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Abstract

We prove that after inverting the Planck constant h, the Bezrukavnikov–Kaledin quanti-
zation (X,Oh) of symplectic variety X in characteristic p with H2(X,OX) = 0 is Morita
equivalent to a certain central reduction of the algebra of differential operators on X.
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1. Introduction

1.1 Frobenius-constant quantizations
For the duration of this paper, let k be a perfect field of characteristic p > 2. Given a scheme
X over k we denote by X ′ the Frobenius twist of X and by F : X → X ′ the k-linear Frobenius
morphism. Since F is a homeomorphism on the underlying topological spaces, we shall identify
the categories of sheaves on X and X ′.

Let X be a smooth variety over k equipped with a symplectic 2-form ω. Recall, that a
quantization (X,Oh) of (X,ω) is a sheaf Oh on the Zariski site of X of flat k[[h]]-algebras
complete with respect to the h-adic topology together with an isomorphism of k-algebras

Oh/h
∼−→ OX

such that, for any two local sections f̃ , g̃ of Oh, one has

{f, g} ≡ f̃ g̃ − g̃f̃

h
mod h.

Here f and g stand for the images in OX of f̃ and g̃ respectively and {, } for the Poisson bracket
OX induced by the symplectic structure. Note that if X is affine then giving a quantization
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(X,Oh) of (X,ω) is equivalent to giving a quantization Oh(X) of the Poisson algebra OX(X)
(see e.g. [BK04a, Remark 1.6]).

A feature special to characteristic p is that the Poisson algebra OX of a symplectic variety
has a large center consisting of pth powers of functions. We are going to identify it with the sheaf
OX′ using the Frobenius morphism

F ∗ : OX′
∼−→ O

p
X ⊂ OX .

Given a quantization (X,Oh) of (X,ω) we have k-linear homomorphisms

Zh � Zh/h ↪→ OX′ . (1.1)

from the center Zh of the quantization Oh to the Poisson center. Following [BK08], a quantization
is called central if the composition (1.1) is surjective. A Frobenius-constant quantization of
(X,ω) is a pair consisting of a quantization (X,Oh) of the symplectic variety X together with a
k[[h]]-algebra isomorphism

s : OX′ [[h]] ∼−→ Zh (1.2)

such that, for any local section fp ∈ O
p
X = OX′ ⊂ OX′ [[h]] and a lift f̃ ∈ Oh of f ∈ OX , one has

that1

s(fp) = f̃p mod hp−1.

It is clear that a quantization that admits a Frobenius-constant structure is central.
A Frobenius-constant structure on (X,Oh) makes Oh into a sheaf of algebras over OX′ [[h]]. It

was shown in [BK08] that Oh is locally free of rank pdimX as an OX′ [[h]]-module for the Zariski
topology on X ′.

Frobenius-constant quantizations of symplectic varieties have been first introduced by
Bezrukavnikov and Kaledin as a tool for proving the categorical McKay correspondence for
symplectic resolutions of singularities (see [BK04b]). Most of the foundational results have been
obtained in [BK08]. The technique introduced in [BK04b] has found some other applications
in geometric representations theory (see e.g. [BF14, BL21]). A key to all these applications is
the Azumaya property of the algebra Oh(h−1) obtained from Oh by inverting h: it was shown
in [BK08] that for any Frobenius-constant quantization on (X,Oh), the algebra Oh(h−1) is iso-
morphic, that is locally, for the fppf topology on X ′, to a matrix algebra over OX′((h)). Since the
algebra Oh has no zero divisors Oh(h−1) does not split even locally for the étale topology on X ′

(unless dimX = 0). In [BK08, Proposition 1.24] a formula for the class of this Azumaya algebra
in an appropriate Brauer group was proposed. However, it has been observed in [Mol17] that
the formula in [BK08] is not correct as stated. The immediate goal of this paper is to correct it.
The technique introduced along its proof (in particular, the Basic Lemma from § 1.8) plays an
essential role in a sequel paper joint with Kubrak and Travkin [BKTV22], where we prove that
the category of quasi-coherent sheaves on any restricted symplectic variety admits a canonical
Frobenius-constant quantization.

1.2 Differential operators as a Frobenius-constant quantization
A basic example of a Frobenius-constant quantization is as follows. Let Y be a smooth variety
over k, X := T∗Y the cotangent bundle to Y equipped with the canonical symplectic structure ω.

1 Recall that for any associative algebra A over a field of characteristic p and every elements x, y ∈ A, the element
(x+ y)p − xp − yp can be written as a homogeneous Lie polynomial in x and y of degree p. Applying this to
A = Oh we infer that f̃p mod hp depends only on f ∈ Oh/h and not on the choice of a lifting f̃ ∈ Oh of f . In
addition, using that, for any x ∈ A, one has that adxp = (adx)p : A→ A, it follows that f̃p is a central element of
Oh/h

p.
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Denote by DY the sheaf of differential operators on Y . This comes with a filtration given by the
order of a differential operator. Applying the Rees construction to the filtered algebra DY we
obtain a sheaf of algebras DY,h flat over k[h] whose fiber over h = 1 is DY and whose fiber over
h = 0 is the symmetric algebra S·TY . Explicitly, DY,h is the subalgebra of DY [h] generated by
h, OY , and hTY . The p-curvature homomorphism

S·TY ′ → DY,h

sending a function f ∈ OY to fp and a vector field θ ∈ TY to (hθ)p − hp−1(hθ[p]) induces an
isomorphism between the algebra S·TY ′ [h] and the center of DY,h. In particular, DY,h can
be viewed as a quasi-coherent sheaf on T∗Y ′ . The canonical Frobenius-constant quantization of
(T∗Y , ω) is obtained fromDY,h by h-completion. We shall denote this canonical Frobenius-constant
quantization of (T∗Y , ω) by (T∗Y ,DY,h).

1.3 Restricted Poisson structures
There is a local obstruction to the existence of a central quantization of a symplectic vari-
ety (X,ω). It was observed in [BK08] that if fp ∈ OX′

∼−→ O
p
X is in the image (1.1), then the

restricted power H [p]
f of the Hamiltonian vector field Hf is again Hamiltonian: H [p]

f = Hf [p] for
some f [p] ∈ OX . For example, it follows that the torus (Gm × Gm, ω = dx/x ∧ dy/y) does not
admit central quantizations.

A Frobenius-constant structure on (X,Oh) provides a canonical Hamiltonian for H [p]
f . In fact,

given a Frobenius-constant quantization (X,Oh, s) the formula

f [p] =
1

hp−1
(f̃p − s(f)) mod h (1.3)

defines a restricted structure on the Poisson algebra OX , that is, the structure of a restricted Lie
algebra on OX such that (f2)[p] = 2f [p]fp and H [p]

f = Hf [p] .2

It was shown in [BK08] that, for every symplectic variety (X,ω), giving a restricted Poisson
structure on OX is equivalent to giving a class

[η] ∈ H0
Zar(X, coker(OX

d−→ Ω1
X))

such that
d([η]) = ω.

In one direction, if η ∈ Ω1
X , dη = ω, then the formula

f [p] = Lp−1
Hf

ιHf
η − ι

H
[p]
f

η

defines a restricted structure on OX . In particular, if (X,ω) admits a restricted structure, then
ω is exact locally for Zariski topology on X.

1.4 Classification of Frobenius-constant quantizations
Fix a symplectic variety X with a restricted Poisson structure [η]. Denote by Q(X, [η]) the
set of isomorphism classes of Frobenius-constant quantizations (X,Oh, s) compatible with [η].

2 Whereas the notion of restricted Lie algebra goes back to Jacobson in 1937, the concept of restricted
Poisson algebra is an invention of Bezrukavnikov and Kaledin [BK08, Definition 1.9]. Note that using the identity
fg = 1

4
((f + g)2 − (f − g)2), one has that (fg)[p] = fpg[p] + f [p]gp + P (f, g), where P (f, g) is an element of a free

Poisson algebra on f and g. In [BK08], the authors construct P (f, g) explicitly in any characteristic which makes
it possible to define the notion of restricted Poisson algebra even in characteristic 2.
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In [BK08], Bezrukavnikov and Kaledin constructed a map of sets

ρ : Q(X, [η]) → H1
et(X

′,O∗X′/O
∗p
X′) (1.4)

and showed that if H1
Zar(X

′,OX′/OpX′) = 0, then ρ is injective, and if H2
Zar(X

′,OX′/OpX′) = 0,
then ρ is surjective. Consequently, if both cohomology groups vanish the map ρ is a bijec-
tion and there is a canonical Frobenius-constant quantization of (X, [η]) corresponding to
0 ∈ H1

et(X
′,O∗X′/O

∗p
X′). This quantization (X,Oh, s) is uniquely characterized as the one that

admits a Z/2-equivariant structure: an isomorphism OX′ [[h]]-algebras

α : O
op
−h

∼−→ Oh (1.5)

identical modulo h and such that α ◦ α = Id. We review the construction of ρ in § 2.

1.5 A central reduction of the algebra of differential operators
A class

[η] ∈ H0
Zar

(
X, coker

(
OX

d−→ Ω1
X

))
gives rise to a certain central reduction DX,[η],h of the algebra DX,h. We first construct this
reduction locally and then glue. For any open subset U together with a 1-form η ∈ Ω1(U) rep-
resenting [η], consider the graph Γη : U ′ → T∗U ′ of η ⊗ 1 ∈ Ω1(U ′). Let DU,h be the quantization
of T∗U defined above regarded as a locally free sheaf of modules over S·TU ′ [[h]] on U . Set

Γ∗η1DU,h = DU,h/IΓηDU,h. (1.6)

Here IΓη ⊂ S·TU ′ is sheaf of ideals defined by the closed embedding Γη. Note that Γ∗η1DU,h is a
sheaf of algebras over S·TU ′/IΓη [[h]] ∼−→ OU ′ [[h]].

Suppose we are given two forms η1, η2 on U representing the class [η]. Let us construct a
canonical isomorphism between the algebras Γ∗η1DX,h and Γ∗η2DX,h. Set μ = η1 − η2. Define the
automorphism φμ of DX,h by setting φμ(f) = f and φμ(hθ) = hθ + ιθμ, for any function f and
vector field θ.3 Let tμ be the translation by μ on S·TU ′ i.e. an automorphism sending a vector
field θ to θ + ιθμ. Then using the Katz formula [Kat72, § 7.22] (and the exactness of μ) the
following diagram is commutative.

The desired isomorphism is given by the formula

Γ∗η1DU,h = DU,h ⊗S·TU′ S
·TU ′/IΓη1

φμ⊗tμ−→ DU,h ⊗S·TU′ S
·TU ′/IΓη2

= Γ∗η2DU,h.

Given three 1-forms η1, η2, and η3 representing the class [η] one has

(φη1−η2 ⊗ tη1−η2) ◦ (φη2−η3 ⊗ tη2−η3) = φη1−η3 ⊗ tη1−η3 .

The sheaf of algebras DX,[η],h is obtained by gluing Γ∗ηDU,h along the above isomorphisms.
The sheaf DX,[η],h of OX′ [[h]]-algebras is locally free as a OX′ [[h]]-module of rank p2 dimX .

The commutative algebra DX,[η],h/h is isomorphic to the algebra of functions on the Frobenius
neighborhood of the zero section X ↪→ T∗X with the Poisson structure given by the symplectic
form ωcan + pr∗ ω on T∗X . Here ωcan is the canonical symplectic form on the cotangent bundle,
and pr : T∗X → X is the projection.

3 Informally, this isomorphism is the conjugation by e(1/h)
∫

μ.
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Remark 1.1. The sheaf DX,[η],h is the restriction of a certain canonical locally free OX′×P1-algebra
over X ′ × P1 to the formal completion of X ′ × {0} ↪→ X ′ × P1 (see [BKTV22, § 3.3]).

1.6 Main result
Denote by Br(X ′[[h]]) the Brauer group of the formal scheme (X ′,OX′ [[h]]) obtained from
X ′ × Spec k[h] by completion along the closed subscheme cut by the equation h = 0. We have
homomorphisms:

δ : H1
et(X

′,O∗X′/O
∗p
X′) → H2

et(X
′,O∗X′) ∼= Br(X ′) ↪→ Br(X ′[[h]]). (1.7)

The first map in (1.7) is the boundary morphism associated to the short exact sequence of sheaves
for the étale topology

0 → O∗X′
p−→ O∗X′ −→ O∗X′/O

∗p
X′ → 0.

The right arrow in (1.7) is the pullback homomorphism which is a split injection because its
composition with the restriction homomorphism

i∗ : Br(X ′[[h]]) → Br(X ′)

is the identity. Given a class γ ∈ H1
et(X

′,O∗X′/O
∗p
X′) we denote by δ(γ) ∈ Br(X ′[[h]]) the image

of γ under the composition (1.7). Finally, we can state the main result of this paper.

Theorem 1. Let (X,ω) be a smooth symplectic variety of dimension 2n over an algebraically
closed field k of characteristic p > 2, and let (X,Oh, s) be a Frobenius-constant quantization

of (X,ω). Denote by [η] ∈ H0
Zar(X, coker(OX

d−→ Ω1
X)) the restricted Poisson structure corre-

sponding to (X,Oh, s) and by γ = ρ(X,Oh, s) ∈ H1
et(X

′,O∗X′/O
∗p
X′) the image of (X,Oh, s) under

(1.4). Then there exists an Azumaya algebra O
�
h over the formal scheme (X ′,OX′ [[h]]) with the

following properties.

(i) There exists an isomorphism of OX′((h))-algebras

(Oh ⊗OX′ [[h]] D
op
X,[η],h)(h

−1) ∼−→ O
�
h(h
−1). (1.8)

(ii) We have that

i∗[O�h] = i∗(δ(γ)). (1.9)

In particular, if H2(X,OX) = 0 then [O�h] = δ(γ).

For example, let (X,Oh, s) be a Frobenius-constant quantization that admits Z/2Z-
equivariant structure (1.5). Assume that H2(X,OX) = 0. Then by Theorem 1 O

�
h is a split

Azumaya algebra, that is there exists a locally free OX′ [[h]]-module E of finite rank and an
isomorphism of OX′ [[h]]-algebras

O
�
h
∼−→ EndOX′ [[h]](E).

Using (1.8) and the Azumaya property of Oh(h−1) and DX,[η],h(h−1) we observe an equivalence
of categories

Mod(DX,[η],h(h
−1)) ∼−→ Mod(Oh(h−1)) (1.10)

between the category of Oh(h−1)-modules and the category of DX,[η],h(h−1)-modules. The functor
from left to right carries a DX,[η],h(h−1)-module M to E ⊗DX,[η],h

M ; the quasi-inverse functor
takes an Oh(h−1)-module N to HomOh

(E,N).
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Also note that if H1
Zar(X

′,OX′/OpX′) = 0, then the map

H0(X,Ω1
X) → H0

Zar(X, coker(OX
d−→ Ω1

X))

is surjective and, thus, any restricted Poisson structure arises from a global 1-form η. In this case
objects of Mod(DX,[η],h(h−1)) can be viewed as DX,h(h−1)-modules whose p-curvature equals η.

