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Abstract
In this paper, the multi-state survival signature is first redefined for multi-state coherent or mixed systems with
independent and identically distributed (i.i.d.) multi-state components. With the assumption of independence of
component lifetimes at different state levels, transformation formulas of multi-state survival signatures of different
sizes are established through the use of equivalent systems and a generalized triangle rule for order statistics from
several independent and non-identical distributions. The results obtained facilitate stochastic comparisons of multi-
state coherent or mixed systems with different numbers of i.i.d. multi-state components. Specific examples are
finally presented to illustrate the transformation formulas established here, and also their use in comparing systems
of different sizes.

1. Introduction

Signature theory, as an important part in the theory of reliability, contributes fundamentally in describing
structures of reliability systems and in facilitating stochastic comparisons of different systems. The
concept of system signature, proposed originally by Samaniego [22], is a vector 𝒔 = (𝑠1, . . . , 𝑠𝑛), with
element 𝑠𝑖 being the probability that the failure of a coherent system is caused by the 𝑖th ordered failure
from its n independent and identically distributed (i.i.d.) components. For coherent systems with the
same number of i.i.d. components, Kochar et al. [13] established that the usual stochastic ordering,
hazard rate ordering and likelihood ratio ordering in system signatures lead to corresponding orderings
of system lifetimes. More theoretical results and applications of the system signature can be found in
the book by Samaniego [23]. Stochastic comparisons of coherent systems have been discussed based
on the system signature in different ways recently; for example, with components ordered in hazard
rate/reverse hazard rate/likelihood ratio ordering [1], with exchangeable or dependent non-exchangeable
components [18], with different types or even different sizes of components [9], with information of
system state or number of failed components under single/double monitoring [12], or by taking both
performance and cost into consideration [15].

As discussed by Yi and Cui [31], there are many efficient methods for computing the system signature
and each has its own advantages and limitations. Several related concepts have also been discussed in
the literature; for example, minimal/maximal signature [19], dynamic signature [24], joint signature
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[20] and ordered system signature [2] are some important ones among them. Survival signature, as a
generalization of the system signature, was originally proposed by Coolen and Coolen-Maturi [5] for
the survival of systems with multiple types of components, and are now widely used for studying many
practical systems like large complex networks [3]. A similar concept, called joint survival signature, has
been presented recently by Coolen-Maturi et al. [6] for coherent systems with shared components.

The above concepts have all focused on binary-state systems, while for multi-state systems [16,17]
which are more practical in the field of reliability, related discussions on signature theory have also
been made in the literature. For example, for multi-state systems with binary-state components, there
are some concepts such as multi-dimensional D-spectrum [11], bivariate signature [8], multi-state
ordered signature [25] and multi-state joint signature [28]. As for multi-state systems with multi-state
components, Eryilmaz and Tuncel [10] introduced multi-state survival signature based on a natural
generalization of the survival signature of Coolen and Coolen-Maturi [5]. Related discussions on
computational methods for the multi-state survival signature can be found in Yi et al. [27,29].

There are many theories and methods that are useful in the study of multi-state systems; for example,
Markov and semi-Markov models, universal generating function methods, combined methods and fuzzy
methods [16]. However, when it comes to description of their system structures, signature theory has
its unique advantages over traditional methods, especially for large complex systems whose structures
are too complex to be represented by structural functions. Irrespective of whether one has binary-state
systems or multi-state systems, it is known that signatures are vectors or matrices whose dimensions are
determined by the number of components (i.e., the system size). This means that signature represen-
tations can still be simple even for large complex systems. Moreover, they can be calculated by Monte
Carlo simulations no matter how complex the system structures are, and there are also other efficient
computational methods available for different types of systems [27,29,31].

Signature and its related concepts play a vital role in stochastic comparisons of systems [4,32]. For
systems of same size, stochastic comparisons of them can be carried out directly based on orderings
of their signatures [13]. However, for systems of different sizes, some transformation formulas are
required to transform the signature of smaller dimension to its counterpart of larger dimension [21].
For binary-state systems [14,21] and multi-state systems with binary-state components [26,30], these
transformation formulas have already been established which facilitate stochastic comparisons of those
systems of different sizes. But, in the case of multi-state systems with multi-state components, the
problem becomes quite complex with different component lifetime distributions at different state levels
to be taken care of. For tackling this issue, in this work, we first redefine the concept of multi-state
survival signature in Yi et al. [27] for multi-state systems with multi-state components, and then establish
transformation formulas for multi-state survival signatures of different sizes based on the assumption
of independence of component lifetimes at different state levels.

The rest of this paper is organized as follows. In Section 2, the multi-state system survival signature is
first redefined for multi-state coherent or mixed systems with multi-state components, and transformation
formulas are then established for multi-state survival signatures of different sizes. Some illustrative
examples are presented in Section 3 to demonstrate the transformation formulas established here, and
then their usefulness in comparing systems of different sizes is demonstrated in Section 4 with numerical
examples. Finally, some concluding remarks are made in Section 5.

2. Comparisons of multi-state systems of different sizes

For multi-state coherent systems with i.i.d. multi-state components, Yi et al. [27] have defined their
multi-state survival signature in a matrix form as follows.

Definition 2.1. Let 𝑇𝑗 ( 𝑗 = 1, . . . , 𝑀) be the first time that a multi-state coherent system, having n i.i.d.
multi-state components and a state space Ω = {0, . . . , 𝑀} for both the system and the components,
enters state 𝑗 − 1 or below. Furthermore, for 𝑗 = 1, . . . , 𝑀, let 𝑋 (𝑖)

𝑗 (𝑖 = 1, . . . , 𝑛) be i.i.d. random
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variables with a common absolutely continuous distribution 𝐹𝑗 (𝑥), 𝑥 ≥ 0, with 𝑋 (𝑖)
𝑗 being the first time

that component i enters state 𝑗 − 1 or below. Suppose the system and the components start at perfect
functioning state 𝑀, degrade into imperfect functioning states 𝑀 − 1, . . . , 1 successively and finally
enter the complete failure state 0. Then, the multi-state survival signature of the system can be defined
as 𝑺 = (𝑺 (0) , . . . , 𝑺 (𝑀 ) ), where 𝑺 ( 𝑗) = (𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖1, . . . , 𝑖𝑀 ≤ 𝑛) ( 𝑗 = 0, . . . , 𝑀) is the multi-state
survival signature at system state level 𝑗 , with

𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 = 𝑃

{
𝑇𝑗 > 𝑡

�����𝑚0(𝑡) = 𝑖0, . . . , 𝑚𝑀−1(𝑡) = 𝑖𝑀−1, 𝑚𝑀 (𝑡) = 𝑖𝑀 := 𝑛 −
𝑀−1∑
𝑤=0

𝑖𝑤

}
being the conditional probability that the system is in state j or above at time 𝑡, given 𝑚𝑙 (𝑡) = 𝑖𝑙
components in state 𝑙, for all 𝑙 = 0, . . . , 𝑀 .

Usually, as in [14,21,26,30], comparisons of systems of different sizes can be carried out based
on the fact that any binary/multi-state system can be regarded as a mixture of several k-out-of-n type
systems. For that purpose, it will be better if a consecutive type system has a simple form of signature
vector/matrix, which leads to a modified definition of multi-state survival signature as follows.

Definition 2.2. With notations defined in Definition 2.1, for a multi-state coherent or mixed system with n
i.i.d. multi-state components, its multi-state survival signature can be defined as 𝑺 = (𝑺 (0) , . . . , 𝑺 (𝑀 ) ),
where 𝑺 ( 𝑗) = (𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖1, . . . , 𝑖𝑀 ≤ 𝑛) ( 𝑗 = 0, . . . , 𝑀) is the multi-state survival signature at
system state level 𝑗 , with

𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 = 𝑃{𝑇𝑗 > 𝑡 |𝑚1 (𝑡) = 𝑖1, . . . , 𝑚𝑀 (𝑡) = 𝑖𝑀 }

being the conditional probability that the system is in state j or above at time 𝑡, given 𝑚𝑙 (𝑡) = 𝑖𝑙
components in state l or above, for all 𝑙 = 1, . . . , 𝑀 .

Remark 2.1.

(1) The new definition is different from Definition 2.1 only in the definition of 𝑚𝑙 (𝑡) except that it can
also be applied for mixed systems. As in the discussions of Yi et al. [27], 𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 ( 𝑗 = 0, 1, . . . , 𝑀)
are independent of time t and is defined in a way similar to that in Eryilmaz and Tuncel [10].

(2) 𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 = 𝑆 ( 𝑗)max(𝑖1 ,...𝑖𝑀 ) ,...,max(𝑖𝑀−1 ,𝑖𝑀 ) ,𝑖𝑀 ( 𝑗 = 0, . . . , 𝑀), which leads to two ways of representing
𝑺 ( 𝑗) :

1. Keep all the elements 𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖1, . . . , 𝑖𝑀 ≤ 𝑛, and relabel subscripts (𝑖1, . . . , 𝑖𝑀 ) as∑𝑀
𝑗=1 𝑖 𝑗 (𝑛 + 1) 𝑗−1 + 1. For example, when 𝑛 = 2 and 𝑀 = 2, we have

𝑺 ( 𝑗) = (𝑆 ( 𝑗)1 , . . . , 𝑆 ( 𝑗)9 ) = (𝑆 ( 𝑗)0,0 , 𝑆
( 𝑗)
1,0 , 𝑆

( 𝑗)
2,0 , 𝑆

( 𝑗)
0,1 , 𝑆

( 𝑗)
1,1 , 𝑆

( 𝑗)
2,1 , 𝑆

( 𝑗)
0,2 , 𝑆

( 𝑗)
1,2 , 𝑆

( 𝑗)
2,2 )𝑇 ,

with 𝑆 ( 𝑗)0,1 = 𝑆 ( 𝑗)1,1 , 𝑆
( 𝑗)
0,2 = 𝑆 ( 𝑗)1,2 = 𝑆 ( 𝑗)2,2 ;

2. Delete all 𝑆 ( 𝑗)𝑖1 ,...,𝑖𝑀 that do not satisfy 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛, and then relabel subscripts
(𝑖1, . . . , 𝑖𝑀 ) according to formula (9) in [7] as

1 +
∑𝑀−1

𝑗=1

∑𝑖 𝑗−1

𝑙=𝑖 𝑗+1

(
𝑛 − 𝑙 + 𝑗 − 1

𝑗 − 1

)
+
∑𝑖𝑀−1

𝑙=0

(
𝑛 − 𝑙 + 𝑀 − 1

𝑀 − 1

)
.

