
Robotica (2024), 42, pp. 2742–2760
doi:10.1017/S0263574724001085

RESEARCH ARTICLE

Combining spatial clustering and tour planning for
efficient full area exploration
Jiatong Bao1 , Sultan Mamun1, Jiawei Bao1, Wenbing Zhang2, Yuequan Yang3 and Aiguo Song4

1School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou, China
2School of Mathematical Sciences, Yangzhou University, Yangzhou, China
3School of Information Engineering and the School of Artificial Intelligence, Yangzhou University, Yangzhou, China
4School of Instrument Science and Engineering, Southeast University, Nanjing, China
Corresponding author: Jiatong Bao; Email: jtbao@yzu.edu.cn

Received: 24 December 2023; Revised: 27 February 2024; Accepted: 28 May 2024;
First published online: 13 September 2024

Keywords: mobile robot; autonomous exploration; viewpoint planner; spatial clustering; tour planning

Abstract
Autonomous exploration in unknown environments has become a critical capability of mobile robots. Many meth-
ods often suffer from problems such as exploration goal selection based solely on information gain and inefficient
tour optimization. Recent reinforcement learning-based methods do not consider full area coverage and the per-
formance of transferring learned policy to new environments cannot be guaranteed. To address these issues, a
dual-stage exploration method has been proposed, which combines spatial clustering of possible exploration goals
and Traveling Salesman Problem (TSP) based tour planning on both local and global scales, aiming for effi-
cient full-area exploration in highly convoluted environments. Our method involves two stages: exploration and
relocation. During the exploration stage, we introduce to generate local navigation goal candidates straight from
clusters of all possible local exploration goals. The local navigation goal is determined through tour planning,
utilizing the TSP framework. Moreover, during the relocation stage, we suggest clustering all possible global
exploration goals and applying TSP-based tour planning to efficiently direct the robot toward previously detected
but yet-to-be-explored areas. The proposed method is validated in various challenging simulated and real-world
environments. Experimental results demonstrate its effectiveness and efficiency. Videos and code are available at
https://github.com/JiatongBao/exploration.

1. Introduction
Mobile robots are being increasingly deployed across a wide range of applications [1, 2], such as search
and rescue operations, hospital services, and office deliveries. In these scenarios, the robots are required
to autonomously navigate and explore unknown environments in order to gather information and effi-
ciently accomplish their tasks. For instance, search and rescue robots must rapidly and autonomously
search through disaster-stricken areas, while hospital service and office delivery robots need to efficiently
explore and map large and complex environments without the need for additional human interven-
tion. Therefore, the autonomously exploration and navigation through unknown environments represent
critical capabilities for mobile robots.

Conventional exploration methods typically involve detecting frontiers [3, 4], sampling viewpoints,
and navigating the robot toward the viewpoint with the highest information gain. These methods often
rely on either frontiers or randomly sampled viewpoints. Frontiers are special locations that sepa-
rate explored areas from unexplored ones and were first introduced for autonomous exploration by
Yamauchi et al. [4]. However, the challenge remains in how to detect frontiers and select optimal fron-
tiers for exploration to maximize navigation efficiency and area coverage. On the other hand, most
viewpoint-based approaches tend to be greedy, with viewpoints densely sampled around the robot and

C© The Author(s), 2024. Published by Cambridge University Press.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001085
https://orcid.org/0000-0002-9476-5316
mailto:jtbao@yzu.edu.cn
https://https://github.com/JiatongBao/exploration
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2743

Figure 1. Overview of our method. The example environment which the robot is required to explore
is shown as a 2D map. Explored areas are depicted in blue, while unexplored regions are represented
by white spaces. Our method comprises two stages: the exploration stage and the relocation stage.
During the exploration stage, an Rapidly-exploring Random Tree is expanded within the local planning
horizon, where each node serves as a viewpoint. Frontiers are identified from these viewpoints. The iden-
tified local frontiers are considered as possible exploration goals. They are clustered, with each cluster
corresponding to a local navigation goal candidate. By using local tour planning, the optimal local nav-
igation goal is selected for execution, considering the remaining goals as possible global exploration
goals. Once no clusters in the local planning horizon remain, the robot switches to the relocation stage.
In this stage, all updated global exploration goals are clustered and employed for global tour planning.
The robot is then guided toward the selected global navigation goal. These two stages are executed back
and forth until no global exploration goals remain.

maintained throughout the exploration process. Without proper tour planning, the robot may spend con-
siderable time navigating back to viewpoints that are close to already explored regions. Therefore, both
frontier-based and viewpoint-based exploration methods frequently encounter challenges such as relying
exclusively on information gain [5] for the selection of navigation goals and not optimizing the explo-
ration path effectively. This leads to reduced efficiency in exploration, particularly in highly convoluted
environments. Recent reinforcement learning-based methods [6–8] focus on learning exploration poli-
cies and do not consider full area coverage. The performance cannot be guaranteed when transferring
learned policy to new environments.

In this paper, we propose a dual-stage exploration method that combines spatial clustering and tour
planning to address these challenges. Instead of individually assessing the information gained for each
potential exploration goal, spatially clustering all possible densely distributed exploration goals allows
the robot to rapidly determine sparse navigation goals. Tour planning based on Traveling Salesman
Problem (TSP) framework is executed on these sparse navigation goals, optimizing the robot’s path by
considering place-to-place costs and reducing computation load by limiting the number of tour locations.
Spatial clustering and tour planning are performed on both local and global scales.

Fig. 1 offers an overview of our method. During the exploration stage, frontiers are identified from an
Rapidly-exploring Random Tree (RRT) without any bias, all within the local planning horizon. These
frontiers are always densely distributed and considered as possible local exploration goals. They are
subsequently clustered and transformed into individual local navigation goal candidates. Planning tours
based on the local navigation goal candidates and the robot’s home position allows for the rapid expan-
sion of the exploration boundary. When no local exploration goal clusters remain, the robot transitions

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2744 Jiatong Bao et al.

to the relocation stage. Our method again clusters all possible global exploration goals that have not
been visited before and perform global tour planning. This empowers the robot to optimally navigate to
different recognized but unexplored sub-areas. These two stages are repeated until no global exploration
goals remain. In addition, a retrying mechanism is introduced to employ before the robot switches to
the relocation stage from the exploration stage, in order to enhance the exploration robustness.

