ‘facilitated

anabolism and accelerated starvation’(70), might not be contin-

ued during lactation in Western women because of insufficient

weight loss or the consistent postprandial condition, both of

which apply for many mothers in Western countries.

Limitations

It should be noted that, because of local constraints, the data

at delivery/3 d postpartum and at 3 months postpartum were

collected from different groups. We interpreted the differences

in DHA contents between these groups in terms of longitu-

dinal changes, as based on between-group statistical differ-

ences. This reasoning seems justified because of the stable

dietary habits of each of these groups. The basal data given

in Table 3 were derived from various publications, and the

outcomes of the estimates may, therefore, be subject to size-

able deviations. It may also not be correct to use whole-

body AT percentages of non-pregnant woman for estimates

in pregnant and lactating counterparts. We made a distinction

between ‘essential’ and ‘non-essential (mobilisable)’ AT in

women, which is not supported by hard scientific evidence.

Without this distinction, the DHA pool sizes become obviously

bigger (see the Results section), but this does not change the
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conclusion that the average Tanzanian-Ukerewe woman has a

higher DHA content and less diluted DHA in many, if not all,

body compartments including those that can potentially

become mobilised. The low AT-DHA levels also deserve to

be mentioned, since low levels are subject to high analytical

errors that may add up to sizeable uncertainty when they

become multiplied by the large amount of body fat. We also

made no distinction between the DHA present in the (mobili-

sable) TAG in the AT and that present in the phospholipids of

its membranes. Another limitation might be that the groups

were of different sizes, with the Maasai group being notably

smaller. This small sample size resulted from the difficulty in

investigating the Maasai in their bomas. Although the numbers

were small, we included all the Maasai we could, since we

thought their data to be unique.

Conclusions

We conclude that intra-uterine biomagnification is a sign of

low maternal DHA status, that genuine biomagnification

occurs during lactation, that exclusively breast-feeding

mothers with low DHA status are unable to augment their

infants’ DHA status, and that exclusively breast-feeding

mothers lose DHA independent of their DHA status. Maternal

DHA supplementation may rapidly correct the maternal and

infant DHA status in easily accessible compartments, but it is

improbable that all organs of the mother (e.g. AT with low

turnover and brain) will benefit at similar rates as those of

the infant. We also found that a maternal erythrocyte-DHA

content of 8 wt% corresponds with a (mature) milk-DHA

content of about 1·0 wt% and subcutaneous and abdominal

AT-DHA contents of about 0·39 and 0·52 wt%, respectively.

Consequently, a mature milk-DHA content of 1 wt% might

be a target for Western human milk and infant formula,

since an erythrocyte-DHA content of about 8 wt% leads to

the lowest risk of cardiovascular and psychiatric diseases in

adults living in Western countries. Concomitant milk AA,

EPA and linoleic acid contents were 0·55, 0·22 and 9·32 wt%,

respectively. Interrelationships between DHA contents in

erythrocytes, milk and AT suggest that with increasing DHA

status, the erythrocyte-DHA content plateaus at about 9 wt%,

with an upper maximum of about 12 wt%, and it plateaus

more readily than the milk-DHA and AT-DHA contents.

When compared with the average Tanzanian-Ukerewe

woman, the average US woman has four times higher dilution

of AT DHA (0·4 v. 0·1 wt%) and five times lower mature milk-

DHA output (301 v. 60 mg/d), which contrasts with her ‘only’

1·8–2·6 times lower total DHA content in the AT (19 v.

35–50 g). This dilution of DHA occurs in conjunction with

the insufficient weight loss and the consistent postprandial

state that is typical for many Western women might contribute

to a state of DHA starvation in the midst of plenty.
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