For example, when 𝑛 = 2 and 𝑀 = 2, we have

𝑺 ( 𝑗) = (𝑆 ( 𝑗)1 , . . . , 𝑆 ( 𝑗)6 ) = (𝑆 ( 𝑗0,0, 𝑆
( 𝑗)
1,0 , 𝑆

( 𝑗)
2,0 , 𝑆

( 𝑗)
1,1 , 𝑆

( 𝑗)
2,1 , 𝑆

( 𝑗)
2,2 )𝑇 .
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In this work, we adopt the latter for the sake of brevity and convenience;

(3) 𝑺 ( 𝑗2) ≤ 𝑺 ( 𝑗1) (0 ≤ 𝑗1 < 𝑗2 ≤ 𝑀), namely, 𝑆 ( 𝑗2)𝑖1 ,...,𝑖𝑀
≤ 𝑆

( 𝑗1)
𝑖1 ,...,𝑖𝑀

for all 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛. Also,
𝑺 (0) = (𝑆 (0)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛), with 𝑆 (0)𝑖1 ,...,𝑖𝑀 = 1 for all 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛, and such a
determined matrix can be denoted by 𝑺 (0)

𝑛 for all systems of size n.

Now, for comparing multi-state coherent or mixed systems with multi-state components and of differ-
ent sizes, we shall assume that the component lifetimes 𝑋 (1)

𝑗 , . . . , 𝑋 (𝑛)
𝑗 are independent for different j ( 𝑗 =

1, . . . , 𝑀). Then, for establishing a relationship between multi-state survival signatures of two equivalent
multi-state systems, an extended triangle rule as in Navarro et al. [21] needs to be presented first.

Theorem 2.1. Suppose the random variables 𝑋 (1)
𝑗 , . . . , 𝑋 (𝑛+1)

𝑗 ( 𝑗 = 1, . . . , 𝑀) are i.i.d. with a common
absolutely continuous distribution 𝐹𝑗 (𝑥), 𝑥 ≥ 0, and are independent for different 𝑗 . Then, for 1 ≤
𝑘1, 𝑗 ≤ · · · ≤ 𝑘𝑟 𝑗 , 𝑗 ≤ 𝑛 ( 𝑗 = 1, . . . , 𝑀, 𝑟 𝑗 = 1, . . . , 𝑀), the order statistics vector (𝑋 (𝑘𝑖, 𝑗 :𝑛)

𝑗 , 𝑗 =
1, . . . , 𝑀, 𝑖 = 1, . . . , 𝑟 𝑗 ) has the same distribution as

(𝑋 (𝑘𝑖, 𝑗+𝐼{𝑖>𝑎 𝑗 } :𝑛+1)
𝑗 , 𝑗 = 1, . . . , 𝑀, 𝑖 = 1, . . . , 𝑟 𝑗)

with probability

(𝑛 + 1)−𝑀
𝑀∏
𝑗=1

{
(𝑘1, 𝑗 )𝐼{𝑎𝑗=0}

[
𝑟 𝑗−1∏
𝑙=1

(𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 )𝐼{𝑎𝑗=𝑙,𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }

]
(𝑛 + 1 − 𝑘𝑟 𝑗 , 𝑗 )𝐼{𝑎𝑗=𝑟 𝑗 }

}
for all (𝑎1, . . . , 𝑎𝑀 ) ∈ A = {(𝑎1, . . . , 𝑎𝑀 ) : 𝑎 𝑗 ∈ {0, . . . , 𝑟 𝑗 }, for all 𝑗 = 1, . . . , 𝑀}.

Proof. According to the proof of Theorem 2.1 in Yi et al. [26], we find that for any 𝑗 = 1, . . . , 𝑀 , the order
statistics vector (𝑋 (𝑘1, 𝑗 :𝑛)

𝑗 , . . . , 𝑋
(𝑘𝑟 𝑗 , 𝑗 :𝑛)
𝑗 ) has the same distribution as (𝑋 (𝑘1, 𝑗+1:𝑛+1)

𝑗 , . . . , 𝑋
(𝑘𝑟 𝑗 , 𝑗+1:𝑛+1)
𝑗 )

with probability 𝑘1, 𝑗/(𝑛+1), as (𝑋 (𝑘1, 𝑗 :𝑛+1)
𝑗 , . . . , 𝑋

(𝑘𝑟 𝑗 , 𝑗 :𝑛+1)
𝑗 ) with probability (𝑛+1− 𝑘𝑟 𝑗 , 𝑗 )/(𝑛+1), and

as (𝑋 (𝑘1, 𝑗 :𝑛+1)
𝑗 , . . . , 𝑋

(𝑘𝑙, 𝑗 :𝑛+1)
𝑗 , 𝑋

(𝑘𝑙+1, 𝑗+1:𝑛+1)
𝑗 , . . . , 𝑋

(𝑘𝑟 𝑗 , 𝑗+1:𝑛+1)
𝑗 ) with probability (𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 )/(𝑛+1) for

all 𝑙 = 1, . . . , 𝑟 𝑗 − 1. This result implies that the order statistics vector (𝑋 (𝑘𝑖, 𝑗 :𝑛)
𝑗 , 𝑖 = 1, . . . , 𝑟 𝑗 ) has the

same distribution as (𝑋 (𝑘𝑖, 𝑗+𝐼{𝑖>𝑎 𝑗 } :𝑛+1)
𝑗 , 𝑖 = 1, . . . , 𝑟 𝑗) with probability

(𝑛 + 1)−1(𝑘1, 𝑗 )𝐼{𝑎𝑗=0}
[∏𝑟 𝑗−1

𝑙=1
(𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 )𝐼{𝑎𝑗=𝑙,𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }

]
(𝑛 + 1 − 𝑘𝑟 𝑗 , 𝑗 )𝐼{𝑎𝑗=𝑟 𝑗 }

for all 𝑎 𝑗 = 0, . . . , 𝑟 𝑗 . With the independence of 𝑋 (1)
𝑗 , . . . , 𝑋 (𝑛+1)

𝑗 for different j, the required result
follows readily. �

Remark 2.2. Specifically, for 𝑀 = 2 and 1 ≤ 𝑘1, 𝑗 ≤ 𝑘2, 𝑗 ≤ 𝑛 ( 𝑗 = 1, 2), the order statistics vector
(𝑋 (𝑘1,1:𝑛)

1 , 𝑋
(𝑘2,1:𝑛)
1 , 𝑋

(𝑘1,2:𝑛)
2 , 𝑋

(𝑘2,2:𝑛)
2 ) has the same distribution as

(𝑋 (𝑘1,1+𝐼{𝑎1=0} :𝑛+1)
1 , 𝑋

(𝑘2,1+𝐼{𝑎1=0,1} :𝑛+1)
1 , 𝑋

(𝑘1,2+𝐼{𝑎2=0} :𝑛+1)
2 , 𝑋

(𝑘2,2+𝐼{𝑎2=0,1} :𝑛+1)
2 )

with probability

(𝑛 + 1)−2
2∏
𝑗=1

[(𝑘1, 𝑗 )𝐼{𝑎𝑗=0} (𝑘2, 𝑗 − 𝑘1, 𝑗 )𝐼{𝑎𝑗=1,𝑘2, 𝑗 >𝑘1, 𝑗 } (𝑛 + 1 − 𝑘2, 𝑗 )𝐼{𝑎𝑗=2} ]

for all (𝑎1, 𝑎2) such that 𝑎1, 𝑎2 ∈ {0, 1, 2}.
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With the use of Theorem 2.1, the relationship between multi-state survival signatures for multi-state
coherent or mixed systems with different numbers of multi-state components can be discussed. First, we
need to introduce matrix 𝒌 = (𝑘𝑖, 𝑗 , 𝑖 = 1, . . . , 𝑀, 𝑗 = 1, . . . , 𝑀) such that 0 ≤ 𝑘𝑖, 𝑗 ≤ 𝑘𝑖, 𝑗 ≤ 𝑛 for any
1 ≤ 𝑖 < 𝑖 ≤ 𝑀, 1 ≤ 𝑗 < 𝑗 ≤ 𝑀 , corresponding to a multi-state 𝒌-out-of-𝑛:𝐺 system, with n i.i.d. multi-
state components and a state space Ω = {0, . . . , 𝑀} for both the system and the components, being in
state i (𝑖 = 1, . . . , 𝑀) or above if and only if there are at least 𝑘𝑖, 𝑗 ( 𝑗 = 1, . . . , 𝑀) components in state j
or above. Evidently, the lifetime of such a system can be represented through component lifetimes as

𝑇𝑖 = min(𝑋 (𝑛+1−𝑘𝑖,1:𝑛)
1 , . . . , 𝑋

(𝑛+1−𝑘𝑖,𝑀 :𝑛)
𝑀 ), 𝑖 = 1, . . . , 𝑀,

with 𝑋 (𝑛+1:𝑛)
1 = · · · = 𝑋 (𝑛+1:𝑛)

𝑀 = +∞, and its multi-state survival signature can be given as 𝑺𝒌:𝑛 =

(𝑺 (0)
𝑛 , 𝑺 (1)

𝒌:𝑛, . . . , 𝑺
(𝑀 )
𝒌:𝑛 ), where 𝑺 (𝑖)

𝒌:𝑛 = 𝑺 (𝑖)
𝒌𝑖 :𝑛 = (𝑆 (𝑖)

𝒌𝑖 ;𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛) (𝑖 = 1, . . . , 𝑀) with
𝒌𝑖 = (𝑘𝑖,1, . . . , 𝑘𝑖,𝑀 ) and

𝑆 (𝑖)
𝒌𝑖 ,𝑖1 ,...,𝑖𝑀

= 𝐼{𝑖1≥𝑘𝑖,1 ,...,𝑖𝑀 ≥𝑘𝑖,𝑀 }, 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛.