1.1. Contributions
Our contributions can be summarized as follows:

• We propose to combine spatial clustering and TSP-based tour planning technologies in both
exploration and relocation stages.

• A retrying mechanism is suggested to enhance the robustness of exploration.
• Our code is open-source, allowing others to reproduce our results and conduct comparative

analyses with various exploration techniques.

2. Related work
Autonomous exploration of unknown environments has been extensively investigated in mobile robots,
ranging from unmanned ground vehicle [9–11] to unmanned aerial vehicle [12, 13], and others. The
exploration task can be executed either by a single-robot or in a multi-robot configuration [14–16].
Typically, these methods can be categorized into two groups: traditional approaches and machine
learning-based techniques. Traditional methods mainly rely on frontiers and viewpoints, employing a
greedy strategy for exploring unknown environments. Most traditional techniques ensure completeness
by guaranteeing full space coverage [9]. In contrast, machine learning-based methods [6, 8] may not
offer completeness, and the performance cannot always be guaranteed when transferring learned policy
to new environments.

The central challenge in frontier-based exploration lies in frontier detection and selection. Typically,
frontiers are identified as centroids of frontier edges, which are the lines separating known from the
unknown space [4]. One approach to detecting frontiers [9] involves expanding an RRT [17] until its
nodes extend into the unknown region of the map. Nodes within the unknown region are then considered
as frontiers. To speed up the search for frontiers, multiple independently growing trees are utilized. In
ref. [3], an adaptive frontier detection method is proposed to enhance the successful sampling rate of
RRT and solve the oversampling issue of RRT in sliding windows. Once frontiers are detected, a simple
policy for selecting navigation goals is to choose the nearest frontier as the exploration target. Another
policy involves selecting frontiers by minimizing map entropy concerning occupancy probabilities [10,
12]. Instead of choosing a single frontier, some works [18] exploit all frontiers and employ tour planning
to determine the sequence for visiting all frontiers. However, as the number of frontiers increases, the
computation load of tour planner escalates.

Viewpoint-based exploration methods focus on the generation of viewpoints and the calculation of
their exploration gain. The “Next-Best-View” Planner (NBVP) [19] is a well-known method that treats
nodes in the RRT as viewpoints, assessing their exploration gain based on the number of unknown vox-
els observed from each viewpoint. The robot then plans its path toward the viewpoint with the highest
gain. Another approach is the Graph-Based Exploration Planner (GBP) [20], which constructs a global
rapidly exploring random graph to guide the robot toward unexplored spaces. The Dual-Stage Viewpoint
Planner (DSVP) method [11] draws ideas from both frontier-based and viewpoint-based methods. DSVP
employs local frontiers to guide the expansion of a RRT, where each node serves as a candidate view-
point. It also utilizes global frontiers to relocate the robot to different sub-areas. The approach comprises
two stages: an exploration stage for expanding the exploration boundary and a relocation stage for revis-
iting unexplored sub-areas. During the exploration stage, each RRT node serves as a viewpoint, and
the RRT branch with the highest gain is employed for exploration. When no local frontiers remain, the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2745

robot switches to the relocation state and is directed to different areas based on global frontiers. DSVP
has shown great performance across various unknown environments. In ref. [13], viewpoints capable of
covering local frontier clusters are generated, and a tour planner is employed to determine the optimal
sequence for visiting these viewpoints. The tour planner operates on a small scale, ensuring compu-
tational efficiency. In ref. [21], a rapid autonomous exploration method (FAEL) is introduced, taking
into account factors such as information gain, movement distance, and coverage efficiency simultane-
ously. However, it falls short of ensuring complete space coverage. Furthermore, it does not address the
requirement of returning to a home position, which is crucial in many scenarios, especially those with
only one exit.

Inspired by the DSVP method, our work follows the dual-stage framework. We propose to combine
spatial clustering and TSP-based tour planning technologies for efficient exploration in both stages.
Through extensive experiments in a variety of highly convoluted environments, we demonstrate that
our method outperforms the compared approaches in terms of effectiveness and efficiency.

3. Problem description
Let S ⊂R

3 be the full space being explored, which comprises of the known occupied space Socc, the
known-free space Sfree, and the currently unknown space Sunk. The primary objective of the exploration
task is to navigate autonomously within S and discover as much of the known space Socc ∪ Sfree as
possible within a given time limit Tlim. The evaluation criteria for assessing the exploration performance
include metrics such as area coverage (i.e., explored area volume, travel distance, and overall time)
and exploration efficiency (i.e., explored area volume per second). In addition, the evaluation assumes
precise robot localization and mapping, when measuring the exploration performance.

4. Our approach
As shown in Fig. 2, the proposed framework consists of several blocks of data structures and functions
that can be classified into two stages: exploration and relocation. In the exploration stage, a local RRT is
expanded within the free space of the environment, concurrently maintaining a local viewpoint graph.
The identification of local frontiers is accomplished either by examining the graph vertices or the RRT
nodes (Section 4.1.1). Additionally, these frontier are considered as possible exploration goals and fur-
ther processed into individual clusters, yielding local navigation goal candidates (Section 4.1.2), which,
in turn, serve as input for local tour planning (Section 4.1.3). The planned tour destination is taken as the
navigation goal, with the local viewpoint graph facilitating the determination of the shortest path from
the current robot position to the destination. When no clusters are within the current local planning
horizon, the robot transitions to the relocation stage. In this stage, global exploration goals are clustered
(Section 4.2.1) and the global viewpoint graph is updated (Section 4.2.2). Each global exploration goal
cluster is also represented by a navigation goal. All global navigation goal candidates are further fed into
tour optimization to ascertain the next navigation goal (Section 4.2.3) for relocation. The robot transi-
tions between the two stages until no navigation goals remain. Furthermore, to enhance the method’s
robustness, a retrying mechanism is introduced, enabling the regeneration of the RRT for a repeated
attempt at the exploration stage before transitioning to the relocation stage.