1.7 Gm-equivariant quantizations
Let (X,ω) be a symplectic variety equipped with an action

λ : Gm ×X → X (1.11)

of the multiplicative group such that ω has a positive weight m with respect to this action.
Moreover, we shall assume that m invertible in k. Denote by θ the Euler vector field on X
corresponding to the Gm-action. Then the formula η = (1/m)ιθω defines a restricted structure
on X. Define a Gm-action on X ′ twisting (1.11) by the pth power map Gm

F−→ Gm. Also let
Gm act on X ′[h] := X ′ × Spec k[h] as above on the first factor and by z ∗ h = zmh on the second
one.

A Gm-equivariant Frobenius-constant quantization of X is a Gm-equivariant sheaf Oh of
associative OX′[h]-algebras on X ′[h], locally free as an OX′[h]-module, such that the restriction
Oh of Oh to the formal completion of X ′[h] along the divisor h = 0 is a Frobenius-constant
quantization of X compatible with the restricted structure [η]. Examples of Gm-equivariant
quantizations arise in geometric representation theory (see e.g. [BK04b, BF14, BL21, KT19]).

Assume that morphism (1.11) extends to a morphism

λ̃ : A1 ×X → X. (1.12)

Then the restriction of Oh to the open subscheme X ′[h, h−1] ↪→ X ′[h] is an Azumaya algebra.
As an application of Theorem 1 we prove in § 5 a conjecture of Kubrak and Travkin concerning
the class of this algebra in the Brauer group. Namely, we show that, for every Gm-equivariant
Frobenius-constant quantization Oh, the following equality in Br(X ′) holds:

[Oh=1] =
[

1
m
η

]
+ λ̃∗0[ρ(Oh)].

Here [η] denotes the image of η under the canonical map Γ(X ′,Ω1
X′) → Br(X ′), ρ(Oh) ∈

H1
et(X

′,O∗X′/O
∗p
X′) for the class associated to the formal quantization via (1.4), and [ρ(Oh)] for

its image in the Brauer group.

1.8 Plan of the proof
Using the language of formal geometry we reduce the theorem to a group-theoretic statement.
We shall start by explaining the latter.

Let (V, ωV ) be a finite-dimensional symplectic vector space over k, and let Ah be the algebra
over k[[h]] generated by the dual vector space V ∗ subject to the relations

fg − gf = ω−1
V (f, g)h, fp = 0

for any f, g ∈ V ∗. We refer to Ah as the restricted Weyl algebra. This is a flat k[[h]]-algebra whose
reduction modulo h is the finite-dimensional commutative algebra of functions on the Frobenius
neighborhood of the origin in the affine space Spec(S·V ∗) := V. Explicitly, A0 := S·V ∗/JV where
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JV is the ideal generated by fp for all f ∈ V ∗. The quantization Ah of A0 specifies a restricted
Poisson structure [ηV ] ∈ coker(A0

d−→ Ω1
A0

).4

Denote by G the group scheme Aut(Ah) of k[[h]]-linear automorphisms of the algebra Ah, by
G≥1 the subgroup of automorphisms identical modulo h, and by G0 the quotient of G by G≥1.
As shown in [BK08], G0 is the group scheme of automorphisms of A0 preserving the class [ηV ].

A pair (W,W ∗) of transversal Lagrangian subspaces of V defines an isomorphism between
the algebra Ah(h−1) and the matrix algebra Endk(S·W ∗/JW )((h)) which, in turn, gives an
embedding G ↪→ LPGL(pn), where LPGL(pn) is the loop group of PGL(pn) (viewed as a sheaf
for the fpqc topology). Then the extension

1 → Gm → GL(pn) → PGL(pn) → 1

gives rise to5

1 → LGm → G̃→ G→ 1. (1.13)

In [BK08] it is proved that G≥1 is the subgroup of inner automorphisms. Hence, we have a
subextension of (1.13)

1 → L+Gm → A∗h → G≥1 → 1, (1.14)

where L+Gm is the positive loop group of Gm. Then passing to the quotient we get a central
extension by the affine grassmannian6

1 → GrGm → G̃0 → G0 → 1. (1.15)

Let i : V ↪→ V � be a morphism of symplectic vector spaces such that the restriction to V of
the symplectic form on V � is ωV . Let G̃0 → G0 and G̃�0 → G�0 be the corresponding extensions.
We emphasize that G̃0 and G̃�0 depend on a choice of Lagrangian pairs in V and V �.

Finally, denote by G�0 ⊂ G�0 the group subscheme that consists of automorphisms preserving
the kernel of the homomorphism i∗ : A�0 → A0. We have a natural homomorphism G�0 → G0.
In § 4 we prove the following assertion.

Basic Lemma. The homomorphism G�0 → G0 lifts uniquely to a homomorphism of central
extensions

G̃�0 ×G�
0
G�0 → G̃0.

Our proof of the Basic Lemma, that occupies almost the half of the paper, is based on a
new construction of (1.15) that makes this functoriality property obvious. Namely, consider two
subgroups α ⊂ G0 ⊃ G0

0, where G0
0 is the subgroup of automorphisms preserving the origin in

V (which by a result of Bezrukavnikov and Kaledin coincides with the reduced subgroup of G0)
and α = SpecA0(∼= αdimV

p ) is the finite group scheme of translations. Then the product map
α×G0

0 → G0 induces an isomorphism of the underlying schemes. Let α̃ be the restriction of
the central extension (1.15) to α. This is a version of the Heisenberg group. We show that the
extension (1.15) splits uniquely over the reduced subgroup G0

0.
7 Thus, we can view G0

0 as a

4 Explicitly [ηV ] is characterized as a unique homogeneous class such that d[ηV ] = ωV .
5 We do not know whether the morphism of fpqc sheaves LGL(pn) → LPGL(pn) is surjective. However, we check
in Proposition A.5 that its pullback to any group subscheme G ⊂ LPGL(pn) satisfying some finiteness assumptions
is surjective even for the Zariski topology on G.
6 Recall from [Con94] that GrGm is isomorphic to the direct product Ŵ × Z, where Ŵ a group ind-scheme whose
points with values in a k-algebra R is the subgroup of R[h−1]∗ consisting of invertible polynomials with zero
constant term. In particular, if R is reduced and connected, then GrGm(R) = Z.
7 A posteriori, this is a corollary of the Basic Lemma applied to the embedding 0 ↪→ V .
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subgroup of G̃0, and the quotient G̃0/G
0
0 is identified (as an ind-scheme) with α̃. The left action

of G̃0 on G̃0/G
0
0 defines an embedding of G̃0 into the group of automorphisms of α̃ viewed as

a space with an action of GrGm . We prove in Theorem 3 that the image of this embedding is
precisely the group of automorphisms that preserve a unique Sp2n �α2n

p -invariant connection on
GrGm-torsor α̃.

To derive the Basic Lemma from the above, we classify all central extensions of α by GrGm

in § 4.2. In particular, we show that extensions of α by GrGm that split over every αp factor
are classified by Lie(GrGm)-valued skew-symmetric 2-forms on Lie(α). Then it follows that the
morphism α→ α� induced by i lifts uniquely to a morphism of extensions α̃→ α̃� respecting the
connections. Since G̃�0 ×G�

0
G�0 is the group of automorphisms of α̃� that preserve the connection

and the subspace α̃ ↪→ α̃�, by restriction we get the desired lifting G̃�0 ×G�
0
G�0 → G̃0.

Let us explain how the Basic Lemma implies the theorem. The Bezrukavnikov–Kaledin
construction of Frobenius-constant quantizations is based on a characteristic-p version of the
Gelfand–Kazhdan formal geometry. Namely, it is shown in [BK04b] that any Frobenius-constant
quantization is locally for the fpqc topology on X ′ isomorphic to the constant quantization
OX′ [[h]] ⊗k[[h]] Ah for a fixed finite-dimensional space V of dimension 2n = dimX. It follows that
a Frobenius-constant quantization (X,Oh, s) gives rise to a torsor MX,Oh,s over G. Conversely,
the algebra Oh is the twist of OX′ [[h]] ⊗k[[h]] Ah by the torsor MX,Oh,s, i.e.

MX,Oh,s×G(OX′ [[h]] ⊗k[[h]] Ah)
∼−→ Oh.

The reduction of differential operators DX,[η],h also can be constructed using formal geometry.
Namely, choosing a homogeneous form ηV in the class [ηV ] on V consider its graph

V ↪→ T∗V,

and let i : V → V ⊕ V ∗ = V � be the corresponding linear map of vector spaces. Let G�,f0 be the
subgroup of G�0 ⊂ G�0 of automorphisms g of α� respecting the fibers of the projection π : α� → α,
that is fitting in the following diagram.

Then the restriction of the natural map G�0 → G0 to G�,f0 is an isomorphism. This yields a
homomorphism ψ0 : G0 ↪→ G�0 ⊂ G�0. In § 3.1 we construct a lifting ψ : G→ G� of ψ0 that makes
DX,[η],h a twist of OX′ [[h]] ⊗k[[h]] A

�
h by MX,Oh,s.

Then we consider the following diagram.

Here the loop group LPGL is the group ind-scheme of projective automorphisms of a certain
vector space U over k((h)). Suppose we can construct a G-invariant k[[h]]-lattice Λ in U . Then

O
�
h := MX,Oh,s ×G (OX′ [[h]] ⊗k[[h]] Endk[[h]](Λ))
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does the job for the first part of the theorem. By a general result proven in the Appendix
(Proposition A.5) the existence of an invariant lattice is equivalent to the existence of the dashed
arrow making the diagram above commutative. This is where we use the Basic Lemma. It follows
from the latter that

G̃�0 ×G�
0
G�,f0

∼= G̃0.

We infer (Proposition 3.3) that ψ0 lifts to ψ̃0 : G̃0 → G̃�0, which implies the existence of the
dashed arrow.

The proof of the second part of the theorem amounts to unveiling the Bezrukavnikov–Kaledin
construction of the map ρ.

1.9 Further directions
In this subsection we briefly discuss some applications of Theorem 1 obtained in a sequel paper
joint with Dmitry Kubrak and Roman Travkin [BKTV22].

According to the Bezrukavnikov–Kaledin theorem from § 1.4 every smooth affine restricted
symplectic variety admits a unique up to a non-canonical isomorphism Frobenius-constant quan-
tization Oh with ρ[Oh] = 0. The formation of Oh is not functorial in (X, [η]). However, we show
in [BKTV22] that the assignment (X, [η]) 
→ Mod(Oh(X)) extends to a contravariant functor
from the category of smooth affine restricted symplectic varieties and open embeddings to the
category of abelian categories. Applying the right Kan extension this yields a functorial quan-
tization QCohh of the category of quasi-coherent sheaves of any smooth restricted symplectic
variety. Moreover, using Remark 1.1 and equivalence (1.10) we extend the range of quantum
parameter h from being a formal variable to a genuine coordinate on P1. The construction of
QCohh uses in an essential way Corollary 3.5 of the Basic Lemma.

Let Y ↪→ X be a smooth Lagrangian subvariety such that [η]|Y = 0 in H0
Zar

(
Y,Ω1

Y /dOY
)
.

Using results from [Mun22] we show in § 6.1 of [BKTV22] that every such Y determines a
canonical object in QCohh, which is a quantization of the line bundle (Ωn

Y )(1−p)/2 viewed as a
quasi-coherent sheaf on X.

1.10 Plan of the paper
In § 2 we review the Bezrukavnikov–Kaledin construction of Frobenius-constant quantizations
which is based on a characteristic p version of the Gelfand–Kazhdan formal geometry. In § 3 we
recast the construction of DX,h using the language of formal geometry and reduce Theorem 1 to
a certain statement on central extensions of the group of automorphisms of the restricted Weyl
algebra. In § 4 we prove this statement. In § 5 we study Gm-equivariant quantizations and prove
a conjecture of Kubrak and Travkin. Finally, in the Appendix we prove some results (probably
known to experts) on loop groups that are used in the main body of the paper.

2. Review of the Bezrukavnikov–Kaledin construction

For reader’s convenience we review the Bezrukavnikov–Kaledin construction of quantizations.
We also introduce some notation to be used later. Nothing in this section is an invention of the
authors.

2.1 Darboux lemma in characteristic p
Our proof of Theorem 1, as well as the Bezrukavnikov–Kaledin construction of quantizations, is
based on a version of the Gelfand–Kazhdan formal geometry that makes it possible to localize
the problem and ultimately reduce it to a statement in group theory. The main idea is as follows.
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For a symplectic variety X, the Poisson bracket on OX is OX′-linear. Therefore, we can view X

as a Poisson scheme over X ′. For any restricted structure on OX , one has O
[p]
X′ = 0. Therefore,

a symplectic variety X with a restricted structure can be viewed as a restricted Poisson scheme
over X ′. Consider the constant restricted Poisson scheme over X ′:

X ′ × SpecA0 → X ′, (2.1)

where

A0 = k[x1, y1, . . . , xn, yn]/(x
p
1, y

p
1 , . . . , x

p
n, y

p
n),

2n = dimX, the morphism (2.1) is the projection to the first factor, the Poisson structure is given
by symplectic form

∑
i dyi ∧ dxi, and the restricted structure is determined by x

[p]
i = y

[p]
i = 0.

A key insight of Bezrukavnikov and Kaledin is that any smooth symplectic variety X with
a restricted structure, viewed as a restricted Poisson scheme over X ′, is locally for the fpqc
topology on X ′ isomorphic to the constant restricted Poisson scheme X ′ × SpecA0 → X ′. This
is an analogue of the Darboux lemma.

2.2 Quantum Darboux lemma
There is also a quantum version of the Darboux lemma proven in [BK08]: for any Frobenius-
constant quantization (X,Oh, s), the sheaf of associative OX′ [[h]]-algebras Oh is isomorphic
locally for the fpqc topology on X ′ to the h-completed tensor product OX′ ⊗k Ah, where Ah
is the reduced Weyl algebra that is the k[[h]]-algebra generated by variable xi, yi (1 ≤ i, j,≤ n),
subject to the relations

yjxi − xiyj = δijh, xpi = ypi = 0. (2.2)

2.3 Formal geometry
Let Aut(A0) be the group scheme of automorphisms of the algebra A0. For any smooth scheme
X over k of dimension 2n, assigning to a scheme Z over X ′ the set MX(Z) of isomorphisms

Z × SpecA0
∼−→ Z ×X′ X

of schemes over Z, we get a Aut(A0)-torsor over X ′. Next, let G0 ⊂ Aut(A0) be the group
subscheme consisting of automorphisms of A0 that preserve the restricted Poisson structure
on A0. Then the Darboux lemma above implies that, for every symplectic variety (X, [η]) with
a restricted structure of dimension 2n the functor assigning to a scheme Z over X ′ the set
MX,[η](Z) of isomorphisms

Z × SpecA0
∼−→ Z ×X′ X

of restricted Poisson schemes over Z is a G0-torsor over X ′. Using the faithfully flat descent
one gets a bijection between the set of nondegenerate (that is, arising from a symplectic form)
restricted Poisson structures [η] on X and the set of G0-torsors over X ′ equipped with an
isomorphism of Aut(A0)-torsors

Aut(A0) ×G0 MX,[η]
∼−→ MX .

