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ABSTRACT

We prove that after inverting the Planck constant h, the Bezrukavnikov—Kaledin quanti-
zation (X, Oy) of symplectic variety X in characteristic p with H?(X,0x) = 0 is Morita
equivalent to a certain central reduction of the algebra of differential operators on X.
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1. Introduction

1.1 Frobenius-constant quantizations
For the duration of this paper, let k£ be a perfect field of characteristic p > 2. Given a scheme
X over k we denote by X’ the Frobenius twist of X and by F' : X — X’ the k-linear Frobenius
morphism. Since F' is a homeomorphism on the underlying topological spaces, we shall identify
the categories of sheaves on X and X'.

Let X be a smooth variety over k equipped with a symplectic 2-form w. Recall, that a
quantization (X,0p) of (X,w) is a sheaf O; on the Zariski site of X of flat k[[h]]-algebras
complete with respect to the h-adic topology together with an isomorphism of k-algebras

On/h — Ox
such that, for any two local sections f , g of Op, one has

0, }_fg af

Here f and g stand for the images in Ox of f and § respectively and {,} for the Poisson bracket
Ox induced by the symplectic structure. Note that if X is affine then giving a quantization

mod h.
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(X,0p) of (X,w) is equivalent to giving a quantization Op(X) of the Poisson algebra Ox(X)
(see e.g. [BK0O4a, Remark 1.6]).

A feature special to characteristic p is that the Poisson algebra Ox of a symplectic variety
has a large center consisting of pth powers of functions. We are going to identify it with the sheaf
Ox+ using the Frobenius morphism

F*:OX/ ;OI;{ C Ox.
Given a quantization (X, 0j) of (X,w) we have k-linear homomorphisms
Zp — Zp/h — Oxr. (1.1)

from the center 2, of the quantization Oy to the Poisson center. Following [BK08], a quantization
is called central if the composition (1.1) is surjective. A Frobenius-constant quantization of
(X,w) is a pair consisting of a quantization (X, Q) of the symplectic variety X together with a
k[[h]]-algebra isomorphism

S OX/[[h]] = Zh (1.2)
such that, for any local section fP € O% = Ox: C Ox/[[h]] and a lift f € O of f € Ox, one has
that!

s(f?) = f7 mod hP7L.

It is clear that a quantization that admits a Frobenius-constant structure is central.

A Frobenius-constant structure on (X, Op) makes Oy, into a sheaf of algebras over O x-[[h]]. It
was shown in [BKOS8] that Oy is locally free of rank pd™X as an Oy [[h]]-module for the Zariski
topology on X'.

Frobenius-constant quantizations of symplectic varieties have been first introduced by
Bezrukavnikov and Kaledin as a tool for proving the categorical McKay correspondence for
symplectic resolutions of singularities (see [BK04b]). Most of the foundational results have been
obtained in [BKO08]. The technique introduced in [BK04b] has found some other applications
in geometric representations theory (see e.g. [BF14, BL21]). A key to all these applications is
the Azumaya property of the algebra Op(h~!) obtained from Oy, by inverting h: it was shown
in [BKO8] that for any Frobenius-constant quantization on (X, 0},), the algebra O (h~1) is iso-
morphic, that is locally, for the fppf topology on X', to a matrix algebra over O x/((h)). Since the
algebra O3 has no zero divisors Oy, (h~!) does not split even locally for the étale topology on X’
(unless dim X = 0). In [BKO08, Proposition 1.24] a formula for the class of this Azumaya algebra
in an appropriate Brauer group was proposed. However, it has been observed in [Mol17] that
the formula in [BKO08] is not correct as stated. The immediate goal of this paper is to correct it.
The technique introduced along its proof (in particular, the Basic Lemma from §1.8) plays an
essential role in a sequel paper joint with Kubrak and Travkin [BKTV22], where we prove that
the category of quasi-coherent sheaves on any restricted symplectic variety admits a canonical
Frobenius-constant quantization.

1.2 Differential operators as a Frobenius-constant quantization
A basic example of a Frobenius-constant quantization is as follows. Let Y be a smooth variety
over k, X := T5 the cotangent bundle to Y equipped with the canonical symplectic structure w.

! Recall that for any associative algebra A over a field of characteristic p and every elements x,y € A, the element
(z +y)? — 2P — y? can be written as a homogeneous Lie polynomial in = and y of degree p. Applying this to
A = O}, we infer that f” mod h” depends only on f € Ox/h and not on the choice of a lifting feO,of f.In
addition, using that, for any x € A, one has that ad,» = (ad;)? : A — A, it follows that f” is a central element of
On/hP.
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Denote by Dy the sheaf of differential operators on Y. This comes with a filtration given by the
order of a differential operator. Applying the Rees construction to the filtered algebra Dy we
obtain a sheaf of algebras Dy, flat over k[h] whose fiber over h =1 is Dy and whose fiber over
h =0 is the symmetric algebra S'Ty. Explicitly, Dy, is the subalgebra of Dy [h] generated by
h, Oy, and hTy. The p-curvature homomorphism

S.Ty/ — DY,h

sending a function f € Oy to fP and a vector field € Ty to (h8)? — h?~1(hOP]) induces an
isomorphism between the algebra S'Ty/[h] and the center of Dy. In particular, Dy, can
be viewed as a quasi-coherent sheaf on TY,. The canonical Frobenius-constant quantization of
(T3 ,w) is obtained from Dy}, by h-completion. We shall denote this canonical Frobenius-constant
quantization of (T5,,w) by (T%, Dyp).

1.3 Restricted Poisson structures
There is a local obstruction to the existence of a central quantization of a symplectic vari-
ety (X,w). It was observed in [BKO08] that if f? € Ox» — O is in the image (1.1), then the
restricted power Hj[cp I of the Hamiltonian vector field H ¢ is again Hamiltonian: H ][cp I —H fiv) for
some flPl € Ox. For example, it follows that the torus (G,, X G,,w = dz/x A dy/y) does not
admit central quantizations.

A Frobenius-constant structure on (X, Oy,) provides a canonical Hamiltonian for A ][cp | In fact,
given a Frobenius-constant quantization (X, Oy, s) the formula

1 -
fP = 5 (7 = s(f) mod h (1.3)
defines a restricted structure on the Poisson algebra O x, that is, the structure of a restricted Lie
algebra on Ox such that (f2)P) = 2fP P and Hj[cp} = H 2
It was shown in [BKO08| that, for every symplectic variety (X, w), giving a restricted Poisson

structure on Ox is equivalent to giving a class

[n] € HY, (X, coker(Ox 4, Q%))
such that
d([n]) = w.
In one direction, if n € Qk, dn = w, then the formula
= L%;lefn = Lyl

defines a restricted structure on Ox. In particular, if (X,w) admits a restricted structure, then
w is exact locally for Zariski topology on X.

1.4 Classification of Frobenius-constant quantizations
Fix a symplectic variety X with a restricted Poisson structure [n]. Denote by Q(X,[n]) the
set of isomorphism classes of Frobenius-constant quantizations (X, Op,s) compatible with [r].

2 Whereas the notion of restricted Lie algebra goes back to Jacobson in 1937, the concept of restricted
Poisson algebra is an invention of Bezrukavnikov and Kaledin [BK08, Definition 1.9]. Note that using the identity
fg= i((f +9)% — (f — 9)?), one has that (fg)[p] = frglPl 4 flPlgr 4 P(f,g), where P(f,g) is an element of a free
Poisson algebra on f and g. In [BKO08], the authors construct P(f,g) explicitly in any characteristic which makes
it possible to define the notion of restricted Poisson algebra even in characteristic 2.
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In [BKO8], Bezrukavnikov and Kaledin constructed a map of sets

p: QX, [n]) — Hey(X', 0%, /0%)) (1.4)
and showed that if H} (X', 0x//O0%,) =0, then p is injective, and if HZ, (X', 0x//O%,) =0,
then p is surjective. Consequently, if both cohomology groups vanish the map p is a bijec-
tion and there is a canonical Frobenius-constant quantization of (X,[n]) corresponding to
0 € HY (X', 0% /0%). This quantization (X,0Op,s) is uniquely characterized as the one that
admits a Z/2-equivariant structure: an isomorphism O x[[h]]-algebras

Q O(iph AN Oh (15)

identical modulo A and such that a o a = Id. We review the construction of p in §2.

1.5 A central reduction of the algebra of differential operators
A class

[n] € HY,, (X, coker <OX N Q&))

gives rise to a certain central reduction Dx [, of the algebra Dx . We first construct this
reduction locally and then glue. For any open subset U together with a 1-form n € Q'(U) rep-
resenting [}, consider the graph I, : U' — T}, of n®@ 1 € QY(U’). Let Dy, be the quantization
of T}, defined above regarded as a locally free sheaf of modules over S"Ty[[h]] on U. Set

I, Dun = Dun/Ir,Dun. (1.6)
Here Iy, C STy is sheaf of ideals defined by the closed embedding T';,. Note that F;;l@U,h is a
sheaf of algebras over STy /I, [[h]] — Opr|[h]].

Suppose we are given two forms 71, 72 on U representing the class [n]. Let us construct a
canonical isomorphism between the algebras I'; Dy 5 and I'y Dx 5. Set p = m1 — n2. Define the
automorphism ¢, of Dx j, by setting ¢, (f) = f and ¢, (h#) = hO + 1pp, for any function f and
vector field 0.3 Let t, be the translation by p on STy i.e. an automorphism sending a vector
field 6 to 6 + tgp. Then using the Katz formula [Kat72, §7.22] (and the exactness of u) the
following diagram is commutative.

OU/ A S-TU' % DU,h

)FK J/
x t ¢
Loa ! l !

STy LN DU,h

The desired isomorphism is given by the formula

. . bu®t . .
Ty Dun = Dun ®s1, STy /Ir,, —" Dun@s1, STu/Ir,, =T Dun-

Given three 1-forms 7, 72, and 13 representing the class [n] one has

(¢771_772 ® tﬂ1—772) o (¢772_773 ® t772_773) = ¢771—7]3 ® t"]l_773‘

The sheaf of algebras Dy [, 5 is obtained by gluing I'} Dy, along the above isomorphisms.

The sheaf Dy [, of Ox-[[h]]-algebras is locally free as a Ox/[[h]]-module of rank p?4imX,
The commutative algebra Dy 1, 5/h is isomorphic to the algebra of functions on the Frobenius
neighborhood of the zero section X — T% with the Poisson structure given by the symplectic
form wean + pr*w on T%. Here wean is the canonical symplectic form on the cotangent bundle,

and pr : TS — X is the projection.

3 Informally, this isomorphism is the conjugation by et/ n,
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Remark 1.1. The sheaf Dx p,1 5, is the restriction of a certain canonical locally free O x/,p1-algebra
over X’ x P! to the formal completion of X’ x {0} «— X’ x P! (see [BKTV22, §3.3]).

1.6 Main result
Denote by Br(X'[[h]]) the Brauer group of the formal scheme (X', Ox/[[h]]) obtained from
X' x Spec k[h] by completion along the closed subscheme cut by the equation h = 0. We have
homomorphisms:

d: Helt(X’,O}//O?,) — H2(X',0%) = Br(X’) — Br(X'[[R])). (1.7)
The first map in (1.7) is the boundary morphism associated to the short exact sequence of sheaves
for the étale topology

0 — 0% 2 0% — 0% /0% — 0.

The right arrow in (1.7) is the pullback homomorphism which is a split injection because its
composition with the restriction homomorphism

i*: Br(X'[[h]]) — Br(X’)
is the identity. Given a class v € H% (X', 0%,/0,) we denote by &(v) € Br(X'[[h]]) the image
of 7 under the composition (1.7). Finally, we can state the main result of this paper.

THEOREM 1. Let (X,w) be a smooth symplectic variety of dimension 2n over an algebraically
closed field k of characteristic p > 2, and let (X, Op,s) be a Frobenius-constant quantization

of (X,w). Denote by [n] € HY, (X, coker(Ox N QL)) the restricted Poisson structure corre-
sponding to (X, O, s) and by v = p(X, Op, s) € HY (X', 0%, /0 the image of (X, Oy, s) under
(1.4). Then there exists an Azumaya algebra Oi over the formal scheme (X', Ox/[[h]]) with the
following properties.

(i) There exists an isomorphism of Ox/((h))-algebras
(On Do 1) DX ) (W) = O (R7Y). (1.8)
(ii) We have that
(03] =" (6(7). (1.9)
In particular, if H*>(X,0x) = 0 then [O,ﬁl] =0(7).

For example, let (X,0p,s) be a Frobenius-constant quantization that admits Z/27Z-

equivariant structure (1.5). Assume that H?(X,0y) = 0. Then by Theorem 1 (‘_)&L is a split
Azumaya algebra, that is there exists a locally free Ox-[[h]]-module E of finite rank and an
isomorphism of Ox[[h]]-algebras

0, == Endo,, [j)(E)-

Using (1.8) and the Azumaya property of O5(h™") and Dy, ,(h~!) we observe an equivalence
of categories

Mod(Dx . (h™")) == Mod (05 (h™ 1)) (1.10)

between the category of O (h~!)-modules and the category of DX7[,7]7h(h_1)—m0dules. The functor
from left to right carries a D XM’h(h*l)-module M to E®op, ., M; the quasi-inverse functor

takes an Op,(h~1)-module N to Homg, (E, N).
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Also note that if H} (X',0x//0%,) =0, then the map
HO(X, QL) — HY, (X, coker(0x - QL))

is surjective and, thus, any restricted Poisson structure arises from a global 1-form 7. In this case
objects of Mod(Dx j;y.n(h~!)) can be viewed as Dx j(h~')-modules whose p-curvature equals 7).