4.1. Exploration stage
4.1.1. Detecting local exploration goals
In traditional frontier-based exploration [4], frontiers F are defined as known-free voxels adjacent to
unknown voxels. Here, a known-free voxel v is inspected by examining its neighborhood voxels {u}
within a cuboidal region Bv ⊂R

3 centered at v. If there exist unknown neighbor voxels with the number
exceeding a given threshold λnum, the voxel is classified as a frontier:

v ∈F ⇐⇒ n(u) > λnum, ∀u ∈Bv ∧ v ∈ Sfree ∧ u ∈ Sunk (1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2746 Jiatong Bao et al.

Figure 2. The framework of our exploration method. The blue blocks represent components employed
during the exploration stage, whereas the orange blocks denote those utilized in the relocation stage.

Local frontiers FL are those found within a local planning horizon denoted as H⊂R
3, centered at

the robot position at the start of each exploration planning iteration. A voxel v is considered a local
frontier if it meets:

v ∈FL ⇐⇒ v ∈F ∧ v ∈H (2)

All detected local frontiers are considered as possible local exploration goals.
Fig. 1 also illustrates the process of detecting local exploration goals. Initially, an RRT is dynamically

expanded from the robot position to generate viewpoints within H. Each node on the tree corresponds
to a viewpoint, and a local viewpoint graph GL is constructed using these viewpoints as vertices. The
local viewpoint graph helps plan a local navigation path from the current position to a local destination.
Subsequently, frontiers are chosen from these viewpoints, defined as {Fi}, i= 1, · · · , M, where M is the
number of frontiers. Specifically, any vertex v on the graph that meets Equation (2) is regarded as a local
frontier. Each local frontier Fi is associated with a gain value:

V(Fi)= n(u), ∀u ∈BFi ∧ u ∈ Sunk (3)

which is used to select the most promising frontiers for building the global viewpoint graph.

4.1.2. Clustering local exploration goals
The identified local exploration goals FL are divided into K clusters based on their spatial proximity:

FL =F 1
L ∪ · · · ∪FK

L , F i
L ∩F j

L =∅, 1≤ i, j≤K, i 
= j (4)

Local exploration goals are assigned to the same cluster if their Euclidean distance is less than a tolerance
parameter ε, specifying the minimum distance between any two clusters:

F i
L ∩F j

L =∅ ⇐⇒ d(u, v) > ε, ∀u ∈F i
L, ∀v ∈F j

L (5)

where d(·, ·) denotes the Euclidean distance between two spatial points. Note that there is another inher-
ent constraint for spatial clustering. The possible exploration goals are sampled from a local RRT, and
the robot can travel freely between any two points without encountering obstacles. This means that, in
our context, two clusters positioned on opposite sides of a thin wall can be merged into a single cluster,
as long as they originate from the same RRT sampling.

For each cluster F k
L , its centroid is calculated by averaging the 3D positions of all points within the

cluster:

ck
L =

1∣∣F k
L

∣∣
∑

i

Fi, Fi ∈F k
L (6)

where
∣∣F k

L

∣∣ is the number of local exploration goals in cluster F k
L .

As shown in Fig. 3, a navigation goal candidate gk
L is selected for each local cluster F k

L . This goal is
the furthest point along the direction from the robot position Prob to ck

L. In addition, a slight tolerance of
direction angle between

�gk
L−ck

L‖gk
L−ck

L‖ and
�ck

L−Prob‖ck
L−Prob‖ is allowed. This is done to ensure that the local navigation

goal is distant from the current robot position, promoting the coverage of more unknown areas for the

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2747

Figure 3. The process of generating local navigation goal candidates. For each exploration goal cluster,
the centroid is calculated. The vector from the robot position to the centroid is determined. The furthest
point in the vector direction with a slight angle tolerance is selected as the navigation goal candidate.

next iteration of planning. In the end, K local exploration goal clusters will result in K local navigation
goal candidates {gk

L}, 1≤ k≤K.

4.1.3. Local tour planning
The next question is how to determine the best local navigation goal from the candidate set. Inspired by
[13], we propose solving it as a variant of the TSP. The local navigation goal candidates {gk

L}, 1≤ k≤K
and the global home position ghome serve as places to be visited by a salesman, starting from the current
place Prob. The goal is to compute an optimal open-loop tour that passes through all the local candidate
goals and ends at the global home position. Unlike the standard TSP, where the final place to visit is the
starting place, here the final place is a specified place (i.e., ghome). We model this as an asymmetric TSP
(ATSP) by designing the cost matrix CATSP accordingly.

CATSP is a (K + 1)× (K + 1) square matrix, where the entry CATSP
r,c at row r and column c denotes the

traveling cost from place r to place c. The cost to travel from the current robot position Prob to the k-th
local goal gk

L is:

CATSP
0,k = L(Prob, gk

L)+H(Prob, gk
L), k ∈ {1, · · · , K}, (7)

where L(·, ·) calculates the shortest path length between two positions according to the local viewpoint
graph, and H(·, ·) calculates the cost of changing the robot heading to the next position. The cost between
any two local goals is:

CATSP
r,c =CATSP

c,r = L(gr
L, gc

L), r, c ∈ {1, · · · , K}. (8)

Considering the first column of CATSP, the item CATSP
k,0 normally denotes the cost traveling from gk

L to
Prob. We substitute it with the cost traveling from gk

L to ghome:

CATSP
k,0 = L(gk

L, ghome), k ∈ {1, · · · , K}, (9)

where the shortest path length is calculated according to the global viewpoint graph. The advantage of
including ghome in local tour planning will be investigated in Section 5.3. Based on the cost matrix, the
ATSP can be solved using existing algorithms. Once the optimal open-loop tour is obtained, the robot

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2748 Jiatong Bao et al.

proceeds to the first destination on the tour. After reaching the desired goal, the local planning horizon
H is adjusted accordingly, and the exploration stage is repeated until no clusters remain within H.

It’s important to note that the TSP is kept small scale and easy to solve by controlling the number
of places in the tour, determined by the size of the local planning horizon and the clustering process.
Additionally, the global home position imposes a rigid constraint on the TSP, ensuring the robot returns
home regardless of the order in which local goals are visited. However, the global home position is not
selected as the next navigation goal during the exploration stage.