For 𝑗 = 1, . . . , 𝑀 , note that 0 ≤ 𝑘1, 𝑗 ≤ · · · ≤ 𝑘𝑀, 𝑗 ≤ 𝑛; by denoting 𝑟 𝑗 for the number of zeros in
𝑘1, 𝑗 , . . . , 𝑘𝑀, 𝑗 , we have 𝑘1, 𝑗 = · · · = 𝑘𝑟 𝑗 , 𝑗 = 0 < 1 ≤ 𝑘𝑟 𝑗+1, 𝑗 ≤ · · · ≤ 𝑘𝑀, 𝑗 ≤ 𝑛, that is,

1 ≤ 𝑛 + 1 − 𝑘𝑀, 𝑗 ≤ · · · ≤ 𝑛 + 1 − 𝑘𝑟 𝑗+1, 𝑗 ≤ 𝑛 < 𝑛 + 1 = 𝑛 + 1 − 𝑘𝑟 𝑗 , 𝑗 = · · · = 𝑛 + 1 − 𝑘1, 𝑗 .

Then, from Theorem 2.1, an equivalent system of size 𝑛 + 1 for a multi-state 𝒌-out-of-𝑛:𝐺 system has
its lifetime as

𝑇𝑖 = min(𝑋 (𝑛+1−𝑘𝑖,1+𝐼{𝑖≤𝑎1} :𝑛+1)
1 , . . . , 𝑋

(𝑛+1−𝑘𝑖,𝑀+𝐼{𝑖≤𝑎𝑀 } :𝑛+1)
𝑀 ), 𝑖 = 1, . . . , 𝑀,

with probability

𝑀∏
𝑗=1

⎧⎪⎪⎨⎪⎪⎩(𝑛 + 1)−1(𝑘𝑟 𝑗+1, 𝑗 )𝐼{𝑎𝑗=𝑟 𝑗 }
⎡⎢⎢⎢⎢⎣
𝑀−1∏
𝑙=𝑟 𝑗+1

(𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 )𝐼{𝑎𝑗=𝑙,𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }

⎤⎥⎥⎥⎥⎦ (𝑛 + 1 − 𝑘𝑀, 𝑗 )𝐼{𝑎𝑗=𝑀 }

⎫⎪⎪⎬⎪⎪⎭
𝐼{𝑟 𝑗 <𝑀 }

for all (𝑎1, . . . , 𝑎𝑀 ) ∈ 𝒜 = {(𝑎1, . . . , 𝑎𝑀 ) : 𝑎 𝑗 ∈ {𝑟 𝑗 , . . . , 𝑀} for all 𝑗 = 1, . . . , 𝑀}. Note that for 𝑖 =
1, . . . , 𝑟 𝑗 , 𝑗 = 1, . . . , 𝑀 , we have 𝑋

(𝑛+1−𝑘𝑖, 𝑗+𝐼{𝑖≤𝑎 𝑗 } :𝑛+1)
𝑗 = 𝑋

(𝑛+2−𝑘𝑖, 𝑗 :𝑛+1)
𝑗 = +∞ with 𝑘𝑖, 𝑗 = 0. Moreover,

the equivalent system of size 𝑛 + 1 has a multi-state survival signature 𝑺∗
𝒌:𝑛=(𝑺 (0)

𝑛+1, 𝑺
∗(1)
𝒌:𝑛 , . . . , 𝑺

∗(𝑀 )
𝒌:𝑛 ),

where 𝑺∗(𝑖)
𝒌:𝑛 = 𝑺∗(𝑖)

𝒌𝑖 :𝑛 = (𝑆∗(𝑖)
𝒌𝑖 ,𝑖1 ,...,𝑖𝑀

, 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛 + 1) (𝑖 = 1, . . . , 𝑀) with

𝑆∗(𝑖)
𝒌𝑖 ,𝑖1 ,...,𝑖𝑀

=
∑

(𝑎1 ,...,𝑎𝑀 ) ∈𝒜

𝑀∏
𝑗=1

⎧⎪⎪⎨⎪⎪⎩(𝑛 + 1)−1(𝑘𝑟 𝑗+1, 𝑗 )𝐼{𝑎𝑗=𝑟 𝑗 }
⎡⎢⎢⎢⎢⎣
𝑀−1∏
𝑙=𝑟 𝑗+1

(𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 )𝐼{𝑎𝑗=𝑙,𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }

⎤⎥⎥⎥⎥⎦
× (𝑛 + 1 − 𝑘𝑀, 𝑗 )𝐼{𝑎𝑗=𝑀 } }𝐼{𝑟 𝑗 <𝑀 } 𝐼{𝑖1≥𝑘𝑖,1+𝐼{𝑖>𝑎1 } ,...,𝑖𝑀 ≥𝑘𝑖,𝑀+𝐼{𝑖>𝑎𝑀 } }

= (𝑛 + 1)−𝑀
𝑀∏
𝑗=1

[𝑘𝑖, 𝑗 𝐼{𝑖1≥𝑘𝑖, 𝑗+1} + (𝑛 + 1 − 𝑘𝑖, 𝑗 )𝐼{𝑖1≥𝑘𝑖, 𝑗 }], 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛 + 1.

Now, with the multi-state survival signature of an equivalent system of size 𝑛 + 1 derived above for a
multi-state 𝒌-out-of-𝑛:𝐺 system, we are able to obtain the multi-state survival signature of an equivalent
system of size 𝑛 + 1 for any multi-state coherent or mixed system with n i.i.d. components by regarding
it as a mixture of several multi-state 𝒌-out-of-𝑛:𝐺 type systems, as established in the following theorem.
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Theorem 2.2. Let 𝑺 = (𝑺 (0) , . . . , 𝑺 (𝑀 ) ), where 𝑺 (𝑖) = (𝑆 (𝑖)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛) (𝑖 =
0, 1, . . . , 𝑀), be the multi-state survival signature of a multi-state coherent or mixed system with n
i.i.d. multi-state components and a state space Ω = {0, . . . , 𝑀} for both the system and the components.
Suppose the component lifetimes 𝑋 (1)

𝑗 , . . . , 𝑋 (𝑛)
𝑗 ( 𝑗 = 1, . . . , 𝑀) are i.i.d. with a common absolutely

continuous distribution 𝐹𝑗 (𝑥), 𝑥 ≥ 0, and are independent for different 𝑗 . Then, its equivalent system
of size 𝑛 + 1 has its multi-state survival signature as

𝑺∗ = (𝑺 (0)
𝑛+1, 𝑺

∗(1) , . . . , 𝑺∗(𝑀 ) ) =
∑
𝒌∈𝒦

𝑠𝒌𝑺
∗
𝒌:𝑛,

where

𝒦 = {(𝑘𝑖, 𝑗 , 𝑖 = 1, . . . , 𝑀, 𝑗 = 1, . . . , 𝑀) : 0 ≤ 𝑘𝑖, 𝑗 ≤ 𝑘𝑖, 𝑗 ≤ 𝑛
for any 1 ≤ 𝑖 < 𝑖 ≤ 𝑀, 1 ≤ 𝑗 < 𝑗 ≤ 𝑀},

and 𝑠𝒌 , 𝒌 ∈ 𝒦, can be given as a solution to the set of linear equations∑
𝒌𝑖=�̃�

𝑠𝒌 = 𝑠 (𝑖)
�̃�
, �̃� ∈ �̃� = {(𝑘1, . . . , 𝑘𝑀 ) : 0 ≤ 𝑘𝑀 ≤ · · · ≤ 𝑘1 ≤ 𝑛}, 𝑖 = 1, . . . , 𝑀,

with 𝒔 (𝑖) = (𝑠 (𝑖)
�̃�
, �̃� ∈ �̃�) = 𝑴−1𝑺 (𝑖) and

𝑴 = (𝑀𝑖1 ,...,𝑖𝑀 ; 𝑗1 ,..., 𝑗𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛, 0 ≤ 𝑗𝑀 ≤ · · · ≤ 𝑗1 ≤ 𝑛)

being a matrix with all elements 𝑀𝑖1 ,...,𝑖𝑀 ; 𝑗1 ,..., 𝑗𝑀 = 𝐼{𝑖1≥ 𝑗1 ,...,𝑖𝑀 ≥ 𝑗𝑀 }, for all 𝑖 = 1, . . . , 𝑀 .

Proof. Any multi-state survival signature 𝑺 = (𝑺 (0) , . . . , 𝑺 (𝑀 ) ) can be regarded as a mixture of multi-
state survival signatures 𝑺𝒌:𝑛 = (𝑺 (0)

𝑛 , 𝑺 (1)
𝒌1:𝑛, . . . , 𝑺

(𝑀 )
𝒌𝑀 :𝑛) of multi-state 𝒌-out-of-𝑛:𝐺 systems, namely

𝑺 =
∑

𝒌∈𝒦 𝑠𝒌𝑺𝒌:𝑛, with

𝒦 = {(𝑘𝑖, 𝑗 , 𝑖 = 1, . . . , 𝑀, 𝑗 = 1, . . . , 𝑀) : 0 ≤ 𝑘𝑖, 𝑗 ≤ 𝑘𝑖, 𝑗 ≤ 𝑛
for any 1 ≤ 𝑖 < 𝑖 ≤ 𝑀, 1 ≤ 𝑗 < 𝑗 ≤ 𝑀}.

Without loss of generality, 𝑠𝒌 , 𝒌 ∈ 𝒦, can be given by related marginal distributions

𝑠 (𝑖)
�̃�
, �̃� ∈ �̃� = {(𝑘1, . . . , 𝑘𝑀 ) : 0 ≤ 𝑘𝑀 ≤ · · · ≤ 𝑘1 ≤ 𝑛}, 𝑖 = 1, . . . , 𝑀.