1.7 Gm-equivariant quantizations
Let (X,w) be a symplectic variety equipped with an action

A: G x X — X (1.11)

of the multiplicative group such that w has a positive weight m with respect to this action.
Moreover, we shall assume that m invertible in k. Denote by 6 the Euler vector field on X
corresponding to the G,,-action. Then the formula 7 = (1/m)ipw defines a restricted structure

on X. Define a Gy,-action on X’ twisting (1.11) by the pth power map G, N G- Also let
Gm act on X'[h] := X' x Spec k[h] as above on the first factor and by z x h = 2"h on the second
one.

A G,,-equivariant Frobenius-constant quantization of X is a G,,-equivariant sheaf Oj, of
associative O x,-algebras on X '[h], locally free as an O x/[p-module, such that the restriction
Oy, of Oy, to the formal completion of X'[h] along the divisor h =0 is a Frobenius-constant
quantization of X compatible with the restricted structure [n]. Examples of G,,-equivariant
quantizations arise in geometric representation theory (see e.g. [BK04b, BF14, BL21, KT19]).

Assume that morphism (1.11) extends to a morphism

AA X X - X, (1.12)

Then the restriction of O, to the open subscheme X'[h, h~1] — X’[h] is an Azumaya algebra.
As an application of Theorem 1 we prove in §5 a conjecture of Kubrak and Travkin concerning
the class of this algebra in the Brauer group. Namely, we show that, for every G,,-equivariant
Frobenius-constant quantization Oy, the following equality in Br(X’) holds:

Onet] = | 2on] + Ailp(OW)

Here [n] denotes the image of n under the canonical map I'(X’,QL,) — Br(X'), p(Op) €
HL(X',0%,/0F) for the class associated to the formal quantization via (1.4), and [p(Oy,)] for
its image in the Brauer group.

1.8 Plan of the proof
Using the language of formal geometry we reduce the theorem to a group-theoretic statement.
We shall start by explaining the latter.

Let (V,wy) be a finite-dimensional symplectic vector space over k, and let Aj be the algebra
over k[[h]] generated by the dual vector space V* subject to the relations

fo—gf =wy' (f.9)h, f=0

for any f,g € V*. We refer to Aj, as the restricted Weyl algebra. This is a flat k[[h]]-algebra whose
reduction modulo A is the finite-dimensional commutative algebra of functions on the Frobenius
neighborhood of the origin in the affine space Spec(S'V*) := V. Explicitly, Ap := S'V*/Jy where
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Jv is the ideal generated by fP for all f € V*. The quantization A of Ag specifies a restricted
Poisson structure [ny] € coker(Ag 4, Qho).4

Denote by G the group scheme Aut(Ay,) of k[[h]]-linear automorphisms of the algebra Ay, by
GZ! the subgroup of automorphisms identical modulo h, and by Gy the quotient of G by G=1.
As shown in [BKO08], Gy is the group scheme of automorphisms of Ay preserving the class [ny].

A pair (W, W*) of transversal Lagrangian subspaces of V' defines an isomorphism between
the algebra Ay (h~!) and the matrix algebra End (S W*/Jw)((h)) which, in turn, gives an
embedding G — L PGL(p"), where L PGL(p") is the loop group of PGL(p"™) (viewed as a sheaf
for the fpgc topology). Then the extension

1 — G,, — GL(p") — PGL(p") — 1

gives rise to®
1—- LG, —G—G—1. (1.13)

In [BKOS] it is proved that G=! is the subgroup of inner automorphisms. Hence, we have a
subextension of (1.13)

1— LTGy, — A, - G71 = 1, (1.14)

where LTG,, is the positive loop group of G,,. Then passing to the quotient we get a central
extension by the affine grassmannian®

1 — Grg, — Gog— Gy — 1. (1.15)

Let i : V < V® be a morphism of symplectic vector spaces such that the restriction to V' of
the symplectic form on V’ is wy. Let GO — Gy and Gb — Go be the corresponding extensions.
We emphasize that G and G% depend on a choice of Lagrangian pairs in V and V°.

Finally, denote by Gg C G% the group subscheme that consists of automorphisms preserving
the kernel of the homomorphism * : AI(’) — Ap. We have a natural homomorphism G(ﬁ) — Go.
In §4 we prove the following assertion.

Basic LEMMA. The homomorphism Gg — (G lifts uniquely to a homomorphism of central
extensions

é(b) XG% G% — éo.

Our proof of the Basic Lemma, that occupies almost the half of the paper, is based on a
new construction of (1.15) that makes this functoriality property obvious. Namely, consider two
subgroups a C Gy D GY, where G is the subgroup of automorphisms preserving the origin in

V (which by a result of Bezrukavnikov and Kaledin coincides with the reduced subgroup of Gy)
and a = Spec Ay (= d‘mv) is the finite group scheme of translations. Then the product map
a X GO — G induces an isomorphism of the underlying schemes. Let a be the restriction of
the central extension (1.15) to a. This is a version of the Heisenberg group. We show that the
extension (1.15) splits uniquely over the reduced subgroup G8.7 Thus, we can view G8 as a

4 Explicitly [nv] is characterized as a unique homogeneous class such that d[nv] = wy.

5 We do not know whether the morphism of fpgc sheaves L GL(p™) — L PGL(p") is surjective. However, we check
in Proposition A.5 that its pullback to any group subscheme G C L PGL(p") satisfying some finiteness assumptions
is surjective even for the Zariski topology on G.

6 Recall from [Con94] that Grg,, is isomorphic to the direct product W x Z, where W a group ind-scheme whose
points with values in a k-algebra R is the subgroup of R[h™']* consisting of invertible polynomials with zero
constant term. In particular, if R is reduced and connected, then Grg,, (R) = Z.

" A posteriori, this is a corollary of the Basic Lemma, applied to the embedding 0 — V.
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subgroup of Go, and the quotient Go /GY is identified (as an ind-scheme) with &. The left action
of Go on Go / GO defines an embedding of Go into the group of automorphisms of a viewed as
a space with an action of Grg,,. We prove in Theorem 3 that the image of this embedding is
precisely the group of automorphisms that preserve a unique Sp,,, D<oz2”—1nvariant connection on
Grg,,-torsor a.

To derive the Basic Lemma from the above, we classify all central extensions of o by Grg,,
in §4.2. In particular, we show that extensions of o by Grg,, that split over every «, factor
are classified by Lie(Grg,, )-valued skew-symmetric 2-forms on Lie(«). Then it follows that the
morphism o — o induced by i lifts uniquely to a morphism of extensions a — & respecting the
connections. Since G% Xa Gg is the group of automorphisms of & that preserve the connection

and the subspace & < &”, by restriction we get the desired lifting CNJ% X b G% — Go.

Let us explain how the Basic Lemma implies the theorem. The Pfezrukavnikovaaledin
construction of Frobenius-constant quantizations is based on a characteristic-p version of the
Gelfand—-Kazhdan formal geometry. Namely, it is shown in [BK04b] that any Frobenius-constant
quantization is locally for the fpgc topology on X’ isomorphic to the constant quantization
Ox/[[h]] ®g[n)) An for a fixed finite-dimensional space V' of dimension 2n = dim X. It follows that
a Frobenius-constant quantization (X, Oy, s) gives rise to a torsor My ¢, s over G. Conversely,
the algebra Oy, is the twist of Ox:[[h]] ®pn) An by the torsor Mx o, s, i.e.

Mx,0,,s % (Ox/[[h] Rk An) — On.

The reduction of differential operators Dx [ ; also can be constructed using formal geometry.
Namely, choosing a homogeneous form 7y in the class [ny] on V consider its graph

V < Ty,

and let i : V — V @ V* = V° be the corresponding linear map of vector spaces. Let Gg’f be the
b

subgroup of Gﬁ0 C G% of automorphisms g of &” respecting the fibers of the projection 7 : a* — «,
that is fitting in the following diagram.

ot -2

o
o L (0%
Then the restriction of the natural map G% — Gy to Gg’f is an isomorphism. This yields a
homomorphism g : Gg — Gg C G%. In §3.1 we construct a lifting 1) : G — G” of 1)y that makes
DX,[W],h a twist of OX’[[hH ®k[[hﬂ A?z by MX,Oh,s-
Then we consider the following diagram.
GI‘G

|

LGL(p*)/L* Gy

G =5 Aut(A, ® A7P) —— LPGL(p*")

m

Here the loop group L PGL is the group ind-scheme of projective automorphisms of a certain
vector space U over k((h)). Suppose we can construct a G-invariant k[[h]]-lattice A in U. Then

OEZ = MX,Oh,s x @ (OX’[[hH ®k[[h}] Endk[[h”(A))
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does the job for the first part of the theorem. By a general result proven in the Appendix
(Proposition A.5) the existence of an invariant lattice is equivalent to the existence of the dashed
arrow making the diagram above commutative. This is where we use the Basic Lemma. It follows
from the latter that

Gy x gy Gi = G,

We infer (Proposition 3.3) that vy lifts to {bvo : é[) — é%, which implies the existence of the
dashed arrow.

The proof of the second part of the theorem amounts to unveiling the Bezrukavnikov—Kaledin
construction of the map p.

1.9 Further directions
In this subsection we briefly discuss some applications of Theorem 1 obtained in a sequel paper
joint with Dmitry Kubrak and Roman Travkin [BKTV22].

According to the Bezrukavnikov—Kaledin theorem from §1.4 every smooth affine restricted
symplectic variety admits a unique up to a non-canonical isomorphism Frobenius-constant quan-
tization Op, with p[Op] = 0. The formation of Oy, is not functorial in (X, [n]). However, we show
in [BKTV22] that the assignment (X, [n]) — Mod(Op(X)) extends to a contravariant functor
from the category of smooth affine restricted symplectic varieties and open embeddings to the
category of abelian categories. Applying the right Kan extension this yields a functorial quan-
tization QCoh,, of the category of quasi-coherent sheaves of any smooth restricted symplectic
variety. Moreover, using Remark 1.1 and equivalence (1.10) we extend the range of quantum
parameter h from being a formal variable to a genuine coordinate on P'. The construction of
QCohy, uses in an essential way Corollary 3.5 of the Basic Lemma.

Let Y < X be a smooth Lagrangian subvariety such that [n]jy =0 in H, (Y,Q5 /dOy).
Using results from [Mun22] we show in §6.1 of [BKTV22] that every such Y determines a
canonical object in QCohy,, which is a quantization of the line bundle (Q%)(1~P)/2 viewed as a
quasi-coherent sheaf on X.

1.10 Plan of the paper

In §2 we review the Bezrukavnikov—Kaledin construction of Frobenius-constant quantizations
which is based on a characteristic p version of the Gelfand-Kazhdan formal geometry. In § 3 we
recast the construction of Dx j, using the language of formal geometry and reduce Theorem 1 to
a certain statement on central extensions of the group of automorphisms of the restricted Weyl
algebra. In §4 we prove this statement. In § 5 we study G,,-equivariant quantizations and prove
a conjecture of Kubrak and Travkin. Finally, in the Appendix we prove some results (probably
known to experts) on loop groups that are used in the main body of the paper.

2. Review of the Bezrukavnikov—Kaledin construction

For reader’s convenience we review the Bezrukavnikov—Kaledin construction of quantizations.
We also introduce some notation to be used later. Nothing in this section is an invention of the
authors.

2.1 Darboux lemma in characteristic p

Our proof of Theorem 1, as well as the Bezrukavnikov—Kaledin construction of quantizations, is
based on a version of the Gelfand—Kazhdan formal geometry that makes it possible to localize
the problem and ultimately reduce it to a statement in group theory. The main idea is as follows.
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For a symplectic variety X, the Poisson bracket on Ox is Ox-linear. Therefore, we can view X
as a Poisson scheme over X’. For any restricted structure on Oy, one has O[)?], = 0. Therefore,
a symplectic variety X with a restricted structure can be viewed as a restricted Poisson scheme
over X’. Consider the constant restricted Poisson scheme over X':

X" x Spec Ay — X', (2.1)
where

Ao = klz1,y1,-- - ,ajn,yn]/(mzl’,y}f, o xb yPy)

2n = dim X, the morphism (2.1) is the projection to the first factor, the Poisson structure is given
by symplectic form ). dy; A dx;, and the restricted structure is determined by xz[p - yz[p I~ 0.
A key insight of Bezrukavnikov and Kaledin is that any smooth symplectic variety X with
a restricted structure, viewed as a restricted Poisson scheme over X', is locally for the fpgc
topology on X’ isomorphic to the constant restricted Poisson scheme X’ x Spec Ag — X’. This
is an analogue of the Darboux lemma.

2.2 Quantum Darboux lemma

There is also a quantum version of the Darboux lemma proven in [BKO08]: for any Frobenius-
constant quantization (X,Op,s), the sheaf of associative Ox/[[h]]-algebras Oy, is isomorphic
locally for the fpqc topology on X’ to the h-completed tensor product Oxs ®j Ap, where Ay,
is the reduced Weyl algebra that is the k[[h]]-algebra generated by variable x;,y; (1 <1i,j, < n),
subject to the relations

YjTi — T3Yj = (Sijh, acp = yf = 0. (2.2)

2.3 Formal geometry
Let Aut(Ap) be the group scheme of automorphisms of the algebra Ag. For any smooth scheme
X over k of dimension 2n, assigning to a scheme Z over X’ the set Mx(Z) of isomorphisms

Z x Spec Ag — Z xx1 X

of schemes over Z, we get a Aut(Ag)-torsor over X’'. Next, let Gy C Aut(A4g) be the group
subscheme consisting of automorphisms of Ay that preserve the restricted Poisson structure
on Ap. Then the Darboux lemma above implies that, for every symplectic variety (X, [n]) with
a restricted structure of dimension 2n the functor assigning to a scheme Z over X’ the set
Mx () (Z) of isomorphisms

Z X SpecAO ;)Z XX/X
of restricted Poisson schemes over Z is a Go-torsor over X'. Using the faithfully flat descent
one gets a bijection between the set of nondegenerate (that is, arising from a symplectic form)

restricted Poisson structures [n] on X and the set of Go-torsors over X’ equipped with an
isomorphism of Aut(Ag)-torsors

Aut(Ag) x° My ;) — Myx.

Lastly, the set of all Frobenius-constant quantizations (X, Op,s) of X such that the induced
Poisson structure on X is nondegenerate is in bijection with the set of torsors Mx ¢, s over the
group scheme G := Aut(Ay) of automorphisms of k[[h]]-algebra Ay, (that is a group scheme whose
group of points with values in a k-algebra R is the group of R[[h]]-algebra automorphisms of the
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h-adically completed tensor product A,&R) together with an isomorphism Aut(Ag)-torsors
Aut(4g) x“ Mx,0,,s — Mx. (2.3)

In particular, for a symplectic variety with a restricted structure (X, [n]), giving a Frobenius
constant quantization of (X, []) is equivalent to lifting a Go-torsor My 1 to a G-torsor My o,
along the group scheme homomorphism

G — Gy. (2.4)

2.4 Automorphisms of the reduced Weyl algebra
It was shown in [BKO0S] that homomorphism (2.4) is surjective and its kernel G=! consists of
inner automorphisms. We have the exact sequence

1—- LGy — A — G — Go— 1. (2.5)

Here A; (respectively, L*1Gy,) is the group scheme over k whose group of R-points is (R ®
Ap)* (respectively, R[[h]]*). Letting GZ" C G (n > 0), be the group subscheme consisting of
automorphisms that are identical modulo h", we have that G="/G="*1 = A /G, for every
n>1and GZ1/GZ? = A% /G, GZ0/GZ1 =5 Gy.

Consider the isomorphism of k[[h]]-algebras

Q Aiph = Ah (26)

sending z; to x; and y; to y;. The conjugation by « defines an involution 7 : G — G preserving
the subgroups G=", (n > 0), such that the induced action on G="/G="*! takes an element g to
¢V In particular, it follows that the extension

1—G21/G=? - G/GZ? - Gy — 1
has a unique Z/2Z-equivariant splitting
G/G=* =5 Gy x A})Gp,.

2.5 Z/27Z-equivariant structures
Any 7 /27-equivariant Frobenius-constant quantization (X, Oy, s, «) is isomorphic locally for the
fpgc topology on X’ to the h-completed tensor product O x:®y Ay equipped with the equivariant
structure (2.6). Indeed, consider the action of Z/2Z on G=! given by 7. Then H'(Z/2Z,G=') = 0
as GZ! has a filtration G=" with uniquely 2-divisible quotients. It follows that every two Z/2Z-
equivariant structures on Ox/®A; are locally isomorphic. Now the claim follows from the
quantum Darboux lemma.

Consequently, giving a Z/2Z-equivariant Frobenius constant quantization of (X, [n]) is
equivalent to lifting a Go-torsor Mx ) to a torsor Mx o, s« over the subgroup G™=l c @G of
T-invariants.

2.6 Construction of quantizations

Bezrukavnikov and Kaledin use the standard obstruction theory to classify liftings of a given
Go-torsor to a G-torsor. Namely, given a Go-torsor My, the set of isomorphism classes of
its liftings to a torsor over G/G=2? == Gy x A}/G,, is identified with the set of isomorphism
classes of torsors over the smooth group scheme Aj/Gy, xg, M x,[n over X ’. The latter group
scheme is identified with the quotient of the group scheme of invertible elements in the sheaf of
O x-algebras F,Ox by constant group scheme G, x X’. Using smoothness of A;/G,, xg, M X, 1]
every torsor over this group scheme is locally trivial for the étale topology on X’. Hence, the set
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of isomorphism classes of A5/Gy, X a, M fj-torsors is in bijection with Hg (X', 0%, /0K,). This
defines a map of sets

p:QX, [n]) — Ho(X', 0%, /0%) (2.7)

from the set Q(X,[n]) of isomorphisms classes of Frobenius-constant quantizations (X, Oy, s)
compatible with [n] to the étale cohomology group classifying torsors over Gy x Aj/Gyy, lifting
the Go-torsor My ;. Note that under this identification the trivial cohomology class corresponds
to the lifting obtained from My ;) via the natural group homomorphism Go — Go x Aj/Gyp.

Next, the obstruction class to lifting of a G /G="-torsor, with n > 1, to a G/G=""1-torsor lies
in H2(X', 0x:/0O%.,). If the obstruction class vanishes, then the set of isomorphism classes of the
liftings is a torsor over H' (X', 0x//0%,). Hence, if H} (X',0x//0O%,) =0, then p is injective,
and if H2, (X',0x//0O%,) = 0, then p is surjective. In particular, if the two cohomology groups
vanish p is a bijection. The trivial cohomology class corresponds to a quantization that admits
(a unique) Z/2Z-equivariant structure.

3. Reduction of the main theorem to a group-theoretic statement

In this section we recast the construction of Dy [, 5 using the language of formal geometry, and
reduce Theorem 1 to a certain statement, Proposition 3.3, on central extensions of the group of
automorphisms of the restricted Weyl algebra.

3.1 Dx [y,n via formal geometry

Let AZ be the reduced Weyl algebra in 4n variables, that is, the k[[h]]-algebra generated by
variables x;, y;, vi, u; (1 <14,j,< n), subject to the relations

UZ'ZL‘]' — $j1}i = uiyj — yjui = (Sijh,
viyj — iji = uia:j — :cjui = 'Ui'LLj - uj"l)i = yixj - :cjyi = 0, (31)

P _

p__ D P _
x, =y, =v; =u; =0.

P
We shall identify AZ with the central reduction Dgpec 49,n4,h(= Dspec A0, 0.h), NA =1 = Y yida;,

of the algebra Dspec 4g,n C Dspec 4[[P]] spanned by Ag and hTspec 4,- In particular, the group
scheme Aut(A4p) acts on A%:

Wean : Aut(Ag) — Aty (A7) =1 &, g = Yeang- (32)
We define a homomorphism
V:Go— @, (3.3)
to be the restriction of tcan to Go C Aut(Ap) twisted by a 1-cocycle
Go— G, g Pg*n—n-
Namely, for any k-algebra R, an R-point of Gq is an automorphism g of the R-algebra Ay ® R

such that the 1-form p:=g¢*n—n € Q}%®R/R, n =) y;dx;, is exact. Let ¢, : AZ@R — A%@R
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be the R[[h]]-algebra automorphism given by the formulas®

du(xi) = iy Ou(yi) = yi,

(Vi) = Vi + Lojaa ity PuUi) = i+ Lo 9y, 1
Define (3.3) by the formula
Vg = Pgrn—n © YPcan,g-

We claim that (3.3) is a homomorphism. Indeed, one has that

Yean,g © D © Yeang = Dgu-
Using this formula we find

Pgrn—n © Vean,g1 © Pgzn—n © Yean,gos = Pgin—n © Pgrgsn—gin © Vean,gi © Yean,g

and the claim follows.
The key assertion of this subsection is the following.

LEMMA 3.1. Let (X,w) be a symplectic variety with a restricted Poisson structure [n]. Then
one has an isomorphism of O x[[h]]-algebras:

~G ~
My iy %A} = Dx s
where the action of Gy on A% is given by (3.3).

Proof. Let m: My ) — X " be the projection. For a morphism w: T'— X', we shall denote by
u*Dx p iy the pullback Dx p, ), viewed as a coherent sheaf on the formal scheme X'[[h]], along
the morphism T'[[h]] — X'[[A]] induced by w. It suffices to check that for every S-point f of My
there is an isomorphism

Oéf . OS@Ab = (7'(' o f)*DX,h,[T)}
such that the following diagram is commutative for every g € Go(.5).

0s®45 —L s (0 [)* Dx

0s®A; = (mogf)* Dx

Construct ay as follows. By definition of Mx p,; the point f determines an isomorphism
S x Spec(Ag) — S x xs X also denoted by f fitting into the following commutative diagram.

S x Spec(Ayp) %SXX/X%X

s —r ., x

8 Let us verify that ¢, is an algebra automorphism. The fact that the formulas above define an automorphism of
Dspec AO,h®R is clear because p is closed. To check that this automorphism descends to Dgpec AU,[O],hQA@R we need
to show that the following identities hold in Dgpee AO’[DMQAQR:

(i + toso0,1)" = (Ui + Losay, 1)* = 0.
Using the Katz formula [Kat72, § 7.22] and the exactness of u we find that

(Vi + tojou, )" = V7 + (tajoz, )" = (tajon; 9" M) — (tajox,m)" = 0,

because 71 vanishes at the origin. The second relation is proven similarly.
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This induces an isomorphism of the corresponding algebras of differential operators:
05 ® Dspec(ag) = Dsxspec(an)/s = (prs)«Dsx o, xys = (1o f)*FDx/x1 = (w0 f)*FiDx.
Applying the Artin—Rees construction we get

fr:05®@Dpgp — (7o f)*Dx p.

First, we assume that the class [n] is represented by a global 1-form 7. Then the sheaf D X k1]
is obtained from Dx j as the h-completion of the quotient Dx p/Ir, Dxj (see formula (1.6)).
The algebra A?l is the quotient D4, 1/ Iv, , Dagh- The desired isomorphism «y is defined from
the following commutative diagram.

fxody  —px
Os ® Dayn SEVShN (mo f)*Dxp

Os®A, “, Dx.h,m]

One checks that a; is independent of the choice of representative 7 for [n]. Therefore, covering
X’ by open subsets where [1] is represented by a 1-form, we can patch ay from local pieces. The
compatibility with the action of G is straightforward. O

3.2 Central extensions of G

Consider the action of the k[[h]]-algebra Aj on the free k[[h]]-module k[z1,...,z,]/(z],...,

xh)[[h]] given by the formulas

x; — multiplication by z;, y; — h

Gxi '

It is well known (see e.g. [BMR02, Lemma 2.2.1]) and easy to verify that this action defines an
isomorphism of k((h))-algebras

Ap(h™1) =5 Matyn (k((h)). (3.4)
For any k-algebra R, isomorphism (3.4) gives rise to a natural homomorphism
G(R) = Aut gy (An®R) — Aut gy (Maty (R((h)))) — PGL(p", R((h))).
This defines an embedding
G — LPGL(p"), (3.5)

where L PGL(p") is the loop group of PGL(p™), that is a sheaf of groups on the category of affine
schemes of over k equipped with the fpge topology sending k-scheme Spec R to PGL(p™, R((h))).
The natural morphism of algebraic groups GL(p") — PGL(p™) gives rise to a morphism of the
loop groups L GL(p™) — LPGL(p"™). By part (i) of Proposition A.5 in the pullback diagram of
fpgc sheaves

G :=G xpparp) LGL(P") —  LGL(p")

G < LPGL(")

the left vertical arrow is surjective. Thus, we have a central extension of fpgc sheaves

15 LGy —G—G—1. (3.6)

424

https://doi.org/10.1112/S0010437X23007601 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007601

QUANTIZATION OF SYMPLECTIC VARIETIES IN CHARACTERISTIC p
Recall from §2.4 that subgroup G=' C G of automorphisms identical modulo h consists of
inner automorphisms. Therefore, extension (3.6) fits into a commutative diagram

1—>L+Gm—>AZ—>G21—>1

|

1 - LG, —» G — G — 1

I

1—>Ger—>éo—>G0—>1
where éo =G JA} and Grg,, = LG,,,/LT Gy, is the affine grassmannian for G,.
Remark 3.2. Consider the central extension of the Lie algebras
0 — Lie Grg, — LieGo — LieGy — 0

corresponding to the bottom line in the diagram above. Identify the Lie algebra of the affine
grassmannian with the vector space h_lk[h_l] of polynomial vanishing at the origin equipped
with the trivial Lie bracket. It is shown in [BKO08] that the Lie algebra of G consists of Hamilto-
nian vector fields on Ay, that is, Lie Go = Ag/k, where the Lie bracket is induced by the Poisson
bracket on Ag. Then Lie Gy is isomorphic to the direct sum of Lie algebras Ag & h~2k[h~!] with
map to Lie Gy given by the projection to the first summand followed by Ag — Ay/k.

Proof. 1t suffices to construct a morphism of extensions as follows.

0 — k - Ay - Ak — 0

T

0 — LieGrg, — LieGy — LieGy — 0

Define Ay — Lie(Gp) that coincides with the map Ag/k — Lie(Gp) sending a € Ag to Adyjea/n €

G(k[e]/€2) — Go(k[e]/€?), where a € Ay, is any lifting of a. O

Applying the same construction to the algebra A'}L and to its representation on
klz1, ..o Ty y1y - ynl /(@ b, v, o yR)[[h]] we construct the following commutative
diagram.

1 - L*tG,, — ﬂb* - Gz 5 1

| ]

1—>LGm—>C~¥b—>Gb—>1

! ]

1 — Gig —>é%—>G%—>1

m

Recall from (3.3) the homomorphism ¢ : Gy — G’. Denote by g : Gy — G% its composition with
the projection G* — G%. The key step in the proof of our main theorem is the following result.

ProprosiTiION 3.3. There is a unique homomorphism 1;0 making the following diagram
commutative.

1—>Ger—>éo—>G0—>1

[ERE

1—>Gr<g—>6'%—>G%—>1

m
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Remark 3.4. Let us describe the morphism of the Lie algebras induced by tho. Namely, define
d(vo) : f — f+n(Hyf) + Hy. Here Hy denotes the Hamiltonian vector field on Ag, while H; is
the same vector field viewed as a function on A%.

We end this subsection with a reformulation of Proposition 3.3 that will be used in
forthcoming paper [BKTV22]. Set By, = Aj, @) A?{Op. Let

G* C Aut(B),) — Aut(Bo)

be the preimage of T'y, : Go — Aut(Bg) = Aut(Ag ® A3), Ty, (9) = g ® ¥o(g). Proposition 3.3
implies that the canonical extension of Aut(By) by LG,, (cf. (3.6)) restricted to G* admits a
unique reduction to LT G,,:

1L Gy — G — GF - 1. (3.7)
COROLLARY 3.5. There exists a unique (up to a unique isomorphism) triple (@ﬁ, a, 1) displayed
in the diagram

Bp(h=1)"
/ |
1 B; Gt Go 1 (3.8)
el

Aut(Bj,) —— Aut(Bo)

where the north east arrow is the natural inclusion, i is a monomorphism and a(g) = Ad,).
In addition, if W is an irreducible representation of By(h~'), By(h™1) — Endy((n)) (W), there
exists a k[[h]]-lattice A C W, invariant under the By-action on W and under the action of G*:

i:G'— LT GL(A) C LGL(W) = By(h™1)".

Proof. The diagram is merely a rearrangement of (3.7). The existence of a lattice A stable under
G* follows Proposition A.2. Since B}, C G* the lattice A is Bj-invariant. O

3.3 Proposition 3.3 implies the main theorem
In this subsection we prove Theorem 1 assuming Proposition 3.3.

For the first part, let us start by reinterpreting the construction of the algebra O ®o,, (]

X,[lh Consider the homomorphism
b, b7
G — Autk:[[hﬂ(Ah) X Autk[[h]](AhOp) — Autk[[h” (Ap Ok[[h]) AhOp) (3.9)

whose first component is the identity map and whose second component is the composition G —
Go - Aty (45) = Auty (A?;Op).g Homomorphism (3.9) defines a sheaf of O x/[[h]]-algebras
Mx,0,,,s XG (An (] A?L’OP). By Lemma 3.1, we have an isomorphism

b,o ~ o
Mx,05,5 X6 (An @i AR™) — On @0 (1)) DX .-

Next, the k((h))-algebra (Ap, @] A;’Op)(h_l) is isomorphic to the matrix algebra Endy(n))(V),
for some vector space over k((h)) of dimension p®":

(An ®xgry A7) (Y 5 Endgguy) (V). (3.10)

% Note that Auty] (AZ’OP) is equal, as a subgroup of the group of automorphisms of the k[[h]]-module A5, to
Autk[[h”(A?L).
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Isomorphisms (3.10) and (3.9) give rise to a homomorphism
G — LPGL(p*") (3.11)

and, consequently, to an extension of G by LG,,. Proposition 3.3 asserts that this extension
admits a unique reduction to LTG,,.

1 LtGp — G — G — 1. (3.12)

Thus, by part (ii) of Proposition A.5, it follows that homomorphism (3.11), possibly after con-
jugation by an element of PGL(p®", k((h))), factors through L+ PGL(p3") ¢ L PGL(p*"). In the
other words, there exists a k[[h]]-lattice A C V such that the action of G on (Aj, @[ A?{Op)(h_l)
preserves Endy (A):

Ap @pg A7 C (A @y AR (B7Y) 5 Endyny) (V) D Endyyp (A). (3.13)
The homomorphism
G — Aut(Endk[[hH(A)) ;> L+ PGL(psn)
and the G-torsor Mx o, s give rise to an Azumaya algebra
Oi = Mx,0,,s X6 Endypy(A),

which, by construction, coincides with 05, ®o (1] Dg&n]’h after inverting h. This proves part (i)
of the Theorem.

To prove part (ii) of the Theorem, recall from §2.4 that G is acted upon by an involution
7: G — G. We claim that 7 lifts to extension (3.12),

~

#:G—G, #2=1d,
such that the restriction of 7 to LTG,, is given by the formula
F(f(h) = F(=m)~,  f(h) € RI[A]J". (3.14)

Consider the homomorphism L*G,, — G,, sending f(h) € LTG,,(R) = R[[h]]* to f(0) € R*.
This fits into the following diagram of group scheme extensions.

1 - IL'G,, - G — & = 1

A T

1 - G, — G/G22 —» G/GZ?2 — 1

The action of 7 on G descends to G /G=2. For the Z/27Z-action on R* given by formula ¢ + ¢!,
we have that

HY(z/2Z,R*) = R*/R**. (3.15)

In particular, every cohomology class gets killed after a finite étale extension of R. It follows that
the sequence of Z/27Z-invariants

L= G (GG (GG (3.16)
is exact. Note that G7~! = g = {1, —1}. We claim that (3.16) is a split extension:
(GIGZ)7! = ()G x . (3.17)
Indeed, the determinant homomorphism
G — LT GL(p*™) 2% LTG,, (3.18)
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composed with the map LTG,, — G,, factors through G/G=2 and commutes with 7. Hence, it
defines a homomorphism

(G/GZ2)"=" — iy (3.19)

whose restriction to ugo is the identity. This gives a splitting of extension (3.16). We derive from
(3.17) that the extension G/G=2 has the form

1 — Gy — Gox Af — Go x A5/Gy, — 1. (3.20)
Now we can prove that

i*[05] = i*(3())- (3.21)

To see this, consider the gerbe § of splittings of the Azumaya algebra O&L. By definition, this is
a sheaf of groupoids on (X’) s whose sections 8(Z) over Z — X' is the groupoid of splittings
of the pullback of (‘)% to Z. This is a gerbe naturally banded by the sheaf L*G,, meaning that
the automorphism group of any object of §(Z) is canonically identified with L1G,,(Z). By
construction of Oi and the uniqueness statement in Proposition 3.3 this gerbe is equivalent to
the gerbe of liftings of G-torsor Mx o, s to a G-torsor. It follows that the gerbe of splittings
$ of the Azumaya algebra i*(‘)fZ is equivalent to the G,,-gerbe of liftings of G/G=2-torsor L :=

~

Mx.0,.s Xa¢ G/GZ? to a G/G=2-torsor. The set of isomorphism classes of torsors over G/G=2 —
Go x Aj/Gyy, lifting a given Go-torsor My [, is in bijection p with the set HY (X', 0%, /OX) of
isomorphism classes of torsors over the group scheme Aj/Gy, X, Mx |- It follows from (3.20)

that given a G/G=2-torsor L the G,,-gerbe of liftings of L to a torsor over G/G=2 is equivalent
to the gerbe of liftings of Aj/Gy X, My [-torsor p(L) to a torsor over Aj Xg, My, - This
proves (3.21).

To prove the last assertion of Theorem 1 observe that the kernel of the restriction
i*: Br(X'[[h]]) — Br(X’) is a subgroup of the group HZ, (X',W(Ox/)), where W(Ox/) is the
additive group of the ring of big Witt vectors, that is,

W(OX/) = (1 + hOX’HhH)*'

We claim that vanishing of H%(X’, Ox) implies vanishing of H?(X’, W(Oy)). Indeed, W(Ox)
is the inverse limit of the groups of truncated Witt vectors

W(OX/) = lime(OX/).
Using the exact sequence
0 — Wi(0x) L5 Wi (Ox1) — Wi (Ox1) — 0

it follows that, for every positive integer m, the group H?(X,W,,(Ox/)) is trivial and
consequently the restriction homomorphism

HN(X, Wit (0x7)) — HY (X, Wi (0x1))
is surjective, for every [ and m. Hence, by Proposition 13.3.1 from [EGA III, Chapter 0], we have
H*(X',\W(0x/)) — lim H*(X',W,,(Ox/)) =0

as desired.
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Remark 3.6. Observe that under the assumptions of Theorem 1, we have that
p"([0F] = 6(v) = 0.

Indeed, ng is an Azumaya algebra of rank p®” and, hence, its class in the Brauer group is killed
by p®". On the other hand, the class §(v)) is killed by p.

Remark 3.7. The proof of Theorem 1 shows that vanishing of H2(X’, Ox) implies surjectivity
of the map p (see formula (1.4)), which does not follow directly from the Bezrukavnikov—Kaledin
theorem. Indeed, from (3.12) we derive an extension

1—>5\22—>@/Gm—>G0D<AS/Gm—>1.

Consider the Gy X Aj/Gp,-torsor M corresponding to a restricted structure [n] and a class v €
HL (X', 0%,/0F,). Using that H?(X’, Ox/) = 0 we infer that M can be lifted to a G /G -torsor
M. Pushing forward the latter under the homomorphism G /G — G we get a quantization with
p-invariant +.

Remark 3.8. In [BKO08, Proposition 1.24] the authors erroneously assert the subgroup G —
LPGL(p"™) from (3.5) preserves a lattice, that is, possibly after conjugation by an element of
PGL(p", k((h))), factors through L™ PGL(p") C L PGL(p"). This claim led the authors to a mis-
take in the statement of Proposition 1.24. In fact, even the subgroup of translations Spec Ay =
af," C G does not admit an invariant lattice. This follows from the fact the commutator
map

Lie )" ® Lie a2 — Lie LGy, = k((h))

arising from extension (3.6) is given by the formula (1/h) >, dy; A dz;, i.e. does not factor through
Lie LT G, = k[[h]].

4. Central extensions of the group of Poisson automorphisms

In this section we prove Basic Lemma 4 and derive from it Proposition 3.3. For the duration
of this section we fix a symplectic vector space (V,wy) of dimension 2n and denote by A the
corresponding restricted Weyl algebra, G its group of automorphisms and Gy the quotient of G by
the subgroup of automorphisms identical modulo h viewed as a group scheme of automorphisms
of Ay preserving the class [ny].

4.1 Properties of Gg

Recall from [BKO0S, Proposition 3.4] that the reduced subgroup GY = (Gg)eq C Go is equal to
the stabilizer of the point Speck < Spec Ag: for every k-algebra R, G8(R) is the subgroup of
Go(R) that consists of R-linear automorphisms of Ap ® R that preserve the kernel of the homo-
morphism Ay ® R — R induced by Ay — k. According to [BK08, Lemma 3.3] the Lie algebra of
Go (respectively, GY)) is the algebra of all Hamiltonian vector fields'” on Spec Ay (respectively,
the algebra of all Hamiltonian vector fields vanishing at Speck < Spec Ap). In particular, we
have

dim Gy = dim G = dimy, Lie G) = dimy m? = p** — 2n — 1, (4.1)

where m is the maximal ideal in Ag.

10 Recall that a vector field is said to be Hamiltonian if it has the form Hy, for some f € Ay.
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Denote by «,, the Frobenius kernel on G,. The finite group scheme « := aIQ)” acts on Spec Ag =
a by translations inducing the inclusion o <— Ggy. Observe that the product morphism

axG)— Gy
induces an isomorphism of the underlying schemes.

LEmMMA 4.1. The group schemes Gg and G8 are connected. Moreover, there is a surjective
homomorphism

G — Sp(2n)
whose kernel is a unipotent algebraic group.

Proof. Tt suffices to prove the assertions for the reduced group G8. To show that G8 is connected
we consider the filtration
- CF’Gyc FIGY c &}
by normal group subschemes of G8 and prove that all the associated quotients are connected.
Namely, for any k-algebra R, we set
FIGY(R) = {¢ € GY(R) | ¢ =1d mod m'*! @ R}.

It is easy to see that this functor is representable by a normal group subscheme of G8.
The action of G) on the tangent space (m/m?)* preserves w. Thus, it gives rise to a
monomorphism

G/ F' G — Sp(2n),
which is, in fact, an isomorphism because it has a section. In particular, we have that
dim GY/F'GY = dim Sp(2n) = dimy m?/m3. (4.2)
To check that the other quotients are connected we construct injective homomorphisms
o FIGYJFIGY — mi T2 /mi 3, i > 1, (4.3)

where m**2 /m*3 is the vector group associated to the space m*™2/m**3 and then using (4.1)
conclude that «; are isomorphisms. For the sake of brevity we only define «; on k-points. Take
¢ € F'GY(k) and consider ¢* : Ay — Ag. By definition, ¢* = Id mod m'™!, so ¢* — Id maps m"
to m**", for every r > 0. Hence ¢* — Id defines a homogeneous degree i map 0y : ®mM” /m™H =
A — A which is, in fact, a derivation. Let us show that 6, lies in a Lie algebra of GY, ie. Ly W]
is exact. Indeed, since ¢ € GJ we have ¢*n = n + dK for some K € Ay. But then Ly,n=dKiio,
where K9 is the homogeneous component of K of degree 7 + 2. It follows that 64 is Hamiltonian:
Loyw = tg,dn = d(Kiy2 — tg,n). Set

a;(¢) = Kita — Lo,n € mi+2/mi+3.

Using the identity 040y = 04 + 0y, for every ¢, € F ‘GY(k), one checks that « is a group homo-
morphism and that it factors through F'GY/FiT1GY. For the injectivity of (4.3) observe that
6, = 0 if and only if ¢ € F*IGY(k).
From (4.3) we have that, for every i > 1,
dim F'GJ/F™ G < dimg m™2 /m'™3.
If for some i the inequality is strict, then using (4.2) we would have that dim G} < dimy m?
contradicting to (4.1). It follows that all «; are isomorphisms as desired. O
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Recall from Lemma A.1'"" a decomposition
Grg, — Z x W.
COROLLARY 4.2. The extension (1.15) admits a unique reduction to W C Grg,,. Notation:
1->W—G5— Gy — 1.
Proof. By Lemma 4.1 we have that Hom(Go,Z) = 0. The uniqueness part follows. For the

existence, note that the composition
det

G — LGL(p") <% LG,, - Z

factors through Go. We claim that setting G¢ = ker(Go — Z) does the job. Indeed, the only
assertion that requires a proof is the surjectivity of the projection C~¥8 — Gy. By construction,
~8 projects onto the kernel of the homomorphism Gg — Z/p™ induced by C:'o — Z. But by
Lemma 4.1 every such homomorphism is trivial. O

Consider m? C Ag as a Lie subalgebra of Ay equipped with Poisson bracket. Recall that

—H
m? 78 Lie Y (4.4)

is an isomorphism of Lie algebras. The grading on Ag induces a grading on the Lie algebra m?:

2<i<2n(p—1)
such that the Lie bracket has degree —2.

LEMMA 4.3. Isomorphism (4.4) induces
[Lie GY, Lie GJ] = @ m'/mitt,
2<i<2n(p—1)
In particular, [Lie G}, Lie GY] has codimension 1 in Lie GY. Moreover, sp(2n) = m?/m3 together
with any nonzero element z € m?/m* generate the Lie algebra [Lie GJ, Lie G{)].

Proof. By a direct computation the Poisson bracket of any two monomials of total degree
2n(p — 1) + 2 is 0 i.e. [Lie G, Lie GJ] does not contain nonzero homogeneous elements of degree
2n(p — 1). Hence, [Lie GQ, Lie GJ] C Do<iconp-1) m?/mitl. Since [sp(2n),sp(2n)] = sp(2n), we
have that m?/m? C [Lie GJ, Lie GJ]. Also it is clear that [Lie G}, Lie G)] contains at least one
nonzero element of degree 3 (e.g. {#?, x13?} = 222y;). To complete the proof of the lemma it
suffices to verify that the Lie subalgebra g generated by m?/m? and a nonzero element of degree
3 coincides with @2§i<2n(p—1) m?/mT1. We check by induction on d that m¢/md*! C g provided
that 2 < d < 2n(p — 1). The base of induction, d = 3, can be easily checked directly follows from

Lemma A.6.
Choose a symplectic basis (z;, y;) for V* and let E = 291y ... 28 ybr € md/m! with d > 3.
Note that:

o 3a;ziiy) —{w”’+1 v 2,%} (and —3bia = {a? b’“,yl})
o (a—1—2b)zfy? = {z{ "yl 22y} (and (2a — b+ 1)adyl = {afy?
° 7£EZZL‘] = {xiyi,xixj}

o a4 2(p— Dal Pyl 2%'3/]' = {a? 1y~ ijay?yj};

2 2 —1 —3
02(19—1):65’ Pty + 20ty = (a0 a? g2y

a2ty

1 We remark that all the results of the Appendix, in particular, Lemma A.1, do not depend on anything from
the main body of the paper.
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Assume first that p > 3. Then if for some ¢ we have a; <p—1 and b; > 2 (or a; > 2 and
b; < p — 1), then by the first formula above E is generated by elements of degree 2 < d’ < d, which
are in g by the induction assumption. Otherwise, for all ¢ the pair (a;,b;) equals (p —1,p — 1),
(1,1), (1,0), or (0,1).

If for some 4 the pair is (1,1) we get that from the second formula that E € g. If there are
at least two pairs of the type (1,0) or (0,1) we are done by the third formula.

. —1 p—1 ~1, p—1 ~1, p-1
Otherwise we may assume that E =2 ¢/ ...al” 4P~ or E=a"y{7 ...
1 p-1
b yP” w11 for some 0 < r < n. In these cases we are done by the last two formulas.

Now assume p = 3. For d > 3 note that if for some ¢ the number a; + b; — 1 is not divisible
by 3 we are done using the second formula. Thus, assume that for all 7 the pair (a;,b;) equals
either (p —1,p—1), (1,1), (1,0) or (0,1). In these cases we proceed as above. O

LEMMA 4.4. We have the following commutative diagram.

Gg/[G(O))Gg] i> Ga

|=

Go/[Go, Go]

Moreover, the projection Gy — Go/[Go, Go| admits a section yielding to a decomposition Gy =
[Go, Go] @ G,. Lastly, we have that

Lie[G), GY] = [Lie GQ, Lie GY]. (4.5)

Proof. Let us construct a group scheme homomorphism ¢ from Gy to G,. For a k-algebra R and
g € Go(R), we have that g(n) =n+df € 9}40®R/R7 for some f € coker(R — Ay ® R). Consider
the element

#g) = [f -w"] € Hp(Ao ® R/R) = R,

where the isomorphism above is induced by k — HZ%(Ap) that takes 1 € k to the inverse
Cartier operator applied to w™.

To show that ¢ is a homomorphism consider two elements g1, g2 € Go(R). Write g1(n) =
n+ df1, g2(n) = 1+ df2. Since g2 0 g1(n) = n + dfz + d(g2(f1)) the image of g2 o g1 equals [(f2 +
92(f1)) - (w)™]. On the other hand, ¢(g1) + ¢(g2) = [(f2 + f1) - (w)™]. Thus, it suffices to prove
that Gg acts trivially on H%%(AO). We claim that, in fact, every 1-dimensional representation
of Gy is trivial. Indeed, Gy is generated by two subgroups o = 0412)" and G8. Since a has no
nontrivial homomorphisms to G,, it suffices to prove the assertion for G). By Lemma 4.1 G
is an extension of Sp(2n) by a unipotent group and neither of the two groups has nontrivial
1-dimensional representations. This proves that ¢ is homomorphism.

The restriction of ¢ to G8 yields a homomorphism

Go/1GY, Go] — Ga. (4.6)
Next, we shall construct a homomorphism s : G, = Speck[t] — GY whose composition with
the projection G§ — G9/[GY, GJ] followed by (4.6) is Id. Set u = Hw?il Hyff1 € Ap. Define
s(t) € Autyy(Aolt]) sending f € Ag to f — (t/2){f,u}. One verifies directly that s is group
homomorphism and a section of (4.6). Let us check that (4.6) is an isomorphism. First, from
Lemma 4.3 we know that [Lie GJ, Lie GJ] has codimension 1 in Lie GJ. Second, since G = (Go)red
is smooth, both groups [GY, G} and GJ/[GJ, GY] are also smooth. Moreover, we have that
[Lie GY, Lie GJ] C Lie[G), GY] (see e.g. [Bor91, Proposition 3.17]). It follows that the dimension
of GJ/[GY, GY] is at most 1. Thus, (4.6) is a homomorphism from a smooth connected algebraic
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group of dimension < 1 to G, and as we have already seen this homomorphism admits a section.
It follows that (4.6) is an isomorphism. This also proves formula (4.5).

To complete the proof of lemma it suffices to check that the homomorphism GY/[GY, GJ] —
Go/[Go, Go) is surjective. Since G is generated by a and G it is enough to show that « €
[Go, Gp]. Consider the subgroup P = a x Sp(2n) C Go. We claim that [P, P] = P. Indeed, there
is a surjection [P, P] — [Sp(2n),Sp(2n)] = Sp(2n). The kernel of the surjection is a subgroup of
a whose Lie algebra is a Sp(2n)-invariant subspace of Lie av. It follows that the kernel is either
trivial which clearly not the case or equal to o as desired. n

Next, we shall show that [Go, Go| is generated by Sp(2n), «, and a certain one-parameter
subgroup G, C GY. We start with the following observation.

LEMMA 4.5. Let f € Ay, be an element of the restricted Weyl algebra such that f®+1/2 = .
Consider the homomorphism

*

As: G, = Speck[r] — Ap(h™)

given by the formula

(p—1)/2

. ()"
M=)

1=0

Then the pth power of the operator ad, s/, : Ay®k[r] — ApQk|[7] is zero and

p—1 i
Adyn =S e 47
o= 3 et B
i=0 ’

In particular, e™/" normalizes the lattice Ap C Ap(h™1) and, thus, defines a homomorphism
A : G, — G. (4.8)

Proof. The only assertion that requires a proof is formula (4.7). Both sides of the equation can
be thought as homomorphisms from G, to the loop group of k((h))-linear automorphisms of
Ap(h™1). One readily sees that the differentials of these homomorphisms at 7 = 0 are equal. It
follows that the homomorphisms are equal on the subscheme «;,, C G,. Also, by the assumption
on f, both homomorphisms are given by matrices in Endyj(n))(An®k[r](h~")) whose entries
are polynomials in 7 of degree less than p. Therefore, the homomorphisms are equal on G,. O

Let (z;,y;) be a symplectic basis for V*. For p > 3, define a homomorphism
A : G, = Speck[r] — G (4.9)
by the equations
AT, x;) =z, foralli

AMmyy1) =91 + 37‘.7)%, X7,yi) = yi, foralli# 1.

The differential of A is the Hamiltonian vector field H_,s. The construction from Lemma 4.5

gives a lifting S\I% = eT@i/h Gq — G of \.
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For p = 3 define A\ by
MNTyzi) =25, MN71,y:) =y foralli#1

Ar ) = a1 +72i, A7) =y — 2raay + 2072y
The differential of X in this case is H_,2, . The homomorphism S\:E;} = emmin/h . G, — G lifts A.

Z1Y1
LEMMA 4.6. The group scheme H := [Gy, Gy is generated by Sp(2n), a, and the image of \.
Proof. First, we show that a and [G), G)] generate H. Indeed, since a C H, we have that, for
any k-algebra R
H(R) = a(R)(G(R) N H(R)).
Thus, it suffices to prove that GJ(R) N H(R) = [GY, GY](R). By Lemma 4.4 G}/[GY, GY] = Go/H,
so the assertion holds.

Thus, it remains to prove that [G), GY] is generated by Sp(2n) and the image of A. Since the
groups in question are smooth it suffices to verify that Lie[GY, GJ] is generated by sp(2n) and
Lie A(Gg). But this is immediate from Lemmas 4.3 and 4.4. O

Consider the extension

1->W—GE—Gy—1 (4.10)

from Lemma 4.2.

LEMMA 4.7. The restriction of the extension (4.10) to GO admits a unique sphttmg, that is,
there exists a unique homomorphism GO — G0 whose composition with the projection Go — Gy
is the identity.

Proof. Recall from (3.6) the extension
1—>LGm—>C~;HG—>1.

The kernel A} /G, of surjection 7 : G — Gy is a pro-unipotent group scheme. Thus, by part
(iii) of Proposition A.5 the restriction of the above extension to 771G — G admits a unique
reduction to LTG,,. Equivalently, the extension

1—>Ger—>éo—>G0—>1

admits a unique splitting v : G’8 — G over G8 C Gy. It remains to show that v lands in C~}’8 From
the proof of Lemma 4.2 G§ is the kernel of a homomorphism Gy — Z. Since G§ is connected its
composition with v is identically 0 as desired. O

Recall from Remark 3.2 an isomorphism of Lie algebras Lie G¢ = Lie éo = Ag @ h2k[R7Y.
Also recall an identification Lie G8 s m? C Ay.

LEMMA 4.8. The morphism Lie G8 — Lie CN}g induced by the splitting from Lemma 4.7 equals
the composition m? — Ay — Lie G§.

Proof. The difference of the two morphisms of Lie algebras is a homomorphism from Lie G8 to
the abelian Lie algebra LieW. Thus, it suffices to check that the morphisms coincide on the
one-dimensional Lie algebra Lie G)/[Lie GJ, Lie GJ], which is immediate from Lemma 4.4. O

4.2 Extensions of a by W
In this subsection we shall apply the theory of restricted Lie algebras to study the category
of central extensions of the group scheme « by the group ind-scheme W. Recall (see
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g. [DG80, Chapter II, §7]) that the Lie algebra of a group scheme H over a field of char-
acteristic p > 0 is equipped with the pth power operation giving Lie H a restricted Lie algebra
structure. We are not aware of a written account of such theory for group ind-schemes. Therefore,
we shall use the following trick to reduce our problem to the well documented setup.

For an affine scheme S and an affine group scheme H over k denote by Mor(S, H) the fpgc
sheaf of groups assigning to a scheme 7" over k the group Mor(S x T, H).

LEMMA 4.9. Let G be a finite connected group scheme over k, H a smooth commutative group
scheme, and let S be an affine scheme. Then the groupoid of central extensions of G by Mor (S, H)
in the category of fpqc sheaves of groups is equivalent to the category of central extensions of
Ggs =G x S by Hg = H x S in the category of group schemes over S.

Proof. Assume we are given a central extension
1—-Hg— K- Gg—1, (4.11)
and let us construct a central extension F' of G by Mor(S, H). For any scheme T over Spec(k)

define F(T) ={g € K(T x S)|T x S — "9) @ x § — @ factors through the projection to T'}. It is
easy to see that the resulting F' is a sheaf and that Mor(S, H) injects into it, so it is left to prove
that I' — G is a surjection. Indeed, since the morphism 7 is flat and Hg is smooth we get that
K — Gy is formally smooth [Sta, Lemma 29.33.3]. Then since the map Spec(k) x S — G x S'is
a nilpotent thickening we get that 7 has a section. Thus, F' — G is surjective.

Conversely, if we have a central extension

1 — Mor(S,H) -~ F — G — 1, (4.12)

define for any S-scheme 7' the group K(T) to be F(T) xMor(T*SH) Nor(T, H). Here the map
Mor(T x S, H) — F(T) is induced by i and Mor(T x S, H) — Mor(T, H) is defined to be the
restriction to the graph of the structure morphism 7" — S. Let Hg(T) — F(T') x Mor(T, H)
be the homomorphism whose composition with the first projection takes Hg(T) to the neutral
element and whose composition with the second projection is the identity map. This defines an

injection of sheaves Hg — K, making K into an Hg-torsor over G g representable by a scheme
[Mil80, Chapter III, Theorem 4.3]. That is enough. O

COROLLARY 4.10. The groupoid of central extensions of a by Mor(A!, G,,) in the category of
fpgc sheaves is equivalent to the groupoid of central extensions of o x A by G,, x Al in the
category of group schemes over A'.

Remark 4.11. The above groupoids are discrete, i.e. objects do not have nontrivial
automorphisms. Indeed, the Cartier dual group to « is isomorphic to itself. In particular, it
has no nontrivial A points. Hence, every homomorphism o x A! — G,, x A! in the category of
group schemes over Al is trivial.

Observe that the evaluation at 0 defines a split surjection Mor(A!, G,,) — G,,,, whose kernel
is identified with W. Hence, we have a decomposition Mor(A!,G,,) = W x Gy,

Declare the restricted Lie algebra of Grg to be Lie(Gry) = h~1k[h~!] with the trivial Lie
bracket and the restricted power operation given by the absolute Frobenius.

THEOREM 3. The groupoid of central extensions of the group scheme a by W is equivalent to
the groupoid of central extensions of the restricted Lie algebra Lie(c) by Lie(W).

Proof. Using that the multiplication by p is 0 on « and surjective on W it follows that every exten-
sion of & by W admits a reduction to Gr . Moreover, since Hom(c, W) = 0 (by Corollary A.3),
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such a reduction is unique. Thus, the groupoid of central extensions of o by W is equivalent
to the groupoid of central extensions of a by Grgp. The groupoid of central extensions of «
by Grzp is equivalent to a full subcategory of the groupoid of central extensions of o x Al by
pp x Al. This subcategory classifies families of central extensions whose fiber over 0 € Al is a
trivial extension.

Next we claim that for an extension

pp x Al = K — a x Al (4.13)

the Al-group scheme is of height 1. Indeed, the Frobenius map K — K factors as K — o x Al —
Hp X A' — K. From Remark 4.11 we conclude that this map is trivial.

Thus, by [DG80, Chapter II, § 7, Theorem 3.5] the category of central extensions of o x Al
by 1, % Al is equivalent to the category of extensions of corresponding restricted Lie algebras
over Al. The latter is equivalent to the category of extensions of Lie(a) by Lie(u, x Al) in the
category of restricted Lie algebras over k. The above equivalence induces an equivalence between
the subcategories of central extensions of a x Al by 1, x Al trivial over 0 € A! and the category

~

of restricted Lie algebra extensions of Lie(«) by Lie(W). O

COROLLARY 4.12. The groupoid of central extensions of the group scheme « by W which split

over any factor oy, C « is equivalent to the set of Lie(W)-valued skew-symmetric bilinear forms
on Lie(a) viewed as a groupoid with no nontrivial morphisms.

Proof. Given a central extension of o by W let

~

0 — Lie(W) — L — Lie(a) — 0 (4.14)

A

be the corresponding extension of Lie algebras. The commutator on L defines a Lie(W)-valued
skew-symmetric bilinear form on Lie(a)). To construct the functor in the other direction set
L= Lie(W) @ Lie(a) as a vector space. The skew-symmetric form defines a Lie bracket on L
making L a central extension of Lie algebras. Define the restricted power operation on L by the
formula (f,g)) = fP). Let us check that £ is a restricted Lie algebra. We have to check that
the restricted power operation satisfies
~1
(X + Y)W = xbl 4yl ﬁiﬂ
i=1

1

for X and Y in the Lie algebra, and s;(X,Y’) being the coefficient of ¢~ in the formal expression
ad(tX + Y)P~1(X). Since p > 2 the polynomial s;(X,Y) = 0 for every i as desired. It remains to
check that every extension (4.14) of restricted Lie algebras that splits over every factor Lie(a,,) C
Lie(«) arises this way. As observed above, the restricted power operation on L is additive. Now
consider the subspace V' of L consisting of elements annulated by [p]-power operation. The
projection defines an embedding V' — Lie(c). Since the extension has a section over each Lie(cy)
the embedding is an isomorphism and we win. O

4.3 Geometric description of ég
Let

1-W—-GE—Gy—1 (4.15)

be the extension from Lemma 4.2, and let a be its restriction to c.
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Let us check that a satisfies the assumptions of Corollary 4.12, that is splits over every
subgroup a;, C a. For any v € V set f =wy(v,-) € V* and define a homomorphism

ap = Speck[e]/(€!) — G C AR, e e,

Here e//" denotes the restricted exponent, i.e. e//" =14 ef/h4---+1/(p — 1)!(ef/h)P~ L. It
is easy to see that e//* € A,[h~1*(a,) normalizes the lattice Aj, ® k[e]/(€P); therefore, it lies in

é(ap). Then the composition of this homomorphism with the projection to éo is a lift of the
embedding oy, C a corresponding to v as desired.

The natural action of Sp,,, C G C G on «a by conjugation lifts to an action on &. Indeed,
by Lemma 4.7 the extension (4.15) splits uniquely over Sp,,, C GY.

For future purposes note that the symplectic basis (x;,y;) for V* gives rise to a scheme-

12)”, and we define

t:a = Spec(klet, ... €y, 01,...0n,]/(ef =67 =0)) — @ (4.16)

theoretic section of 7 : @ — «. Namely, a = «

by ec@1/h eenan/hediyi/h - dntn/h The section ¢ is not a group homomorphism and it does
depend on the choice of symplectic basis. However, its differential

dt(e) : Lie(ar) — Lie(a)

is the unique linear map compatible with the restricted power operation.
Recall that a connection on a (trivial) W-torsor a is a function

V : {sections s : @ — &} — QL ® Lie(W) (4.17)

such that, for any c € W(c), one has V(cs) = V(s) + ¢ de. Denote by Conn(&, W) the set of
W-connections on a. More generally, we define the space Conn(a, W) of connections on & to be
the functor (k — algebras)®® — Sets sending an algebra R to the set of functions

V : {sections s : & x Spec R — @} — QL ® Lie(W) ® R (4.18)

with V(cs) = V(s) + ¢ tde, for every ¢ € W(a x Spec R). The group scheme S, of automor-
phisms of the scheme « acts on the space Conn(a, W). In particular, for any subgroup H C S,
we have a subset Conn(a, W) c Conn(a, W) of H-invariant connections.

LEMMA 4.13. There exists a unique Spy,, X a-invariant W-connection V on .
Proof. Denote by Conn(&,W)o‘ the set of a-invariant connections. We have that
Conn(&, W)® = {linear maps f : Lie(&) — Lie(W) such that f|Lie(W) = 1d}.
For an a-invariant connection V, the corresponding f is given by the formula
(V(s) —ds)odn(e) +1d,

for any section s.

Now since Spy,, normalizes o in GJ we get that Sps,, acts on Conn(&,W)a. Suppose we are
given two Sps,-invariant connections in Conn(a,W)a. Then their difference gives a morphism
Lie(o) — Lie(W) of representation of Spy,, which has to be trivial since Lie(a) is a nontrivial
irreducible representation whereas the action of Spo, on Lie(W) is trivial. Thus, we get the
uniqueness.

To prove the existence take (a unique) f : Lie(d) — Lie(W) that commutes with the restricted
power operation (see the proof of Corollary 4.12). This morphism is Spy,-invariant since the

action of Sp,,, respects the restricted structure. n
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We will need an explicit formula for the Sp,,, X a-invariant connection V. Let ¢ be the section
defined in (4.16). We claim that

(4.19)

To see this let us show that the connection given by (4.19) is Sp,,, X a-invariant. Pick a k-algebra
R and a point a € a(R) given by ¢€; — €, € R. Then t(a) is an R-point of & that acts on & by
translation . The composition vy ot : a X Spec(R) — & x Spec(R) is given by the formula

t(a)Heeimi/hﬂeﬁiyi/h — 6—(2&;5;/}0He(ei+e;)xi/hne(§i+5g)yi/h' (420)

Let 7 be the translation by a acting on «. Then ¢, = v~ 1t4 defines another section of . The
invariance of V under the action of v reads as

TV = V(ty).
Since J(¢;) = ¢; + €; and §(J;) = 0; + 07, we have that

~*Y — n o dei
=¥ -=—-+3X1—.
YVI(t) =7 W h A
On the other hand, from (4.20) we have ¢, = ¢><%/"t and, therefore,
! .
V(ty) = V(t) + e~ Fedi/h) ge¥eidi/h Z Eéisez‘

Thus, V is a-invariant. Let us show that V is also Spy,-invariant. Indeed, the morphism {f :

Lie(@) — Lie(W)} coincides with the differential of ¢, which is, as we observed above, a unique

linear map compatible with the restricted power operation. Therefore, it is Sp,,-invariant.
Define S, to be the group scheme of automorphisms of the scheme «, that is,

So(T) = Autp(a x T).
Define also ng to be the fpgc sheaf of automorphisms of the torsor a, that is,
SY(TY = {¢ € Su(T),d: @ x T — ¢*(@ x T)}.
Finally, define Sg to be subsheaf of ng of endomorphisms preserving the connection V on a.
LEMMA 4.14. The morphism ng — S, fits into a short exact sequence
1 — Mor(a, W) — ng — Sy — L.

Moreover, the kernel of the composition SY — SXV — S, is the sheaf W C Mor(cv, W) of constant
maps. Finally, the image of Sav in S, belongs to Gy.

Proof. The map Mor(a, W) — S5 takes f to the translation by f o 7, and exactness is immediate
because « is a trivial torsor. If the translation by f ow preserves the connection, then df = 0.
This implies that f is constant, that is, f € W.

To see that Im(Sg) C Gy pick v € Sg and let 4 be its image in S,. We have that

F*V(t) = V(ty) = V(t) + ¢ 1 de € QL @ Lie(W) (4.21)

for some ¢ = (1 + Zi>ogih*i) € W(w). Consider the group homomorphism W — G, that takes a
series (1 + Ya;h~") € W(a) to a;. This defines a morphism Q! ® Lie(W) — QL, and the image

)
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of V(t) € Q) ® Lie(W) is precisely n. Hence, we have from (4.21)
V' =n+da
as desired. (]

Recall from Lemma 4.7 that the extension 68 — G admits a unique splitting G8 — ég over
GY. The left action of G§ on G§/G) — & defines a homomorphism

Ge — SV (4.22)
THEOREM 4. Let V be a Sp,,, X a-invariant connection on &. Then homomorphism (4.22) induces
an isomorphism G§ — Sg .

Proof. Let us show that CNJS is a subsheaf of Sg , that is, V is Gyg-invariant. Denote by H the
commutator subgroup of Gg. We shall first show that V is H-invariant.