4.2. Relocation stage
When there are no remaining exploration goal clusters within H, the robot enters the relocation stage.
However, it’s important to note that the algorithm’s parameters may not always suit all types of ter-
rains and environmental structures. Randomly sampling spatial points can sometimes result in an RRT
with limited variation or even degeneration. In such cases, the robot may fail to explore certain areas
effectively. To enhance the success rate of exploration, we introduce a retrying mechanism before tran-
sitioning from exploration to relocation. Specifically, when there are no exploration goal clusters within
H, the RRT is regenerated for further exploration. If the robot still cannot find any exploration goal clus-
ters, it proceeds to the relocation stage. This stage involves clustering global exploration goals, updating
the global viewpoint graph, and planning a global tour.

4.2.1. Clustering global exploration goals
In each iteration of local tour planning, any remaining local navigation goal candidates that have not
been visited before are added to the list of global exploration goals. However, because the information
on navigation goals can change during the exploration process, each global exploration goal is double-
checked at the beginning of the relocation stage to confirm whether it still represents an unexplored
space. This verification can be quickly performed using Equation (1), where the searched space Bv

is doubled in x and y directions. Any global exploration goals that no longer satisfy Equation (1) are
removed from the list. The updated global exploration goals are then denoted as {gn

G}, 1≤ n≤N.
In large-scale and convoluted environments, the number of global exploration goals, denoted as N,

can become excessively large. This will pose a significant challenge for the tour planning process. To
address this issue, we propose the utilization of clustering technology to reduce the number of travel
destinations when N exceeds a predefined threshold, denoted as ρnum. Specifically, each global explo-
ration goal is assigned a cost value representing the shortest path length from the global home position
to itself. Any two global exploration goals with a cost difference less than εgoal are grouped into the same
cluster. Within each cluster, we select the exploration goal that is furthest from the home position as a
global navigation goal candidate. This approach significantly reduces the number of global navigation
goal candidates.

4.2.2. Updating global viewpoint graph
The global viewpoint graph plays an important role in computing the travel cost between any two global
navigation goal candidates, as well as planning the shortest navigation path from the current robot posi-
tion to a desired destination within a large-scale space. Following the approach in ref. [11], in each
iteration of the exploration stage, the local graph vertices on the shortest path from the robot to vertices
with positive gain values are added to the global viewpoint graph. The edges are updated accordingly.
The global viewpoint graph provides a sparse representation of the environment while still providing
short paths between viewpoints.

4.2.3. Global tour planning
During the relocation stage, the primary objective is to find an optimal global tour that guides the robot
to visit all global navigation goals and return to the global home position. This is also achieved by

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2749

implementing an ATSP. The cost matrix, which has a size of (N + 1)× (N + 1), is built using Equations
(7) – (9) without considering the heading cost. Here, the local candidate goal {gk

L}, 1≤ k≤K is replaced
by {gn

G}, 1≤ n≤N.
Since the number of global navigation goal candidates is suppressed by the clustering step, the global

tour planning process can be completed with a satisfactory computational load. The number of itera-
tions required for global tour planning or relocation is also decreased, resulting in significant savings in
navigation time. We will investigate the effectiveness of this approach in an ablation study, as discussed
in Section 5.3.

4.3. Algorithm implementation
Algorithm 1 provides an overview of the entire exploration process. Throughout this process, a Lidar
Odometry and Mapping (LOAM) system plays an important role in estimating the robot’s states and
generating the resultant map. Additionally, a terrain traversability analysis module comes into play,
generating a terrain map that provides the robot with obstacle information. Based on the terrain map and
globally aligned laser scans, two maps, Mocc and Mocto, are updated at both semantic and metric levels,
respectively. Within a defined local planning horizon, an RRT is dynamically expanded based on the
information from these semantic and metric maps. The subsequent steps (Lines 7∼ 17) in the algorithm
involve frontier detection, local exploration goal clustering, and local tour planning, as described in
Section 4.1. If no local exploration goal clusters are found during the exploration stage, the algorithm
allows for one more attempt before transitioning to the relocation stage.

The following steps implement the relocation stage as described in Section 4.2. Line 23 shows the
process of updating global exploration goals, which involves double-checking already existing goals
and incorporating newly detected local navigation goals. All global exploration goals are then clustered
and employed for tour planning (Lines 25 ∼ 30). The strategic application of clustering technology to
reduce traveling destinations for tour planning significantly limits computation overhead, especially in
large-scale and convoluted environments. Upon successfully navigating the robot to its planned target,
it transitions back to the exploration stage. These two stages alternate until no global exploration goals
remain. Eventually, the robot returns to its home position, signifying the completion of the exploration
task.

5. Experiments
We begin by evaluating the performance of our proposed method in various simulated environments
and comparing it with the DSVP method [11], which is a challenging autonomous exploration method.
Given that DSVP has already been compared with the state-of-the-art methods such as NBVP [19]
and GBP [20], demonstrating its superior performance, we do not replicate those results in this paper.
Additionally, we compare our method with the FAEL method [21], which also employs tour planning
for exploration. Furthermore, we conduct ablation studies to investigate the necessity of specific key
operations within our method. Finally, we validate our proposed method through testing on our mobile
robot in real-world environments.

5.1. Setup
For the evaluation, we employ a benchmark exploration dataset [22] containing five exploration sce-
narios: indoor, campus, garage, tunnel, and forest. These environments vary in characteristics, with
indoor, tunnel, and forest environments featuring narrow passages predominantly, while campus and
garage environments offer more spacious areas. These environments are all large-scale and highly con-
voluted. They are loaded in Gazebo simulator and are unknown to all the methods. All the methods are
implemented in the Robot Operating System (ROS) framework. The benchmark exploration platform

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2750 Jiatong Bao et al.

