
INJECTIVE HULLS AS COMPLETIONS
by PAUL D. BACSICHf

(Received 23 January, 1970; revised 28 November, 1970)

A preliminary attempt is made to place the theory of completions of boolean algebras
and of partially ordered sets in a wider context. The theory and construction of injective
hulls in abelian categories is generalised and it is demonstrated that any variety with enough
injectives admits injective hulls. Then the methods developed are applied to a non-algebraic
bicategory, that of ordered sets.

1. Bicategories. We assume that the reader is familiar with the elementary aspects of the
theory of bicategories as expounded in Isbell [12] and Semadeni [16].

Let K be a bicategory. We recall that an object A of K is said to be injective if whenever
e: B -> C is an injection and/eHorn(B, A), then there is heHorn(C, A) such that he = / . An
injection e:A^A' is called proper if it is not an equivalence, and dense if, whenever
feHom(A', B) is such thaXfe:A -* B is an injection, then/is an injection. A' is called an
extension of A by e if e: A -* A' is an injection.

In this section we state a number of simple lemmas which are necessary for the proof of
the main theorem in § 2. Proofs for the first two are supplied so as to establish the techniques
to use in the nonabelian case, and using these the other lemmas should be obvious. (A treatment
of the abelian case can be found in [14], Section III.2.)

LEMMA 1.1. The composition of dense injections is a dense injection.

Proof. Let e:A->B,f:B-*Cbe dense injections. Then fe: A -> C is an injection. Let
g e Hom(C, D) be such that gfe is an injection. Then gf is an injection as e is dense, and so g
is an injection as / is dense.

LEMMA 1.2. Let e:A-*B, e':A-*C be dense injections, /eHom(fl, C) be such that
fe = e'. Then f is a dense injection.

Proof, f is an injection, as e is dense. Now let g e Horn (C, D) be such that gf is an
injection. Then gfe = ge' is an injection, and so g is an injection as e' is dense.

DEFINITION 1.3.

(1) A pair (e, A') is an injective extension of A if A' is injective and e:A-*A' is an
injection.

(2) An extension (e, A') of A is called dense if e is dense.
(3) (e, A') is an injective hull of A if (e, A') is a dense injective extension of A.
(4) A dense extension (e, A') of A is maximal if A' has no proper dense extension.

LEMMA 1.4. Let u:A-*Bbea dense injection, (e, D) an injective extension of A. Then
there is an injection e':B—>D such that e'u = e.

By noting that a retraction is a surjection, we can establish
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LEMMA 1.5. If A is injective, then A has no proper dense extensions.

LEMMA 1.6. Any two injective hulls of A are isomorphic.
We say that K has enough injectives if every object of K has an injective extension. An

injection e:A->D of K is said to be reducible if there is a morphism / : D -• B such that
fe: A -> B is a dense injection.

THEOREM 1.7. Suppose that K has enough injectives and that every injection of K is
reducible. Let A be an object of K. If A has no proper dense extensions, then A is injective.

Proof. Let e: A -»D be an injective extension of A. Since e is reducible, let / : D -* B be
a morphism such th&tfe:A -*B is a dense injection. Hence fe is an equivalence. Thus A
is a retract of D by (/e)"1/, and so A is injective.

THEOREM 1.8. Suppose that K has enough injectives. Then the following are equivalent:
(1) Every injection of K is reducible and every object of K has a maximal dense extension.
(2) Every object of K has an injective hull.

2. Varieties. We recall that a variety is an equational class of algebras. It is known that
any variety forms a bicategory in a natural way, with morphisms interpreted as homo-
morphisms, injections as embeddings (i.e. 1-1 homomorphisms), and surjections as surjective
homomorphisms. We say that A is a dense subalgebra of B if A is a subalgebra of B and the
inclusion map A -> B is dense.

The following well-known property of varieties will be used implicitly several times: If
e: A -> B is an injection, then there is an algebra A' and an isomorphism f: A' -* B such that A
is a subalgebra of A' and e=f\A.

We first find a more algebraic characterisation of dense subalgebras.

LEMMA 2.1. Let Kbe a variety. Suppose that A is a subalgebra of B. Then A is a dense
subalgebra of B if and only if, for any congruence J on B with JnA2 = A^, we have J = AB

(where AA is the graph of equality on A).

Proof. Let e:A^B be the inclusion map. Let fe Horn (B, D), J be the kernel of/.
Then JnA2 is the kernel of/e. The lemma is now obtained by using the fact that a morphism
/ ' : C -> C ' is an injection if and only if the kernel of/ ' is Ac.