Consider now 𝑺 (𝑖) =
∑

�̃�∈�̃� 𝑠 (𝑖)
�̃�
𝑺 (𝑖)
�̃�:𝑛

(𝑖 = 1, . . . , 𝑀) with

𝑺 (𝑖)
�̃�:𝑛

= (𝑆 (𝑖)
�̃�;𝑖1 ,...,𝑖𝑀

, 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛), �̃� = (𝑘1, . . . , 𝑘𝑀 ),

and 𝑆 (𝑖)
�̃�;𝑖1 ,...,𝑖𝑀

= 𝐼{𝑖1≥𝑘1 ,...,𝑖𝑀 ≥𝑘𝑀 } for all 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛. Then, we have

𝑆 (𝑖)𝑖1 ,...,𝑖𝑀 =
∑
�̃�∈�̃�

𝑠 (𝑖)
𝒌𝑖
𝐼{𝑖1≥𝑘1 ,...,𝑖𝑀 ≥𝑘𝑀 } =

∑
𝑖1≥𝑘1 ,...,𝑖𝑀 ≥𝑘𝑀 ,�̃�∈�̃�

𝑠 (𝑖)
�̃�
.

For 𝑖 = 1, . . . , 𝑀 , let 𝒔 (𝑖) = (𝑠 (𝑖)
�̃�
, �̃� ∈ �̃�) = (𝑠 (𝑖)𝑘1 ,...,𝑘𝑀

, 0 ≤ 𝑘𝑀 ≤ · · · ≤ 𝑘1 ≤ 𝑛) be a column vector
arranged in the same way as 𝑺 (𝑖) = (𝑆 (𝑖)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛), and

𝑴 = (𝑀𝑖1 ,...,𝑖𝑀 ; 𝑗1 ,..., 𝑗𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛, 0 ≤ 𝑗𝑀 ≤ · · · ≤ 𝑗1 ≤ 𝑛)
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be an invertible matrix with all elements 𝑀𝑖1 ,...,𝑖𝑀 ; 𝑗1 ,..., 𝑗𝑀 = 𝐼{𝑖1≥ 𝑗1 ,...,𝑖𝑀 ≥ 𝑗𝑀 }, so that we have 𝑺 (𝑖) =
𝑴𝒔 (𝑖) , which yields 𝒔 (𝑖) = 𝑴−1𝑺 (𝑖) . Then, the values of 𝑠𝒌 , 𝒌 ∈ 𝒦, can be obtained by solving the set
of equations

∑
𝒌𝑖=�̃� 𝑠𝒌 = 𝑠 (𝑖)

�̃�
, �̃� ∈ �̃�, 𝑖 = 1, . . . , 𝑀 . Note that even when the values of 𝑠𝒌 , 𝒌 ∈ 𝒦, are

not unique, all of them lead to the same 𝑺∗ since 𝑺∗depends only on 𝑠 (𝑖)
�̃�
, �̃� ∈ �̃�, 𝑖 = 1, . . . , 𝑀 . This

completes the proof of the theorem. �

Remark 2.3. Specifically, for 𝑀 = 2, if the multi-state survival signature of the original system of size
4 is written as

𝑺 = (𝑺 (0) , 𝑺 (1) , 𝑺 (2) ) =
������
𝑆 (0)0,0 𝑆

(0)
1,0 𝑆

(0)
2,0 𝑆

(0)
3,0 𝑆

(0)
4,0 𝑆

(0)
1,1 𝑆

(0)
2,1 𝑆

(0)
3,1 𝑆

(0)
4,1 𝑆

(0)
2,2 𝑆

(0)
3,2 𝑆

(0)
4,2 𝑆

(0)
3,3 𝑆

(0)
4,3 𝑆

(0)
4,4

𝑆 (1)0,0 𝑆
(1)
1,0 𝑆

(1)
2,0 𝑆

(1)
3,0 𝑆

(1)
4,0 𝑆

(1)
1,1 𝑆

(1)
2,1 𝑆

(1)
3,1 𝑆

(1)
4,1 𝑆

(1)
2,2 𝑆

(1)
3,2 𝑆

(1)
4,2 𝑆

(1)
3,3 𝑆

(1)
4,3 𝑆

(1)
4,4

𝑆 (2)0,0 𝑆
(2)
1,0 𝑆

(2)
2,0 𝑆

(2)
3,0 𝑆

(2)
4,0 𝑆

(2)
1,1 𝑆

(2)
2,1 𝑆

(2)
3,1 𝑆

(2)
4,1 𝑆

(2)
2,2 𝑆

(2)
3,2 𝑆

(2)
4,2 𝑆

(2)
3,3 𝑆

(2)
4,3 𝑆

(2)
4,4

����� 
𝑇

.

Then, the multi-state survival signature 𝑺∗ = (𝑺 (0)
5 , 𝑺∗(1) , 𝑺∗(2) ) of its equivalent system of size 5 is

given by 𝑺∗ =
∑

𝒌∈𝒦 𝑠𝒌𝑺
∗
𝒌:𝑛, where 𝑠𝒌 , 𝒌 ∈ 𝒦, with

𝒦 = {(𝑘𝑖, 𝑗 , 𝑖 = 1, 2, 𝑗 = 1, 2) : 0 ≤ 𝑘1,2 ≤ 𝑘1,1, 𝑘2,2 ≤ 𝑘2,1 ≤ 4},

are given by the marginal distributions 𝒔 (𝑖) = 𝑴−1𝑺 (𝑖) (𝑖 = 1, 2) by solving⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

(𝑘11 ,𝑘12)=(𝑘1 ,𝑘2)
𝑠𝑘11 ,𝑘12;𝑘21 ,𝑘22 = 𝑠

(1)
𝑘1 ,𝑘2

, (𝑘1, 𝑘2) ∈ �̃�,∑
(𝑘21 ,𝑘22)=(𝑘1 ,𝑘2)

𝑠𝑘11 ,𝑘12;𝑘21 ,𝑘22 = 𝑠
(2)
𝑘1 ,𝑘2

, (𝑘1, 𝑘2) ∈ �̃�,

with �̃� = {(𝑘1, 𝑘2) : 0 ≤ 𝑘2 ≤ 𝑘1 ≤ 4} and

𝑴 =

���������������������������

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
1 1 1 0 0 1 1 0 0 1 0 0 0 0 0
1 1 1 1 0 1 1 1 0 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 0 1 1 1 0 1 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�������������������������� 

.

Also, note that 𝑺∗
𝒌:4=(𝑺 (0)

5 , 𝑺∗(1)
𝒌1:4, 𝑺

∗(2)
𝒌2:4), where 𝑺 (0)

5 = (1, . . . , 1︸���︷︷���︸
21

)𝑇 and 𝑺∗(𝑖)
𝒌𝑖 :4 = (𝑆∗(𝑖)

𝒌𝑖 ;𝑖1 ,𝑖2 ,

0 ≤ 𝑖2 ≤ 𝑖1 ≤ 5) (𝑖 = 1, 2), with

𝑆∗(𝑖)
𝒌𝑖 ;𝑖1 ,𝑖2 =

(5 − 𝑘𝑖,1)(5 − 𝑘𝑖,2)
25

𝐼{𝑖1≥𝑘𝑖,1 ,𝑖2≥𝑘𝑖,2 } +
(5 − 𝑘𝑖,1)𝑘𝑖,2

25
𝐼{𝑖1≥𝑘𝑖,1 ,𝑖2≥𝑘𝑖,2+1}

+ 𝑘𝑖,1 (5 − 𝑘𝑖,2)
25

𝐼{𝑖1≥𝑘𝑖,1+1,𝑖2≥𝑘𝑖,2 } +
𝑘𝑖,1𝑘𝑖,2

25
𝐼{𝑖1≥𝑘𝑖,1+1,𝑖2≥𝑘𝑖,2+1}, 0 ≤ 𝑖2 ≤ 𝑖1 ≤ 5.
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In Theorems 2.1 and 2.2, we have considered the equivalence of multi-state survival signatures of
multi-state systems of sizes n and 𝑛 + 1. Instead of using the theorem repeatedly, a more general result
is presented now for the equivalence of multi-state survival signatures of multi-state systems of sizes n
and 𝑛 + 𝑙 (𝑙 = 1, 2, . . .).

Theorem 2.3. Suppose the random variables 𝑋 (1)
𝑗 , . . . , 𝑋 (𝑛+𝑙)

𝑗 ( 𝑗 = 1, . . . , 𝑀) are i.i.d. with a common
absolutely continuous distribution 𝐹𝑗 (𝑥), 𝑥 ≥ 0, and are independent for different 𝑗 . Then, for 1 ≤ 𝑘1, 𝑗 ≤
· · · ≤ 𝑘𝑟 𝑗 , 𝑗 ≤ 𝑛 ( 𝑗 = 1, . . . , 𝑀, 𝑟 𝑗 = 1, . . . , 𝑀), the order statistics vector (𝑋 (𝑘𝑖, 𝑗 :𝑛)

𝑗 , 𝑗 = 1, . . . , 𝑀, 𝑖 =
1, . . . , 𝑟 𝑗) has the same distribution as

(𝑋 (ℎ𝑖, 𝑗 :𝑛+1)
𝑗 , 𝑗 = 1, . . . , 𝑀, 𝑖 = 1, . . . , 𝑟 𝑗)

with probability(
𝑛 + 𝑙
𝑛

)−𝑀 𝑀∏
𝑗=1

{(
ℎ1, 𝑗 − 1
𝑘1, 𝑗 − 1

) [
𝑟 𝑗−1∏
𝑙=1

(
ℎ𝑙+1, 𝑗 − ℎ𝑙, 𝑗 − 1
𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 − 1

) 𝐼{𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }
] (
𝑛 + 𝑙 − ℎ𝑟 𝑗 , 𝑗
𝑛 − 𝑘𝑟 𝑗 , 𝑗

)}
for all 𝒉 ∈ ℋ𝒌 , with

ℋ𝒌 = {(ℎ𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑀, 𝑖 = 1, . . . , 𝑟 𝑗) : 1 ≤ ℎ1, 𝑗 ≤ · · · ≤ ℎ𝑟 𝑗 , 𝑗 ≤ 𝑛 + 𝑙, 𝑘1, 𝑗 ≤ ℎ1, 𝑗 ,

𝑘2, 𝑗 − 𝑘1, 𝑗 ≤ ℎ2, 𝑗 − ℎ1, 𝑗 , . . . , 𝑘𝑟 𝑗 , 𝑗 − 𝑘𝑟 𝑗−1, 𝑗 ≤ ℎ𝑟 𝑗 , 𝑗 − ℎ𝑟 𝑗−1, 𝑗 ,ℎ𝑟 𝑗 , 𝑗 ≤ 𝑘𝑟 𝑗 , 𝑗 + 𝑙,
𝐼{𝑘2, 𝑗>𝑘1, 𝑗 } = 𝐼{ℎ2, 𝑗>ℎ1, 𝑗 }, . . . ,𝐼{𝑘𝑟 𝑗 , 𝑗>𝑘𝑟 𝑗−1, 𝑗 } = 𝐼{ℎ𝑟 𝑗 , 𝑗>ℎ𝑟 𝑗−1, 𝑗 } for all 𝑗}.