Algorithm 1. Exploration in Unknown Environments
Input: LOAM result and terrain map
Output: Explored map of the environment
1: while Try exploration stage do
2: H← updatePlanningHorizon()
3: Mocc← updateOccupancyGridMap()
4: Mocto← updateVolumetricMap()
5: T ← dynamicRRT(H, Mocc, Mocto)
6: GL← updateLocalGraph(T )
7: FL← detectLocalFrontiers(T , Mocto)
8: if FL 
= ∅ then
9: GG← updateGlobalGraph(FL)

10: {F j
L} ← clusteringLocalExplorationGoals(FL)

11: Remove clusters containing no more than τc (e.g. τc = 3) points.
12: if {F j

L} 
= ∅ then
13: {gk

L} ← generateLocalNavigationGoalCandidates({F j
L})

14: g← planningTour({gk
L}, Prob, ghome, GL, GG)

15: Do path planning and navigate the robot to target g.
16: end if
17: end if
18: if FL =∅ or {F j

L} = ∅ then
19: Retry exploration stage one more time.
20: end if
21: end while
22: Transitions to relocation stage.
23: {gn

G}← updateGlobalExplorationGoals({gn
G}, {gk

L})
24: if {gn

G} 
= ∅ then
25: if |{gn

G}| ≥ ρnum then
26: {gi

G}← clusteringGlobalExplorationGoals({gn
G})

27: g← planningTour({gi
G}, Prob, ghome, GG)

28: else
29: g← planningTour({gn

G}, Prob, ghome, GG)
30: end if
31: Do path planning and navigate the robot to target g.
32: Transitions to exploration stage.
33: else
34: Return home and complete the exploration task.
35: end if

[22] includes a ROS package called “vehicle simulator” to simulate robot kinematics and provide accu-
rate location information. The maximum linear and angular velocities of the simulated robot are set
to 2m/s and 90deg/s, respectively. Other essential ROS packages for exploration, including collision
avoidance, terrain traversability analysis, and path following, are also utilized. DSVP and our planner
are launched as independent ROS nodes.

In the implementation, we define Bv as a space of 10× 10× 0.8 m3 in Equation (1) and H as a
space of 30× 30× 10 m3 in Equation (2). λnum in Equation (1) is set to 10 for narrow environments
and 40 for spacious environments. For clustering local exploration goals, we choose ε = 2m in Equation
(5) for narrow environments and ε = 3m for spacious environments. Clusters with fewer than 3 points
are removed. When solving the ATSP for local and global tour planning, a Lin-Kernighan traveling

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2751

Table I. Environment volume estimated by the runs.

Maximum Volume (m3)
98% of the

Env. DSVP Ours All Maximum Volume (m3)
Indoor 5378.8 5377.1 5378.8 5271.2
Campus 46101.6 46196.3 46196.3 45272.3
Garage 42445.5 42291.6 42445.5 41596.6
Tunnel 22072.9 22024.6 22072.9 21631.4
Forest 42580.4 43128.4 43128.4 42265.8

Table II. Comparison of exploration performance.

Explored
Volume

Explored Traveling Overall Per Second
Volume (m3) Distance (m) Time (s) (m3/s)

Success
Env. Method Rate (%) Mean Std. Mean Std. Mean Std. Mean Std.
Indoor DSVP 80 5357.4 11.0 1469.3 92.0 887.4 67.3 6.07 0.41

Ours 90 5364.8 10.5 1444.2 42.3 837.5 28.2 6.41 0.21
Campus DSVP 80 45,804.4 175.4 2613.9 39.1 1348.6 27.9 33.98 0.68

Ours 100 46,020.1 122.8 2631.5 24.2 1354.6 12.3 33.98 0.33
Garage DSVP 70 42,367.9 49.4 5105.7 247.1 2728.2 124.1 15.56 0.74

Ours 100 42,239.4 40.2 4114.7 204.3 2216.1 107.1 19.10 0.87
Tunnel DSVP 100 22,046.9 22.3 6673.7 252.8 3612.2 141.9 6.11 0.23

Ours 100 21,956.5 90.4 6033.4 152.8 3238.6 88.0 6.78 0.17
Forest DSVP 50 42,492.0 89.4 2104.6 44.3 1113.2 16.5 38.18 0.50

Ours 100 42,748.1 252.4 2053.5 103.7 1098.9 57.7 38.99 1.76

salesman heuristic solver [23] is employed. In Equation (7), the heading cost is defined as α

π
· 20, where α

represents the radians by which the robot should change its heading. If the number of global exploration
goals for global tour planning exceeds ρnum = 40, the goals are spatially clustered with a tolerance of
εgoal = 10m. Both the DSVP method and our method share default parameters for operations such as
RRT generation, graph updates, 3D occupancy mapping, and other relevant activities.

Each method is run 10 times, with a run ending under the following conditions [11]: the exploration
algorithm reports completion, the robot moves less than 10m within 300s, or a time limit is reached.
We compute the average performance across these 10 runs to compare the methods. All simulations and
evaluations are conducted on a Desktop PC equipped with an Intel Core i9-10900KF CPU and 32 GB
of memory running Ubuntu 20.04.

5.2. Results
5.2.1. Area coverage and exploration efficiency
Table I provides an overview of the volumes explored by the compared methods, with the maximum
volume across all runs for each environment serving as the ground truth area volume. A run is consid-
ered unsuccessful if the explored volume is less than 98% of the ground truth. Table II compares the
exploration performances of DSVP and our method. The performance metrics are calculated based on
the successful runs.

In the indoor environment, characterized by long and narrow corridors connected with lobby areas,
both methods may fail to go through spaces with guard rails, as shown in Fig. 4, due to the randomness

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2752 Jiatong Bao et al.

Figure 4. The space with guard rails which occasionally hinders the robot’s passage. During explo-
ration failures, the robot may successfully reach point a but faces difficulties progressing to point C.
This is because the laser scans can penetrate the guard rails, resulting in fewer frontiers being detected
at point B. If the RRT cannot find a feasible path for extending from point B to point C, the robot will be
unable to reach its destination at point C via point B.

Figure 5. The resulting maps and trajectories of the compared methods for the indoor environment.

of RRT expansion. However, our method demonstrates a slightly higher success rate of 90% compared
to DSVP’s 80%. This is attributed to our method’s bias-free RRT expansion, which favors finding sparse
local candidate goals that can be reached by the robot. DSVP, on the other hand, biases RRT expansion
toward frontiers in large-scale spaces.

Fig. 5 shows the exploration trajectories that are the best of the 10 runs. The best trajectory is from the
successful runs and with the highest exploration efficiency. On average, DSVP completes the exploration
after traveling 1469.3 m over 887.4 s, while our method takes 837.5 s and travels 1444.2 m. With tour
planning, our method facilitates more efficient travel to candidate goals. Despite the need to solve the
ATSP, the heuristic solver efficiently handles the limited number of candidate goals in our method. In
terms of exploration efficiency, our method covers 6.41 m3/s, while DSVP covers 6.07 m3/s. Notably,
the standard variances of all metrics for our method are lower than those for DSVP, indicating that our
method is more efficient and stable.

