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A CLASSICAL MODAL THEORY OF LAWLESS SEQUENCES

ETHAN BRAUER

Abstract. Free choice sequences play a key role in the intuitionistic theory of the continuum
and especially in the theorems of intuitionistic analysis that conflict with classical analysis,
leading many classical mathematicians to reject the concept of a free choice sequence. By
treating free choice sequences as potentially infinite objects, however, they can be comfortably
situated alongside classical analysis, allowing a rapprochement of these two mathematical
traditions. Building on recent work on the modal analysis of potential infinity, I formulate
a modal theory of the free choice sequences known as lawless sequences. Intrinsically
well-motivated axioms for lawless sequences are added to a background theory of classical
second-order arithmetic, leading to a theory I callMCLS . This theory interprets the standard
intuitionistic theory of lawless sequences and is conservative over the classical background
theory.

§1. Introduction. In developing intuitionistic mathematics, L.E.J.
Brouwer introduced the notion of a free choice sequence. Roughly, these are
potentially infinite sequences of natural numbers whose values are freely
chosen sequentially, one by one. Free choice sequences are a central piece in
the development of the intuitionistic theory of the continuum, being key to
Brouwer’s continuity theorem, Brouwerian counterexamples to the law of
excluded middle, and other characteristically intuitionistic theorems.1

Free choice sequences are also among the more controversial aspects of
Brouwerian intuitionism, and it is not hard to see why. The very conception
of freely choosing the values of a sequence one after the other introduces
agent-centric and temporal dimensions to mathematics that are foreign to
traditional ways of thinking about mathematics. The fact that free choice
sequences also lead to results that seemingly contradict classical mathematics
makes them doubly suspect. In this respect the use of choice sequences in
intuitionistic analysis differs from intuitionistic arithmetic. The intuitionistic
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A CLASSICAL MODAL THEORY OF LAWLESS SEQUENCES 407

theory of Heyting Arithmetic (HA) is a proper subtheory of classical Peano
Arithmetic (PA), so the classical mathematician can regard HA as simply
being the constructive fragment of PA.2

Free choice sequences are thus often seen as, at best, the awkward stepchild
left by Brouwerian intuitionism.3 For instance, in an often-quoted passage,
Bishop writes:

[Brouwer] seems to have [had] a nagging suspicion that unless he
personally intervened to prevent it the continuum would turn out
to be discrete. He therefore introduced the method of free-choice
sequences for constructing the continuum, as a consequence of which
the continuum cannot be discrete because it is not well enough
defined. This makes mathematics so bizarre it becomes unpalatable
to mathematicians, and foredooms the whole of Brouwer’s program.
[4, p. 6]

Feferman also comments (albeit somewhat less pessimistically):

Brouwer introduced ... a novel conception, that of free choice
sequences (f.c.s), ... of which one would have only finite partial
information at any stage. Then with the real numbers viewed as
convergent f.c.s. of rationals, a function f from R to R can be
determined using only a finite amount of such information at any
given argument. Brouwer used this line of reasoning to conclude that
any function from R to R must be continuous, in direct contradiction
to the classical existence of discontinuous functions. With this step
Brouwer struck off into increasingly alien territory, and he found
few to follow him even among those sympathetic to the constructive
position. [13, p. 47]

And Tait writes:

I am ... rejecting the Brouwerian conception that the subject has
individuated an infinite choice sequence by the act of beginning
to choose its successive members. For this idea depends upon a
subjectivist stance: the sequence in question is the one that I am
choosing; it is always unfinished but becomes more determinate in
time, as I make more and more choices. ... From an objectivist point

2Another route to making sense of HA from the perspective of PA is to use Gödel’s
modal translation of intuitionistic logic into S4. One can thus obtain a faithful epistemic
interpretation of HA in PA plus a modal operator (see [14, 28]).