Proof. According to the proof of Theorem 2.4 in Yi et al. [30], we find that for any 𝑗 = 1, . . . , 𝑀 ,
the order statistics vector (𝑋 (𝑘1, 𝑗 :𝑛)

𝑗 , . . . , 𝑋
(𝑘𝑟 𝑗 , 𝑗 :𝑛)
𝑗 ) has the same distribution as (𝑋 (ℎ1, 𝑗 :𝑛)

𝑗 , . . . , 𝑋
(ℎ𝑟 𝑗 , 𝑗 :𝑛)
𝑗 )

with probability (
𝑛 + 𝑙
𝑛

)−1 (
ℎ1, 𝑗 − 1
𝑘1, 𝑗 − 1

) [
𝑟 𝑗−1∏
𝑙=1

(
ℎ𝑙+1, 𝑗 − ℎ𝑙, 𝑗 − 1
𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 − 1

) 𝐼{𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }
] (
𝑛 + 𝑙 − ℎ𝑟 𝑗 , 𝑗
𝑛 − 𝑘𝑟 𝑗 , 𝑗

)
for all (ℎ1, 𝑗 , . . . , ℎ𝑟 𝑗 , 𝑗 ) such that 1 ≤ ℎ1, 𝑗 ≤ · · · ≤ ℎ𝑟 𝑗 , 𝑗 ≤ 𝑛 + 𝑙 and

𝑘1, 𝑗 ≤ ℎ1, 𝑗 , 𝑘2, 𝑗 − 𝑘1, 𝑗 ≤ ℎ2, 𝑗 − ℎ1, 𝑗 , . . . , 𝑘𝑟 𝑗 , 𝑗 − 𝑘𝑟 𝑗−1, 𝑗 ≤ ℎ𝑟 𝑗 , 𝑗 − ℎ𝑟 𝑗−1, 𝑗 ,ℎ𝑟 𝑗 , 𝑗 ≤ 𝑘𝑟 𝑗 , 𝑗 + 𝑙,
𝐼{𝑘2, 𝑗>𝑘1, 𝑗 } = 𝐼{ℎ2, 𝑗>ℎ1, 𝑗 }, . . . ,𝐼{𝑘𝑟 𝑗 , 𝑗>𝑘𝑟 𝑗−1, 𝑗 } = 𝐼{ℎ𝑟 𝑗 , 𝑗>ℎ𝑟 𝑗−1, 𝑗 } .

With the independence of 𝑋 (1)
𝑗 , . . . , 𝑋 (𝑛+𝑙)

𝑗 for different j, the required result readily follows. �

From Theorem 2.3, the relationship between multi-state survival signatures of multi-state systems of
sizes n and 𝑛 + 𝑙 can be established as follows.

Theorem 2.4. Let 𝑺 = (𝑺 (0) , . . . , 𝑺 (𝑀 ) ), where 𝑺 (𝑖) = (𝑆 (𝑖)𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛) (𝑖 =
0, 1, . . . , 𝑀), be the multi-state survival signature of a multi-state coherent or mixed system with n
i.i.d. multi-state components and a state space Ω = {0, . . . , 𝑀} for both the system and the components.
Suppose the component lifetimes 𝑋 (1)

𝑗 , . . . , 𝑋 (𝑛)
𝑗 ( 𝑗 = 1, . . . , 𝑀) are i.i.d. with a common absolutely

continuous distribution 𝐹𝑗 (𝑥), 𝑥 ≥ 0, and are independent for different 𝑗 . Then, its equivalent system
of size 𝑛 + 𝑙 has its multi-state survival signature as

𝑺 [𝑙]∗ = (𝑺 [𝑙]∗(0) , . . . , 𝑺 [𝑙]∗(𝑀 ) ) =
∑
𝒌∈𝒦

𝑠𝒌𝑺
[𝑙]∗
𝒌:𝑛 ,
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where 𝑠𝒌 , 𝒌 ∈ 𝒦, are as in Theorem 2.2 and

𝑺 [𝑙]∗
𝒌:𝑛 = (𝑺 (0)

𝑛+𝑙 , 𝑺
[𝑙]∗(1)
𝒌:𝑛 , . . . , 𝑺 [𝑙]∗(𝑀 )

𝒌:𝑛 )

is the multi-state survival signature of the equivalent system of size l of a multi-state 𝒌-out-of-𝑛:𝐺 system
given by 𝑺 [𝑙]∗(𝑖)

𝒌:𝑛 = (𝑆 [𝑙]∗(𝑖)
𝒌;𝑖1 ,...,𝑖𝑀 , 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛 + 𝑙) (𝑖 = 1, . . . , 𝑀) with 𝑟 𝑗 ( 𝑗 = 1, . . . , 𝑀) being

the number of zeros in 𝑘1, 𝑗 , . . . , 𝑘𝑀, 𝑗 and

𝑆 [𝑙]∗(𝑖)
𝒌;𝑖1 ,...,𝑖𝑀 =

∑
𝒉∈ℋ𝒌

𝑀∏
𝑗=1

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 + 𝑙
𝑛

)−1 (
ℎ𝑟 𝑗+1, 𝑗 − 1
𝑘𝑟 𝑗+1, 𝑗 − 1

) ⎡⎢⎢⎢⎢⎣
𝑀−1∏
𝑙=𝑟 𝑗+1

(
ℎ𝑙+1, 𝑗 − ℎ𝑙, 𝑗 − 1
𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 − 1

) 𝐼{𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }
⎤⎥⎥⎥⎥⎦
(
𝑛 + 𝑙 − ℎ𝑀, 𝑗
𝑛 − 𝑘𝑀, 𝑗

)⎫⎪⎪⎬⎪⎪⎭
𝐼{𝑟 𝑗 <𝑀 }

× 𝐼{𝑖1≥ℎ𝑖,1 ,...,𝑖𝑀 ≥ℎ𝑖,𝑀 }, 0 ≤ 𝑖𝑀 ≤ · · · ≤ 𝑖1 ≤ 𝑛 + 𝑙,

and

ℋ𝒌 = {(ℎ𝑖, 𝑗 , 𝑗 = 1, . . . , 𝑀, 𝑖 = 𝑟 𝑗 + 1, . . . , 𝑀) : 1 ≤ ℎ𝑟 𝑗+1, 𝑗 ≤ · · · ≤ ℎ𝑀, 𝑗 ≤ 𝑛 + 𝑙,
𝑘𝑟 𝑗+1, 𝑗 ≤ ℎ𝑟 𝑗+1, 𝑗 , 𝑘𝑟 𝑗+2, 𝑗 − 𝑘𝑟 𝑗+1, 𝑗 ≤ ℎ𝑟 𝑗+2, 𝑗 − ℎ𝑟 𝑗+1, 𝑗 , . . . , 𝑘𝑀, 𝑗 − 𝑘𝑀−1, 𝑗 ≤ ℎ𝑀, 𝑗 − ℎ𝑀−1, 𝑗 ,
ℎ𝑀, 𝑗 ≤ 𝑘𝑀, 𝑗 + 𝑙, 𝐼{𝑘𝑟 𝑗+2, 𝑗>𝑘𝑟 𝑗+1, 𝑗 } = 𝐼{ℎ𝑟 𝑗+2, 𝑗>ℎ𝑟 𝑗+1, 𝑗 }, . . . ,𝐼{𝑘𝑀, 𝑗>𝑘𝑀−1, 𝑗 } = 𝐼{ℎ𝑀, 𝑗>ℎ𝑀−1, 𝑗 } for all 𝑗}.

Proof. Note that, for 0 ≤ 𝑘1, 𝑗 ≤ · · · ≤ 𝑘𝑀, 𝑗 ≤ 𝑛 ( 𝑗 = 1, . . . , 𝑀), as before, if the lifetimes of a
multi-state 𝒌-out-of-𝑛:𝐺 system are denoted by

𝑇𝑖 = min(𝑋 (𝑛+1−𝑘𝑖,1:𝑛)
1 , . . . , 𝑋

(𝑛+1−𝑘𝑖,𝑀 :𝑛)
𝑀 ), 𝑖 = 1, . . . , 𝑀,

then the lifetimes of its equivalent system of size 𝑛 + 𝑙 can be denoted as

𝑇𝑖 = min(𝑋 (𝑛+𝑙+1−ℎ𝑖,1:𝑛+𝑙)
1 , . . . , 𝑋

(𝑛+𝑙+1−ℎ𝑖,𝑀 :𝑛+𝑙)
𝑀 ), 𝑖 = 1, . . . , 𝑀,

with probability

𝑀∏
𝑗=1

⎧⎪⎪⎨⎪⎪⎩
(
𝑛 + 𝑙
𝑛

)−1 (
ℎ𝑟 𝑗+1, 𝑗 − 1
𝑘𝑟 𝑗+1, 𝑗 − 1

) ⎡⎢⎢⎢⎢⎣
𝑀−1∏
𝑙=𝑟 𝑗+1

(
ℎ𝑙+1, 𝑗 − ℎ𝑙, 𝑗 − 1
𝑘𝑙+1, 𝑗 − 𝑘𝑙, 𝑗 − 1

) 𝐼{𝑘𝑙+1, 𝑗 >𝑘𝑙, 𝑗 }
⎤⎥⎥⎥⎥⎦
(
𝑛 + 𝑙 − ℎ𝑀, 𝑗
𝑛 − 𝑘𝑀, 𝑗

)⎫⎪⎪⎬⎪⎪⎭
𝐼{𝑟 𝑗 <𝑀 }

for all 𝒉 ∈ ℋ𝒌 . The rest of the proof proceeds similar to that of Theorem 2.2, and is therefore omitted
here for brevity. �

Remark 2.4. Specifically, for 𝑀 = 2, 𝑛 = 4 and 𝑙 = 2, we have 𝑺 [2]∗(𝑖)
𝒌:4 = (𝑆 [2]∗(𝑖)

𝒌;𝑖1 ,𝑖2 , 0 ≤ 𝑖2 ≤ 𝑖1≤ 6)
(𝑖 = 1, 2), where

𝑆 [2]∗(𝑖)
𝒌 ,𝑖1 ,𝑖2

=
∑
𝒉∈ℋ𝒌

2∏
𝑗=1

{
1
15

(
ℎ1, 𝑗 − 1
𝑘1, 𝑗 − 1

) 𝐼{𝑘1, 𝑗 >0} (ℎ2, 𝑗 − ℎ1, 𝑗 − 1
𝑘2, 𝑗 − 𝑘1, 𝑗 − 1

) 𝐼{𝑘2, 𝑗 >𝑘1, 𝑗 }
(
6 − ℎ2, 𝑗
4 − 𝑘2, 𝑗

)}𝐼{𝑘2, 𝑗 >0}

𝐼{𝑖1≥ℎ𝑖,1 ,𝑖2≥ℎ𝑖,2 },

with 0 ≤ 𝑖2 ≤ 𝑖1 ≤ 6 and

ℋ𝒌 = {(ℎ1,1, ℎ1,2; ℎ2,1, ℎ2,2) : 0 ≤ ℎ1, 𝑗 ≤ ℎ2, 𝑗 ≤ 6, 𝑘1, 𝑗 ≤ ℎ1, 𝑗 , 𝑘2, 𝑗 − 𝑘1, 𝑗 ≤ ℎ2, 𝑗 − ℎ1, 𝑗 ,

ℎ2, 𝑗 ≤ 𝑘2, 𝑗 + 2, 𝐼{𝑘2, 𝑗>𝑘1, 𝑗 } = 𝐼{ℎ2, 𝑗>ℎ1, 𝑗 } for all 𝑗 = 1, 2}.

Probability in the Engineering and Informational Sciences 809

https://doi.org/10.1017/S0269964822000183 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000183


3. Illustrative examples

For illustrating the results established in the last section, let us consider a wireless sensor system with four
i.i.d. sensors and a multi-state linear consecutive (2, 1)-out-of-4 : 𝐺 structure, which works (perfectly or
imperfectly) if and only if there are at least two consecutive sensors working (perfectly or imperfectly),
works perfectly if and only if there is also at least one sensor working perfectly, and fails if it does not
work. According to Yi et al. [27], the multi-state survival signature of such a system is given by

𝑺 = (𝑺 (0) , 𝑺 (1) , 𝑺 (2) )

=

������
𝑆 (0)0,0 𝑆

(0)
1,0 𝑆

(0)
2,0 𝑆

(0)
3,0 𝑆

(0)
4,0 𝑆

(0)
1,1 𝑆

(0)
2,1 𝑆

(0)
3,1 𝑆

(0)
4,1 𝑆

(0)
2,2 𝑆

(0)
3,2 𝑆

(0)
4,2 𝑆

(0)
3,3 𝑆

(0)
4,3 𝑆

(0)
4,4

𝑆 (1)0,0 𝑆
(1)
1,0 𝑆

(1)
2,0 𝑆

(1)
3,0 𝑆

(1)
4,0 𝑆

(1)
1,1 𝑆

(1)
2,1 𝑆

(1)
3,1 𝑆

(1)
4,1 𝑆

(1)
2,2 𝑆

(1)
3,2 𝑆

(1)
4,2 𝑆

(1)
3,3 𝑆

(1)
4,3 𝑆

(1)
4,4

𝑆 (2)0,0 𝑆
(2)
1,0 𝑆

(2)
2,0 𝑆

(2)
3,0 𝑆

(2)
4,0 𝑆

(2)
1,1 𝑆

(2)
2,1 𝑆

(2)
3,1 𝑆

(2)
4,1 𝑆

(2)
2,2 𝑆

(2)
3,2 𝑆

(2)
4,2 𝑆

(2)
3,3 𝑆

(2)
4,3 𝑆

(2)
4,4

����� 
𝑇

=
���
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1/2 1 1 0 1/2 1 1 1/2 1 1 1 1 1
0 0 0 0 0 0 1/2 1 1 1/2 1 1 1 1 1

�� 
𝑇

.

Suppose the sensor lifetimes are independent for different state levels. Then, the multi-state survival
signatures of its equivalent systems of sizes 5 and 6 are presented in Examples 3.1 and 3.2, respectively,
by the use of Theorem 2.2, and the latter is also worked out in Example 3.3 by the use of Theorem 2.4.

Example 3.1. For such a multi-state linear consecutive (2, 1)-out-of-4 : 𝐺 wireless sensor system,
according to Remark 2.3, the multi-state survival signature of its equivalent system of size 5 can be
given as 𝑺∗ =

∑
𝒌∈𝒦 𝑠𝒌𝑺

∗
𝒌:4, where 𝑠𝒌 , 𝒌 ∈ 𝒦, with

𝒦 = {(𝑘𝑖, 𝑗 , 𝑖 = 1, 2, 𝑗 = 1, 2) : 0 ≤ 𝑘1,2 ≤ 𝑘1,1, 𝑘2,2 ≤ 𝑘2,1 ≤ 4},

are given by the following marginal distributions:

𝒔 (1) = 𝑴−1𝑺 (1) =
(
0, 0,

1
2
,
1
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)𝑇
,

𝒔 (2) = 𝑴−1𝑺 (2) =
(
0, 0, 0, 0, 0, 0,

1
2
,
1
2
, 0, 0, 0, 0, 0, 0, 0

)𝑇
.

These imply 𝑠 (1)2,0 = 𝑠 (1)3,0 = 1/2, 𝑠 (1)𝑘1 ,𝑘2
= 0 for other 0 ≤ 𝑘2 ≤ 𝑘1 ≤ 4, and 𝑠 (2)2,1 = 𝑠 (2)3,1 = 1/2, 𝑠 (2)𝑘1 ,𝑘2

= 0 for
other 0 ≤ 𝑘2 ≤ 𝑘1 ≤ 4, which leads to the fact that 𝑠𝒌 = 0 for all 𝒌 ∈ 𝒦 except 𝑠2,0;2,1, 𝑠2,0;3,1, 𝑠3,0;3,1.
Now, upon solving the set of equations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝑠2,0;2,1 + 𝑠2,0;3,1 = 𝑠 (1)2,0 = 1/2,
𝑠3,0;3,1 = 𝑠 (1)3,0 = 1/2,
𝑠2,0;2,1 = 𝑠 (2)2,1 = 1/2,
𝑠2,0;3,1 + 𝑠3,0;3,1 = 𝑠 (2)3,1 = 1/2,

we get 𝑠2,0;2,1 = 𝑠3,0;3,1 = 1/2 and 𝑠2,0;3,1 = 0. We then have

𝑺∗ =
1
2
𝑺∗

2,0;2,1:4+
1
2
𝑺∗

3,0;3,1:4,
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where 𝑺∗
2,0;2,1:4=(𝑺 (0)

5 , 𝑺∗(1)
2,0:4, 𝑺

∗(2)
2,1:4)𝑇 and 𝑺∗

3,0;3,1:4=(𝑺 (0)
5 , 𝑺∗(1)

3,0:4, 𝑺
∗(2)
3,1:4)𝑇 , with

𝑺∗(1)
2,0:4 =

3 × 5
25

𝑺 (1)
2,0:5 +

3 × 0
25

𝑺 (1)
2,1:5 +

2 × 5
25

𝑺 (1)
3,0:5 +

2 × 0
25

𝑺 (1)
3,1:5,

𝑺∗(2)
2,1:4 =

3 × 4
25

𝑺 (2)
2,1:5 +

3 × 1
25

𝑺 (2)
2,2:5 +

2 × 4
25

𝑺 (2)
3,1:5 +

2 × 1
25

𝑺 (2)
3,2:5,

𝑺∗(1)
3,0:4 =

2 × 5
25

𝑺 (1)
3,0:5 +

2 × 0
25

𝑺 (1)
3,1:5 +

3 × 5
25

𝑺 (1)
4,0:5 +

3 × 0
25

𝑺 (1)
4,1:5,

𝑺∗(2)
3,1:4 =

2 × 4
25

𝑺 (2)
3,1:5 +

2 × 1
25

𝑺 (2)
3,2:5 +

3 × 4
25

𝑺 (2)
4,1:5 +

3 × 1
25

𝑺 (2)
4,2:5.

Then, we clearly have

𝑺∗(1) =
1
2
𝑺∗(1)

2,0:4 +
1
2
𝑺∗(1)

3,0:4 =
1
50

(15𝑺 (1)
2,0:5 + 20𝑺 (1)

3,0:5 + 15𝑺 (1)
4,0:5),

𝑺∗(2) =
1
2
𝑺∗(2)

2,1:4 +
1
2
𝑺∗(2)

3,1:4 =
1
50

(12𝑺 (2)
2,1:5 + 3𝑺 (2)

2,2:5 + 16𝑺 (2)
3,1:5 + 4𝑺 (2)

3,2:5 + 12𝑺 (2)
4,1:5 + 3𝑺 (2)

4,2:5);

in other words, the equivalent system of size 5 of a multi-state linear consecutive (2, 1)-out-of-4:𝐺
wireless sensor system has its multi-state survival signature as

𝑺∗ = (𝑺 (0)
5 , 𝑺∗(1) , 𝑺∗(2) )

=
�����

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
𝑆∗(1)0,0 𝑆∗(1)1,0 𝑆∗(1)2,0 𝑆∗(1)3,0 𝑆∗(1)4,0 𝑆∗(1)5,0 𝑆∗(1)1,1 𝑆∗(1)2,1 𝑆∗(1)3,1 𝑆∗(1)4,1 𝑆∗(1)5,1 𝑆∗(1)2,2 𝑆∗(1)3,2 𝑆∗(1)4,2 𝑆∗(1)5,2

𝑆∗(2)0,0 𝑆∗(2)1,0 𝑆∗(2)2,0 𝑆∗(2)3,0 𝑆∗(2)4,0 𝑆∗(2)5,0 𝑆∗(2)1,1 𝑆∗(2)2,1 𝑆∗(2)3,1 𝑆∗(2)4,1 𝑆∗(2)5,1 𝑆∗(2)2,2 𝑆∗(2)3,2 𝑆∗(2)4,2 𝑆∗(2)5,2

1 1 1 1 1 1
𝑆∗(1)3,3 𝑆∗(1)4,3 𝑆∗(1)5,3 𝑆∗(1)4,4 𝑆∗(1)5,4 𝑆∗(1)5,5

𝑆∗(2)3,3 𝑆∗(2)4,3 𝑆∗(2)5,3 𝑆∗(2)4,4 𝑆∗(2)5,4 𝑆∗(2)5,5

���� 
𝑇

=
1
50

���
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
0 0 15 35 50 50 0 15 35 50 50 15 35 50 50 35 50 50 50 50 50
0 0 0 0 0 0 0 12 28 40 40 15 35 50 50 35 50 50 50 50 50

�� 
𝑇

.

Example 3.2. For the equivalent system in Example 3.1 with its multi-state survival signature as given
above, namely,

𝑺 = (𝑺 (0) , 𝑺 (1) , 𝑺 (2) )

=
1
50

���
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
0 0 15 35 50 50 0 15 35 50 50 15 35 50 50 35 50 50 50 50 50
0 0 0 0 0 0 0 12 28 40 40 15 35 50 50 35 50 50 50 50 50

�� 
𝑇

,

according to Remark 2.3, the multi-state survival signature of its equivalent system of size 6 can be
given as 𝑺∗ =

∑
𝒌∈𝒦 𝑠𝒌𝑺

∗
𝒌:5, where 𝑠𝒌 , 𝒌 ∈ 𝒦, with

𝒦 = {(𝑘𝑖, 𝑗 , 𝑖 = 1, 2, 𝑗 = 1, 2) : 0 ≤ 𝑘1,2 ≤ 𝑘1,1, 𝑘2,2 ≤ 𝑘2,1 ≤ 5},
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are given by the marginal distributions as follows:

𝒔 (1) = 𝑴−1𝑺 (1) =
(
0, 0,

3
10
,
2
5
,

3
10
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)𝑇
,

𝒔 (2) = 𝑴−1𝑺 (2) =
(
0, 0, 0, 0, 0, 0, 0,

6
25
,

8
25
,

6
25
, 0,

3
50
,

2
25
,

3
50
, 0, 0, 0, 0, 0, 0, 0

)𝑇
.

These imply 𝑠 (1)2,0 = 3/10, 𝑠 (1)3,0 = 2/5, 𝑠 (1)4,0 = 3/10, 𝑠 (1)𝑘1 ,𝑘2
= 0 for other 0 ≤ 𝑘2 ≤ 𝑘1 ≤ 5, and

𝑠 (2)2,1 =
6
25
, 𝑠 (2)3,1 =

8
25
, 𝑠 (2)4,1 =

6
25
, 𝑠 (2)2,2 =

3
50
, 𝑠 (2)3,2 =

2
25
, 𝑠 (2)4,2 =

3
50
,

𝑠 (2)𝑘1 ,𝑘2
= 0 for other 0 ≤ 𝑘2 ≤ 𝑘1 ≤ 5. Now, upon solving the set of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑠2,0;2,1 + 𝑠2,0;3,1 + 𝑠2,0;4,1 + 𝑠2,0;2,2 + 𝑠2,0;3,2 + 𝑠2,0;4,2 = 𝑠 (1)2,0 = 3/10,
𝑠3,0;3,1 + 𝑠3,0;4,1 + 𝑠3,0;3,2 + 𝑠3,0;4,2 = 𝑠 (1)3,0 = 2/5,
𝑠4,0;4,1 + 𝑠4,0;4,2 = 𝑠 (1)4,0 = 3/10,
𝑠2,0;2,1 = 𝑠 (2)2,1 = 6/25,
𝑠2,0;3,1 + 𝑠3,0;3,1 = 𝑠 (2)3,1 = 8/25,
𝑠2,0;4,1 + 𝑠3,0;4,1 + 𝑠4,0;4,1 = 𝑠 (2)4,1 = 6/25,
𝑠2,0;2,2 = 𝑠 (2)2,2 = 3/50,
𝑠2,0;3,2 + 𝑠3,0;3,2 = 𝑠 (2)3,2 = 2/25,
𝑠2,0;4,2 + 𝑠3,0;4,2 + 𝑠4,0;4,2 = 𝑠 (2)4,2 = 3/50,

we get

𝑠2,0;2,1 =
6
25
, 𝑠3,0;3,1 =

8
25
, 𝑠4,0;4,1 =

6
25
, 𝑠2,0;2,2 =

3
50
, 𝑠3,0;3,2 =

2
25
, 𝑠4,0;4,2 =

3
50
,

and 𝑠𝒌 = 0 for other 𝒌 ∈ 𝒦. We then have

𝑺∗ =
6
25

𝑺∗
2,0;2,1:5+

8
25

𝑺∗
3,0;3,1:5+

6
25

𝑺∗
4,0;4,1:5+

3
50

𝑺∗
2,0;2,2:5+

2
25

𝑺∗
3,0;3,2:5+

3
50

𝑺∗
4,0;4,2:5,

where 𝑺∗
𝒌:5=(𝑺 (0)

6 , 𝑺∗(1)
𝑘1,1 ,𝑘1,2:5, 𝑺

∗(2)
𝑘2,1 ,𝑘2,2:5)𝑇 , with

𝑆∗(𝑖)
𝒌𝑖 ,𝑖1 ,𝑖2

=
(6 − 𝑘𝑖,1)(6 − 𝑘𝑖,2)

36
𝐼{𝑖1≥𝑘𝑖,1 ,𝑖2≥𝑘𝑖,2 } +

(6 − 𝑘𝑖,1)𝑘𝑖,2
36

𝐼{𝑖1≥𝑘𝑖,1 ,𝑖2≥𝑘𝑖,2+1}

+ 𝑘𝑖,1 (6 − 𝑘𝑖,2)
36

𝐼{𝑖1≥𝑘𝑖,1+1,𝑖2≥𝑘𝑖,2 } +
𝑘𝑖,1𝑘𝑖,2

36
𝐼{𝑖1≥𝑘𝑖,1+1,𝑖2≥𝑘𝑖,2+1},

0 ≤ 𝑖2 ≤ 𝑖1 ≤ 6, 𝑖 = 1, 2.
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Then, we clearly have

𝑺∗(1) =
3
10

𝑺∗(1)
2,0:5 +

2
5
𝑺∗(1)

3,0:5 +
3
10

𝑺∗(1)
4,0:5 =

1
5
𝑺 (1)

2,0:5 +
3
10

𝑺 (1)
3,0:5 +

3
10

𝑺 (1)
4,0:5 +

1
5
𝑺 (1)

5,0:5,

𝑺∗(2) =
6
25

𝑺∗(2)
2,1:5 +

8
25

𝑺∗(2)
3,1:5 +

6
25

𝑺∗(2)
4,1:5 +

3
50

𝑺∗(2)
2,2:5 +

2
25

𝑺∗(2)
3,2:5 +

3
50

𝑺∗(2)
4,2:5

=
2
15

𝑺 (2)
2,1:5 +

4
75

𝑺 (2)
2,2:5 +

1
5
𝑺 (2)

3,1:5 +
2
25

𝑺 (2)
3,2:5 +

1
5
𝑺 (2)

4,1:5 +
2
25

𝑺 (2)
4,2:5 +

2
15

𝑺 (2)
5,1:5

+ 4
75

𝑺 (2)
5,2:5 +

1
75

𝑺 (2)
2,3:5 +

1
50

𝑺 (2)
3,3:5 +

1
50

𝑺 (2)
4,3:5 +

1
75

𝑺 (2)
5,3:5;

that is, the equivalent system of size 6 of a multi-state linear consecutive (2, 1)-out-of-4:𝐺 wireless
sensor system has its multi-state survival signature as

𝑺∗ = (𝑺 (0)
6 , 𝑺∗(1) , 𝑺∗(2) )

=

������
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0
1
5

1
2

4
5

1 1 0
1
5

1
2

4
5

1 1
1
5

1
2

4
5

1 1
1
2

4
5

1 1
4
5

1 1 1 1 1

0 0 0 0 0 0 0 0
2
15

1
3

8
15

2
3

2
3

14
75

7
15

56
75

14
15

14
15

1
2

4
5

1 1
4
5

1 1 1 1 1

����� 
𝑇

.

Example 3.3. For the multi-state linear consecutive (2, 1)-out-of-4:𝐺 wireless sensor system in Exam-
ple 3.1, according to Theorem 2.4, the multi-state survival signature of its equivalent system of size 6
can be directly given as 𝑺 [2]∗ =

∑
𝒌∈K 𝑠𝒌𝑺

[2]∗
𝒌:4 , with 𝑠𝒌 , 𝒌 ∈ 𝒦, being the same as in Example 3.1. Then,

we have

𝑺 [2]∗ =
1
2
𝑺 [2]∗

2,0;2,1:4 +
1
2
𝑺 [2]∗

3,0;3,1:4,

where 𝑺 [2]∗
2,0;2,1:4 = (𝑺 (0)

6 , 𝑺 [2]∗(1)
2,0;2,1:4, 𝑺

[2]∗(2)
2,0;2,1:4)𝑇 and 𝑺 [2]∗

3,0;3,1:4 = (𝑺 (0)
6 , 𝑺 [2]∗(1)

3,0;3,1:4, 𝑺
[2]∗(2)
3,1;3,1:4)𝑇 are

𝑺 [2]∗
2,0;2,1:4 =

6 × 10
225

𝑺2,0;2,1:6 + 6 × 4
225

𝑺2,0;2,2:6 + 6 × 1
225

𝑺2,0;2,3:6

+ 6 × 10
225

𝑺3,0;3,1:6 + 6 × 4
225

𝑺3,0;3,2:6 + 6 × 1
225

𝑺3,0;3,3:6

+ 3 × 10
225

𝑺4,0;4,1:6 + 3 × 4
225

𝑺4,0;4,2:6 + 3 × 1
225

𝑺4,0;4,3:6,

𝑺 [2]∗
3,0;3,1:4 =

3 × 10
225

𝑺3,0;3,1:6 + 3 × 4
225

𝑺3,0;3,2:6 + 3 × 1
225

𝑺3,0;3,3:6

+ 6 × 10
225

𝑺4,0;4,1:6 + 6 × 4
225

𝑺4,0;4,2:6 + 6 × 1
225

𝑺4,0;4,3:6

+ 6 × 10
225

𝑺5,0;5,1:6 + 6 × 4
225

𝑺5,0;5,2:6 + 6 × 1
225

𝑺5,0;5,3:6.
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Note that 𝑺 (1)
2,0;2,3:6 = 𝑺 (1)

2,0;3,3:6. Then, we clearly have

𝑺 [2]∗(1) =
1
2
𝑺 [2]∗(1)

2,0;2,1:4 +
1
2
𝑺 [2]∗(1)

3,0;3,1:4 =
1
5
𝑺 (1)

2,0:6 +
3
10

𝑺 (1)
3,0:6 +

3
10

𝑺 (1)
4,0:6 +

1
5
𝑺 (1)

5,0:6,

𝑺 [2]∗(2) =
1
2
𝑺 [2]∗(2)

2,0;2,1:4 +
1
2
𝑺 [2]∗(2)

3,0;3,1:4

=
2
15

𝑺 (1)
2,1:6 +

4
75

𝑺 (1)
2,2:6 +

1
75

𝑺 (1)
2,3:6 +

1
5
𝑺 (1)

3,1:6 +
2
25

𝑺 (1)
3,2:6 +

1
50

𝑺 (1)
3,3:6

+ 1
5
𝑺 (1)

4,1:6 +
2
25

𝑺 (1)
4,2:6 +

1
50

𝑺 (1)
4,3:6 +

2
15

𝑺 (1)
5,1:6 +

4
75

𝑺 (1)
5,2:6 +

1
75

𝑺 (1)
5,3:6;

that is, the equivalent system of size 6 of a multi-state linear consecutive (2, 1)-out-of-4:𝐺 wireless
sensor system has its multi-state survival signature as

𝑺 [2]∗ = (𝑺 (0)
6 , 𝑺 [2]∗(1) , 𝑺 [2]∗(2) )

=

��������

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0
1
5

1
2

4
5

1 1 0
1
5

1
2

4
5

1 1
1
5

1
2

4
5

1 1
1
2

4
5

1 1
4
5

1 1 1 1 1

0 0 0 0 0 0 0 0
2
15

1
3

8
15

2
3

2
3

14
75

7
15

56
75

14
15

14
15

1
2

4
5

1 1
4
5

1 1 1 1 1

������� 

𝑇

,

which is exactly the same as 𝑺∗ obtained earlier in Example 3.2, as we would expect.

4. Comparison of systems of different sizes

In the last section, we considered a wireless sensor system with four sensors and provided multi-state
survival signatures of it and its equivalent systems of sizes 5 and 6. In this section, two different wireless
sensor system structures of sizes 5 and 6 will be discussed in Examples 4.1 and 4.2, respectively, for
demonstrating the use of previously established results in comparing multi-state coherent or mixed
systems with different numbers of i.i.d. multi-state components.

Example 4.1. Consider a wireless sensor system with five i.i.d. sensors and a multi-state linear consec-
utive (3, 2)-out-of-5:𝐺 structure with sparse (0, 1), which works (perfectly or imperfectly) if and only if
there are at least three consecutive sensors work (perfectly or imperfectly), works perfectly if and only
if there are also at least two consecutive sensors with sparse 1 working perfectly, and fails if it does not
work. As in Example 3 of Yi et al. [27], the multi-state survival signature of such a system can be shown
to be

𝑺 = (𝑺 (0)
5 , 𝑺 (1) , 𝑺 (2) )

=
�����

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑆 (1)0,0 𝑆
(1)
1,0 𝑆

(1)
2,0 𝑆

(1)
3,0 𝑆

(1)
4,0 𝑆

(1)
5,0 𝑆

(1)
1,1 𝑆

(1)
2,1 𝑆

(1)
3,1 𝑆

(1)
4,1 𝑆

(1)
5,1 𝑆

(1)
2,2 𝑆

(1)
3,2 𝑆

(1)
4,2 𝑆

(1)
5,2 𝑆

(1)
3,3 𝑆

(1)
4,3 𝑆

(1)
5,3 𝑆

(1)
4,4 𝑆

(1)
5,4 𝑆

(1)
5,5

𝑆 (2)0,0 𝑆
(2)
1,0 𝑆

(2)
2,0 𝑆

(2)
3,0 𝑆

(2)
4,0 𝑆

(2)
5,0 𝑆

(2)
1,1 𝑆

(2)
2,1 𝑆

(2)
3,1 𝑆

(2)
4,1 𝑆

(2)
5,1 𝑆

(2)
2,2 𝑆

(2)
3,2 𝑆

(2)
4,2 𝑆

(2)
5,2 𝑆

(2)
3,3 𝑆

(2)
4,3 𝑆

(2)
5,3 𝑆

(2)
4,4 𝑆

(2)
5,4 𝑆

(2)
5,5

����� 
𝑇

=
1
10

���
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
0 0 0 3 8 10 0 0 3 8 10 0 3 8 10 3 8 10 8 10 10
0 0 0 0 0 0 0 0 0 0 0 0 3 6 7 3 8 10 8 10 10

�� 
𝑇

<
1
50

���
50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
0 0 15 35 50 50 0 15 35 50 50 15 35 50 50 35 50 50 50 50 50
0 0 0 0 0 0 0 12 28 40 40 15 35 50 50 35 50 50 50 50 50

�� 
𝑇

,
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which implies that its system structure is not as good as that of a multi-state linear consecutive (2, 1)-
out-of-4:𝐺 wireless sensor system whose equivalent system of size 5 has been discussed in Example
3.1. This means that a multi-state linear consecutive (2, 1)-out-of-4:𝐺 wireless sensor system tends to
have better performance than a multi-state linear consecutive (3, 2)-out-of-5:𝐺 wireless sensor system
with sparse (0, 1) if their i.i.d. multi-state sensors have the same lifetime distributions.

Example 4.2. Consider a wireless sensor system with six i.i.d. sensors and a multi-state linear consec-
utive (3, 2)-out-of-6:𝐺 structure with sparse (0, 1), as defined in Example 4.1. As in Example 3 of Yi
et al. [24], the multi-state survival signature of such a system can be shown to be

𝑺 = (𝑺 (0)
6 , 𝑺 (1) , 𝑺 (2) )

=

��������

1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0
1
5

3
5

1 1 0 0
1
5

3
5

1 1 0
1
5

3
5

1 1
1
5

3
5

1 1
3
5

1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
5

37
90

3
5

3
5

1
5

3
5

1 1
3
5

1 1 1 1 1

������� 

𝑇

<

��������

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0
1
5

1
2

4
5

1 1 0
1
5

1
2

4
5

1 1
1
5

1
2

4
5

1 1
1
2

4
5

1 1
4
5

1 1 1 1 1

0 0 0 0 0 0 0 0
2
15

1
3

8
15

2
3

2
3

14
75

7
15

56
75

14
15

14
15

1
2

4
5

1 1
4
5

1 1 1 1 1

������� 

𝑇

,

which implies that its system structure is not as good as that of a multi-state linear consecutive (2, 1)-
out-of-4:𝐺 wireless sensor system whose equivalent system of size 6 has been discussed in Examples
3.2 and 3.3. This means that a multi-state linear consecutive (2, 1)-out-of-4:𝐺 wireless sensor system
tends to have better performance than a multi-state linear consecutive (3, 2)-out-of-6:𝐺 wireless sensor
system with sparse (0, 1) if their i.i.d. multi-state sensors have the same lifetime distributions.

5. Concluding remarks

In this work, we have first redefined the concept of multi-state survival signature of multi-state coherent
or mixed systems with i.i.d. multi-state components. For two multi-state survival signatures of different
sizes, transformation formulas have been established that facilitate transforming one with smaller size
to one with larger size, which would thus enable stochastic comparison of two corresponding multi-
state coherent or mixed systems of different sizes. Specific examples have been presented for illustrating
the transformation formulas established here, and also their use in comparing systems of different
sizes. Theoretical results derived here could prove useful in system design and management decision
making for practical multi-state systems such as telecommunication systems, wireless sensor systems,
power systems, radar station and many others. These transformation formulas are derived under the
independence of component lifetimes at different state levels. We are currently working on developing
similar results under some weaker assumptions and hope to report the corresponding findings in a future
paper.
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