In the campus environment with undulating terrains, DSVP achieves a success rate of 80%, while our
method achieves 100% by incorporating the retrying mechanism for RRT expansion. However, regen-
erating the RRT and re-finding local exploration goals add extra time to our method’s process. On
average, both methods spend comparable time and travel similar distances to complete the explorations,
achieving an exploration efficiency of 33.98 m3/s. As shown in Fig. 6, the best trajectory in DSVP

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2753

Figure 6. The resulting maps and trajectories of the compared methods for the campus environment.

Figure 7. The resulting maps and trajectories of the compared methods for the garage environment.

outperforms ours. In this environment, where lanes form a star network, tour planning does not signif-
icantly impact exploration in our method. Again, our method exhibits lower standard variances across
all metrics, indicating greater stability.

In the garage environment, featuring multiple floors and sloped terrains, DSVP faces challenges and
achieves a success rate of only 70%. In contrast, our method successfully completes the exploration
in all runs. On average, our method travels 991 m less distance, takes 512 s less time, and achieves a
3.5 m3/s higher exploration efficiency compared to DSVP. Moreover, our method exhibits lower standard
variances for explored volume, traveling distance, and overall time, indicating superior efficiency and
stability. Qualitative comparisons of the best trajectories, as shown in Fig. 7, support these findings.

In the tunnel environment, characterized by a complex network of tunnels, both methods complete
the exploration task for all runs. However, our method outperforms DSVP in terms of traveling distance
(640 m less), time (374 s less), and exploration efficiency (0.67 m3/s higher). Additionally, our method
has lower standard variances for most metrics compared to DSVP. Figure 8 shows a qualitative com-
parison of the best trajectories, demonstrating that our method explores a comparable volume of space
with less time and distance.

In the forest environment with cluttered trees, DSVP tends to explore the space coarsely, resulting
in the oversight of many small spaces and a 50% success rate. Our method is able to complete all
exploration runs but exhibits slightly higher standard variance. In terms of other metrics, both methods

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2754 Jiatong Bao et al.

Figure 8. The resulting maps and trajectories of the compared methods for the tunnel environment.

Figure 9. The resulting maps and trajectories of the compared methods for the forest environment.

demonstrate comparable performance overall. However, our method achieves a slightly higher explo-
ration efficiency than DSVP, with an additional 0.8 m3/s. Qualitative comparisons of the best trajectories
for each method, as shown in Fig. 9, further highlight our method’s superior exploration efficiency.

5.2.2. Computational efficiency
To investigate the computational efficiencies of the methods, the planning iteration count and average
planning runtime for each exploration run are recorded. The average values across all runs are presented
in Table III. Our method generally requires fewer planning iterations compared to DSVP in most envi-
ronments. In the indoor, tunnel, and forest environments, our method also exhibits shorter runtimes than
DSVP. However, it’s worth noting that in the campus and garage environments, which feature numer-
ous wide spaces, our method generates a larger number of candidate goals, leading to additional time
for planning and target selection. Nevertheless, the average planning runtime across all environments
remains at approximately 0.45 s, highlighting the efficiency and suitability of our exploration algorithm
for real-world mobile robot deployment.

5.2.3. Comparison with other methods
We also execute the open-source FAEL code [21] in the same five simulated environments for multiple
runs. As shown in Fig. 10, the FAEL method does not prioritize complete area coverage and returning
home. It exhibits limitations in fully exploring highly convoluted environments. Sometimes, there may
be frequent switches in navigation target selection, particularly within highly convoluted spaces. FAEL
appears to be better suited for large unconvoluted spaces, where it balances factors like information
gain, movement distance, and coverage efficiency effectively. Since FAEL fails in exploration of the
garage environment, characterized by multiple floor and sloped terrains, its compatibility with multi-
floor environments remains uncertain.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2755

Table III. Comparison of computation efficiencies.

Planning Iteration Avg. Planning Total Planning
Env. Method Count Runtime (s) Time (s)
Indoor DSVP 260 0.54 140.40

Ours 242 0.48 116.16
Campus DSVP 239 0.44 105.16

Ours 217 0.54 117.18
Garage DSVP 649 0.41 266.09

Ours 602 0.46 276.92
Tunnel DSVP 779 0.37 295.63

Ours 654 0.35 228.90
Forest DSVP 195 0.48 93.60

Ours 227 0.41 93.07

Table IV. Comparison of exploration performance whether considering global home
position or not in local tour planning.

Explored Traveling Overall Explored Volume
Method Volume (m3) Distance (m) Time (s) Per Second (m3/s)
Ours 5364.8 1444.2 837.5 6.41
Ours_R1 5372.3 1436.2 858.9 6.26

Figure 10. Exploration result of the indoor environment. The white lines denote the trajectories of
the robot. It shows that the FAEL method exhibits limitations in fully exploring the highly convoluted
environment.

5.3. Ablation studies
5.3.1. Local tour planning without considering global home position
As indicated in Equation (9), the cost of traveling from any local candidate goal to the current robot
position is defined as the distance from the candidate goal to the global home position. We investigate
the scenario where the global home position is not taken into account, specifically by setting CATSP

k,0

to 0. The revised version of our method is referred to as “Ours_R1.” We perform 10 exploration runs
in the indoor environment. The average performance results are presented in Table IV. It shows that,
when the global home position is not considered, the method yields comparable exploration coverage
and traveling distance but requires more exploration time. Consequently, the exploration efficiency is
lower compared to the method that takes the home position into account.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2756 Jiatong Bao et al.

(a)

(b)

Figure 11. The number of traveling destinations in global tour planning. When utilizing clustering (a),
The number of traveling destinations is significantly reduced, requiring a maximum of 11 milliseconds
to solve the ATSP. Without clustering (b), The number of traveling destinations increases significantly,
resulting in longer processing times to solve the ATSP and more iterations of tour planning.

5.3.2. Global tour planning without clustering global exploration goals
In the global tour planning process, the traveling destinations are selected from the global exploration
goals for the ATSP. In the experiment, if the number of global exploration goals exceeds 40, they are clus-
tered, resulting in a significant decrease in the number of traveling destinations. Figure 11(a) shows the
change in the number of selected traveling destinations throughout each iteration of global tour planning,
when executing exploration in the garage environment. Solving the ATSP with 40 nodes takes about 11
milliseconds. Figure 11(b) shows the results when clustering is not utilized, during another exploration
in the same environment. The maximum number of traveling destinations reaches 114, requiring 48
milliseconds to solve the ATSP. As the number of global exploration goals increases, more iterations
of tour planning or relocation are required. Consequently, this leads to an extended overall exploration
time.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2757

Figure 12. Our mobile robot. For autonomous exploration, it is equipped with a velodyne VLP-16 lidar
and a 6-axis IMU. All packages run on an onboard computer with a 4.8 GHz i7 CPU and 32 GB RAM.

5.3.3. Switching to the relocation stage without using retrying mechanism
The effectiveness of employing the retrying mechanism is examined before the robot switches to the
relocation stage when no local exploration goals are found. Since the campus and garage environments
are characterized by many uneven terrains, they have a more significant influence on the RRT expansion
during the exploration stage. We conduct 10 exploration runs in both environments without using the
retrying mechanism. The success rates of exploration in the campus and garage environments are 90%
and 0%, respectively. The experimental result shows that the RRT has a high possibility of failing to
reach unexplored areas when the robot is climbing the ramp between floors. Without attempting to
generate the RRT once more, the robot stops exploration and is relocated to a previously recognized
space that has not been explored. As shown in Table II, the success rate of exploration reaches 100% in
both environments when the retrying mechanism is employed, validating its effectiveness.

5.4. Test in real-world environments
We deploy our exploration package and the benchmark navigation stack [22] on our mobile robot plat-
form, which is a four-wheel differential driving mobile robot as shown in Fig. 12. For autonomous
exploration, our robot is equipped with a Velodyne VLP-16 lidar and a 6-axis IMU. To handle robot
localization and mapping, we utilize a modified version of the LIO-SAM package [24], which imple-
ments a real-time lidar-inertial odometry. The robot’s maximum linear and angular velocities are set to
0.5 m/s and 15 deg/s, respectively. All packages run on an onboard computer with a 4.8 GHz i7 CPU
and 32 GB RAM.

The first experiment is conducted on a single floor of a building on our university campus, as shown
in Fig. 13. The environment consists of several narrow corridors, intersections, doors, and dead ends.
Figure 13 also displays the resulting map and final trajectory obtained by our method. To prevent the
robot from entering the bathroom, we placed some static obstacles within the environment. Overall, our
method spends 760.2 s traveling a distance of 230.5 m and covering an area of 1928.3 cubic meters.
Given the low-speed setting of our mobile platform and the relatively enclosed corridor environment,
the exploration efficiency is measured at 2.54 m3/s.

In another exploration experiment, we navigate the robot through an underground parking lot of
a teaching building on our university campus, as illustrated in Fig. 14. This environment comprises

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2758 Jiatong Bao et al.

Figure 13. The resulting map and trajectory of our method for a real corridor environment.

Figure 14. The resulting map and trajectory of our method for a real underground parking lot
environment.

multiple parking spaces with many cars parked, along with building columns and other obstacles. The
entry and exit of the parking lot were blocked with static obstacles. The robot begins the exploration near
the entry point. After traveling a distance of 567.8 m over a duration of 1243.3 s, the robot successfully
completes the exploration. The explored space volume measures 15,077.8 cubic meters, resulting in an
exploration efficiency of 12.13 m3/s.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


Robotica 2759

These real-world experiments demonstrate the effectiveness of our algorithm when applied to actual
mobile robots, highlighting its capacity to efficiently navigate and explore unfamiliar environments.

6. Conclusions
In conclusion, we have presented a dual-stage exploration method that prioritizes simplicity and effec-
tiveness. The spatial clustering and TSP-based tour planning technologies are employed in both stages.
In the exploration stage, possible local exploration goals are densely detected from RRT nodes and then
spatially clustered. The sparse local navigation goal candidates are extracted from the clusters rather
than calculating gains of all possible RRT branches. The local tour planner is further employed to select
optimal navigation goals for efficient exploration. In the relocation stage, the number of global explo-
ration goals is also controlled by clustering and the global tour planning effectively guides the robot to
revisit unexplored spaces. Our proposed retrying mechanism significantly enhances the success rate of
exploration. To evaluate our approach, we conduct tests in five benchmark simulation environments and
two real-world environments. Both the simulation and real-world tests demonstrate the effectiveness and
efficiency of our method.

However, both DSVP and our methods have certain limitations. Firstly, the system heavily relies on
mapping performance and the accuracy of robot localization. It may not perform as expected in open
spaces, such as the outdoor areas on campus. Relying solely on laser scans may prove insufficient for
detecting obstacles like road curbs or green belts that could pose a danger to the robot. To enhance
terrain traversability analysis, integrating additional sensors, such as cameras, would be highly benefi-
cial. Secondly, during the exploration stage, the local graph is utilized to plan the path from the current
position to the target goal. Due to the sparse sampling of nodes in the local graph, the planned path
may not always be optimal. Furthermore, the planned path is not smoothed in accordance with the
robot’s kinematics model. This can result in the robot making frequent heading adjustments, leading
to increased power consumption, longer travel times, and posing additional challenges to the simulta-
neous localization and mapping process. Future work will be dedicated to addressing these identified
shortcomings.

Author contributions. Jiatong Bao and Sultan Mamun designed and implemented the exploration method, verified its effective-
ness, and wrote the paper. Jiawei Bao set up the simulated and real experimental environments. Wenbing Zhang and Yuequan
Yang did the experimental analysis. Aiguo Song guided the progress and reviewed the paper.

Financial support. This research work is supported by the National Natural Science Foundation of China (Grant No. 61806175,
62073322).

Competing interests. The authors declare no competing interests exist.

Ethical standards. Not applicable under the heading.

References
[1] M. B. Alatise and G. P. Hancke, “A review on challenges of autonomous mobile robot and sensor fusion methods,” IEEE

Access 8, 39830–39846 (2020).
[2] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat, C. Cadena, M. Hutter, A. Ijspeert, D. Floreano, L.

M. Gambardella, R. Siegwart and D. Scaramuzza, “The current state and future outlook of rescue robotics,” J Field Robot
36(7), 1171–1191 (2019).

