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Abstract. A self-consistent nonlinear dynamo model is presented. The nonlinear behavior of the
plasma at small scale is described by using a MHD shell model for fields fluctuations; this allow
us to study the dynamo problem in a large parameter regime which characterizes the dynamo
phenomenon in many natural systems and which is beyond the power of supercomputers at
today. The model is able to reproduce dynamical situations in which the system can undergo
transactions to different dynamo regimes. In one of these the large-scale magnetic field jumps
between two states reproducing the magnetic polarity reversals. From the analysis of long time
series of reversals we infer results about the statistics of persistence times, revealing the presence
of hidden long-time correlations in the chaotic dynamo process.
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1. Introduction

The understanding of dynamo problem is fundamental to explain the origin and the
self-sustained of large scale magnetic field observed in natural systems like planets, stars,
galaxies, black holes etc.

Many researchers (e.g., Kagemayama et al., 2008) dealt with this problem using direct
numerical simulation (DNS), even if realistic parameter regimes are beyond the power
of actual supercomputers. Difficulties arise from the realistic description of both large-
scales and small-scale (high Reynolds numbers) turbulence. Actual DNS are able to
simulate only some few polarity reversals of the magnetic field. In order to overcome these
difficulties we have built a model which takes into account very large Reynolds numbers
and is able to reproduce very long time series of reversals which can be statistically
analyzed giving the possibility to make a comparison with paleomagnetic data.

2. Turbulent Shell Dynamo Model

The starting point of our model is the decomposition of the fields in an average part,
varying only on the large scale L, and a turbulent fluctuating part, varying at small-
scales ~ ¢, with the assumption ¢ < L (Parker, 1955). Performing this scale separation
we obtain, in the induction equation at large scale, a term which describes the action
of small scales on the large one consisting in a turbulent e.m.f. that can be written in
terms of the Fourier modes of velocity (u(k,t)) and magnetic field (b(k,t)) small scale
fluctuations as follow:

e=—>Y u(kt) xb (k). (2.1)

k
Introducing a basis in the spectral space: ¢1(k), é(k) = é3(k)xé(k), é3(k) =ik/|k|;
and writing expression (2.1) in a form symmetric with respect to the change of k in —k
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we finally find:

€= — Z & [(ul by —ug bF) + (ul by — uy b3)] (2.2)

k(k,>0)

where u; and us (b1 and by) are the components of u(k,t) (b(k,t)), along é; and é.

We describe the dynamics of the system at large scale by integrating the induction
equation in an axisymmetric situation and local approximation: we approximate the
toroidal (e;,) and the poloidal (€,) unit vectors with the cartesian unit vectors, €, and
é.. Hence the field at large scale are: ug =V (y,2) é&; by = By(y,t)é; + B, (y,t)é;.

The dynamics at small scales is described by a shell model. At variance w1th the
original MHD shell model (Frick and Sokoloff, 1998; Giuliani & Carbone, 1998), here the
nonlinear interactions avoid unphysical correlations of phases for each interacting triad.
We can write the set of self-consistent equations for our dynamo model coupling the Egs.
for the small scales and the Eqs. for the field at large scale in which the e.m.f. is in a form
consistent with the shell model and the spatial derivative associated with large scale is
estimated dividing by the typical large scale L:

% = %Z(um — Uy by,) +BpK n?ﬁ : (2.3a)
d‘ip L Z b = ) = ”L2 ) (2.3b)
% = ky(By + B,)by + ik, [(uy;ﬂum b buss) +
e B ) + Ly~ buab )] - v ¢ f (230
d;: = ik, (By + Bp)u, + % [(u;;HbM U tinn)
+(up b1 = by 1) — (Un—2by—1 — bn_w”_l)} kb, (2.3d)

where v is the viscosity and 7 is the diffusivity of the MHD flow; n is the shell number
(n =0,..N); fn is an external forcing term applied only on the first shell ky ~ 27 /¢
(n = 0). This is an exponentially correlated Gaussian noise, characterized by a second
moment < fZ >= ¢2/In10 and a correlation time 7. = 1, which has the property to
preserve the energy flux to small scales (Giuliani & Carbone, 1998).

We solve the model Egs. assuming V' = 0, that is equivalent to solve the dynamo
problem for Rossby number Ro = 4422 > 1. Therefore B, (t) = By(t) = B(t) and the

model describes o> dynamo problem.

3. Numerical results

The model Eqs. are numerically solved by a fourth order Runge-Kutta scheme. The
results are in dimensionless units: the field fluctuations are measured in Alfvén velocity
unit ¢y, the time in eddy-turn-over time (1/(koug)), the lengths are normalized to 1/ko,
and finally the dissipative coefficients are normalized to c4 /ko.

At the beginning of each simulation, we let the system become turbulent at small
scales. After that, we introduce a magnetic field seed of amplitude 107" at large scale
and we check whether the dynamo effect starts to develop.

The numerical results reveal a strong sensitivity of the system with respect to the mag-
netic Reynolds number Rm =~ du/kon and a dependence on the hydrodynamic Reynolds
number Re ~ du/kov, where du is the r.m.s. of the turbulent velocity fluctuations.
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Figure 1. Time evolution of the large scale magnetic field in dimensionless units in different
simulations.
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Figure 2. PDF of persistence times At in logarithmic scale.

Depending on these parameters, the system evolves towards different scenarios: i) no
dynamo; ii) oscillatory dynamo; iii) magnetic reversals; iv) steady dynamo (see Fig. 1).

The model give us the capability to reproduce a long series of magnetic polarity re-
versals which can be statistically analyzed: the PDFs display a power law behavior (see
Fig.2), revealing the presence of hidden long-time correlations in the chaotic dynamo
process. This is an argument in favor of some degree of memory in the chaotic dynamo
as observed from analysis on the CK95 dataset of paleomagnetic inversions (Jonkers,
2003; Carbone et al., 2006; Sorriso et al., 2007; Nigro & Carbone, 2010).
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