3At least by those outside the intuitionist school. Within intuitionist camps, choice
sequences have received a fair amount of attention; though even within such camps their
status is subject to some debate. For instance, see [11, Section 7.5], [31, Appendix C], and
[33] for the justification of theories of choice sequences, and see [3, 26, 30] and [31, Appendix
B] for discussion of controversial continuity principles for choice sequences.

https://doi.org/10.1017/bsl.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.12
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of view, time does not enter into mathematics: its truths are time
independent. [29, p. 16]

We can discern at least three different objections to free choice sequences:
they introduce a temporal aspect to mathematics, they introduce a
subjective or agential aspect to mathematics, and they lead to results
that, at least apparently, contradict classical mathematics.4 Together, these
objections can foster a suspicion that the concept of choice sequences as
mathematical objects is deeply bizarre, if not incomprehensible. I aim to
dispel this suspicion.

This paper is the first step in a project of developing a modal theory of
free choice sequences in a classical background theory. An upshot of this
project will be that each of the three objections to free choice sequences is
either erroneous or ultimately unproblematic. The objection that free choice
sequences introduce a temporal dimension into mathematics will be defused.
My account does take the temporal nature of free choice sequences seriously,
giving it an explicit treatment using the resources of modal logic. Modal logic
is a well-understood and mathematically sensible framework, and its use in
a theory of free choice sequences should be no more problematic than in,
say, logics of program verification or of provability.5 The result is a perfectly
sensible mathematical theory of intratemporal objects, and the truths of this
theory are as objective and time-independent as those in any other area of
mathematics—just as Tait would have it.

The objection that free choice sequences introduce a subjective or agential
aspect to mathematics is shown to be simply erroneous. Nowhere does the
notion of an agent or a subject actually appear in my theory. The notion of
a mathematical agent is a useful heuristic and helps motivate certain choices
of axioms, but this is entirely at the pre-formal level.

Finally, the objection that free choice sequences lead to results that
contradict classical mathematics is also shown to be erroneous, since my
theory explicitly includes standard second-order arithmetic alongside free

4See also [17, p. 33] for statements of these objections. I refer to results that “apparently
conflict” with classical mathematics because, as an anonymous referee pointed out, there
is room for the classicist to accept intuitionistic results by taking the intuitionist’s logico-
mathematical vocabulary to have a different meaning than the classical logico-mathematical
vocabulary. For instance, the classicist can interpret intuitionistic logical vocabulary in terms
of proof-conditions via the BHK interpretation, even while they simultaneously understand
their own logical vocabulary in terms of truth conditions. See, e.g., [11, 8ff.] for the BHK
interpretation; see also [16] for further discussion of this reinterpretation strategy. This
strategy for accommodating intuitionism within classical mathematics is not uncontroversial,
however. McCarty [22], for instance, argues against the claim that the intuitionist means
anything different with their logical vocabulary than the classicist.

5See, for instance, [12] for an overview of modal and temporal logic in theoretical computer
science, and see [5] for an overview of provability logic.
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choice sequences, and all with classical logic in the background. The modal
theory of free choice sequences will ultimately suffice to prove theorems
analogous to many of the intuitionists’ famous anti-classical results. In
the modal setting, however, these theorems concern the intratemporal free
choice sequences, and hence are modal in character, rather than concerning
the familiar classical real numbers. As such, my project could reasonably be
described as following the reinterpretation strategy alluded to in footnote 4.
On the other hand, the intuitive motivation is sufficiently clear and its
formalization sufficiently natural that calling my theory a reinterpretation
of intuitionistic discourse is not entirely satisfactory. It might be better
described as a modal implementation of intuitionistic ideas.

1.1. The goal. The goal of the overarching project is to analyze choice
sequences in modal terms in a classical background theory. There are two
things that I hope to accomplish with this project: first, to show that the
notion of free choice sequence is comprehensible from the classical point of
view, and, second, to show how, having done so, portions of intuitionistic
analysis (or rather, modal analogues thereof) are available to the classical
point of view. To the extent that this second goal is accomplished, classical
and intuitionistic mathematics need not be seen as competing or alternative
approaches to math, and intuitionistic mathematics—in particular, portions
of intuitionistic analysis—can be seen to be legitimate from the classical
perspective.

In this paper specifically, I will develop a modal theory of so-called lawless
sequences and show that it interprets the intuitionistic theory of lawless
sequences. The intuitionistic theory of lawless sequences is a nice place to
begin because it is well-understood and relatively simple, and also because
it provides a starting point for defining more complex theories of choice
sequences. In future work I plan to extend this theory to include non-lawless
sequences that suffice for a theory of real numbers.

This project can be seen in part as following up on a recent proposal
from [20]. There, Kripke “outline[s] how a concept of free choice sequence
could be combined with an acceptance of classical mathematics” (p. 3).
The essential idea is to imagine a classical mathematician facing a potential
infinity of points in time at which they can freely choose values for a growing
sequence of natural numbers. Kripke’s paper is largely programmatic,
though; he does not present any explicit theory of temporal free choice
sequences that is meant to extend classical analysis and only briefly
discusses which intuitionistic principles might carry over to the setting he
proposes. My aim is to address exactly such questions, moving beyond
informal conceptions or intuitive motivations to give an explicit and properly
mathematical theory of free choice sequences.

Moschovakis [25] has also introduced a system inspired by Kripke’s
proposal. Her approach is to use a multi-sorted theory that contains
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410 ETHAN BRAUER

intuitionistic analysis, a negative translation of classical analysis, and an
axiom asserting that for any choice sequence it is not impossible that there is a
determinate (lawlike) sequence that agrees everywhere with it. A realizability
argument shows the theory to be consistent.6 Perhaps the most important
difference between Moschovakis’ system and the approach below is that I
take the temporal aspect of choice sequences to be an integral part of the
concept; accordingly, the temporal aspect figures explicitly in my theory in
the form of modal operators. As Moschovakis observes in the conclusion
of her article, her theory “gives no further insight into the stage-by-stage
activity of a creating subject. All we can claim is that from the perspective
(unattainable by the creating subject) of the end of time, Kripke’s idea is
classically feasible” [25, p. 294]. In this paper, by contrast, I will give the step-
by-step activity of the idealized mathematician a central role in motivating
our choice of axioms, and the step-by-step manner in which lawless
sequences get defined is directly mirrored in the modal nature of the theory.

1.2. Outline of the paper and main results. There are two main results of
this paper. First, I show that my modal theory of lawless sequencesMCLS
interprets the intuitionistic theory of lawless sequences LS (Theorem 8.21).
Second, I show that whenever Z is a subsystem of second-order arithmetic
extending RCA0, if MCLS(Z) is just like MCLS but with the induction
and comprehension axioms restricted as they are in Z, then MCLS(Z) is
conservative over Z (Corollary 9.8).

In Sections 2–5 I will introduce my theory of lawless sequences. Section 2
provides the background on Brouwer’s conception of lawless sequences.
Section 3 introduces some notational conventions I adopt. Section 4
describes the modal logic my theory is based on. And Section 5 then formally
introduces the theory of lawless sequences.

Sections 6–8 cover the interpretation of the intuitionistic theory of lawless
sequences LS. Section 6 presents the intuitionistic theory LS. Section 7
describes the translation I use. In Section 8, I prove the interpretation result.

Finally, in Section 9 I discuss the relation between MCLS and classical
second-order arithmetic. I give a model-theoretic conservation argument
showing how any model of a subsystem Z of second-order arithmetic can
be used to create a model forMCLS(Z).

§2. Free choice sequences. The basic idea of a choice sequence can be
seen as arising from two components of Brouwer’s thought. The first
component was his metaphysical views: Brouwer, of course, thought of

6The idea that classical and intuitionistic analysis are in some sense compatible is also
found in Moschavakis’ earlier work, e.g., [23]; cf. also [24]. In these pieces Moschovakis
studied a system that extended Kleene’s system FIM of intuitionistic analysis and whose
lawlike portion coincides with classical analysis.
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mathematical objects as purely mental constructions with no objective or
mind-independent existence. Accordingly, one could not truly assert the
existence of some mathematical object without a method for constructing
that object mentally.

The second component of Brouwer’s thought was his acceptance of the
arithmetized account of the continuum that had become widespread in
classical mathematics since Dedekind and Cantor.7 The arithmetized view
of the continuum required defining real numbers in terms of infinite sets
or sequences of rational numbers (à la Dedekind cuts, Cauchy sequences,
or infinite decimal expansions). Brouwer’s constructivism required that any
such sets or sequences must be given as possible mental constructions. For
simplicity I will simply talk of sequences rather than sequences or sets. If
there is a law that can be followed to construct the sequence, such a sequence
passes constructivist muster, since the law provides a method for construct-
ing the sequence. But the fullness of the continuum is not exhausted by (to fix
ideas) the Cauchy sequences that can be given by a law. One wants to counte-
nance any arbitrary Cauchy sequences. And the idea of an arbitrary Cauchy
sequences emerges in intuitionism as a free choice sequence: an infinitely pro-
ceeding series of choices of rational numbers determined freely by an agent.

Since mathematical agents are limited, we must regard these sequences
as necessarily unfinished. But the intuitionist regards objects that could, at
least in principle, be constructed by a mathematician as legitimate objects
of study. And since there is no in-principle finite limit to how long of a
sequence a mathematician could create, we can regard a choice sequence as
indefinitely proceeding, though not as a completed infinite sequence.

Because of this idealization involved, it is common to describe choice
sequences as potentially infinite sequences of numbers created by an
idealized mathematician subsequently picking each member of the sequence.
They are free to pick any number they like; but they are also free to impose
constraints on their future choices. Thus we countenance choice sequences
that are, after some stage, bound by some laws as well as those that are free
from all constraints.

7Before 1914 Brouwer had adopted a non-punctiform, geometric view of the continuum
as given to intuition as a unified whole. After 1914, however, he espoused an arithmetized
account of the continuum. See [32] for an account of the history of Brouwer’s thought in this
area. Troelstra identifies [8] as the first appearance in print of choice sequences as acceptable
intuitionistic objects. Some readers have thought that this shift indicated a rejection of the
geometric conception, e.g., [27, 34]. van Atten [1], however, argues that although Brouwer
adopted the arithmetized account, he never rejected the geometric conception. On this
reading, the geometric conception does not figure directly in Brouwer’s later writings because
the arithmetic conception (developed with choice sequences) suffices for the mathematical
development of analysis (cf. [18]). But, van Atten argues, the philosophical views that led
Brouwer to accept the primitive geometric intuition of the continuum remain in his later
writings [1, p. 34].
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As Brouwer [9, p. 140] described the matter:

[Intuitionism] recognizes the possibility of generating new
mathematical entities: firstly in the form of infinitely proceeding
sequences p1, p2, ... , whose terms are chosen more or less freely from
mathematical entities previously acquired; in such a way that the
freedom of choice existing perhaps for the first element p1 may be
subjected to a lasting restriction at some following pv , and again
and again to sharper lasting restrictions or even abolition at further
subsequent pv ’s, while all these restricting interventions, as well as the
choices of the pv ’s themselves, at any stage may be made to depend
on possible future mathematical experiences of the creating subject.

Brouwer here countenances a wide range of choice sequences that includes
sequences of any type of mathematical object that is already available.
Most subsequent studies of choice sequences have, however, only considered
sequences of natural numbers, and I will do likewise in this project. Lawless
sequences are a specific type of free choice sequence wherein the creating
mathematician determines from the beginning that they shall never subject
their choices to any restriction or law. The choice of each value for the
sequence is entirely unconstrained and subject to no law.

These ideas of Brouwer’s express the basic concept of a free choice
sequence which I will be trying to capture in a modal framework. At the same
time, in giving the modal account I do not take myself to necessarily be bound
by any particular statement or idea of Brouwer’s. Given that his own ideas
about choice sequences changed a number of times over his lifetime, this is
not a feasible or even desirable goal.8 Similarly, a variety of explicit accounts
of choice sequences developed in later intuitionistic literature, and while they
all share some central features, they also differ in important respects. This
situation led Troelstra to claim in a survey article that “there are a great many
notions of choice sequence which have to be regarded as distinct primitive
notions” ([33, p. 225], emphasis original). This should not be taken to
suggest that there is no core intuitive notion of a free choice sequence—in
this section I have sketched just such a notion. Troelstra’s point, rather, is
that in fleshing out a fully detailed account of choice sequences there are a
number of decision points where multiple ways of proceeding are compatible
with the core idea of a free choice sequence. (These decision points, however,
concern free choice sequences that lie beyond the realm of lawless sequences.
Lawless sequences themselves form a shared basis on which different more
complicated conceptions of choice sequences can agree. This is a further
reason for focusing on lawless sequences in this paper.)

8See [31, Appendix A] and [32] for an overview of some of these shifts in Brouwer’s
thinking.
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Although this situation precludes a simple appeal to a generally accepted
definition of a choice sequence, we can still take it as an ideal for the
modal account of choice sequence to cohere with the conception(s) of
choice sequence found in Brouwer, Heyting, Troelstra, and other intuition-
ists. The important thing is that the modal account should allow us to
capture the role that choice sequences play in intuitionistic arguments. I aim
to make good on this by showing how a modal theory of choice sequences
allows us to prove modal analogues of important intuitionisticresults.

I turn now from this informal introduction to the idea of a free choice
sequence to consider specific formal theories of lawless sequences.

§3. Notational preliminaries. I will use a sort of variables for choice
sequences α, �, �, ... ; intuitively these will be partial functions on N.
Individual variables x, y, z, ... will be taken to range over natural numbers.
Numerical variables will always be taken to have denotations. There will
also be a sort of variables f, g, h, ... ranging over classical functions on N.
These functions are extensional objects whose graph does not change over
time.

We can assume in the background all the usual coding apparatus for finite
sequences of natural numbers as found in, for instance, [15]. This provides
us with a formula Seq(x) which is true of exactly those numbers x which
code finite sequences; such numbers x are known as sequence numbers. It
is sometimes also convenient to write x ∈ Seq rather than Seq(x). We will
write 〈n0, ... , nk〉 for the (code of) the finite sequence with i th member ni–1.

There are also length, projection, and concatenation functions for
sequences. We will use lh for the length function, (·)i for the projection
function, and� for concatenation. So if x = 〈x0, ... , xk〉, then lh(x) = k + 1,
and for all i ≤ k, (x)i = xi . And if x = 〈x0, ... , xk〉 and y = 〈y0, ... , yl 〉,
the concatenation x�y := 〈x0, ... , xk, y0, ... , yl 〉. We will write x � y when
x, y ∈ Seq and there is some z ∈ Seq such that y = x�z. Finally, if �x =
〈x0, ... , xk–1〉 and �y = 〈y0, ... , yk–1〉 are both k-tuples of sequence numbers,
then we may write �x � �y, understood to mean x0 � y0 ∧ ··· ∧ xk–1 � yk–1.

There are two important pieces of notation that are unique to the literature
on choice sequences, though widespread within that literature. First, α(x)
is used to denote the initial segment of α of length x. Thus, α(x) = y
iff y ∈ Seq, lh(y) = x + 1, and for all z ≤ x, α(z) = (y)z . Second, it is
common to use α ∈ x as an abbreviation for α(lh(x)) = x. What this means
is that x is a sequence number encoding an initial segment of α. I will also
use f and f ∈ n analogously when f is a classical function variable.

The initial segment of α, symbolized isα will refer to the largest sequence
number n such that α ∈ n, and α is not (yet) defined on any greater
arguments. In other words, isα = n iff ∀x < lh(n)α(x) = (n)x ∧ ