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Abstract

For x ∈ (0, 1] and a positive integer n, let Sn(x) denote the summation of the first n digits in the dyadic
expansion of x and let rn(x) denote the run-length function. In this paper, we obtain the Hausdorff
dimensions of the following sets:{

x ∈ (0, 1] : lim inf
n→∞

Sn(x)
n

= α, lim sup
n→∞

Sn(x)
n

= β, lim
n→∞

rn(x)
log2 n

= γ
}
,

where 0 ≤ α ≤ β ≤ 1, 0 ≤ γ ≤ +∞.
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1. Introduction

Suppose that A, B ⊂ Rn are two fractal sets; the intersection A ∩ B is often a fractal.
Therefore, it is interesting to try to find the relationship between the Hausdorff
dimension of this intersection and those of A and B. Unfortunately, we immediately
find that we can say almost nothing in the general case although one often could hope
that

dimH(A ∩ B) = max{0, dimH A + dimH B − n}. (1.1)

Here and in the following, dimH F denotes the Hausdorff dimension of the set F. For
example, let C be the middle third Cantor set; Hawkes [12] proved that dimH((C + t)
∩ C) = 1

3 (log 2/ log 3) for Lebesgue almost all t ∈ [−1, 1]. The result shows that the
formula (1.1) does not hold even for ‘many’ simple fractal sets C + t and C since the
Hausdorff dimensions of the two sets are log 2/ log 3. For more details about Hausdorff
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dimension and the results on the intersection of two fractals, we refer the reader to the
famous book [8].

In this paper, we will consider the intersections of two typical fractal sets and our
result shows that the formula (1.1) holds for these intersections. Let us firstly recall
two kinds of fractal sets: Besicovitch sets and Erdős–Rényi sets.

Each x ∈ (0, 1] admits a nonterminating dyadic expansion:

x =

∞∑
k=1

xk

2k = 0.x1x2 · · · ,

where xk ∈ {0,1} for any k ≥ 1. The infinite sequence (x1, x2, x3, . . .) is called the dyadic
digit sequence of x. For a positive integer n, let Sn(x) be the summation of the first n
digits of x. The classical Borel normal number theorem can be stated as follows:

lim
n→∞

Sn(x)
n

= 1/2 (1.2)

for Lebesgue almost all x ∈ (0, 1]. In a fractal, it is natural to study the following level
sets:

B(α) =

{
x ∈ (0, 1] : lim

n→∞

Sn(x)
n

= α
}
, 0 ≤ α ≤ 1.

Besicovitch [2] first studied the Hausdorff dimensions of this kind of sets and
Eggleston [6] generalized Besicovitch’s work to b-adic expansions, where b ≥ 2 is
an integer. More precisely, they established that

dimH B(α) =
H(α)
log 2

.

Here H(x) is the classical entropy function, which is defined as

H(x) = x log x + (1 − x) log(1 − x), 0 ≤ x ≤ 1, (1.3)

where we define 0 log 0 = 0 by convention.
Nowadays, the sets B(α) are often called Besicovitch sets. It is worth mentioning

that the above work of Besicovitch and Eggleston has been generalized in diverse
directions; see [1, 9, 19, 21, 22] and references therein.

Recently, another kind of fractal sets arising from the digit sequence of x ∈ (0, 1],
Erdős–Rényi sets, has been widely studied by many authors. For each n ≥ 1 and
x ∈ (0, 1], the run-length function rn(x) is defined as the length of the longest run of 1’s
in (x1, x2, . . . , xn), that is,

rn(x) = max{` : xi+1 = · · · = xi+` = 1 for some 0 ≤ i ≤ n − `}.

Erdős and Rényi [7] (see also [23]) proved the following asymptotic behavior of rn:
for Lebesgue almost all x ∈ (0, 1],

lim
n→∞

rn(x)
log2 n

= 1. (1.4)
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This is the well-known Erdős–Rényi limit theorem. There are many generalizations of
this theorem; see [5, 18, 25] and references therein. Again, it is interesting to study the
following level sets:

E(γ) =

{
x ∈ (0, 1] : lim

n→∞

rn(x)
log2 n

= γ
}
, 0 ≤ γ ≤ +∞.

Following Chen and Wen [4], we call E(γ) Erdős–Rényi sets. Moreover, Chen and
Wen [4] proved that

dimH E(γ) = 1, 0 ≤ γ ≤ +∞. (1.5)

Clearly, the two quantities Sn(x) and rn(x) reflect different properties of the dyadic
digit sequence of the point x. It is interesting to consider those points with some
properties associated with them simultaneously. For 0 ≤ α ≤ 1, 0 ≤ β ≤ +∞, Chen
and Wen [4] first studied the Hausdorff dimensions of the following interesting
intersections:

S (α, β) =

{
x ∈ (0, 1] : lim inf

n→∞

Sn(x)
n
≥ α, lim

n→∞

rn(x)
log2 n

= β
}
.

They obtained that

dimH S (α, β) = sup
α≤t≤1

H(t)
log 2

.

Later, Zhang and Peng [26] proved that

dimH E(α, β) =
H(α)
log 2

,

where
E(α, β) =

{
x ∈ (0, 1] : lim

n→∞

Sn(x)
n

= α, lim
n→∞

rn(x)
log2 n

= β
}
.

Borel’s normal number theorem tells us that the rate of growth of Sn(x) is 1/2
for almost all x ∈ (0, 1], and the Erdős–Rényi limit theorem tells us that the rate of
growth of rn(x) is log2 n for almost all x ∈ (0, 1]. However, the limits in (1.2) and (1.4)
may not exist. Therefore, it is natural to study the exceptional sets in the above Borel
normal number theorem and Erdős–Rényi limit theorem. In particular, Carbone et al.
[3] proved that

dimH Dα,β = min
(H(α)

log 2
,

H(β)
log 2

)
, (1.6)

where

Dα,β :=
{
x ∈ (0, 1] : lim inf

n→∞

Sn(x)
n

= α, lim sup
n→∞

Sn(x)
n

= β
}
, 0 ≤ α ≤ β ≤ 1.

Let us remark that the above result has been generalized in diverse directions; see
[13, 17, 21, 22] and references therein. Of course, there are also many works on the
exceptional sets arising from the Erdős–Rényi limit theorem or its generalizations; see
[10, 14, 15, 20, 24, 27] and references therein.
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In [16], we consider the intersections of the classical Besicovitch set and some kind
of ‘worst’ exceptional sets in the Erdős–Rényi limit theorem, that is,

Eϕ
α,max =

{
x ∈ (0, 1] : lim

n→∞

Sn(x)
n

= α, lim inf
n→∞

rn(x)
ϕ(n)

= 0, lim sup
n→∞

rn(x)
ϕ(n)

= +∞

}
.

Here ϕ : N→ (0,+∞) is a function satisfying limn→+∞ ϕ(n) = +∞.
In this paper, we naturally consider the Hausdorff dimensions of the intersections

of exceptional sets in Borel’s normal number theorem and Erdős–Rényi sets. Our
result complements the ones in [4, 16] and [26]. More precisely, for 0 ≤ α ≤ β ≤ 1,
0 ≤ γ ≤ +∞, define

Cγ
α,β := Dα,β ∩ E(γ)

=

{
x ∈ (0, 1] : lim inf

n→∞

Sn(x)
n

= α, lim sup
n→∞

Sn(x)
n

= β, lim
n→∞

rn(x)
log2 n

= γ
}
. (1.7)

Now we can state our main result.

Theorem 1.1. For 0 ≤ α ≤ β ≤ 1, 0 ≤ γ ≤ +∞,

dimH Cγ
α,β = min

(H(α)
log 2

,
H(β)
log 2

)
.

The following result follows immediately from Theorem 1.1.

Corollary 1.2. For any 0 ≤ γ ≤ +∞,

dimH Cγ = 1,

where

Cγ :=
{
x ∈ (0, 1] : lim inf

n→∞

Sn(x)
n

< lim sup
n→∞

Sn(x)
n

, lim
n→∞

rn(x)
log2 n

= γ
}
.

We would like to emphasize again that it is very difficult to determine whether
the formula (1.1) holds even if one of the original sets has full Hausdorff dimension.
However, combining (1.5) and (1.6), our results show that the formula (1.1) does hold
for Cγ

α,β and Cγ.

2. Preliminaries

In this section, we present some notation and classical tools which we need in the
next section.

For n ∈ N, let

{0, 1}n = {(ω1, . . . , ωn) : ωi ∈ {0, 1}, i = 1, . . . , n}

and
{0, 1}∗ =

⋃
n∈N

{0, 1}n.
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For each ω = (ω1, . . . , ωn) ∈ {0, 1}n, the length of the word ω is n and we call ω an
n-word. That is, {0, 1}n and {0, 1}∗ denote the families of words with length of n and
all finite words, respectively.

For two words ω = (ω1, ω2, . . . , ωn) ∈ {0, 1}n and τ = (τ1, τ2, . . . , τm) ∈ {0, 1}m, we
denote their concatenation by ωτ = (ω1, . . . , ωn, τ1, . . . , τm), which is a word of length
n + m. Moreover, for W1, . . . ,Wn ⊂ {0, 1}∗, we write

W1 · · ·Wn = {(u1, . . . , un) : ui ∈ Wi, 1 ≤ i ≤ n}.

In particular, am means a · · · a︸︷︷︸
m times

, where a = 0 or 1. For convenience, Zhang and Peng

[26] introduced the notion of an (N, M)-word. For an integer N satisfying 0 ≤ N < M,
the M-word

(x1, x2, . . . , xM−1, 0) ∈ {0, 1}M with
M−1∑
i=1

xi = N

is called an (N,M)-word. The family of all (N,M)-words is denoted by WM(N).
By Stirling’s formula and simple calculation, we can get the following useful

estimate, which is closely related to the entropy function.

Lemma 2.1. For any natural numbers n and k with 0 ≤ k ≤ n, the following estimate
holds:

log
(
n
k

)
= nH

( k
n

)
+ O(log n) as n→∞,

where H(·) is the entropy function defined as in (1.3) and the notation f (n) = O(g(n))
means that f (n)/g(n) is bounded as n→∞.

Moran sets play an important role in fractal geometry due to their controlled
constructions and nice dimensional results. To get the lower estimate for Hausdorff
dimension of a set, a powerful method is to construct a Moran-type subset in it and then
use the known dimension result on the Moran-type set to get the lower bound. We next
present the dimension result on homogeneous Moran sets established in [11], which
has become a classical tool to estimate the lower bound of the Hausdorff dimension of
a fractal set.

Let us firstly recall the definition of a homogeneous Moran set. Let {mi}i≥1 be a
sequence of positive integers and {ci}i≥1 be a sequence of positive numbers satisfying
mi ≥ 2,0 < ci < 1,m1c1 ≤ δ and mici ≤ 1 for any i ≥ 2,where δ is some positive number.
Define

D =
⋃
i≥0

Di,

where
D0 = ∅, Di = {(ω1, . . . , ωi) : 1 ≤ ω j ≤ m j, 1 ≤ j ≤ i}.

For ω = (ω1, . . . , ωm) ∈ Dm and τ = (τ1, . . . , τn) ∈ Dn, we again use ωτ to denote the
concatenation of the two words.

Suppose that J ⊂ R is a closed interval of length δ. Consider the collection of closed
subintervals F = {Jσ : σ ∈ D} of J satisfying:
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(i) J∅ = J;
(ii) for any k ≥ 1 and σ ∈ Dk−1, Jσ∗1, Jσ∗2, . . . , Jσ∗mk are subintervals of Jσ and

int(Jσ∗i) ∩ int(Jσ∗ j) = ∅ (i , j), where int(A) denotes the interior of A;
(iii) for any k ≥ 1 and any σ ∈ Dk−1, 1 ≤ j ≤ mk,

ck =
|Jσ∗ j|

|Jσ|
,

where |A| denotes the diameter of A.

Then we call
E =

⋂
k≥1

⋃
σ∈Dk

Jσ

a homogeneous Moran set determined by F .

Lemma 2.2. Let E be the Moran set defined as above. Then

dimH E ≥ lim inf
j→∞

log(m1 · · ·m j)
−log(c1 · · · c j+1m j+1)

.

Finally, we end this section with an easy inequality which will be frequently used
later.