COROLLARY 2.2. Suppose that K is one of the following varieties: abelian groups, boolean
algebras, commutative rings. Let Abe a subalgebra of B. Then A is a dense subalgebra of B
if and only if, whenever I is an ideal of B such that In A = 0, then 1=0.

As a further refinement we obtain the following result of [3].

COROLLARY 2.3. Let K be the variety of boolean algebras, Abe a subalgebra of B. Then
A is a dense subalgebra ofB if and only if A is dense in B in the usual boolean-algebraic sense
that whenever be Bis nonzero, there is aeA such that 0 <a^b.

The next result is Proposition VII.2.5 of Cohn [7], but we shall give a proof here as we
wish to generalise the method later.
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THEOREM 2.4. Let K be any variety. Then each injection of K is reducible.

Proof. Let A be a subalgebra of D. Consider the set C of congruences J on D such that
JnA2 = &A, ordered by inclusion. Then the union of any chain in C belongs to C. Hence
C has a maximal member / , by Zorn's Lemma. Let D/J be the quotient algebra of D by / ,
/:£>-+ DjJ the canonical surjection. Let e: A ~* D be the inclusion map. Now/e has kernel
JnA2 = AA, so that/e is an injection. Let J' be a nontrivial congruence on D/J, and let / ,
be the congruence on D given by dJt d' if and only iff(d)J'f(d'). Then / is a proper subset of
Ju and so there are distinct points a, be A with aJ^b. For these points, f(a)J f(b) and
f(q) T^fib). Hence fe is a dense injection.

The next few results will establish that any variety with enough injectives admits injective
hulls.

LEMMA 2.5. Let A be a subalgebra of an algebra D. Let G be the collection of all sub-
algebras C of D such that A is a dense subalgebra of C, ordered by inclusion. Then G has a
maximal member.

Proof. G is nonvoid as A eG. Let (C,: ie T) be a chain in G. Then C = U C, is a
ieT

subalgebra of D, and also C 2 = \J C2, since we have a chain. Now let / be a congruence
ieT

on C such that JnA2 = AA. Then / = (J (JnC2), and JnC2 is a congruence on Ct with
ieT

(JnC2)nA2 = A^, so that JnC2 is the diagonal on Cf. Hence J = Ac. This shows that A is
a dense subalgebra of C. Thus the union of a chain in G belongs to G, and so, by Zorn's
Lemma, G has a maximal member.

LEMMA 2.6. Let K be a variety with enough injectives, A an algebra of K. Then A has a
maximal dense extension.

Proof. Let D be an injective algebra of K such that A is a subalgebra of D. Define G
as in Lemma 2.5 and let B be a maximal member of G. We show that B has no proper dense
extension. Let (e, B') be a dense extension of B. Then there is an injection f.B' -+D with
_/e(6) = b for Z>e J?, by Lemma 1.4. Let B" be the image of B' under/. Then B is a subalgebra
of B" and 5 " is a subalgebra of D. Now B is a dense subalgebra of B" (as 5 " is isomorphic
to B') and so A is a dense subalgebra of B", by Lemma 1.1. Thus B=B", and so / i s an
isomorphism of B' onto B. Hence e: 5 -> B' is an isomorphism, and so B is a maximal dense
extension of A.

THEOREM 2.7. Let K be a variety with enough injectives. Then every algebra of K has an
injective hull.

Proof. Use Lemma 2.6 and Theorem 2.4, and then Theorem 1.8.
We observe that, if K has an injective separator D (in the sense of 5.1 of [16]), then K

has enough injectives. For let A be an algebra of K, I = Horn {A, D), and e: A -> D1 be given
by e(a)(m) = m(a) for me I, aeA. Then e is an injection, while D1 is injective. Hence the
following varieties admit injective hulls (the algebras in parentheses are injective separators):

(1) Abelian groups (the circle group)—by §9.4 of [16],
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(2) Boolean algebras (the 2-element algebra), by Column 8 of the Table in [16],
(3) Distributive lattices with 0 and 1 (the 2-element lattice)—by Lemma 3.1 of [2],
(4) Semilattices with 0 and 1 (the 2-element semilattice), by the remark after Corollary 4.7,
(5) /7-rings with 1 (the finite field with p elements), for prime p—by § 5 of [13].

A general treatment of injective hulls in abelian categories will be found in Freyd [9]
(note that only (1) above is abelian).

3. Boolean algebras. Let us consider the variety of boolean algebras. By replacing
congruences by ideals and making the obvious adjustments in Theorem 2.4 and Lemmas 2.5
and 2.6, we obtain a very simple proof of the result: Every boolean algebra has an injective
hull. It now follows that every complete boolean algebra is injective, by using the following
two lemmas, the first due to Halmos [11] and the second to Sikorski [18, Theorem 23.1].

LEMMA 3.1. Every injective boolean algebra is complete.

Proof. Every such is a retract of some 2' and so is complete.

LEMMA 3.2. Let B be a complete boolean algebra, A a dense subalgebra of B. Then A is a
regular subalgebra of B, and, for beB, b = sup {aeA:a ^b}.

B

Thus, if A is itself complete, A = B. By applying Theorem 2.7, the next theorem is
obvious.

THEOREM 3.3. Every complete boolean algebra is injective.
This result was first proved by Sikorski in [17], using step-by-step extension and Zorn's

Lemma. Gleason [10] has given a proof using the Stone duality, and Scott [15] has proved
it using Boolean-valued models of set theory. The above technique of deriving Theorem 3.3
is due, in dual form, to Gleason (see Lemma 2.3 and Theorem 2.5 of [10]). It first appeared
explicitly in [8].

Lemma 3.2 (together with Corollary 2.3) also shows that there is a general-algebraic
proof of the existence of the completion of a boolean algebra A. For any injective hull of A
clearly has properties (i), (iii), and (iv) of Theorem 35.2 in [18].

4. Partially ordered sets. Let K be the category of (partially) ordered sets and order-
preserving maps. This can be made into a bicategory by defining e: A -* B to be an injection
precisely if e is an order-isomorphism of A onto a subset of B. By adapting the abstract
construction of §2, we shall show that K admits injective hulls, and then these will be
characterised as Dedekind-MacNeille completions.

Our first task is to show that the algebraic notions of congruence and kernel have suitable
analogues in K. We recall that a preorder is a reflexive transitive relation.

LEMMA 4.1. Let f: (A, ^ ) -* (B, ^ ' ) be a morphism of K. Define a relation ^^ on A as
follows: x ^ fy if and only iff(x) ^ 'f(y). Then ^fisa preorder on A extending ^ , andf is an
injection if and only if ===/ = ^ (as subsets of A2). We call ^f the kernel off.

Proof. If x-^y, then f{x) ^'f{y) and so x^fy. Hence ^ £ £f. Clearly ^f is a
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preorder. The proof is completed by recalling that / is an injection if and only if, for all
x, ye A, x ^ y if and only if/(x) ^ '

LEMMA 4.2. Let ^ be a preorder on A. Define a relation E on A by xEy if and only if
x ^ y andy ^ x. Then E is an equivalence and AjE admits a natural partial order ^ ° such that
x^y if and only ifx^°y, where x is the E-equivalence class of x, for xeA. Further, if ^ j
is a partial order on A with ^ , £ g , then the canonical map f. {A, ^ x) -+ (A/E, ^ ° ) is order-
preserving and ^ y = Sj.

LEMMA 4.3. Let (B, ^ ) be an ordered set, A a subset of B, SA the restriction of ^ to A.
Then the inclusion map e:{A, ^A)-*(B, ^ ) is dense if and only if, for every preorder R on B
extending ^ , ifRnA2 = ^A, then R = ^ .

Proof Let/:(B, ^ ) ->• (C, ^ ' ) be order-preserving. Now it is sufficient to remark that
fe is an injection if and only if :g / e = ^A, and that ^ / e = gyO/42.

THEOREM 4.4. .Every injection of K is reducible.

Proof Let e be an injection of K. We may assume that e is an inclusion map A-* B.
Let /? be a preorder on B maximal such that ^ £ R and /?n,42 = ^ A (by using a proof similar
to that of Theorem 2.4). Let / : B -> C be a morphism with kernel R. Then fe is a dense
injection (proof as in Theorem 2.4).

The next two lemmas will demonstrate that K has enough injectives. Lemma 4.5 is a
result of [3].

LEMMA 4.5. Every complete lattice is injective in K.

Proof Let L be a complete lattice, B an ordered set, A a subset of B, feHom{A, L).
Define g:B-*L by g(x) = sup{f(a):aeA and a^x}. Then g extends / and is order-
preserving.

LEMMA 4.6. Every ordered set P is order-embeddable in a complete atomic boolean algebra.

Proof. This is classical: we can embed P in the power set of P.

COROLLARY 4.7. Every injective in K is a complete lattice.

Proof. Use Lemma 4.6 and an argument similar to that for Lemma 3.1.
Essentially the same methods will show that in the variety of (meet) semilattices with 0

and 1, the injectives are precisely the complete Brouwerian lattices (by noting that the em-
bedding of Lemma 4.6 preserves meets and that a meet-retract of a boolean algebra is
pseudo-complemented—this has been observed independently in [5]). Thus the 2-element
semilattice is an injective separator.

THEOREM 4.8. K admits injective hulls.

Proof Let A be an object of K. Let A be a subset of D, where D is injective (by Lemmas
4.6 and 4.5). By carrying out the proof of Lemma 2.5 using preorders in place of congruences,
and using an argument similar to that in Lemma 2.6, we can show that A has a maximal dense
extension. But this is injective by Theorem 1.8.
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We now show that injective hulls have a concrete realisation as (Dedekind-MacNeille)
completions. The standard construction of the completion can be found in Birkhoff [4].

THEOREM 4.9. Let A be an ordered set. Then any injective hull of A is a completion.

Proof. Let L 2 A be an injective hull of A. Then L is a complete lattice by Corollary 4.7.
Also, there is a preorder R on L extending ^ t , given by xRy if and only if Ix £ Iy, where
Ix = {aeA:a S x}. Now R = ^ L as RnA2 — ^A. Thus, for xeL, x =sup/ x , and the dual
of this also holds.

Note that as we wish to construct the completion, we cannot use Proposition 4.2 of [3],
which assumes its existence.

By dualising the definitions of § 1, we arrive at the notions of dense surjection and pro-
jective cover. We now show that K admits projective covers. An object A of K is said to be
free if A is totally unordered. The reader can easily check the following facts:

(1) Every free object is projective.
(2) Every object is a quotient of a free object.
(3) Every projective object is free.
(4) A natural projective cover of {A, ^ ) is (u, (A, ^ J), where ^ t is equality on A and

M is the identity map.

5. Concluding remarks. The methods developed here can also be applied to give a short
abstract proof of Cohen's result (see [6]) that the bicategory K of normed linear spaces and
linear contractions admits injective hulls. For K has enough injectives (by Column 11 of the
Table in [16]), and by replacing congruences by seminorms the obvious analogues of Theorem
2.4 and Lemmas 2.5 and 2.6 can easily be obtained.

It has been brought to the notice of the author that there is a general construction of
injective hulls in Daigneault [8]. However, this would not apply to partially ordered sets or
normed linear spaces, and for varieties, it leads to a more complicated proof (as the conditions
C3 and C6 of [8] are nontrivial to verify in general).

An abstract approach to injective hull constructions and further investigation of com-
pletions (e.g. in metric spaces) can be found in [1].

REFERENCES

1. P. Bacsich, Algebraic injectivity and weak choice axioms, Ph.D. Thesis, University of
Bristol, 1970.

2. R. Balbes, Projective and injective distributive lattices, Pacific J. Math. 21 (1967), 405-420.
3. B. Banaschewski and G. Bruns, Categorical characterisation of the MacNeille completion,

Arch. Math. Basel 18 (1967), 369-377.
4. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloquium Publications 25 (Providence,

R.I., 1967).
5. G. Bruns and H. Lakser, Injective hulls of semilattices, Canad. Math. Bull. 13 (1970), 115-118.
6. H. Cohen, Injective envelopes of Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 723-726.
7. P. Cohn, Universal algebra (New York, 1965).
8. A. Daigneault, Injective envelopes, Amer. Math. Monthly 76 (1969), 766-774.

https://doi.org/10.1017/S0017089500001312 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001312


INJECTIVE HULLS AS COMPLETIONS 23

9. P. Freyd, Abelian categories (New York, 1964).
10. A. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
11. P. Halmos, Lectures on Boolean algebras (Princeton, 1963).
12. J. Isbell, Algebras of uniformly continuous functions, Ann. of Math. 68 (1958), 96-125.
13. N. McCoy and D. Montgomery, A representation of generalised Boolean rings, Duke Math.

J. 3 (1937), 455-459.
14. B. Mitchell, Theory of categories (New York, 1965).
15. D. Scott, Lectures on Boolean-valued models for set theory, Summer Institute in Set Theory,

Los Angeles, 1967 (to appear).
16. Z. Semadeni, Projectivity, injectivity and duality, Rozprawy Matematyczne 35 (1963).
17. R. Sikorski, A theorem on extension of homomorphisms, Ann. Soc. Pol. Math. 21 (1948),

332-335.
18. R. Sikorski, Boolean algebras, 2nd edn (Berlin, 1964).

MATHEMATICAL INSTITUTE

OXFORD UNIVERSITY

https://doi.org/10.1017/S0017089500001312 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500001312