Lastly, the set of all Frobenius-constant quantizations (X,Oh, s) of X such that the induced
Poisson structure on X is nondegenerate is in bijection with the set of torsors MX,Oh,s over the
group scheme G := Aut(Ah) of automorphisms of k[[h]]-algebra Ah (that is a group scheme whose
group of points with values in a k-algebra R is the group of R[[h]]-algebra automorphisms of the
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h-adically completed tensor product Ah⊗̂R) together with an isomorphism Aut(A0)-torsors

Aut(A0) ×G MX,Oh,s
∼−→ MX . (2.3)

In particular, for a symplectic variety with a restricted structure (X, [η]), giving a Frobenius
constant quantization of (X, [η]) is equivalent to lifting a G0-torsor MX,[η] to a G-torsor MX,Oh,s

along the group scheme homomorphism

G→ G0. (2.4)

2.4 Automorphisms of the reduced Weyl algebra
It was shown in [BK08] that homomorphism (2.4) is surjective and its kernel G≥1 consists of
inner automorphisms. We have the exact sequence

1 → L+Gm → A∗h → G→ G0 → 1. (2.5)

Here A∗h (respectively, L+Gm) is the group scheme over k whose group of R-points is (R⊗
Ah)∗ (respectively, R[[h]]∗). Letting G≥n ⊂ G (n ≥ 0), be the group subscheme consisting of
automorphisms that are identical modulo hn, we have that G≥n/G≥n+1 ∼−→ A0/Ga for every
n > 1 and G≥1/G≥2 ∼−→ A∗0/Gm, G≥0/G≥1 ∼−→ G0.

Consider the isomorphism of k[[h]]-algebras

α : Aop
−h

∼−→ Ah (2.6)

sending xi to xi and yj to yj . The conjugation by α defines an involution τ : G→ G preserving
the subgroups G≥n, (n ≥ 0), such that the induced action on G≥n/G≥n+1 takes an element g to
g(−1)n

. In particular, it follows that the extension

1 → G≥1/G≥2 → G/G≥2 → G0 → 1

has a unique Z/2Z-equivariant splitting

G/G≥2 ∼−→ G0 �A∗0/Gm.

2.5 Z/2Z-equivariant structures
Any Z/2Z-equivariant Frobenius-constant quantization (X,Oh, s, α) is isomorphic locally for the
fpqc topology on X ′ to the h-completed tensor product OX′⊗̂kAh equipped with the equivariant
structure (2.6). Indeed, consider the action of Z/2Z on G≥1 given by τ . Then H1(Z/2Z, G≥1) = 0
as G≥1 has a filtration G≥n with uniquely 2-divisible quotients. It follows that every two Z/2Z-
equivariant structures on OX′⊗̂kAh are locally isomorphic. Now the claim follows from the
quantum Darboux lemma.

Consequently, giving a Z/2Z-equivariant Frobenius constant quantization of (X, [η]) is
equivalent to lifting a G0-torsor MX,[η] to a torsor MX,Oh,s,α over the subgroup Gτ=1 ⊂ G of
τ -invariants.

2.6 Construction of quantizations
Bezrukavnikov and Kaledin use the standard obstruction theory to classify liftings of a given
G0-torsor to a G-torsor. Namely, given a G0-torsor MX,[η] the set of isomorphism classes of
its liftings to a torsor over G/G≥2 ∼−→ G0 �A∗0/Gm is identified with the set of isomorphism
classes of torsors over the smooth group scheme A∗0/Gm ×G0 MX,[η] over X ′. The latter group
scheme is identified with the quotient of the group scheme of invertible elements in the sheaf of
OX′-algebras F∗OX by constant group scheme Gm ×X ′. Using smoothness of A∗0/Gm ×G0 MX,[η]

every torsor over this group scheme is locally trivial for the étale topology on X ′. Hence, the set
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of isomorphism classes of A∗0/Gm ×G0 MX,[η]-torsors is in bijection with H1
et(X

′,O∗X′/O
p∗
X′). This

defines a map of sets

ρ : Q(X, [η]) → H1
et(X

′,O∗X′/O
∗p
X′) (2.7)

from the set Q(X, [η]) of isomorphisms classes of Frobenius-constant quantizations (X,Oh, s)
compatible with [η] to the étale cohomology group classifying torsors over G0 �A∗0/Gm lifting
the G0-torsor MX,[η]. Note that under this identification the trivial cohomology class corresponds
to the lifting obtained from MX,[η] via the natural group homomorphism G0 → G0 �A∗0/Gm.

Next, the obstruction class to lifting of a G/G≥n-torsor, with n > 1, to a G/G≥n+1-torsor lies
in H2(X ′,OX′/OpX′). If the obstruction class vanishes, then the set of isomorphism classes of the
liftings is a torsor over H1(X ′,OX′/OpX′). Hence, if H1

Zar(X
′,OX′/OpX′) = 0, then ρ is injective,

and if H2
Zar(X

′,OX′/OpX′) = 0, then ρ is surjective. In particular, if the two cohomology groups
vanish ρ is a bijection. The trivial cohomology class corresponds to a quantization that admits
(a unique) Z/2Z-equivariant structure.

3. Reduction of the main theorem to a group-theoretic statement

In this section we recast the construction of DX,[η],h using the language of formal geometry, and
reduce Theorem 1 to a certain statement, Proposition 3.3, on central extensions of the group of
automorphisms of the restricted Weyl algebra.

3.1 DX,[η],h via formal geometry
Let A�h be the reduced Weyl algebra in 4n variables, that is, the k[[h]]-algebra generated by
variables xi, yi, vi, ui (1 ≤ i, j,≤ n), subject to the relations

vixj − xjvi = uiyj − yjui = δijh,

viyj − yjvi = uixj − xjui = viuj − ujvi = yixj − xjyi = 0,

xpi = ypi = vpi = upi = 0.

(3.1)

We shall identify A�h with the central reduction DSpecA0,ηA,h(= DSpecA0,0,h), ηA = η =
∑
yi dxi,

of the algebra DSpecA0,h ⊂ DSpecA0 [[h]] spanned by A0 and hTSpecA0 . In particular, the group
scheme Aut(A0) acts on A�h:

ψcan : Aut(A0) → Autk[[h]](A
�
h) =: G�, g 
→ ψcan,g. (3.2)

We define a homomorphism

ψ : G0 → G�, (3.3)

to be the restriction of ψcan to G0 ⊂ Aut(A0) twisted by a 1-cocycle

G0 → G�, g 
→ φg∗η−η.

Namely, for any k-algebra R, an R-point of G0 is an automorphism g of the R-algebra A0 ⊗R
such that the 1-form μ := g∗η − η ∈ Ω1

A0⊗R/R, η =
∑
yi dxi, is exact. Let φμ : A�h⊗̂R→ A�h⊗̂R
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be the R[[h]]-algebra automorphism given by the formulas8

φμ(xi) = xi, φμ(yi) = yi,

φμ(vi) = vi + ι∂/∂xi
μ, φμ(ui) = ui + ι∂/∂yi

μ.

Define (3.3) by the formula
ψg = φg∗η−η ◦ ψcan,g.

We claim that (3.3) is a homomorphism. Indeed, one has that

ψcan,g ◦ φμ ◦ ψ−1
can,g = φg∗μ.

Using this formula we find

φg∗1η−η ◦ ψcan,g1 ◦ φg∗2η−η ◦ ψcan,g2 = φg∗1η−η ◦ φg∗1g∗2η−g∗1η ◦ ψcan,g1 ◦ ψcan,g2

and the claim follows.
The key assertion of this subsection is the following.

Lemma 3.1. Let (X,ω) be a symplectic variety with a restricted Poisson structure [η]. Then
one has an isomorphism of OX′ [[h]]-algebras:

MX,[η]×̂G0A�h
∼−→ DX,[η],h,

where the action of G0 on A�h is given by (3.3).

Proof. Let π : MX,[η] → X ′ be the projection. For a morphism u : T → X ′, we shall denote by
u∗DX,h,[η] the pullback DX,h,[η], viewed as a coherent sheaf on the formal scheme X ′[[h]], along
the morphism T [[h]] → X ′[[h]] induced by u. It suffices to check that for every S-point f of MX,[η]

there is an isomorphism
αf : OS⊗̂A�h ∼= (π ◦ f)∗DX,h,[η]

such that the following diagram is commutative for every g ∈ G0(S).

Construct αf as follows. By definition of MX,[η] the point f determines an isomorphism
S × Spec(A0)

∼−→ S ×X′ X also denoted by f fitting into the following commutative diagram.

8 Let us verify that φμ is an algebra automorphism. The fact that the formulas above define an automorphism of
DSpec A0,h⊗̂R is clear because μ is closed. To check that this automorphism descends to DSpec A0,[0],h⊗̂R we need
to show that the following identities hold in DSpec A0,[0],h⊗̂R:

(vi + ι∂/∂xi
μ)p = (ui + ι∂/∂yi

μ)p = 0.

Using the Katz formula [Kat72, § 7.22] and the exactness of μ we find that

(vi + ι∂/∂xi
μ)p = vp

i + (ι∂/∂xi
μ)p = (ι∂/∂xi

g∗η)p − (ι∂/∂xi
η)p = 0,

because η vanishes at the origin. The second relation is proven similarly.
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This induces an isomorphism of the corresponding algebras of differential operators:

OS ⊗DSpec(A0)
∼= DS×Spec(A0)/S

∼= (prS)∗DS×X′X/S
∼= (π ◦ f)∗F∗DX/X′ ∼= (π ◦ f)∗F∗DX .

Applying the Artin–Rees construction we get

f∗ : OS ⊗DA0,h
∼−→ (π ◦ f)∗DX,h.

First, we assume that the class [η] is represented by a global 1-form η. Then the sheaf DX,h,[η]

is obtained from DX,h as the h-completion of the quotient DX,h/IΓηDX,h (see formula (1.6)).
The algebra A�h is the quotient DA0,h/IΓηA

DA0,h. The desired isomorphism αf is defined from
the following commutative diagram.

OS ⊗DA0,h

f∗◦φηA−f∗η−→ (π ◦ f)∗DX,h⏐⏐
 ⏐⏐

OS⊗̂A�h

αf−→ DX,h,[η]

One checks that αf is independent of the choice of representative η for [η]. Therefore, covering
X ′ by open subsets where [η] is represented by a 1-form, we can patch αf from local pieces. The
compatibility with the action of G0 is straightforward. �

3.2 Central extensions of G
Consider the action of the k[[h]]-algebra Ah on the free k[[h]]-module k[x1, . . . , xn]/(x

p
1, . . . ,

xpn)[[h]] given by the formulas

xi 
→ multiplication by xi, yi 
→ h
∂

∂xi
.

It is well known (see e.g. [BMR02, Lemma 2.2.1]) and easy to verify that this action defines an
isomorphism of k((h))-algebras

Ah(h−1) ∼−→ Matpn(k((h)). (3.4)

For any k-algebra R, isomorphism (3.4) gives rise to a natural homomorphism

G(R) = AutR[[h]](Ah⊗̂R) ↪→ AutR((h))(Matpn(R((h)))) ∼−→ PGL(pn, R((h))).

This defines an embedding

G ↪→ LPGL(pn), (3.5)

where LPGL(pn) is the loop group of PGL(pn), that is a sheaf of groups on the category of affine
schemes of over k equipped with the fpqc topology sending k-scheme SpecR to PGL(pn, R((h))).
The natural morphism of algebraic groups GL(pn) → PGL(pn) gives rise to a morphism of the
loop groups LGL(pn) → LPGL(pn). By part (i) of Proposition A.5 in the pullback diagram of
fpqc sheaves

G̃ := G×LPGL(pn) LGL(pn) → LGL(pn)⏐⏐
 ⏐⏐

G ↪→ LPGL(pn)

the left vertical arrow is surjective. Thus, we have a central extension of fpqc sheaves

1 → LGm → G̃→ G→ 1. (3.6)
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Recall from § 2.4 that subgroup G≥1 ⊂ G of automorphisms identical modulo h consists of
inner automorphisms. Therefore, extension (3.6) fits into a commutative diagram

1 → L+Gm → A∗h → G≥1 → 1⏐⏐
 ⏐⏐
 ⏐⏐

1 → LGm → G̃ → G → 1⏐⏐
 ⏐⏐
 ⏐⏐

1 → GrGm → G̃0 → G0 → 1

where G̃0 = G̃/A∗h and GrGm = LGm/L
+Gm is the affine grassmannian for Gm.

Remark 3.2. Consider the central extension of the Lie algebras

0 → Lie GrGm → Lie G̃0 → LieG0 → 0

corresponding to the bottom line in the diagram above. Identify the Lie algebra of the affine
grassmannian with the vector space h−1k[h−1] of polynomial vanishing at the origin equipped
with the trivial Lie bracket. It is shown in [BK08] that the Lie algebra of G0 consists of Hamilto-
nian vector fields on A0, that is, LieG0 = A0/k, where the Lie bracket is induced by the Poisson
bracket on A0. Then Lie G̃0 is isomorphic to the direct sum of Lie algebras A0 ⊕ h−2k[h−1] with
map to LieG0 given by the projection to the first summand followed by A0 → A0/k.

Proof. It suffices to construct a morphism of extensions as follows.

0 → k → A0 → A0/k → 0⏐⏐
h−1

⏐⏐
 ⏐⏐
Id

0 → Lie GrGm → Lie G̃0 → LieG0 → 0

Define A0 → Lie(G̃0) that coincides with the map A0/k → Lie(G0) sending a ∈ A0 to Ad1+εã/h ∈
G̃(k[ε]/ε2) → G̃0(k[ε]/ε2), where ã ∈ Ah is any lifting of a. �

Applying the same construction to the algebra A�h and to its representation on
k[x1, . . . , xn, y1, . . . , yn]/(x

p
1, . . . , x

p
n, y

p
1 , . . . , y

p
n)[[h]] we construct the following commutative

diagram.

1 → L+Gm → Ah
�∗ → G≥1� → 1⏐⏐
 ⏐⏐
 ⏐⏐


1 → LGm → G̃� → G� → 1⏐⏐
 ⏐⏐
 ⏐⏐

1 → GrGm → G̃�0 → G�0 → 1

Recall from (3.3) the homomorphism ψ : G0 → G�. Denote by ψ0 : G0 → G�0 its composition with
the projection G� → G�0. The key step in the proof of our main theorem is the following result.

Proposition 3.3. There is a unique homomorphism ψ̃0 making the following diagram
commutative.