[3] Z. Sun, B. Wu, C. Xu and H. Kong, “Ada-Detector: Adaptive Frontier Detector for Rapid Exploration,” In: International
Conference on Robotics and Automation (ICRA), (2022) pp. 3706–3712.

[4] B. Yamauchi, “A Frontier-Based Approach for Autonomous Exploration,” In: Proceedings 1997 IEEE International
Symposium on Computational Intelligence in Robotics and Automation CIRA’97. ’Towards New Computational Principles
for Robotics and Automation’, (1997) pp. 146–151.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core


2760 Jiatong Bao et al.

[5] J. Liu, C. Wang, W. Chi, G. Chen and L. Sun, “Estimated path information gain-based robot exploration under perceptual
uncertainty,” Robotica 40(8), 2748–2764 (2022).

[6] J. Hu, H. Niu, J. Carrasco, B. Lennox and F. Arvin, “Voronoi-based multi-robot autonomous exploration in unknown
environments via deep reinforcement learning,” IEEE Trans Veh Technol 69(12), 14413–14423 (2020).

[7] N. Khlif, K. Nahla and B. Safya, “Reinforcement learning with modified exploration strategy for mobile robot path planning,”
Robotica 41(9), 2688–2702 (2023).

[8] Y. Xu, J. Yu, J. Tang, J. Qiu, J. Wang, Y. Shen, Y. Wang and H. Yang, “Explore-Bench: Data Sets, Metrics and Evaluations
for Frontier-Based and Deep-Reinforcement-Learning-Based Autonomous Exploration,” In: International Conference on
Robotics and Automation (ICRA), (2022) pp. 6225–6231.

[9] H. Umari and S. Mukhopadhyay, “Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized
Trees,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2017) pp. 1396–1402.

[10] C. Wang, W. Chi, Y. Sun and M. Q.-H. Meng, “Autonomous robotic exploration by incremental road map construction,”
IEEE Trans Autom Sci Eng 16(4), 1720–1731 (2019).

[11] H. Zhu, C. Cao, Y. Xia, S. Scherer, J. Zhang and W. Wang, “Dsvp: Dual-Stage Viewpoint Planner for Rapid Exploration
by Dynamic Expansion,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2021) pp.
7623–7630.

[12] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas and S. Leutenegger, “Fast Frontier-Based Information-Driven
Autonomous Exploration with an Mav,” In: IEEE International Conference on Robotics and Automation (ICRA), (2020)
pp. 9570–9576.

[13] B. Zhou, Y. Zhang, X. Chen and S. Shen, “Fuel: Fast uav exploration using incremental frontier structure and hierarchical
planning,” IEEE Robot Automa Lett 6(2), 779–786 (2021).

[14] Q. Bi, X. Zhang, J. Wen, Z. Pan, S. Zhang, R. Wang and J. Yuan, “Cure: A hierarchical framework for multi-robot
autonomous exploration inspired by centroids of unknown regions,” IEEE Trans Autom Sci Eng 1–14 (2023).

[15] R. S. D. Muddu, D. Wu and L. Wu, “A Frontier Based Multi-Robot Approach for Coverage of Unknown Environments,”
In: IEEE International Conference on Robotics and Biomimetics (ROBIO), (2015) pp. 72–77.

[16] A. Soni, C. Dasannacharya, A. Gautam, V. S. Shekhawat and S. Mohan, “Multi-Robot Unknown Area Exploration Using
Frontier Trees,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2022) pp. 9934–9941.

[17] S. M. LaValle, Rapidly-exploring random trees : A new tool for path planning, (1998). The annual research report.
[18] Z. Meng, H. Qin, Z. Chen, X. Chen, H. Sun, F. Lin and M. H. Ang, “A two-stage optimized next-view planning framework

for 3-d unknown environment exploration, and structural reconstruction,” IEEE Robot Automa Lett 2(3), 1680–1687 (2017).
[19] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova and R. Siegwart, “Receding Horizon “Next-Best-View” Planner for 3D

exploration,” In: IEEE International Conference on Robotics and Automation (ICRA), (2016) pp. 1462–1468.
[20] T. Dang, M. Tranzatto, S. Khattak, F. Mascarich, K. Alexis and M. Hutter, “Graph-based subterranean exploration path

planning using aerial and legged robots,” J Field Robot 37(8), 1363–1388 (2020).
[21] J. Huang, B. Zhou, Z. Fan, Y. Zhu, Y. Jie, L. Li and H. Cheng, “FAEL: Fast autonomous exploration for large-scale

environments with a mobile robot,” IEEE Robot Automa Lett 8(3), 1667–1674 (2023).
[22] C. Cao, H. Zhu, F. Yang, Y. Xia, H. Choset, J. Oh and J. Zhang, “Autonomous Exploration Development Environment and

the Planning Algorithms,” In: International Conference on Robotics and Automation (ICRA), (2022) pp. 8921–8928.
[23] K. Helsgaun, “An effective implementation of the Lin–Kernighan traveling salesman heuristic,” Eur J Oper Res 126(1),

106–130 (2000).
[24] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti and R. Daniela, “Lio-Sam: Tightly-Coupled lidar Inertial Odometry

Via Smoothing and Mapping,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2020)
pp.5135–5142.

Cite this article: J. Bao, S. Mamun, J. Bao, W. Zhang, Y. Yang and A. Song (2024). “Combining spatial clustering and tour
planning for efficient full area exploration”, Robotica 42, 2742–2760. https://doi.org/10.1017/S0263574724001085

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0263574724001085
Downloaded from https://www.cambridge.org/core. IP address: 3.15.138.100, on 13 Nov 2024 at 08:50:50, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0263574724001085
https://www.cambridge.org/core

	Combining spatial clustering and tour planning for efficient full area exploration
	Introduction
	Contributions

	Related work
	Problem description
	Our approach
	Exploration stage
	Detecting local exploration goals
	Clustering local exploration goals
	Local tour planning

	Relocation stage
	Clustering global exploration goals
	Updating global viewpoint graph
	Global tour planning

	Algorithm implementation

	Experiments
	Setup
	Results
	Area coverage and exploration efficiency
	Computational efficiency
	Comparison with other methods

	Ablation studies
	Local tour planning without considering global home position
	Global tour planning without clustering global exploration goals
	Switching to the relocation stage without using retrying mechanism

	Test in real-world environments

	Conclusions