Lemma 2.3. Let {an}n≥1, {bn}n≥1, {cn}n≥1, {dn}n≥1 be four sequences of positive numbers
and suppose that

lim
n→∞

an

cn
= A, lim

n→∞

bn

dn
= B.

Then
min(A, B) ≤ lim inf

n→∞

an + bn

cn + dn
≤ max(A, B).

The above inequalities also holds if we replace limit inferior with limit superior.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
By (1.6), (1.7) and the monotonicity of Hausdorff dimension, we only need to show

that
dimH Cγ

α,β ≥ min
(H(α)

log 2
,

H(β)
log 2

)
.

To do this, for fixed 0 ≤ α ≤ β ≤ 1, 0 ≤ γ ≤ +∞, we next construct a homogeneous
Moran set E such that

E ⊂ Cγ
α,β (3.1)

and
dimH E ≥ min

(H(α)
log 2

,
H(β)
log 2

)
. (3.2)

We divide the proof into three cases according to the value of γ.
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Case 1. 0 < γ < +∞.
Let Nn = 2n2

, n ≥ 1. Then it is not difficult to check that there exists some positive
integer n0 such that

γ log2(nNn) ≥ n (3.3)

for n ≥ n0 and

lim
n→∞

N1 + 2N2 + · · · + nNn

(n + 1)Nn+1
= 0, lim

n→∞

log2(nNn)
log2((n + 1)Nn+1)

= 1. (3.4)

Recall that, for integers N, M with 0 ≤ N < M, WM(N) denotes the family of all
(N,M)-words. For k ≥ 1, define

W2k−1 =
{
ω1ω2 · · ·ωN2k−1−1uN2k−1 : uN2k−1 = ωN2k−1 1[γ log2((2k−1)N2k−1)]0,
ωi ∈ W2k−1([α(2k − 1)]), 1 ≤ i ≤ N2k−1

}
and

W2k =
{
ω1ω2 · · ·ωN2k−1uN2k : uN2k = ωN2k 1

[γ log2(2kN2k)]0,
ωi ∈ W2k([β(2k)]), 1 ≤ i ≤ N2k

}
.

Here and in the following, the notation [x] denotes the integer part of x.
Finally, define

E = {0.v1v2 · · · ∈ (0, 1] : vi ∈Wi,∀i ≥ 1}.

We next show that E is the desired homogeneous Moran set.
Write

Ak =

2k−1∑
i=1

(iNi + [γ log2(iNi)] + 1)

and

Bk =

2k∑
i=1

(iNi + [γ log2(iNi)] + 1).

That is, Ak and Bk are the lengths of the words in W1 · · ·W2k−1 and W1 · · ·W2k,
respectively.

For any n ≥ N1, there exists some positive k such that

Ak ≤ n < Ak + 2kN2k + [γ log2(2kN2k)] + 1

or
Bk ≤ n < Bk + (2k + 1)N2k+1 + [γ log2((2k + 1)N2k+1)] + 1.

We only consider the case Ak ≤ n < Ak + 2kN2k + [γ log2(2kN2k)] + 1 since the second
case can be treated in the same way.

First, we show that

lim
n→∞

rn(x)
log2 n

= γ (3.5)

for any x ∈ E.

https://doi.org/10.1017/S1446788718000435 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788718000435


40 J. J. Li and M. Wu [8]

By the construction of E and (3.3),

rn(x) = [γ log2((2k − 1)N2k−1)] or [γ log2(2kN2k)].

Therefore,

[γ log2((2k − 1)N2k−1)]
log2(Ak + 2kN2k + [γ log2(2kN2k)] + 1)

≤
rn(x)
log2 n

≤
[γ log2(2kN2k)]

log2 Ak
.

By (3.4), we can check that both the first and the third terms tend to γ as k→∞. That
is, (3.5) holds.

Next we show that

lim inf
n→∞

Sn(x)
n

= α, lim sup
n→∞

Sn(x)
n

= β (3.6)

for any x ∈ E.
On one hand, write

Ck =

k−1∑
i=1

(
[α(2i − 1)]N2i−1 + [γ log2((2i − 1)N2i−1)] + [β(2i)]N2i + [γ log2((2i)N2i)]

)
.

It is easy to check that

SAk (x) = Ck + [α(2k − 1)]N2k−1 + [γ log2((2k − 1)N2k−1)]

and

SBk (x) = Ck + [α(2k − 1)]N2k−1 + [γ log2((2k − 1)N2k−1)]
+ [β(2k)]N2k + [γ log2((2k)N2k)].

It follows from (3.4) that

SAk (x)
Ak

=
Ck + [α(2k − 1)]N2k−1 + [γ log2((2k − 1)N2k−1)]

Bk−1 + (2k − 1)N2k−1 + [γ log2((2k − 1)N2k−1)] + 1

tends to α as k→∞. That is,

lim
k→∞

SAk (x)
Ak

= α. (3.7)

In a similar way,

lim
k→∞

SBk (x)
Bk

= β. (3.8)

On the other hand, recall that

Ak ≤ n < Ak + 2kN2k + [γ log2(2kN2k)] + 1.

We consider the following three cases.
Assume that there exists some positive integer 1 ≤ p < N2k such that

Ak + p(2k) ≤ n < Ak + (p + 1)(2k).
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Then
SAk (x) + p[β(2k)]
Ak + (p + 1)[2k]

≤
Sn(x)

n
≤

SAk (x) + (p + 1)[β(2k)]
Ak + p[2k]

.

It follows from (3.7) and Lemma 2.3 that

α ≤ lim inf
n→∞

Sn(x)
n
≤ lim sup

n→∞

Sn(x)
n
≤ β.

Assume that

Ak + 2kN2k < n ≤ Ak + 2kN2k + [γ log2(2kN2k)].

Then
SBk (x) − [γ log2(2kN2k)]

Bk − 1
≤

Sn(x)
n
≤

SBk (x)
Bk − [γ log2(2kN2k)] − 1

.

It follows from (3.4) and (3.8) that

lim
n→∞

Sn(x)
n

= β.

Assume that

Ak + 2kN2k + [γ log2(2kN2k)] ≤ n < Ak + 2kN2k + [γ log2(2kN2k)] + 1.

Then
SBk (x)

Bk
≤

Sn(x)
n
≤

SBk (x)
Bk − 1

.

It follows from (3.8) that

lim
n→∞

Sn(x)
n

= β.

Combining (3.7), (3.8) and the above estimates, we claim that (3.6) holds and
therefore (3.1) is proved.

We next prove (3.2).
It is not difficult to check that E can be regarded as a homogeneous Moran set and

the associated parameters {mi}i≥1 and {ci}i≥1 are defined as follows:

mi =



(
2k − 1

[α(2k − 1)]

)
,

2k−2∑
j=0

N j < i ≤
2k−1∑
j=0

N j;

(
2k

[β(2k)]

)
,

2k−1∑
j=0

N j < i ≤
2k∑
j=0

N j,

(3.9)
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ci =



2−(2k−1),

2k−2∑
j=0

N j < i <
2k−1∑
j=0

N j;

2−((2k−1)+[γ log2((2k−1)N2k−1)]+1), i =

2k−1∑
j=0

N j;

2−2k,

2k−1∑
j=0

N j < i <
2k∑
j=0

N j;

2−(2k+[γ log2(2kN2k)]+1), i =

2k∑
j=0

N j.

(3.10)

Here k ≥ 1 and we set N0 = 0 for convenience.

Next we will use Lemma 2.2 to estimate the lower Hausdorff dimension of E.
For any positive integer j > N1, there exists a positive integer k such that either∑2k−1

i=0 Ni ≤ j <
∑2k

i=0 Ni or
∑2k

i=0 Ni ≤ j <
∑2k+1

i=0 Ni. Again, we only consider the case
that

∑2k−1
i=0 Ni ≤ j <

∑2k
i=0 Ni.

We can write j =
∑2k−1

i=1 Ni + q with 0 ≤ q < N2k. We consider the following two
cases.

Subcase 1. j + 1 <
∑2k

i=1 Ni. By (3.9) and Lemma 2.1,

log(m1 · · ·m j) =

k∑
i=1

N2i−1 log
(

2i − 1
[α(2i − 1)]

)
+

k−1∑
i=1

N2i log
(

2i
[β(2i)]

)
+ q log

(
2k

[β(2k)]

)

=

k∑
i=1

N2i−1

(
(2i − 1)H

( [α(2i − 1)]
2i − 1

)
+ O(log(2i − 1))

)
+

k−1∑
i=1

N2i

(
(2i)H

( [β(2i)]
2i

)
+ O(log(2i))

)
+ q

(
(2k)H

( [β(2k)]
2k

)
+ O(log(2k))

)
.

On the other hand, by (3.10) and the choice of {Nn}n≥1,

−log(c1 · · · c j+1m j+1) ≤ − log(c1 · · · c j+1)

=

( 2k−2∑
i=1

iNi + (2k − 1)N2k−1 + q(2k)
)

log 2

+ O((2k − 1)2 + log(2k − 1)).
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By (3.4),

lim
k→∞

k∑
i=1

(2i − 1)N2i−1H
( [α(2i − 1)]

2i − 1

)
+

k−1∑
i=1

(2i)N2iH
( [β(2i)]

2i

)
2k−2∑
i=1

iNi + (2k − 1)N2k−1 + O((2k − 1)2 + log(2k − 1))

= H(α).

Observe that

lim
k→∞

q(2k)H
( [β(2k)]

2k

)
q(2k)

= H(β).

By Lemma 2.3 and the above estimates,

lim inf
j→∞

log(m1 · · ·m j)
− log(c1 · · · c j+1m j+1)

≥ min
(H(α)

log 2
,

H(β)
log 2

)
.

Subcase 2. j + 1 =
∑2k

i=1 Ni. By simple calculation, similar to the above case,

log(m1 · · ·m j) =

k∑
i=1

N2i−1 log
(

2i − 1
[α(2i − 1)]

)

+

k−1∑
i=1

N2i log
(

2i
[β(2i)]

)
+ (N2k − 1) log

(
2i

[β(2i)]

)

=

k∑
i=1

N2i−1

(
(2i − 1)H

( [α(2i − 1)]
2i − 1

)
+ O(log(2i − 1))

)
+

k−1∑
i=1

N2i

(
(2i)H

( [β(2i)]
2i

)
+ O(log(2i))

)
+ (N2k − 1)

(
(2k)H

( [β(2k)]
2k

)
+ O(log(2k))

)
.

On the other hand,

−log(c1 · · · c j+1m j+1) ≤ − log(c1 · · · c j+1)

=

( 2k−1∑
i=1

iNi + (2k)(N2k − 1)
)

log 2 + O((2k)2 + log(2k)).

Again,

lim inf
j→∞

log(m1 · · ·m j)
− log(c1 · · · c j+1m j+1)

≥
H(β)
log 2

≥ min
(H(α)

log 2
,

H(β)
log 2

)
.

Therefore, (3.2) holds.
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Case 2. γ = 0.
In this and the next case, we only give the key constructions of the desired

homogeneous Moran set since the proofs are similar to that in Case 1.
Let Nn = 2n2

, n ≥ 1 and, for k ≥ 1, let

W2k−1 =
{
ω1ω2 · · ·ωN2k−1−1uN2k−1 : uN2k−1 = ωN2k−1 12k−10,
ωi ∈ W2k−1([α(2k − 1)]), 1 ≤ i ≤ N2k−1

}
and

W2k =
{
ω1ω2 · · ·ωN2k−1uN2k : uN2k = ωN2k 1

2k0, ωi ∈ W2k([β(2k)]), 1 ≤ i ≤ N2k
}
.

Define
E = {0.v1v2 · · · ∈ (0, 1] : vi ∈Wi,∀i ≥ 1}.

Case 3. γ = +∞.
Let Nn = 2n2

, n ≥ 1 and, for k ≥ 1, let

W2k−1 =
{
ω1ω2 · · ·ωN2k−1−1uN2k−1 : uN2k−1 = ωN2k−1 1(2k−1)3

0,
ωi ∈ W2k−1([α(2k − 1)]), 1 ≤ i ≤ N2k−1

}
and

W2k =
{
ω1ω2 · · ·ωN2k−1uN2k : uN2k = ωN2k 1

(2k)3
0, ωi ∈ W2k([β(2k)]), 1 ≤ i ≤ N2k

}
.

Define
E = {0.v1v2 · · · ∈ (0, 1] : vi ∈Wi,∀i ≥ 1}.
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