By Lemma 4.6 the group H is generated by «a, Sp(2n), and a certain one-parameter sub-
group A(7) : G, — G. By assumption, V is Sp,, X a-invariant. It remains to check that V is
Gq-invariant. We use formula (4.19) describing V in coordinates corresponding to the trivializa-
tion ¢ of the torsor &. First, assume that p > 3. Homomorphism \ has a unique lifting \ to 68’6
that can be explicitly computed using the construction from Lemma 4.5

A= G, — Gy©.
The invariance of V under the action of G, reads as
YV (t) = V(t), (4.23)
where ' : G, X a — & is the composition

Id x~y Id xt ~ Id x5! ~ Pry ~
Gexa —Gyxa—G,xa — G,xa—>a.

We have to compute t’'. The following equality of morphisms G, x o — ég holds:
eT(m?/h)Heeizi/he(Siyi/h _ 6—7’(26%/h) (6(61+3T6f)x1/h651y1/h . eenazn/heényn/h)er((x1+§1)3—3§fx1 —5%)/h.

(4.24)
We claim that the last factor e7((1+61)*=306t21-67)/h maps G, X a to G8 C 68 as follows.

0 ~0,e
Gy — Gy

e ]
Gy —% G

Indeed, the same formula defines an extension of the morphism G, x a — CNJS to a morphism
from a reduced scheme G, x Speck|[e;, d;]] to G§.'2 The composition of the latter with the

projection 68 — Gy lands in GJ C Gy. But the projection ég’e — G induces an isomorphism

on points with values in any reduced k-algebra. Thus, the morphism eT((@1401)?=36fw1=6)/h

G, x Speckl[e;, 0;]] — G¢ factors through GY and the claim follows.
. Lnom 0d(376%)  n 27d8
t = —_ = — - = = =

3
V(') =V(t) + o T(203/h) gom(26/h) _ % n %

2 Tndeed, the pth power of (z1 + 61)3 — 38231 — 63 = 28 + 3236, € Ap[[01]] is zero.
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For p = 3, the lift 4 is given by eT@v/h) | Write
e‘r(x%yl/h)Heeixi/he&yi/h — f(T €1 51)(6(61+T(§161)$1/he(51+7‘5%)y1/h66212/h652y2/h . eenzn/heényn/h)s

(4.25)

for some uniquely determined s € GJ(G, x a) C ég’e(Ga x «) and f(7,€1,01) € W(Ga x «). We
claim that

f(r e1,61) = 7T/, (4.26)

A direct verification of this formula is unpleasant; instead we deduce it from the following
facts. Using a computation in Lie algebras from Lemma 4.8 one verifies (4.26) modulo 72.

Also, it is easy to see that the left-hand side is invariant under the action of the multi-
plicative group given by 7 — 7/a, € — €1 /a, 61 — ady, x1 — axy, y1 — y/a. Thus, the element
f(r,€1,01) must be also invariant under this transformation. Finally, f(7,e€1,01) satisfies the
following cocycle condition:

f(Tl + T2,61,(51) = f(T1,61,51)f(T2,61 + 7101€1, 01 + T1(5%). (4.27)

There exists a unique f satisfying the above properties and it is given by (4.26). It follows that
3 carries the section ¢ to ¢/ = eT297</M¢ and (4.23) follows.

We have proved that V is H-invariant. Note that since Sp,,, C H and o C H we can see that
V is a unique H-invariant connection.

The group scheme G acts on @(&,W), the subgroup H is normal in Gg, hence Go/H
acts on the space of H-invariant connections. But since the latter consists of one element this
action must by trivial. Hence, V is Gy-invariant.

It follows that homomorphism (4.22) factors through Sg . Thus, by Lemma 4.14 we have a
commutative diagram

~ B
G —— SY

L

Go —%5 G,

where § induces an isomorphism on the kernels of the vertical arrows. Hence, 3 is an isomorphism
as desired. g

4.4 Proof of the Basic Lemma
We will prove the assertion for the extensions by W (as opposed to Grg,,) which is a priori
stronger than that stated in §1.8.

Recall the setup. Let i:V < V? be a morphism of symplectic vector spaces such that
the restriction to V' of the symplectic form on V? is wy. Let G§ — Go and GO — Go be the

corresponding extensions. Denote by Gg C Go the group subscheme that consists of automor-
phisms preserving kernel of the homomorphism ¢* : A% — Ag. We have a natural homomorphism
Gh — Go.

THEOREM 5 (Basic Lemma). The homomorphism G(ﬁ) — Gy lifts uniquely to a homomorphism
of central extensions

G e G — G,

Proof. The uniqueness follows from Corollary A.3. Let us prove the existence. By Corollary 4.12
the morphism i : & — o lifts uniquely to a morphism i : & — &’ of extensions. Moreover, the
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pullback of the (unique) Sp(V?) x o’-invariant connection V* on & is the (unique) Sp(V) x
a-invariant connection V on &. Thus, we have a homomorphism

v i v
S5 Xa Gy — Sy
lifting Gg — Gp. It remains to apply Theorem 3. U
COROLLARY 4.15. There exists a unique isomorphism of central extensions of G%:
G .y G — G xa, G

4.5 Proof of the Proposition 3.3

We will prove a stronger assertion for the extensions by W (as opposed to Grg,, ). Let (V,w) be a
symplectic vector space and let n be a homogeneous 1-form on the scheme V whose differential
equals w, that is, a vector n € V* ® V* whose skew-symmetrization is w. Denote by

i VeV =vVaev:

the linear morphism corresponding to the graph I';, : V — TY; of n. Explicitly, the composition
of 4 with the first projection is Id and its composition V' — V* with the second projection is
given by n € V* ® V*. In § 3.2 we defined a homomorphism 1y : Gg — G%. We have to prove that
1o lifts uniquely to a homomorphism ¥ : ég — é%’e of extensions. The uniqueness follows from
Corollary A.3. To prove the existence we observe that by construction of v it factors through
the subgroup Gg C G% that consists of automorphisms preserving kernel of the homomorphism
i* : A5 — Ap and its composition

Go 2% G — Gy
with restriction morphism is the identity.!®> Consider the homomorphism

as " Ge e, GE.

Using Corollary 4.15 we get a morphism
G xa, Gh = G* e Gl ahe.

Its composition with (Id, 1) is the desired lift 4y : C~¥8 — é%’e.

5. G,,-equivariant quantizations

In this section we consider quantizations of symplectic varieties (X,w) equipped with an action
of the multiplicative group G,, such that the form w has a positive weight m with respect to
this action and m is invertible in k. We recall the notion of a G,,-equivariant Frobenius constant
quantization Oy, of such (X,w). By definition, Oy, is a Gy,-equivariant sheaf of O x(;j-algebras on
X' x Spec k[h]. In particular, specializing h = 1 we have a sheaf Op—; of O ys-algebras over X'.

3 Homomorphism %o can be described in a coordinate-free way as follows. Consider the subgroup G of GF that
y g 0 0
consists of scheme-theoretic automorphisms g of o’ fitting in the commutative diagram

for some g € Go. The restriction of the projection Gg — Gy to Gg’f is an isomorphism and g is its inverse.
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We show that if the action of G, on X is contracting, then Op—; is an Azumaya algebra over
X' and using Theorem 1 compute its class in the Brauer group Br(X'’) proving a conjecture of
Kubrak and Travkin [KT19].

5.1 Definition of G,,-equivariant quantizations
Let X be a smooth variety over k equipped with a symplectic 2-form w and a G,,-action

NGy x X — X, (5.1)

We shall say that w is of weight m with respect to the G,,-action if the following identity holds
in T(Gm x X, 9%, . x/6,.):

Nw = 2" pryw. (5.2)
Here z denotes the coordinate on G,, and pry : G, x X — X the projection. For the duration
of this section we shall assume that w is of weight m with m invertible in k.

The G,,-action on X defines a homomorphism from the Lie algebra of G,,, to the Lie algebra
of vector fields on X. Denote by 6 the image of the generator of Lie G,,. Formula (5.2) together
with the identity dw = 0 imply that

dipw = mw.

Hence, setting n = (1/m)ipw, defines a restricted Poisson structure on X. Endow X'[h]: =
X' x Spec k[h] with the G,,-action given by the composition
G x X' 2 @, x X725 X

(where F' : G, — Gy, is given by F*(z) = zP) on the first factor and by h — z™h on the second
factor.

A Gyy-equivariant Frobenius-constant quantization of X consists of a G,,-equivariant sheaf
Oy, of associative Ox/[j-algebras on X'[h] together with an isomorphism of G,,-equivariant
O x/-algebras

On/(h) = Ox (5.3)

such that Oy, is locally free as an O x/[,-module and the restriction O, := lim Oy, /(h™) of Oy, to the
formal completion of X'[h] along the divisor h = 0 (equipped with the central homomorphism
s: Ox/[[h]] = Op, and (5.3)) is a Frobenius-constant quantization of X compatible with the
restricted Poisson structure given by the 1-form n = (1/m)ipw.

For example, if X is affine, then a G,,-equivariant Frobenius-constant quantization
of X is determined by a graded O(X')[h]-algebra Op(X'[h]) (with degh = m) together with
On(X[h])/(h) = O(X).

5.2 Al-action
In the following, we shall consider G,,-actions on a scheme X satisfying the property that:
morphism (5.2) extends to a morphism

AAx X - X (5.4)

If X is reduced and separated, which we shall assume to be the case for rest of this section,
then A defines an action of the monoid A! on X. In particular, the restriction of A to the closed
subscheme X < A! x X given by the equation z = 0 factors through the subscheme X®m <« X
of fixed points:

XX — X8 X,

Moreover, A exhibits X®m as a Al-homotopy retract of X.
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Also note if X is a proper scheme with a nontrivial action of G,,, then A does not exist. This
can be seen by looking at the closure of a 1-dimensional G,,-orbit in X.

5.3 Main result
By definition, a G,,-equivariant Frobenius-constant quantization Oy gives rise to a Frobenius-
constant quantization O and, thus, a class p(Op) € HL (X', 0%, /OF,) (see §1.4). Denote
by [p(On)] € Br(X’) the image of p(O;) under the homomorphism H (X', 0%, /0%) —
Hgt(le O;(’)

Recall from [OV07, §4.2] a homomorphism

QY(X") = Br(X), 0[] (5:5)

that carries a 1-form n to the class of the Azumaya algebra Dx restricted to the graph of
the embedding I’ : X’ — T%, given by 7. Finally, denote by Op—; the sheaf of Oxs-algebras
Op/(h — 1). The following result has been conjectured in [KT19, §0.3, Question 2.

THEOREM 6. Let X be a smooth variety over k equipped with a G,,-action (5.2) and a symplec-
tic form w of weight m > 0 relatively prime to the characteristic of k. Assume that the morphism
(5.1) extends to a morphism (5.4). Then, for every Gy,-equivariant Frobenius-constant quanti-
zation Oy, of X, the restriction of Oy, to X'[h,h~'] = X’ x Speckl[h,h~!] C X'[h] is an Azumaya
algebra. Moreover, the following equality in Br(X') holds:

Onet] = | o] + Klp(0n)

Proof. To prove the Azumaya property of Oy (h~!) consider the morphism
P Op ®OX’[h] Ozp — Endox’[h](Oh)'

This is a morphism of vector bundles over X’[h] of the same rank. We have to prove that v is
an isomorphism away from the divisor A = 0. Denote by

det ) : /\tOp(Oh ®Ox/[h] Ozp) — /\tOP(EndoX,[h](Oh))

the determinant of ¢ and by Z — X'[h]. Let (x, ho) € Z be a k-point of Z. We shall check that
ho = 0. Using (5.4) and the positivity of m the G,,-action on X'[h] extends to a morphism

A(h) : Al x X'[n] — X'[h]. (5.6)

It follows that the closure T of the G,,-orbit of (xq, ho) intersects the divisor A = 0 at some point
(x(,0). Since Z is closed and Gy,-invariant we have that 7' C Z i.e. det ¢ is identically 0 on T.
On the other hand, using the Azumaya property of the formal quantization Oy, (h~!) we see that
the restriction of ¢ to the formal punctured neighborhood of (z{,0) € T is an isomorphism. This
contradiction proves the first assertion of the theorem.

For the second assertion, consider algebra Dy ; obtained from the filtered algebra of dif-
ferential Dy operators via the Rees construction (see §1.2). The p-curvature homomorphism
makes Dx j into an algebra over S'Tx/[h]. The graph I'; : X’ — T%, of the differential form
n = (1/m)iyw defines a sheaf of ideals Ir, C STx/. The quotient Dx ;) = Dx /I, can be
viewed as a Gp,-equivariant sheaf of O x/,j-algebras over X 'Ih]. By construction, the restriction
of Dx [y, to the formal completion of X'[h] along the divisor & = 0 is isomorphic to the algebra
Dx y),n constructed in §1.5. Now given a Gy,-equivariant Frobenius-constant quantization Op,
we consider the tensor product Op ®o,, ] D()j?,[n},h' Using Theorem 1 and the Beauville-Laszlo

theorem [BL95] there exists a sheaf 02 of Ox[-algebras over X'[h] whose restriction to
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X'[h,h 1] is (On @0, D;’g’[m ,)(h~1) and whose restriction to the formal completion of X'[h]
along the divisor h = 0 is an Azumaya algebra. It follows that Oi is an Azumaya algebra over
X'[h]. We claim that the following equality holds in Br(A® x X'[h]):

AR ([05]) = pr ([05)- (5.7)

Indeed, since (O ®g,[n) Dgf[n] ) (B71) is Gp-equivariant the equality holds after the restric-

tion to G, x X'[h, h~!]. Now the claim follows from the injectivity of the restriction morphism

Br(A! x X'[h]) — Br(G,, x X'[h,h~1]). Restricting the classes in (5.7) to the divisor X'[h] =
A' x X'[h] we find that
AR((OR) = [0} (5:8)

Morphism A(h)§ : X'[h] — X'[h] factors as follows:

X[ P xr M s =0 ey
By Theorem 1 the restriction of [Og] to the divisor X’ =% X'[h] is equal to [p(Oy)]. Using (5.8)
and restricting to the divisor h = 1 we find that

[0} 1] = [p(On)]
as desired. ]
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Appendix A

A.1 The affine grassmannian for G,,
Let G be an algebraic group over a field k. Denote by

LG : Aff{® — Groups
the corresponding loop group, that is a sheaf of groups on the category of affine schemes over k
equipped with the fpgc topology sending k-scheme Spec R to G(R((h))). Also, let

L*G : AfY® — Groups

be the sheaf of groups sending k-scheme Spec R to G(R[[h]]). It is known (see e.g. [Zhul7,
Proposition 1.3.2]) that LTG is represented by a group scheme over k and that LG is an ind-
affine scheme. Denote by Grg the affine grassmannian for G. By definition, Grg is the fpgc sheaf
associated to the presheaf R — LG(R)/L*G(R).

Recall the structure of the affine grassmannian for G,,. The following result is well-known
(see, for example, [Con94]); for the reader’s convenience we include its proof.

LEMMA A.1. For a commutative ring R such that Spec R is connected there is a decomposition
R((h))" = R* x W(R) x Z x W(R),

where W(R) is the subgroup of R[[h]]* formed by formal power series with constant term 1,
W(R) is the group of polynomials of the form 1+ Ya;h~" with nilpotent coefficients a; € R.
In addition, we have that

W(R) = ker(R[h1]* T2 7).

Proof. The claim follows from the fact that under the assumptions of the lemma
R((h))* = {Zaihi € R((h)); i : ai, € R*, a; nilpotent for all j < io}.

To show this replace R by R/Mg, where Mg stands for the nilradical. We need to show that
a Laurent polynomial is invertible if and only if its first nonzero coefficient is invertible in R.
Suppose that

A(h)B(h) =1 (A1)
for A(h), B(h) € R((h)) such that
Ah)=a_nh™N +a_nyh VT4
B(h) =b_nh™ 4 b_pp b ™M 4.

where b_pr #0 and a_n # 0. From (A.1) we have that N+ M >0. If N+ M =0, then
a_nb_pr =1 and we are done. Otherwise, we have from (A.1)

(A.2)

a_Nb_p =0, a_nNb_ptr1+a_np1b_p=0,... (A3)

a-Nb_pr (N T+ ao vy (veaybom = 1 (A.4)

Using (A.3) we get a? yb_pr41 =0 and similarly a® yb_pri =0 for every i < N+ M.
Multiplying both sides of (A.4) by a]_V;\}M we infer

CL]_\[JT;M(]. - a*Nb—M—f—(N—&—M)) =0.

Since a—y and 1 — a—Nb_pry (n4r) are coprime,

R = R/(a,N) X R/(l — a*Nb7M+(N+M))7
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Spec R is connected, and a_y # 0 we conclude that 1 —a_nb_prq(v4ar) = 0. Hence, a_n is
invertible as desired. O

Using the lemma, we have decompositions

LG =5 Gy x WX Z x W,
GTGMLZXW,

where W is the group scheme of big Witt vectors and W is a group ind-scheme whose group of
R-points is defined in the lemma.

A.2 Subgroups of L GL(n)
PROPOSITION A.2. Let G be an affine group scheme over a field k, and let ¢ : G — L GL(n) be

a homomorphism. Then there exists an element g € GL(n, k((h))) such that ¢ factors through
gLt GL(n)g~!:

G -2 g(L* GL(n))g~! — LGL(n).
Proof. Set V' = k™. We have to show that there exists a ¢(G)-invariant k[[h]]-lattice
A C V((h)).

Informally, our A will be constructed starting with the lattice Ag = V[[h]] as the intersection
N 9 gAg. Since we make no assumptions on k and G one has give a meaning to the latter. We
shall do it as follows.

The morphism ¢ is given by a matrix A € GL(n, O(G)((h))) such that

A® A= A(A) € GL(n, (9(G) © O(G))((h))), (A.5)

where A : O(G) — O(G) ® O(G) is the comultiplication on O(G) given by the product morphism
G x G — G and such that the image of A under the evaluation at 1 € G(k) homomorphism
GL(n,0(G)((h))) — GL(n, k((h))) is the identity matrix.

Set

A ={v e V((h)) such that Av € V ®@; O(G)[[h]]}.

Then A is a k[[h]]-submodule of V[[h]] contains AV V[[h]], for sufficiently large N. Hence, A is a
lattice. It remains to show that A is ¢(G)-invariant, that is

A(A) C A @k O(G)[[A]]-
The matrix A defines O(G)((h))-linear maps

V(1)) @k O(G)[]] 225 (V (1)) @rppgy O(G)[R]) @qp O(G)[A]] —
— V((h)) @k (0(G) @1 O(G))][A]],

where the second map in (A.6) is induced by the embedding
O(G)[[M] @kyiy O(G)[[M] — (O(G) @ O(G))[[1]- (A7)

Since the cokernel of (A.7) and O(G)[[h]] are both flat k[[h]]-modules it follows that A @
O(G)[[A] is precisely the preimage of V[[A]] @y (O(G) ®x O(G))[[A]] under the composition
(A.6).

(A.6)
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Hence, it suffices to check that (A.6) carries A(A) to V[[h]] @xay (O(G) @k O(G))[[M]]. But
the composition

(A.6)

V((h)) =5 V((R) @ OG- =2 V() @xqpayy (O(G) @, OG)[R]] (A8)
is equal to

V((h)) % V() @k OG22 V((R)) @y (O(G) @1 O(G))[[H]]
by (A.5). Hence, it carries A to V[[h]] @k (O(G) @ O(G))[[R]] and we win. O

COROLLARY A.3. There are no nontrivial homomorphisms from an affine group scheme to
LG, /LT Gyy.

A.3 Subgroups of LPGL(n)
Remark A.4. The analogous assertion for L PGL(n) does not hold.

Consider the homomorphism of loop groups fpgc sheaves
LGL(n) — LPGL(n) (A.9)

induced by the projection GL(n) — PGL(n). We do not know if (A.9) is surjective as a mor-
phism of fpgc sheaves. However, we shall see below that (A.9) is surjective over any affine group
subscheme of L PGL(n) of finite type over k. For our applications we need a bit more general
statement.

Recall that an affine group scheme H over a perfect field k is said to be pro-unipotent if
there exists a filtration

--~CH2iC-~-CH21:H

by normal group subschemes such that
H = lim H/H=

and every quotient H/HZ' is unipotent (i.e. has a finite composition series with all quotient
groups isomorphic to the additive group G,).

ProprosITION A.5. Let G be an affine group scheme over a perfect field k, and let ¢ : G —

LPGL(n) be a homomorphism. Assume that G has a normal pro-unipotent group subscheme
GZ' C G such that ¢(G=') ¢ Lt PGL(n) and the quotient Gy = G/G=' has finite type over k.
Then the following assertions hold.

(i) The morphism of fpgc sheaves G := G X par(n) L GL(n) — G given by the projection to
the first coordinate is surjective for the Zariski topology on G (and, consequently, for the

fpgc topology).
(ii) The following two conditions are equivalent.

(1) There exists an element g€ PGL(n,k((h))) such that ¢ factors through
gLt PGL(n)g~1:

G -2 g(L* PGL(n))g~! < LPGL(n).

(2) The extension
1—-LG,—G—-G—1 (A.10)
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admits a reduction G to LTG,, as follows.

1 - LYG,, — Gt - G — 1

|

1 - LG, —»- G — G — 1
(iii) Assume that Gy is smooth and connected. Then extension (A.10) admits a unique reduction
GT to LTG,,.
Proof. For part (i) observe that the morphism of schemes
LT GL(n) — LT PGL(n)

admits a section locally for the Zariski topology on LT PGL(n). Also since every G=!-torsor over
an affine scheme is trivial the projection

G —» Gy

admits a scheme-theoretic section s : Gog — G. Hence, it suffices to check that the composition

Gy — G 2L PGL(n) lifts locally for the Zariski topology on G to scheme-theoretic morphism
Go — L GL(n). Set Gy = Spec R. Then ¢ o s defines a morphism

Spec R((h)) — PGL(n). (A.11)

The pullback of the G,,-torsor GL(n) — PGL(n) defines a G,-torsor L over Spec R((h)). Observe
that ¢ o s admits a lifting to L GL(n) if and only if L is trivial. Thus, to complete the proof of
part (i) we have to show that there exists an affine open covering Spec R = UU; such that the
pullback of L to Spec O(U;)((h)) is trivial for every i. We shall prove a stronger assertion: the
morphism Spec R((h)) — Spec R induces an isomorphism

Pic(R) — Pic(R((h))). (A.12)

Since G is a group scheme and k is perfect, the reduction R,eq is smooth over k. Since R is a
finitely generated k-algebra, the kernel of the projection R — R,q is a nilpotent ideal. It follows
that (R((h))red — Ryrea((h)). Consequently, we have that

Pic(R) — Pic(Rua),  Pic(R((1))) — Pic(Ruca((1).
Next, using regularity of Ryeq((h)) we conclude that
Pic(Rrea((h))) = Cl(Rrea((h))) = Cl(Rrea[h]]) = Pic(Rrea[[R]]) = Pic(Rrea)-

This proves part (i).

For part (ii), let Gt be a reduction of G to L*G,,. Since LTG,, is an affine group scheme
(as opposed to merely a group ind-scheme) G*t is also an affine group scheme. Applying
Proposition A.2 we conclude that the homomorphism G+ — L GL(n) factors through gLt
GL(n)g~!, for some g € GL(n, k((h))). Hence, G — L PGL(n) factors through gL+t PGL(n)g~!.
The inverse implication is clear.

Finally, for part (iii), set G := G/L*G,,,. We have to show that the central extension

Grg,, - G — G

admits a unique splitting. We shall first construct a scheme-theoretic section of the projection
G — G. Using part (i) there exists an open cover G = UU; and sections s; : U — G of the
projection G — G. Let 5; : U; — G be the composition of s; with the quotient map G — G.
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Since G is reduced the morphisms
gigj-_l:UiﬁUjHGer ZWXZ

lands at the second factor. Hence the collection {§i§;1} defines a Cech 1-cocycle for the constant
sheaf Z on G. Since G is irreducible, we have that H'(G,Z) = 0. Thus, we have a global scheme-
theoretic section 5 : G — G of the projection G — G. We claim that every such section satisfying
5(1) =1 is a group homomorphism. To see this it suffices to show that the following diagram is

commutative.
GxG I @
) lgx_g ) Lg
GxG % @G

In turn, this follows from the fact that every scheme-theoretic morphism from a connected
reduced scheme to Grg,, is constant. U

A.4 A representation of sp(2n)
In this subsection we prove irreducibility of a certain representation of the Lie algebra sp(2n)
that we used in the proof of Lemma 4.3. We use notation from §4.1.

LEMMA A.6. For every integer | with 0 <[ < 2(p — 1), the adjoint representation of the Lie
algebra sp(2n) = m?/m3 on m!/m!*! is irreducible.

Proof. Write ml, /mbt! for mF /mF+1. Tt is easy to verify the assertion of the lemma for n = 1: in
fact, the representation of sp(2) = m1/m3 on m}/m!™ is irreducible for every I > 0. Moreover,
the representations m} /m!* and m! /m!*! are isomorphic if and only if [ + 1’ = 2p — 2.

To prove the lemma in general, consider the restriction of the representation of sp(2n) on

ml /mb! to the Lie subalgebra

sp(2)%" — sp(2n)

of the block diagonal matrices. The latter representation decomposes as follows:

mb /mbtt = @ mi /mi @@ min fmin (A.13)
By the Jacobson density theorem the representation of sp(2)®" on each summand is irreducible.
Moreover, if | < 2(p — 1), then these direct summands are pairwise nonisomorphic. It follows
that any subspace V C m! /mbt! invariant under the sp(2)®"-action is the sum of some of the
summands appearing in (A.13). Hence, it suffices to prove that if a sp(2n)-subrepresentation
W c ml /mbt!l contains mzll/mzllﬂ' ®-® mzln/'mllnﬂ,' for some partition (i1, ...,4,) of [ with
i1 > 0, the projection of W to m%'/mi @ m2* /m2*? @ ... @ mi» /m'»*! is nonzero. This
reduces the proof to the case n = 2 which is shown by direct inspection. ]
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