1 → GrGm → G̃0 → G0 → 1⏐⏐
Id

⏐⏐
ψ̃0

⏐⏐
ψ0

1 → GrGm → G̃�0 → G�0 → 1
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Remark 3.4. Let us describe the morphism of the Lie algebras induced by ψ̃0. Namely, define
d(ψ̃0) : f 
→ f + η(Hf ) + Hf . Here Hf denotes the Hamiltonian vector field on A0, while Hf is
the same vector field viewed as a function on A�0.

We end this subsection with a reformulation of Proposition 3.3 that will be used in
forthcoming paper [BKTV22]. Set Bh = Ah ⊗k[[h]] A

�,op
h . Let

G� ⊂ Aut(Bh) → Aut(B0)

be the preimage of Γψ0 : G0 ↪→ Aut(B0) = Aut(A0 ⊗A�0), Γψ0(g) = g ⊗ ψ0(g). Proposition 3.3
implies that the canonical extension of Aut(Bh) by LGm (cf. (3.6)) restricted to G� admits a
unique reduction to L+Gm:

1 → L+Gm → Ĝ� → G� → 1. (3.7)

Corollary 3.5. There exists a unique (up to a unique isomorphism) triple (Ĝ�, α, i) displayed
in the diagram

(3.8)

where the north east arrow is the natural inclusion, i is a monomorphism and α(g) = Adi(g).
In addition, if W is an irreducible representation of Bh(h−1), Bh(h−1) ∼−→ Endk((h))(W ), there

exists a k[[h]]-lattice Λ ⊂W , invariant under the Bh-action on W and under the action of Ĝ�:

i : Ĝ� ↪→ L+ GL(Λ) ⊂ LGL(W ) = Bh(h−1)∗.

Proof. The diagram is merely a rearrangement of (3.7). The existence of a lattice Λ stable under
Ĝ� follows Proposition A.2. Since B∗h ⊂ Ĝ� the lattice Λ is Bh-invariant. �

3.3 Proposition 3.3 implies the main theorem
In this subsection we prove Theorem 1 assuming Proposition 3.3.

For the first part, let us start by reinterpreting the construction of the algebra Oh ⊗OX′ [[h]]
D

op
X,[η],h. Consider the homomorphism

G→ Autk[[h]](Ah) × Autk[[h]](A
�,op
h ) ↪→ Autk[[h]](Ah ⊗k[[h]] A

�,op
h ) (3.9)

whose first component is the identity map and whose second component is the composition G −→
G0

ψ−→ Autk[[h]](A�h) = Autk[[h]](A
�,op
h ).9 Homomorphism (3.9) defines a sheaf of OX′ [[h]]-algebras

MX,Oh,s ×G (Ah ⊗k[[h]] A
�,op
h ). By Lemma 3.1, we have an isomorphism

MX,Oh,s ×G (Ah ⊗k[[h]] A
�,op
h ) ∼−→ Oh ⊗OX′ [[h]] D

op
X,[η],h.

Next, the k((h))-algebra (Ah ⊗k[[h]] A
�,op
h )(h−1) is isomorphic to the matrix algebra Endk((h))(V ),

for some vector space over k((h)) of dimension p3n:

(Ah ⊗k[[h]] A
�,op
h )(h−1) ∼−→ Endk((h))(V ). (3.10)

9 Note that Autk[[h]](A
�,op
h ) is equal, as a subgroup of the group of automorphisms of the k[[h]]-module A�

h, to

Autk[[h]](A
�
h).
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Isomorphisms (3.10) and (3.9) give rise to a homomorphism

G→ LPGL(p3n) (3.11)

and, consequently, to an extension of G by LGm. Proposition 3.3 asserts that this extension
admits a unique reduction to L+Gm.

1 → L+Gm → Ĝ→ G→ 1. (3.12)

Thus, by part (ii) of Proposition A.5, it follows that homomorphism (3.11), possibly after con-
jugation by an element of PGL(p3n, k((h))), factors through L+ PGL(p3n) ⊂ LPGL(p3n). In the
other words, there exists a k[[h]]-lattice Λ ⊂ V such that the action of G on (Ah ⊗k[[h]] A

�,op
h )(h−1)

preserves Endk[[h]](Λ):

Ah ⊗k[[h]] A
�,op
h ⊂ (Ah ⊗k[[h]] A

�,op
h )(h−1) ∼−→ Endk((h))(V ) ⊃ Endk[[h]](Λ). (3.13)

The homomorphism
G→ Aut(Endk[[h]](Λ)) ∼−→ L+ PGL(p3n)

and the G-torsor MX,Oh,s give rise to an Azumaya algebra

O
�
h := MX,Oh,s ×G Endk[[h]](Λ),

which, by construction, coincides with Oh ⊗OX′ [[h]] D
op
X,[η],h after inverting h. This proves part (i)

of the Theorem.
To prove part (ii) of the Theorem, recall from § 2.4 that G is acted upon by an involution

τ : G→ G. We claim that τ lifts to extension (3.12),

τ̂ : Ĝ→ Ĝ, τ̂2 = Id,

such that the restriction of τ̂ to L+Gm is given by the formula

τ̂(f(h)) = f(−h)−1, f(h) ∈ R[[h]]∗. (3.14)

Consider the homomorphism L+Gm → Gm sending f(h) ∈ L+Gm(R) = R[[h]]∗ to f(0) ∈ R∗.
This fits into the following diagram of group scheme extensions.

1 → L+Gm → Ĝ → G → 1⏐⏐
 ⏐⏐
 ⏐⏐

1 → Gm → Ĝ/G≥2 → G/G≥2 → 1

The action of τ̂ on Ĝ descends to Ĝ/G≥2. For the Z/2Z-action on R∗ given by formula c 
→ c−1,
we have that

H1(Z/2Z, R∗) ∼−→ R∗/R∗2. (3.15)

In particular, every cohomology class gets killed after a finite étale extension of R. It follows that
the sequence of Z/2Z-invariants

1 → Gτ̂=1
m → (Ĝ/G≥2)τ̂=1 → (G/G≥2)τ=1 → 1 (3.16)

is exact. Note that Gτ̂=1
m = μ2 = {1,−1}. We claim that (3.16) is a split extension:

(Ĝ/G≥2)τ̂=1 ∼−→ (G/G≥2)τ=1 × μ2. (3.17)

Indeed, the determinant homomorphism

Ĝ ↪→ L+ GL(p3n) det−→ L+Gm (3.18)
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composed with the map L+Gm → Gm factors through Ĝ/G≥2 and commutes with τ . Hence, it
defines a homomorphism

(Ĝ/G≥2)τ̂=1 → μ2 (3.19)

whose restriction to μ2 is the identity. This gives a splitting of extension (3.16). We derive from
(3.17) that the extension Ĝ/G≥2 has the form

1 → Gm → G0 �A∗0 → G0 �A∗0/Gm → 1. (3.20)

Now we can prove that

i∗[O�h] = i∗(δ(γ)). (3.21)

To see this, consider the gerbe S of splittings of the Azumaya algebra O
�
h. By definition, this is

a sheaf of groupoids on (X ′)fl whose sections S(Z) over Z → X ′ is the groupoid of splittings
of the pullback of O

�
h to Z. This is a gerbe naturally banded by the sheaf L+Gm meaning that

the automorphism group of any object of S(Z) is canonically identified with L+Gm(Z). By
construction of O

�
h and the uniqueness statement in Proposition 3.3 this gerbe is equivalent to

the gerbe of liftings of G-torsor MX,Oh,s to a Ĝ-torsor. It follows that the gerbe of splittings
S of the Azumaya algebra i∗O�h is equivalent to the Gm-gerbe of liftings of G/G≥2-torsor L :=

MX,Oh,s ×G G/G
≥2 to a Ĝ/G≥2-torsor. The set of isomorphism classes of torsors over G/G≥2 ∼−→

G0 �A∗0/Gm lifting a given G0-torsor MX,[η] is in bijection ρ with the set H1
et(X

′,O∗X′/O
p∗
X′) of

isomorphism classes of torsors over the group scheme A∗0/Gm ×G0 MX,[η]. It follows from (3.20)

that given a G/G≥2-torsor L the Gm-gerbe of liftings of L to a torsor over Ĝ/G≥2 is equivalent
to the gerbe of liftings of A∗0/Gm ×G0 MX,[η]-torsor ρ(L) to a torsor over A∗0 ×G0 MX,[η]. This
proves (3.21).

To prove the last assertion of Theorem 1 observe that the kernel of the restriction
i∗ : Br(X ′[[h]]) → Br(X ′) is a subgroup of the group H2

Zar(X
′,W(OX′)), where W(OX′) is the

additive group of the ring of big Witt vectors, that is,

W(OX′) = (1 + hOX′ [[h]])∗.

We claim that vanishing of H2(X ′,OX′) implies vanishing of H2(X ′,W(OX′)). Indeed, W(OX′)
is the inverse limit of the groups of truncated Witt vectors

W(OX′) ∼= lim← Wm(OX′).

Using the exact sequence

0 → Wl(OX′) V m−→ Wl+m(OX′) → Wm(OX′) → 0

it follows that, for every positive integer m, the group H2(X,Wm(OX′)) is trivial and
consequently the restriction homomorphism

H1(X,Wl+m(OX′)) → H1(X,Wm(OX′))

is surjective, for every l and m. Hence, by Proposition 13.3.1 from [EGA III, Chapter 0], we have

H2(X ′,W(OX′)) ∼−→ lim← H2(X ′,Wm(OX′)) = 0

as desired.
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Remark 3.6. Observe that under the assumptions of Theorem 1, we have that

p3n([O�h] − δ(γ)) = 0.

Indeed, O
�
h is an Azumaya algebra of rank p6n and, hence, its class in the Brauer group is killed

by p3n. On the other hand, the class δ(γ)) is killed by p.

Remark 3.7. The proof of Theorem 1 shows that vanishing of H2(X ′,OX′) implies surjectivity
of the map ρ (see formula (1.4)), which does not follow directly from the Bezrukavnikov–Kaledin
theorem. Indeed, from (3.12) we derive an extension

1 → Ĝ≥2 → Ĝ/Gm → G0 �A∗0/Gm → 1.

Consider the G0 �A∗0/Gm-torsor M corresponding to a restricted structure [η] and a class γ ∈
H1

et(X
′,O∗X′/O

∗p
X′). Using that H2(X ′,OX′) = 0 we infer that M can be lifted to a Ĝ/Gm-torsor

M̃. Pushing forward the latter under the homomorphism Ĝ/Gm → G we get a quantization with
ρ-invariant γ.

Remark 3.8. In [BK08, Proposition 1.24] the authors erroneously assert the subgroup G ↪→
LPGL(pn) from (3.5) preserves a lattice, that is, possibly after conjugation by an element of
PGL(pn, k((h))), factors through L+ PGL(pn) ⊂ LPGL(pn). This claim led the authors to a mis-
take in the statement of Proposition 1.24. In fact, even the subgroup of translations SpecA0 =
α2n
p ⊂ G does not admit an invariant lattice. This follows from the fact the commutator

map
Lieα2n

p ⊗ Lieα2n
p → LieLGm = k((h))

arising from extension (3.6) is given by the formula (1/h)
∑

i dyi ∧ dxi, i.e. does not factor through
LieL+Gm = k[[h]].

4. Central extensions of the group of Poisson automorphisms

In this section we prove Basic Lemma 4 and derive from it Proposition 3.3. For the duration
of this section we fix a symplectic vector space (V, ωV ) of dimension 2n and denote by Ah the
corresponding restricted Weyl algebra, G its group of automorphisms andG0 the quotient of G by
the subgroup of automorphisms identical modulo h viewed as a group scheme of automorphisms
of A0 preserving the class [ηV ].

4.1 Properties of G0

Recall from [BK08, Proposition 3.4] that the reduced subgroup G0
0 = (G0)red ⊂ G0 is equal to

the stabilizer of the point Spec k ↪→ SpecA0: for every k-algebra R, G0
0(R) is the subgroup of

G0(R) that consists of R-linear automorphisms of A0 ⊗R that preserve the kernel of the homo-
morphism A0 ⊗R→ R induced by A0 → k. According to [BK08, Lemma 3.3] the Lie algebra of
G0 (respectively, G0

0) is the algebra of all Hamiltonian vector fields10 on SpecA0 (respectively,
the algebra of all Hamiltonian vector fields vanishing at Spec k ↪→ SpecA0). In particular, we
have

dimG0 = dimG0
0 = dimk LieG0

0 = dimkm
2 = p2n − 2n− 1, (4.1)

where m is the maximal ideal in A0.

10 Recall that a vector field is said to be Hamiltonian if it has the form Hf , for some f ∈ A0.
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Denote by αp the Frobenius kernel on Ga. The finite group scheme α := α2n
p acts on SpecA0 =

α by translations inducing the inclusion α ↪→ G0. Observe that the product morphism

α×G0
0 → G0

induces an isomorphism of the underlying schemes.

Lemma 4.1. The group schemes G0 and G0
0 are connected. Moreover, there is a surjective

homomorphism

G0
0 � Sp(2n)

whose kernel is a unipotent algebraic group.

Proof. It suffices to prove the assertions for the reduced group G0
0. To show that G0

0 is connected
we consider the filtration

· · · ⊂ F 2G0
0 ⊂ F 1G0

0 ⊂ G0
0

by normal group subschemes of G0
0 and prove that all the associated quotients are connected.

Namely, for any k-algebra R, we set

F iG0
0(R) = {φ ∈ G0

0(R) |φ = Id mod mi+1 ⊗R}.
It is easy to see that this functor is representable by a normal group subscheme of G0

0.
The action of G0

0 on the tangent space (m/m2)∗ preserves ω. Thus, it gives rise to a
monomorphism

G0
0/F

1G0
0 → Sp(2n),

which is, in fact, an isomorphism because it has a section. In particular, we have that

dimG0
0/F

1G0
0 = dim Sp(2n) = dimkm

2/m3. (4.2)

To check that the other quotients are connected we construct injective homomorphisms

αi : F iG0
0/F

i+1G0
0 ↪→ mi+2/mi+3, i ≥ 1, (4.3)

where mi+2/mi+3 is the vector group associated to the space mi+2/mi+3 and then using (4.1)
conclude that αi are isomorphisms. For the sake of brevity we only define αi on k-points. Take
φ ∈ F iG0

0(k) and consider φ∗ : A0 → A0. By definition, φ∗ = Id mod mi+1, so φ∗ − Id maps mr

to mi+r, for every r ≥ 0. Hence φ∗ − Id defines a homogeneous degree i map θφ : ⊕mr/mr+1 =
A→ A which is, in fact, a derivation. Let us show that θφ lies in a Lie algebra of G0

0, i.e. Lθφ
η

is exact. Indeed, since φ ∈ G0
0 we have φ∗η = η + dK for some K ∈ A0. But then Lθφ

η = dKi+2,
whereKi+2 is the homogeneous component ofK of degree i+ 2. It follows that θφ is Hamiltonian:
ιθφ
ω = ιθφ

dη = d(Ki+2 − ιθφ
η). Set

αi(φ) = Ki+2 − ιθφ
η ∈ mi+2/mi+3.

Using the identity θφ◦ψ = θφ + θψ, for every φ, ψ ∈ F iG0
0(k), one checks that α is a group homo-

morphism and that it factors through F iG0
0/F

i+1G0
0. For the injectivity of (4.3) observe that

θφ = 0 if and only if φ ∈ F i+1G0
0(k).

From (4.3) we have that, for every i ≥ 1,

dimF iG0
0/F

i+1G0
0 ≤ dimkm

i+2/mi+3.

If for some i the inequality is strict, then using (4.2) we would have that dimG0
0 < dimkm

2

contradicting to (4.1). It follows that all αi are isomorphisms as desired. �
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Recall from Lemma A.111 a decomposition

GrGm

∼−→ Z × Ŵ.

Corollary 4.2. The extension (1.15) admits a unique reduction to Ŵ ⊂ GrGm . Notation:

1 → Ŵ → G̃e0 → G0 → 1.

Proof. By Lemma 4.1 we have that Hom(G0,Z) = 0. The uniqueness part follows. For the
existence, note that the composition

G̃ ↪→ LGL(pn) det−→ LGm � Z

factors through G̃0. We claim that setting G̃e0 := ker(G̃0 → Z) does the job. Indeed, the only
assertion that requires a proof is the surjectivity of the projection G̃e0 → G0. By construction,
G̃e0 projects onto the kernel of the homomorphism G0 → Z/pn induced by G̃0 → Z. But by
Lemma 4.1 every such homomorphism is trivial. �

Consider m2 ⊂ A0 as a Lie subalgebra of A0 equipped with Poisson bracket. Recall that

m2 f 	→Hf−→ LieG0
0 (4.4)

is an isomorphism of Lie algebras. The grading on A0 induces a grading on the Lie algebra m2:

m2 ∼=
⊕

2≤i≤2n(p−1)

mi/mi+1

such that the Lie bracket has degree −2.

Lemma 4.3. Isomorphism (4.4) induces

[LieG0
0,LieG0

0] ∼=
⊕

2≤i<2n(p−1)

mi/mi+1.

In particular, [LieG0
0,LieG0

0] has codimension 1 in LieG0
0. Moreover, sp(2n) = m2/m3 together

with any nonzero element z ∈ m3/m4 generate the Lie algebra [LieG0
0,LieG0

0].

Proof. By a direct computation the Poisson bracket of any two monomials of total degree
2n(p− 1) + 2 is 0 i.e. [LieG0

0,LieG0
0] does not contain nonzero homogeneous elements of degree

2n(p− 1). Hence, [LieG0
0,LieG0

0] ⊂
⊕

2≤i<2n(p−1)m
i/mi+1. Since [sp(2n), sp(2n)] = sp(2n), we

have that m2/m3 ⊂ [LieG0
0,LieG0

0]. Also it is clear that [LieG0
0,LieG0

0] contains at least one
nonzero element of degree 3 (e.g. {x2

1, x1y
2
1} = 2x2

1y1). To complete the proof of the lemma it
suffices to verify that the Lie subalgebra g generated by m2/m3 and a nonzero element of degree
3 coincides with

⊕
2≤i<2n(p−1)m

i/mi+1. We check by induction on d that md/md+1 ⊂ g provided
that 2 ≤ d < 2n(p− 1). The base of induction, d = 3, can be easily checked directly follows from
Lemma A.6.

Choose a symplectic basis (xi, yj) for V ∗ and let E = xa1
1 y

b1
1 . . . xan

n y
bn
n ∈ md/md+1 with d > 3.

Note that:

• 3aixai
1 y

bi
i = {xai+1

i ybi−2
1 , y3

i } (and −3bixai
1 y

bi
1 = {xai−2

i ybi+1
1 , y3

1});
• (a− 1 − 2b)xai y

b
i = {xa−1

i ybi , x
2
i yi} (and (2a− b+ 1)xai y

b
i = {xai yb−1

i , xiy
2
i });

• −xixj = {xiyi, xixj};
• xp−1

i yp−1
i + 2(p− 1)xp−2

i yp−2
i xjyj = {xp−1

i yp−3
i xj , y

2
i yj};

• 2(p− 1)xp−2
i yp−2

i x2
jyj + 2xp−1

i yp−1
i xj = {xp−1

i yp−3
i x2

j , y
2
i yj}.

11 We remark that all the results of the Appendix, in particular, Lemma A.1, do not depend on anything from
the main body of the paper.
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Assume first that p > 3. Then if for some i we have ai < p− 1 and bi ≥ 2 (or ai ≥ 2 and
bi < p− 1), then by the first formula above E is generated by elements of degree 2 ≤ d′ < d, which
are in g by the induction assumption. Otherwise, for all i the pair (ai, bi) equals (p− 1, p− 1),
(1, 1), (1, 0), or (0, 1).

If for some i the pair is (1, 1) we get that from the second formula that E ∈ g. If there are
at least two pairs of the type (1, 0) or (0, 1) we are done by the third formula.

Otherwise we may assume that E = xp−1
1 yp−1

1 . . . xp−1
n−ry

p−1
n−r or E = xp−1

1 yp−1
1 . . .

xp−1
n−ry

p−1
n−rxn−r+1 for some 0 < r < n. In these cases we are done by the last two formulas.

Now assume p = 3. For d > 3 note that if for some i the number ai + bi − 1 is not divisible
by 3 we are done using the second formula. Thus, assume that for all i the pair (ai, bi) equals
either (p− 1, p− 1), (1, 1), (1, 0) or (0, 1). In these cases we proceed as above. �

Lemma 4.4. We have the following commutative diagram.

Moreover, the projection G0 → G0/[G0, G0] admits a section yielding to a decomposition G0
∼=

[G0, G0] � Ga. Lastly, we have that

Lie[G0
0, G

0
0] = [LieG0

0,LieG0
0]. (4.5)

Proof. Let us construct a group scheme homomorphism φ from G0 to Ga. For a k-algebra R and
g ∈ G0(R), we have that g(η) = η + df ∈ Ω1

A0⊗R/R, for some f ∈ coker(R→ A0 ⊗R). Consider
the element

φ(g) = [f · ωn] ∈ H2n
DR(A0 ⊗R/R) ∼−→ R,

where the isomorphism above is induced by k
∼−→ H2n

DR(A0) that takes 1 ∈ k to the inverse
Cartier operator applied to ωn.

To show that φ is a homomorphism consider two elements g1, g2 ∈ G0(R). Write g1(η) =
η + df1, g2(η) = η + df2. Since g2 ◦ g1(η) = η + df2 + d(g2(f1)) the image of g2 ◦ g1 equals [(f2 +
g2(f1)) · (ω)n]. On the other hand, φ(g1) + φ(g2) = [(f2 + f1) · (ω)n]. Thus, it suffices to prove
that G0 acts trivially on H2n

DR(A0). We claim that, in fact, every 1-dimensional representation
of G0 is trivial. Indeed, G0 is generated by two subgroups α = α2n

p and G0
0. Since α has no

nontrivial homomorphisms to Gm it suffices to prove the assertion for G0
0. By Lemma 4.1 G0

0

is an extension of Sp(2n) by a unipotent group and neither of the two groups has nontrivial
1-dimensional representations. This proves that φ is homomorphism.

The restriction of φ to G0
0 yields a homomorphism

G0
0/[G

0
0, G

0
0] → Ga. (4.6)

Next, we shall construct a homomorphism s : Ga = Spec k[t] → G0
0 whose composition with

the projection G0
0 → G0

0/[G
0
0, G

0
0] followed by (4.6) is Id. Set u =

∏
xp−1
i

∏
yp−1
i ∈ A0. Define

s(t) ∈ Autk[t](A0[t]) sending f ∈ A0 to f − (t/2){f, u}. One verifies directly that s is group
homomorphism and a section of (4.6). Let us check that (4.6) is an isomorphism. First, from
Lemma 4.3 we know that [LieG0

0,LieG0
0] has codimension 1 in LieG0

0. Second, since G0
0 = (G0)red

is smooth, both groups [G0
0, G

0
0] and G0

0/[G
0
0, G

0
0] are also smooth. Moreover, we have that

[LieG0
0,LieG0

0] ⊂ Lie[G0
0, G

0
0] (see e.g. [Bor91, Proposition 3.17]). It follows that the dimension

of G0
0/[G

0
0, G

0
0] is at most 1. Thus, (4.6) is a homomorphism from a smooth connected algebraic
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group of dimension ≤ 1 to Ga and as we have already seen this homomorphism admits a section.
It follows that (4.6) is an isomorphism. This also proves formula (4.5).

To complete the proof of lemma it suffices to check that the homomorphism G0
0/[G

0
0, G

0
0] →

G0/[G0, G0] is surjective. Since G0 is generated by α and G0
0 it is enough to show that α ∈

[G0, G0]. Consider the subgroup P = α� Sp(2n) ⊂ G0. We claim that [P, P ] = P . Indeed, there
is a surjection [P, P ] � [Sp(2n),Sp(2n)] = Sp(2n). The kernel of the surjection is a subgroup of
α whose Lie algebra is a Sp(2n)-invariant subspace of Lieα. It follows that the kernel is either
trivial which clearly not the case or equal to α as desired. �

Next, we shall show that [G0, G0] is generated by Sp(2n), α, and a certain one-parameter
subgroup Ga ⊂ G0

0. We start with the following observation.

Lemma 4.5. Let f ∈ Ah be an element of the restricted Weyl algebra such that f (p+1)/2 = 0.
Consider the homomorphism

λ̃f : Ga = Spec k[τ ] → Ah(h−1)∗

given by the formula

eτf/h =
(p−1)/2∑
i=0

(τf)i

hii!
.

Then the pth power of the operator adτf/h : Ah⊗̂k[τ ] → Ah⊗̂k[τ ] is zero and

Adeτf/h =
p−1∑
i=0

adiτf
hii!

=: eadτf/h . (4.7)

In particular, eτf/h normalizes the lattice Ah ⊂ Ah(h−1) and, thus, defines a homomorphism

λ̃f : Ga → G̃. (4.8)

Proof. The only assertion that requires a proof is formula (4.7). Both sides of the equation can
be thought as homomorphisms from Ga to the loop group of k((h))-linear automorphisms of
Ah(h−1). One readily sees that the differentials of these homomorphisms at τ = 0 are equal. It
follows that the homomorphisms are equal on the subscheme αp ⊂ Ga. Also, by the assumption
on f , both homomorphisms are given by matrices in Endk[τ ]((h))(Ah⊗̂k[τ ](h−1)) whose entries
are polynomials in τ of degree less than p. Therefore, the homomorphisms are equal on Ga. �

Let (xi, yj) be a symplectic basis for V ∗. For p > 3, define a homomorphism

λ : Ga = Spec k[τ ] ↪→ G0
0 (4.9)

by the equations

λ(τ, xi) = xi, for all i

λ(τ, y1) = y1 + 3τx2
1, λ(τ, yi) = yi, for all i �= 1.

The differential of λ is the Hamiltonian vector field H−x3
1
. The construction from Lemma 4.5

gives a lifting λ̃x3
1

= eτx
3
1/h : Ga → G̃ of λ.
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For p = 3 define λ by

λ(τ, xi) = xi, λ(τ, yi) = yi for all i �= 1

λ(τ, x1) = x1 + τx2
1, λ(τ, y1) = y1 − 2τx1y1 + 2τ2x2

1y1.

The differential of λ in this case is H−x2
1y1

. The homomorphism λ̃x3
1

= eτx
2
1y1/h : Ga → G̃ lifts λ.

Lemma 4.6. The group scheme H := [G0, G0] is generated by Sp(2n), α, and the image of λ.

Proof. First, we show that α and [G0
0, G

0
0] generate H. Indeed, since α ⊂ H, we have that, for

any k-algebra R
H(R) = α(R)(G0

0(R) ∩H(R)).

Thus, it suffices to prove thatG0
0(R) ∩H(R) = [G0

0, G
0
0](R). By Lemma 4.4G0

0/[G
0
0, G

0
0] ∼= G0/H,

so the assertion holds.
Thus, it remains to prove that [G0

0, G
0
0] is generated by Sp(2n) and the image of λ. Since the

groups in question are smooth it suffices to verify that Lie[G0
0, G

0
0] is generated by sp(2n) and

Lieλ(Ga). But this is immediate from Lemmas 4.3 and 4.4. �
Consider the extension

1 → Ŵ → G̃e0 → G0 → 1 (4.10)

from Lemma 4.2.

Lemma 4.7. The restriction of the extension (4.10) to G0
0 admits a unique splitting, that is,

there exists a unique homomorphism G0
0 → G̃e0 whose composition with the projection G̃e0 → G0

is the identity.

Proof. Recall from (3.6) the extension

1 → LGm → G̃→ G→ 1.

The kernel A∗h/Gm of surjection π : G→ G0 is a pro-unipotent group scheme. Thus, by part
(iii) of Proposition A.5 the restriction of the above extension to π−1G0

0 ↪→ G admits a unique
reduction to L+Gm. Equivalently, the extension

1 → GrGm → G̃0 → G0 → 1

admits a unique splitting υ : G0
0 → G̃0 over G0

0 ⊂ G0. It remains to show that υ lands in G̃e0. From
the proof of Lemma 4.2 G̃e0 is the kernel of a homomorphism G̃0 → Z. Since G0

0 is connected its
composition with υ is identically 0 as desired. �

Recall from Remark 3.2 an isomorphism of Lie algebras Lie G̃e0 = Lie G̃0
∼−→ A0 ⊕ h−2k[h−1].

Also recall an identification LieG0
0
∼−→ m2 ⊂ A0.

Lemma 4.8. The morphism LieG0
0 → Lie G̃e0 induced by the splitting from Lemma 4.7 equals

the composition m2 ↪→ A0 ↪→ Lie G̃e0.

Proof. The difference of the two morphisms of Lie algebras is a homomorphism from LieG0
0 to

the abelian Lie algebra Lie Ŵ. Thus, it suffices to check that the morphisms coincide on the
one-dimensional Lie algebra LieG0

0/[LieG0
0,LieG0

0], which is immediate from Lemma 4.4. �

4.2 Extensions of α by Ŵ

In this subsection we shall apply the theory of restricted Lie algebras to study the category
of central extensions of the group scheme α by the group ind-scheme Ŵ. Recall (see
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e.g. [DG80, Chapter II, § 7]) that the Lie algebra of a group scheme H over a field of char-
acteristic p > 0 is equipped with the pth power operation giving LieH a restricted Lie algebra
structure. We are not aware of a written account of such theory for group ind-schemes. Therefore,
we shall use the following trick to reduce our problem to the well documented setup.

For an affine scheme S and an affine group scheme H over k denote by Mor(S,H) the fpqc
sheaf of groups assigning to a scheme T over k the group Mor(S × T,H).

Lemma 4.9. Let G be a finite connected group scheme over k, H a smooth commutative group
scheme, and let S be an affine scheme. Then the groupoid of central extensions of G by Mor(S,H)
in the category of fpqc sheaves of groups is equivalent to the category of central extensions of
GS = G× S by HS = H × S in the category of group schemes over S.

Proof. Assume we are given a central extension

1 → HS → K
π−→ GS → 1, (4.11)

and let us construct a central extension F of G by Mor(S,H). For any scheme T over Spec(k)

define F (T ) = {g ∈ K(T × S)|T × S
π(g)−→ G× S → G factors through the projection to T}. It is

easy to see that the resulting F is a sheaf and that Mor(S,H) injects into it, so it is left to prove
that F → G is a surjection. Indeed, since the morphism π is flat and HS is smooth we get that
K → GS is formally smooth [Sta, Lemma 29.33.3]. Then since the map Spec(k) × S → G× S is
a nilpotent thickening we get that π has a section. Thus, F → G is surjective.

Conversely, if we have a central extension

1 → Mor(S,H) i−→ F → G→ 1, (4.12)

define for any S-scheme T the group K(T ) to be F (T ) ×Mor(T×S,H) Mor(T,H). Here the map
Mor(T × S,H) → F (T ) is induced by i and Mor(T × S,H) → Mor(T,H) is defined to be the
restriction to the graph of the structure morphism T → S. Let HS(T ) → F (T ) × Mor(T,H)
be the homomorphism whose composition with the first projection takes HS(T ) to the neutral
element and whose composition with the second projection is the identity map. This defines an
injection of sheaves HS ↪→ K, making K into an HS-torsor over GS representable by a scheme
[Mil80, Chapter III, Theorem 4.3]. That is enough. �
Corollary 4.10. The groupoid of central extensions of α by Mor(A1,Gm) in the category of
fpqc sheaves is equivalent to the groupoid of central extensions of α× A1 by Gm × A1 in the
category of group schemes over A1.

Remark 4.11. The above groupoids are discrete, i.e. objects do not have nontrivial
automorphisms. Indeed, the Cartier dual group to α is isomorphic to itself. In particular, it
has no nontrivial A1 points. Hence, every homomorphism α× A1 → Gm × A1 in the category of
group schemes over A1 is trivial.

Observe that the evaluation at 0 defines a split surjection Mor(A1,Gm) → Gm, whose kernel
is identified with Ŵ. Hence, we have a decomposition Mor(A1,Gm) = Ŵ × Gm.

Declare the restricted Lie algebra of GrG to be Lie(Gr0G) = h−1k[h−1] with the trivial Lie
bracket and the restricted power operation given by the absolute Frobenius.

Theorem 3. The groupoid of central extensions of the group scheme α by Ŵ is equivalent to
the groupoid of central extensions of the restricted Lie algebra Lie(α) by Lie(Ŵ).

Proof. Using that the multiplication by p is 0 on α and surjective on Ŵ it follows that every exten-
sion of α by Ŵ admits a reduction to Gr0μp

. Moreover, since Hom(α, Ŵ) = 0 (by Corollary A.3),
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such a reduction is unique. Thus, the groupoid of central extensions of α by Ŵ is equivalent
to the groupoid of central extensions of α by Gr0μp

. The groupoid of central extensions of α
by Gr0μp

is equivalent to a full subcategory of the groupoid of central extensions of α× A1 by
μp × A1. This subcategory classifies families of central extensions whose fiber over 0 ∈ A1 is a
trivial extension.

Next we claim that for an extension

μp × A1 → K → α× A1 (4.13)

the A1-group scheme is of height 1. Indeed, the Frobenius map K → K factors as K → α× A1 →
μp × A1 → K. From Remark 4.11 we conclude that this map is trivial.

Thus, by [DG80, Chapter II, § 7, Theorem 3.5] the category of central extensions of α× A1

by μp × A1 is equivalent to the category of extensions of corresponding restricted Lie algebras
over A1. The latter is equivalent to the category of extensions of Lie(α) by Lie(μp × A1) in the
category of restricted Lie algebras over k. The above equivalence induces an equivalence between
the subcategories of central extensions of α× A1 by μp × A1 trivial over 0 ∈ A1 and the category
of restricted Lie algebra extensions of Lie(α) by Lie(Ŵ). �

Corollary 4.12. The groupoid of central extensions of the group scheme α by Ŵ which split
over any factor αp ⊂ α is equivalent to the set of Lie(Ŵ)-valued skew-symmetric bilinear forms
on Lie(α) viewed as a groupoid with no nontrivial morphisms.

Proof. Given a central extension of α by Ŵ let

0 → Lie(Ŵ) → L → Lie(α) → 0 (4.14)

be the corresponding extension of Lie algebras. The commutator on L defines a Lie(Ŵ)-valued
skew-symmetric bilinear form on Lie(α). To construct the functor in the other direction set
L = Lie(Ŵ) ⊕ Lie(α) as a vector space. The skew-symmetric form defines a Lie bracket on L

making L a central extension of Lie algebras. Define the restricted power operation on L by the
formula (f, g)[p] = f [p]. Let us check that L is a restricted Lie algebra. We have to check that
the restricted power operation satisfies

(X + Y )[p] = X [p] + Y [p] +
p−1∑
i=1

si(X,Y )
i

for X and Y in the Lie algebra, and si(X,Y ) being the coefficient of ti−1 in the formal expression
ad(tX + Y )p−1(X). Since p > 2 the polynomial si(X,Y ) = 0 for every i as desired. It remains to
check that every extension (4.14) of restricted Lie algebras that splits over every factor Lie(αp) ⊂
Lie(α) arises this way. As observed above, the restricted power operation on L is additive. Now
consider the subspace V of L consisting of elements annulated by [p]-power operation. The
projection defines an embedding V ↪→ Lie(α). Since the extension has a section over each Lie(αp)
the embedding is an isomorphism and we win. �

4.3 Geometric description of G̃e
0

Let

1 → Ŵ → G̃e0 → G0 → 1 (4.15)

be the extension from Lemma 4.2, and let α̃ be its restriction to α.
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Let us check that α̃ satisfies the assumptions of Corollary 4.12, that is splits over every
subgroup αp ⊂ α. For any v ∈ V set f = ωV (v, ·) ∈ V ∗ and define a homomorphism

αp = Spec k[ε]/(εp) → G̃ ⊂ Ah[h−1]∗, ε 
→ eεf/h.

Here eεf/h denotes the restricted exponent, i.e. eεf/h = 1 + εf/h+ · · · + 1/(p− 1)!(εf/h)p−1. It
is easy to see that eεf/h ∈ Ah[h−1]∗(αp) normalizes the lattice Ah ⊗ k[ε]/(εp); therefore, it lies in
G̃(αp). Then the composition of this homomorphism with the projection to G̃0 is a lift of the
embedding αp ⊂ α corresponding to v as desired.

The natural action of Sp2n ⊂ G0
0 ⊂ G0 on α by conjugation lifts to an action on α̃. Indeed,

by Lemma 4.7 the extension (4.15) splits uniquely over Sp2n ⊂ G0
0.

For future purposes note that the symplectic basis (xi, yi) for V ∗ gives rise to a scheme-
theoretic section of π : α̃→ α. Namely, α ∼= α2n

p , and we define

t : α = Spec(k[ε1, . . . εn, δ1, . . . δn, ]/(ε
p
i = δpi = 0)) → α̃ (4.16)

by eε1x1/h . . . eεnxn/heδ1y1/h . . . eδnyn/h. The section t is not a group homomorphism and it does
depend on the choice of symplectic basis. However, its differential

dt(e) : Lie(α) → Lie(α̃)

is the unique linear map compatible with the restricted power operation.
Recall that a connection on a (trivial) Ŵ-torsor α̃ is a function

∇ : {sections s : α→ α̃} → Ω1
α ⊗ Lie(Ŵ) (4.17)

such that, for any c ∈ Ŵ(α), one has ∇(cs) = ∇(s) + c−1 dc. Denote by Conn(α̃, Ŵ) the set of
Ŵ-connections on α̃. More generally, we define the space Conn(α̃, Ŵ) of connections on α̃ to be
the functor (k − algebras)op → Sets sending an algebra R to the set of functions

∇ : {sections s : α× SpecR→ α̃} → Ω1
α ⊗ Lie(Ŵ) ⊗R (4.18)

with ∇(cs) = ∇(s) + c−1 dc, for every c ∈ W(α× SpecR). The group scheme Sα of automor-
phisms of the scheme α acts on the space Conn(α̃, Ŵ). In particular, for any subgroup H ⊂ Sα,
we have a subset Conn(α̃, Ŵ)H ⊂ Conn(α̃, Ŵ) of H-invariant connections.

Lemma 4.13. There exists a unique Sp2n �α-invariant Ŵ-connection ∇ on α̃.

Proof. Denote by Conn(α̃, Ŵ)α the set of α-invariant connections. We have that

Conn(α̃, Ŵ)α = {linear maps f : Lie(α̃) → Lie(Ŵ) such that f |Lie(Ŵ) = Id}.
For an α-invariant connection ∇, the corresponding f is given by the formula

(∇(s) − ds) ◦ dπ(e) + Id,

for any section s.
Now since Sp2n normalizes α in G0

0 we get that Sp2n acts on Conn(α̃, Ŵ)α. Suppose we are
given two Sp2n-invariant connections in Conn(α̃, Ŵ)α. Then their difference gives a morphism
Lie(α) → Lie(Ŵ) of representation of Sp2n, which has to be trivial since Lie(α) is a nontrivial
irreducible representation whereas the action of Sp2n on Lie(Ŵ) is trivial. Thus, we get the
uniqueness.

To prove the existence take (a unique) f : Lie(α̃) → Lie(Ŵ) that commutes with the restricted
power operation (see the proof of Corollary 4.12). This morphism is Sp2n-invariant since the
action of Sp2n respects the restricted structure. �
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We will need an explicit formula for the Sp2n �α-invariant connection ∇. Let t be the section
defined in (4.16). We claim that

∇(t) =
η

h
= Σ

δi dεi
h

. (4.19)

To see this let us show that the connection given by (4.19) is Sp2n �α-invariant. Pick a k-algebra
R and a point a ∈ α(R) given by εi 
→ ε′i ∈ R. Then t(a) is an R-point of α̃ that acts on α̃ by
translation γ. The composition γ ◦ t : α× Spec(R) → α̃× Spec(R) is given by the formula

t(a)Πeεixi/hΠeδiyi/h = e−(Σεiδ
′
i/h)Πe(εi+ε

′
i)xi/hΠe(δi+δ

′
i)yi/h. (4.20)

Let γ̄ be the translation by a acting on α. Then tγ = γ−1tγ̄ defines another section of π. The
invariance of ∇ under the action of γ reads as

γ̄∗∇(t) = ∇(tγ).

Since γ̄(εj) = εj + ε′j and γ̄(δj) = δj + δ′j , we have that

γ̄∗∇(t) = γ̄∗
η

h
=
η

h
+ Σ

δ′i dεi
h

.

On the other hand, from (4.20) we have tγ = eΣεiδ
′
i/ht and, therefore,

∇(tγ) = ∇(t) + e−(Σεiδ
′
i/h) deΣεiδ

′
i/h =

η

h
+ Σ

δ′i dεi
h

.

Thus, ∇ is α-invariant. Let us show that ∇ is also Sp2n-invariant. Indeed, the morphism {f :
Lie(α̃) → Lie(Ŵ)} coincides with the differential of t, which is, as we observed above, a unique
linear map compatible with the restricted power operation. Therefore, it is Sp2n-invariant.

Define Sα to be the group scheme of automorphisms of the scheme α, that is,

Sα(T ) = AutT (α× T ).

Define also SŴ

α̃ to be the fpqc sheaf of automorphisms of the torsor α̃, that is,

SŴ

α̃ (T ) = {φ ∈ Sα(T ), φ̃ : α̃× T → φ∗(α̃× T )}.
Finally, define S∇α̃ to be subsheaf of SŴ

α̃ of endomorphisms preserving the connection ∇ on α̃.

Lemma 4.14. The morphism SŴ

α̃ → Sα fits into a short exact sequence

1 → Mor(α, Ŵ) → SŴ

α̃ → Sα → 1.

Moreover, the kernel of the composition S∇α̃ ↪→ SŴ

α̃ → Sα is the sheaf Ŵ ⊂ Mor(α, Ŵ) of constant
maps. Finally, the image of S∇α̃ in Sα belongs to G0.

Proof. The map Mor(α, Ŵ) → Sα̃ takes f to the translation by f ◦ π, and exactness is immediate
because α̃ is a trivial torsor. If the translation by f ◦ π preserves the connection, then df = 0.
This implies that f is constant, that is, f ∈ Ŵ.

To see that Im(S∇α̃ ) ⊂ G0 pick γ ∈ S∇α̃ and let γ̄ be its image in Sα. We have that

γ̄∗∇(t) = ∇(tγ) = ∇(t) + c−1 dc ∈ Ω1
α ⊗ Lie(Ŵ) (4.21)

for some c = (1 + Σi>0aih
−i) ∈ Ŵ(α). Consider the group homomorphism Ŵ → Ga that takes a

series (1 + Σaih−i) ∈ Ŵ(α) to a1. This defines a morphism Ω1
α ⊗ Lie(Ŵ) → Ω1

α, and the image
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of ∇(t) ∈ Ω1
α ⊗ Lie(Ŵ) is precisely η. Hence, we have from (4.21)

γ̄∗η = η + da1

as desired. �
Recall from Lemma 4.7 that the extension G̃e0 → G0 admits a unique splitting G0

0 ↪→ G̃e0 over
G0

0. The left action of G̃e0 on G̃e0/G
0
0
∼−→ α̃ defines a homomorphism

G̃e0 → SŴ

α̃ . (4.22)

Theorem 4. Let ∇ be a Sp2n �α-invariant connection on α̃. Then homomorphism (4.22) induces
an isomorphism G̃e0

∼−→ S∇α̃ .

Proof. Let us show that G̃e0 is a subsheaf of S∇α̃ , that is, ∇ is G0-invariant. Denote by H the
commutator subgroup of G0. We shall first show that ∇ is H-invariant.

By Lemma 4.6 the group H is generated by α, Sp(2n), and a certain one-parameter sub-
group λ(τ) : Ga → G0

0. By assumption, ∇ is Sp2n �α-invariant. It remains to check that ∇ is
Ga-invariant. We use formula (4.19) describing ∇ in coordinates corresponding to the trivializa-
tion t of the torsor α̃. First, assume that p > 3. Homomorphism λ has a unique lifting λ̃ to G̃0,e

0

that can be explicitly computed using the construction from Lemma 4.5

λ̃ = eτx
3
1/h : Ga → G̃0,e

0 .

The invariance of ∇ under the action of Ga reads as

γ∗∇(t) = ∇(t′), (4.23)

where t′ : Ga × α→ α̃ is the composition

Ga × α
Id×γ−→ Ga × α

Id×t−→ Ga × α̃
Id×γ̃−1

−→ Ga × α̃
prα̃−→ α̃.

We have to compute t′. The following equality of morphisms Ga × α→ G̃e0 holds:

eτ(x
3
1/h)Πeεixi/heδiyi/h = e−τ(2δ

3
1/h)(e(ε1+3τδ21)x1/heδ1y1/h · · · eεnxn/heδnyn/h)eτ((x1+δ1)3−3δ21x1−δ31)/h.

(4.24)

We claim that the last factor eτ((x1+δ1)3−3δ21x1−δ31)/h maps Ga × α to G0
0 ⊂ G̃e0 as follows.

Indeed, the same formula defines an extension of the morphism Ga × α→ G̃e0 to a morphism
from a reduced scheme Ga × Spec k[[εi, δj ]] to G̃e0.

12 The composition of the latter with the
projection G̃e0 → G0 lands in G0

0 ⊂ G0. But the projection G̃0,e
0 → G0

0 induces an isomorphism
on points with values in any reduced k-algebra. Thus, the morphism eτ((x1+δ1)3−3δ21x1−δ31)/h :
Ga × Spec k[[εi, δj ]] → G̃e0 factors through G0

0 and the claim follows.

γ∗∇(t) = γ∗
η

h
=
η

h
+
δ1d(3τδ21)

h
=
η

h
+

2τ dδ31
h

,

∇(t′) = ∇(t) + e−τ(2δ
3
1/h) deτ(2δ

3
1/h) =

η

h
+

2τ dδ31
h

.

12 Indeed, the pth power of (x1 + δ1)
3 − 3δ21x1 − δ31 = x3

1 + 3x2
1δ1 ∈ Ah[[δ1]] is zero.
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For p = 3, the lift γ̃ is given by eτ(x
2
1y1/h). Write

eτ(x
2
1y1/h)Πeεixi/heδiyi/h = f(τ, ε1, δ1)(e(ε1+τδ1ε1)x1/he(δ1+τδ21)y1/heε2x2/heδ2y2/h · · · eεnxn/heδnyn/h)s

(4.25)

for some uniquely determined s ∈ G0
0(Ga × α) ⊂ G̃0,e

0 (Ga × α) and f(τ, ε1, δ1) ∈ Ŵ(Ga × α). We
claim that

f(τ, ε1, δ1) = eτ(δ
2
1ε1/h). (4.26)

A direct verification of this formula is unpleasant; instead we deduce it from the following
facts. Using a computation in Lie algebras from Lemma 4.8 one verifies (4.26) modulo τ2.

Also, it is easy to see that the left-hand side is invariant under the action of the multi-
plicative group given by τ → τ/a, ε1 → ε1/a, δ1 → aδ1, x1 → ax1, y1 → y/a. Thus, the element
f(τ, ε1, δ1) must be also invariant under this transformation. Finally, f(τ, ε1, δ1) satisfies the
following cocycle condition:

f(τ1 + τ2, ε1, δ1) = f(τ1, ε1, δ1)f(τ2, ε1 + τ1δ1ε1, δ1 + τ1δ
2
1). (4.27)

There exists a unique f satisfying the above properties and it is given by (4.26). It follows that
γ̃ carries the section t to t′ = eτ(2δ

2
i εi/h)t and (4.23) follows.

We have proved that ∇ is H-invariant. Note that since Sp2n ⊂ H and α ⊂ H we can see that
∇ is a unique H-invariant connection.

The group scheme G0 acts on Conn(α̃, Ŵ), the subgroup H is normal in G0, hence G0/H
acts on the space of H-invariant connections. But since the latter consists of one element this
action must by trivial. Hence, ∇ is G0-invariant.

It follows that homomorphism (4.22) factors through S∇α̃ . Thus, by Lemma 4.14 we have a
commutative diagram

where β induces an isomorphism on the kernels of the vertical arrows. Hence, β is an isomorphism
as desired. �

4.4 Proof of the Basic Lemma
We will prove the assertion for the extensions by Ŵ (as opposed to GrGm) which is a priori
stronger than that stated in § 1.8.

Recall the setup. Let i : V ↪→ V � be a morphism of symplectic vector spaces such that
the restriction to V of the symplectic form on V � is ωV . Let G̃e0 → G0 and G̃�,e0 → G�0 be the
corresponding extensions. Denote by G�0 ⊂ G�0 the group subscheme that consists of automor-
phisms preserving kernel of the homomorphism i∗ : A�0 → A0. We have a natural homomorphism
G�0 → G0.

Theorem 5 (Basic Lemma). The homomorphism G�0 → G0 lifts uniquely to a homomorphism
of central extensions

G̃�,e0 ×G�
0
G�0 → G̃e0.

Proof. The uniqueness follows from Corollary A.3. Let us prove the existence. By Corollary 4.12
the morphism i : α→ α� lifts uniquely to a morphism ĩ : α̃→ α̃� of extensions. Moreover, the
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pullback of the (unique) Sp(V �) � α�-invariant connection ∇� on α̃� is the (unique) Sp(V ) �

α-invariant connection ∇ on α̃. Thus, we have a homomorphism

S∇
�

α̃� ×G�
0
G�0 → S∇α̃

lifting G�0 → G0. It remains to apply Theorem 3. �

Corollary 4.15. There exists a unique isomorphism of central extensions of G�0:

G̃�,e0 ×G�
0
G�0

∼−→ G̃e0 ×G0 G
�
0.

4.5 Proof of the Proposition 3.3
We will prove a stronger assertion for the extensions by Ŵ (as opposed to GrGm). Let (V, ω) be a
symplectic vector space and let η be a homogeneous 1-form on the scheme V whose differential
equals ω, that is, a vector η ∈ V ∗ ⊗ V ∗ whose skew-symmetrization is ω. Denote by

i : V ↪→ V � := V ⊕ V ∗

the linear morphism corresponding to the graph Γη : V ↪→ T∗V of η. Explicitly, the composition
of i with the first projection is Id and its composition V → V ∗ with the second projection is
given by η ∈ V ∗ ⊗ V ∗. In § 3.2 we defined a homomorphism ψ0 : G0 → G�0. We have to prove that
ψ0 lifts uniquely to a homomorphism ψ̃0 : G̃e0 → G̃�,e0 of extensions. The uniqueness follows from
Corollary A.3. To prove the existence we observe that by construction of ψ0 it factors through
the subgroup G�0 ⊂ G�0 that consists of automorphisms preserving kernel of the homomorphism
i∗ : A�0 → A0 and its composition

G0
ψ0−→ G�0 −→ G0

with restriction morphism is the identity.13 Consider the homomorphism

G̃e0
(Id,ψ0)−→ G̃e0 ×G0 G

�
0.

Using Corollary 4.15 we get a morphism

G̃e0 ×G0 G
�
0
∼−→ G̃�,e0 ×G�

0
G�0

pr−→ G̃�,e0 .

Its composition with (Id, ψ0) is the desired lift ψ̃0 : G̃e0 → G̃�,e0 .

5. Gm-equivariant quantizations

In this section we consider quantizations of symplectic varieties (X,ω) equipped with an action
of the multiplicative group Gm such that the form ω has a positive weight m with respect to
this action and m is invertible in k. We recall the notion of a Gm-equivariant Frobenius constant
quantization Oh of such (X,ω). By definition, Oh is a Gm-equivariant sheaf of OX′[h]-algebras on
X ′ × Spec k[h]. In particular, specializing h = 1 we have a sheaf Oh=1 of OX′-algebras over X ′.

13 Homomorphism ψ0 can be described in a coordinate-free way as follows. Consider the subgroup G�,f
0 of G�

0 that
consists of scheme-theoretic automorphisms g of α� fitting in the commutative diagram

for some ḡ ∈ G0. The restriction of the projection G�
0 → G0 to G�,f

0 is an isomorphism and ψ0 is its inverse.
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We show that if the action of Gm on X is contracting, then Oh=1 is an Azumaya algebra over
X ′ and using Theorem 1 compute its class in the Brauer group Br(X ′) proving a conjecture of
Kubrak and Travkin [KT19].

5.1 Definition of Gm-equivariant quantizations
Let X be a smooth variety over k equipped with a symplectic 2-form ω and a Gm-action

λ : Gm ×X → X. (5.1)

We shall say that ω is of weight m with respect to the Gm-action if the following identity holds
in Γ(Gm ×X,Ω2

Gm×X/Gm
):

λ∗ω = zm pr∗X ω. (5.2)

Here z denotes the coordinate on Gm and prX : Gm ×X → X the projection. For the duration
of this section we shall assume that ω is of weight m with m invertible in k.

The Gm-action on X defines a homomorphism from the Lie algebra of Gm to the Lie algebra
of vector fields on X. Denote by θ the image of the generator of Lie Gm. Formula (5.2) together
with the identity dω = 0 imply that

dιθω = mω.

Hence, setting η = (1/m)ιθω, defines a restricted Poisson structure on X. Endow X ′[h] : =
X ′ × Spec k[h] with the Gm-action given by the composition

Gm ×X ′ F×Id−→ Gm ×X ′ λ−→ X ′

(where F : Gm → Gm is given by F ∗(z) = zp) on the first factor and by h 
→ zmh on the second
factor.

A Gm-equivariant Frobenius-constant quantization of X consists of a Gm-equivariant sheaf
Oh of associative OX′[h]-algebras on X ′[h] together with an isomorphism of Gm-equivariant
OX′-algebras

Oh/(h)
∼−→ OX (5.3)

such that Oh is locally free as an OX′[h]-module and the restriction Oh := limOh/(hn) of Oh to the
formal completion of X ′[h] along the divisor h = 0 (equipped with the central homomorphism
s : OX′ [[h]] → Oh and (5.3)) is a Frobenius-constant quantization of X compatible with the
restricted Poisson structure given by the 1-form η = (1/m)ιθω.

For example, if X is affine, then a Gm-equivariant Frobenius-constant quantization
of X is determined by a graded O(X ′)[h]-algebra Oh(X ′[h]) (with deg h = m) together with
Oh(X ′[h])/(h)

∼−→ O(X).

5.2 A1-action
In the following, we shall consider Gm-actions on a scheme X satisfying the property that:
morphism (5.2) extends to a morphism

λ̃ : A1 ×X → X. (5.4)

If X is reduced and separated, which we shall assume to be the case for rest of this section,
then λ̃ defines an action of the monoid A1 on X. In particular, the restriction of λ̃ to the closed
subscheme X ↪→ A1 ×X given by the equation z = 0 factors through the subscheme XGm ↪→ X
of fixed points:

λ̃0 : X → XG

m ↪→ X.

Moreover, λ̃ exhibits XGm as a A1-homotopy retract of X.
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Also note if X is a proper scheme with a nontrivial action of Gm, then λ̃ does not exist. This
can be seen by looking at the closure of a 1-dimensional Gm-orbit in X.

5.3 Main result
By definition, a Gm-equivariant Frobenius-constant quantization Oh gives rise to a Frobenius-
constant quantization Oh and, thus, a class ρ(Oh) ∈ H1

et(X
′,O∗X′/O

∗p
X′) (see § 1.4). Denote

by [ρ(Oh)] ∈ Br(X ′) the image of ρ(Oh) under the homomorphism H1
et(X

′,O∗X′/O
∗p
X′) →

H2
et(X

′,O∗X′).
Recall from [OV07, § 4.2] a homomorphism

Ω1(X ′) → Br(X ′), η 
→ [η] (5.5)

that carries a 1-form η to the class of the Azumaya algebra DX restricted to the graph of
the embedding Γη : X ′ → T∗X′ given by η. Finally, denote by Oh=1 the sheaf of OX′-algebras
Oh/(h− 1). The following result has been conjectured in [KT19, § 0.3, Question 2].

Theorem 6. Let X be a smooth variety over k equipped with a Gm-action (5.2) and a symplec-
tic form ω of weight m > 0 relatively prime to the characteristic of k. Assume that the morphism
(5.1) extends to a morphism (5.4). Then, for every Gm-equivariant Frobenius-constant quanti-
zation Oh of X, the restriction of Oh to X ′[h, h−1] = X ′ × Spec k[h, h−1] ⊂ X ′[h] is an Azumaya
algebra. Moreover, the following equality in Br(X ′) holds:

[Oh=1] =
[

1
m
ιθω

]
+ λ̃∗0[ρ(Oh)].

Proof. To prove the Azumaya property of Oh(h−1) consider the morphism

ψ : Oh ⊗OX′[h]
Oop
h → EndOX′[h]

(Oh).

This is a morphism of vector bundles over X ′[h] of the same rank. We have to prove that ψ is
an isomorphism away from the divisor h = 0. Denote by

detψ : ∧top(Oh ⊗OX′[h]
Oop
h ) → ∧top(EndOX′[h]

(Oh))

the determinant of ψ and by Z ↪→ X ′[h]. Let (x0, h0) ∈ Z be a k-point of Z. We shall check that
h0 = 0. Using (5.4) and the positivity of m the Gm-action on X ′[h] extends to a morphism

λ̃(h) : A1 ×X ′[h] → X ′[h]. (5.6)

It follows that the closure T of the Gm-orbit of (x0, h0) intersects the divisor h = 0 at some point
(x′0, 0). Since Z is closed and Gm-invariant we have that T ⊂ Z i.e. detψ is identically 0 on T .
On the other hand, using the Azumaya property of the formal quantization Oh(h−1) we see that
the restriction of ψ to the formal punctured neighborhood of (x′0, 0) ∈ T is an isomorphism. This
contradiction proves the first assertion of the theorem.

For the second assertion, consider algebra DX,h obtained from the filtered algebra of dif-
ferential DY operators via the Rees construction (see § 1.2). The p-curvature homomorphism
makes DX,h into an algebra over S·TX′ [h]. The graph Γη : X ′ → T∗X′ of the differential form
η = (1/m)ιθω defines a sheaf of ideals IΓη ⊂ S·TX′ . The quotient DX,[η],h = DX,h/IΓη can be
viewed as a Gm-equivariant sheaf of OX′[h]-algebras over X ′[h]. By construction, the restriction
of DX,[η],h to the formal completion of X ′[h] along the divisor h = 0 is isomorphic to the algebra
DX,[η],h constructed in § 1.5. Now given a Gm-equivariant Frobenius-constant quantization Oh
we consider the tensor product Oh ⊗OX′ [h] D

op
X,[η],h. Using Theorem 1 and the Beauville–Laszlo

theorem [BL95] there exists a sheaf O�h of OX′[h]-algebras over X ′[h] whose restriction to
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X ′[h, h−1] is (Oh ⊗OX′ [h] D
op
X,[η],h)(h

−1) and whose restriction to the formal completion of X ′[h]

along the divisor h = 0 is an Azumaya algebra. It follows that O�h is an Azumaya algebra over
X ′[h]. We claim that the following equality holds in Br(A1 ×X ′[h]):

λ̃(h)∗([O�h]) = pr∗X′[h]([O
�
h]). (5.7)

Indeed, since (Oh ⊗OX′ [h] D
op
X,[η],h)(h

−1) is Gm-equivariant the equality holds after the restric-
tion to Gm ×X ′[h, h−1]. Now the claim follows from the injectivity of the restriction morphism
Br(A1 ×X ′[h]) → Br(Gm ×X ′[h, h−1]). Restricting the classes in (5.7) to the divisor X ′[h] z=0−→
A1 ×X ′[h] we find that

λ̃(h)∗0([O
�
h]) = [O�h]. (5.8)

Morphism λ̃(h)∗0 : X ′[h] → X ′[h] factors as follows:

X ′[h]
prX′−→ X ′

λ̃(h)∗0−→ X ′ h=0−→ X ′[h].

By Theorem 1 the restriction of [O�h] to the divisor X ′ h=0−→ X ′[h] is equal to [ρ(Oh)]. Using (5.8)
and restricting to the divisor h = 1 we find that

[O�h=1] = [ρ(Oh)]

as desired. �
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Appendix A

A.1 The affine grassmannian for Gm

Let G be an algebraic group over a field k. Denote by

LG : Affop
k → Groups

the corresponding loop group, that is a sheaf of groups on the category of affine schemes over k
equipped with the fpqc topology sending k-scheme SpecR to G(R((h))). Also, let

L+G : Affop
k → Groups

be the sheaf of groups sending k-scheme SpecR to G(R[[h]]). It is known (see e.g. [Zhu17,
Proposition 1.3.2]) that L+G is represented by a group scheme over k and that LG is an ind-
affine scheme. Denote by GrG the affine grassmannian for G. By definition, GrG is the fpqc sheaf
associated to the presheaf R 
→ LG(R)/L+G(R).

Recall the structure of the affine grassmannian for Gm. The following result is well-known
(see, for example, [Con94]); for the reader’s convenience we include its proof.

Lemma A.1. For a commutative ring R such that SpecR is connected there is a decomposition

R((h))∗ = R∗ × W(R) × Z × Ŵ(R),

where W(R) is the subgroup of R[[h]]∗ formed by formal power series with constant term 1,
Ŵ(R) is the group of polynomials of the form 1 + Σaih−i with nilpotent coefficients ai ∈ R.
In addition, we have that

Ŵ(R) = ker(R[h−1]∗
f 	→f(0)−→ R∗).

Proof. The claim follows from the fact that under the assumptions of the lemma

R((h))∗ =
{ ∑

i

aih
i ∈ R((h));∃i0 : ai0 ∈ R∗, aj nilpotent for all j < i0

}
.

To show this replace R by R/NR, where NR stands for the nilradical. We need to show that
a Laurent polynomial is invertible if and only if its first nonzero coefficient is invertible in R.
Suppose that

A(h)B(h) = 1 (A.1)

for A(h), B(h) ∈ R((h)) such that

A(h) = a−Nh−N + a−N+1h
−N+1 + · · · ,

B(h) = b−Nh−M + b−M+1h
−M+1 + · · · ,

(A.2)

where b−M �= 0 and a−N �= 0. From (A.1) we have that N +M ≥ 0. If N +M = 0, then
a−Nb−M = 1 and we are done. Otherwise, we have from (A.1)

a−Nb−M = 0, a−Nb−M+1 + a−N+1b−M = 0, . . . (A.3)

a−Nb−M+(N+M) + · · · + a−N+(N+M)b−M = 1. (A.4)

Using (A.3) we get a2
−Nb−M+1 = 0 and similarly ai−Nb−M+i = 0 for every i ≤ N +M .

Multiplying both sides of (A.4) by aN+M
−N we infer

aN+M
−N (1 − a−Nb−M+(N+M)) = 0.

Since a−N and 1 − a−Nb−M+(N+M) are coprime,

R
∼−→ R/(a−N ) ×R/(1 − a−Nb−M+(N+M)),
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SpecR is connected, and a−N �= 0 we conclude that 1 − a−Nb−M+(N+M) = 0. Hence, a−N is
invertible as desired. �

Using the lemma, we have decompositions

LGm
∼−→ Gm × W × Z × Ŵ,

GrGm

∼−→ Z × Ŵ,

where W is the group scheme of big Witt vectors and Ŵ is a group ind-scheme whose group of
R-points is defined in the lemma.

A.2 Subgroups of L GL(n)
Proposition A.2. Let G be an affine group scheme over a field k, and let φ : G→ LGL(n) be
a homomorphism. Then there exists an element g ∈ GL(n, k((h))) such that φ factors through
gL+ GL(n)g−1:

G
φ−→ g(L+ GL(n))g−1 ↪→ LGL(n).

Proof. Set V = kn. We have to show that there exists a φ(G)-invariant k[[h]]-lattice

Λ ⊂ V ((h)).

Informally, our Λ will be constructed starting with the lattice Λ0 = V [[h]] as the intersection⋂
g gΛ0. Since we make no assumptions on k and G one has give a meaning to the latter. We

shall do it as follows.
The morphism φ is given by a matrix A ∈ GL(n,O(G)((h))) such that

A⊗A = Δ(A) ∈ GL(n, (O(G) ⊗ O(G))((h))), (A.5)

where Δ : O(G) → O(G) ⊗ O(G) is the comultiplication on O(G) given by the product morphism
G×G→ G and such that the image of A under the evaluation at 1 ∈ G(k) homomorphism
GL(n,O(G)((h))) → GL(n, k((h))) is the identity matrix.

Set

Λ = {v ∈ V ((h)) such that Av ∈ V ⊗k O(G)[[h]]}.

Then Λ is a k[[h]]-submodule of V [[h]] contains hNV [[h]], for sufficiently large N . Hence, Λ is a
lattice. It remains to show that Λ is φ(G)-invariant, that is

A(Λ) ⊂ Λ ⊗k[[h]] O(G)[[h]].

The matrix A defines O(G)((h))-linear maps

V ((h)) ⊗k[[h]] O(G)[[h]] A⊗Id−→ (V ((h)) ⊗k[[h]] O(G)[[h]]) ⊗k[[h]] O(G)[[h]] →
→ V ((h)) ⊗k[[h]] (O(G) ⊗k O(G))[[h]],

(A.6)

where the second map in (A.6) is induced by the embedding

O(G)[[h]] ⊗k[[h]] O(G)[[h]] → (O(G) ⊗k O(G))[[h]]. (A.7)

Since the cokernel of (A.7) and O(G)[[h]] are both flat k[[h]]-modules it follows that Λ ⊗k[[h]]

O(G)[[h]] is precisely the preimage of V [[h]] ⊗k[[h]] (O(G) ⊗k O(G))[[h]] under the composition
(A.6).
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Hence, it suffices to check that (A.6) carries A(Λ) to V [[h]] ⊗k[[h]] (O(G) ⊗k O(G))[[h]]. But
the composition

V ((h)) A−→ V ((h)) ⊗k[[h]] O(G)[[h]]
(A.6)−→ V ((h)) ⊗k[[h]] (O(G) ⊗k O(G))[[h]] (A.8)

is equal to

V ((h)) A−→ V ((h)) ⊗k[[h]] O(G)[[h]] Id⊗Δ−→ V ((h)) ⊗k[[h]] (O(G) ⊗k O(G))[[h]]

by (A.5). Hence, it carries Λ to V [[h]] ⊗k[[h]] (O(G) ⊗k O(G))[[h]] and we win. �

Corollary A.3. There are no nontrivial homomorphisms from an affine group scheme to
LGm/L

+Gm.

A.3 Subgroups of L PGL(n)
Remark A.4. The analogous assertion for LPGL(n) does not hold.

Consider the homomorphism of loop groups fpqc sheaves

LGL(n) → LPGL(n) (A.9)

induced by the projection GL(n) → PGL(n). We do not know if (A.9) is surjective as a mor-
phism of fpqc sheaves. However, we shall see below that (A.9) is surjective over any affine group
subscheme of LPGL(n) of finite type over k. For our applications we need a bit more general
statement.

Recall that an affine group scheme H over a perfect field k is said to be pro-unipotent if
there exists a filtration

· · · ⊂ H≥i ⊂ · · · ⊂ H≥1 = H

by normal group subschemes such that

H
∼−→ lim←−H/H

≥i

and every quotient H/H≥i is unipotent (i.e. has a finite composition series with all quotient
groups isomorphic to the additive group Ga).

Proposition A.5. Let G be an affine group scheme over a perfect field k, and let φ : G→
LPGL(n) be a homomorphism. Assume that G has a normal pro-unipotent group subscheme
G≥1 ⊂ G such that φ(G≥1) ⊂ L+ PGL(n) and the quotient G0 = G/G≥1 has finite type over k.
Then the following assertions hold.

(i) The morphism of fpqc sheaves G̃ := G×LPGL(n) LGL(n) → G given by the projection to
the first coordinate is surjective for the Zariski topology on G (and, consequently, for the
fpqc topology).

(ii) The following two conditions are equivalent.
(1) There exists an element g ∈ PGL(n, k((h))) such that φ factors through

gL+ PGL(n)g−1:

G
φ−→ g(L+ PGL(n))g−1 ↪→ LPGL(n).

(2) The extension

1 → LGm → G̃→ G→ 1 (A.10)
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admits a reduction G̃+ to L+Gm as follows.

1 → L+Gm → G̃+ → G → 1⏐⏐
 ⏐⏐
 ⏐⏐
Id

1 → LGm → G̃ → G → 1

(iii) Assume that G0 is smooth and connected. Then extension (A.10) admits a unique reduction
G̃+ to L+Gm.

Proof. For part (i) observe that the morphism of schemes

L+ GL(n) → L+ PGL(n)

admits a section locally for the Zariski topology on L+ PGL(n). Also since every G≥1-torsor over
an affine scheme is trivial the projection

G � G0

admits a scheme-theoretic section s : G0 → G. Hence, it suffices to check that the composition
G0

s−→ G
φ−→ LPGL(n) lifts locally for the Zariski topology onG0 to scheme-theoretic morphism

G0 → LGL(n). Set G0 = SpecR. Then φ ◦ s defines a morphism

SpecR((h)) → PGL(n). (A.11)

The pullback of the Gm-torsor GL(n) → PGL(n) defines a Gm-torsor L over SpecR((h)). Observe
that φ ◦ s admits a lifting to LGL(n) if and only if L is trivial. Thus, to complete the proof of
part (i) we have to show that there exists an affine open covering SpecR = ∪Ui such that the
pullback of L to SpecO(Ui)((h)) is trivial for every i. We shall prove a stronger assertion: the
morphism SpecR((h)) → SpecR induces an isomorphism

Pic(R) ∼−→ Pic(R((h))). (A.12)

Since G0 is a group scheme and k is perfect, the reduction Rred is smooth over k. Since R is a
finitely generated k-algebra, the kernel of the projection R→ Rred is a nilpotent ideal. It follows
that (R((h))red

∼−→ Rred((h)). Consequently, we have that

Pic(R) ∼−→ Pic(Rred), Pic(R((h))) ∼−→ Pic(Rred((h))).

Next, using regularity of Rred((h)) we conclude that

Pic(Rred((h))) ∼= Cl(Rred((h))) ∼= Cl(Rred[[h]]) ∼= Pic(Rred[[h]]) ∼= Pic(Rred).

This proves part (i).
For part (ii), let G̃+ be a reduction of G̃ to L+Gm. Since L+Gm is an affine group scheme

(as opposed to merely a group ind-scheme) G̃+ is also an affine group scheme. Applying
Proposition A.2 we conclude that the homomorphism G̃+ → LGL(n) factors through gL+

GL(n)g−1, for some g ∈ GL(n, k((h))). Hence, G→ LPGL(n) factors through gL+ PGL(n)g−1.
The inverse implication is clear.

Finally, for part (iii), set Ḡ := G̃/L+Gm. We have to show that the central extension

GrGm → Ḡ→ G

admits a unique splitting. We shall first construct a scheme-theoretic section of the projection
Ḡ→ G. Using part (i) there exists an open cover G = ∪Ui and sections si : Ui → G̃ of the
projection G̃→ G. Let s̄i : Ui → Ḡ be the composition of si with the quotient map G̃→ Ḡ.
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Since G is reduced the morphisms

s̄is̄
−1
j : Ui ∩ Uj → GrGm = Ŵ × Z

lands at the second factor. Hence the collection {s̄is̄−1
j } defines a Čech 1-cocycle for the constant

sheaf Z on G. Since G is irreducible, we have that Ȟ1(G,Z) = 0. Thus, we have a global scheme-
theoretic section s̄ : G→ Ḡ of the projection Ḡ→ G. We claim that every such section satisfying
s̄(1) = 1 is a group homomorphism. To see this it suffices to show that the following diagram is
commutative.

G×G
m−→ G⏐⏐
s̄×s̄ ⏐⏐
s̄

Ḡ× Ḡ
m̄−→ Ḡ

In turn, this follows from the fact that every scheme-theoretic morphism from a connected
reduced scheme to GrGm is constant. �

A.4 A representation of sp(2n)
In this subsection we prove irreducibility of a certain representation of the Lie algebra sp(2n)
that we used in the proof of Lemma 4.3. We use notation from § 4.1.

Lemma A.6. For every integer l with 0 ≤ l < 2(p− 1), the adjoint representation of the Lie
algebra sp(2n) = m2/m3 on ml/ml+1 is irreducible.

Proof. Write ml
n/m

l+1
n for mk/mk+1. It is easy to verify the assertion of the lemma for n = 1: in

fact, the representation of sp(2) = m1/m
2
1 on ml

1/m
l+1
1 is irreducible for every l ≥ 0. Moreover,

the representations ml
1/m

l+1
1 and ml′

1/m
l′+1
1 are isomorphic if and only if l + l′ = 2p− 2.

To prove the lemma in general, consider the restriction of the representation of sp(2n) on
ml
n/m

l+1
n to the Lie subalgebra

sp(2)⊕
n
↪→ sp(2n)

of the block diagonal matrices. The latter representation decomposes as follows:

ml
n/m

l+1
n =

⊕
i1+···+in=l

mi1
1 /m

i1+1
1 ⊗ · · · ⊗min

1 /m
in+1
1 . (A.13)

By the Jacobson density theorem the representation of sp(2)⊕n
on each summand is irreducible.

Moreover, if l < 2(p− 1), then these direct summands are pairwise nonisomorphic. It follows
that any subspace V ⊂ ml

n/m
l+1
n invariant under the sp(2)⊕n

-action is the sum of some of the
summands appearing in (A.13). Hence, it suffices to prove that if a sp(2n)-subrepresentation
W ⊂ ml

n/m
l+1
n contains mi1

1 /m
i1+1
1 ⊗ · · · ⊗min

1 /m
in+1
1 , for some partition (i1, . . . , in) of l with

i1 > 0, the projection of W to mi1−1
1 /mi1

1 ⊗mi2+1
1 /mi2+2

1 ⊗ · · · ⊗min
1 /m

in+1
1 is nonzero. This

reduces the proof to the case n = 2 which is shown by direct inspection. �
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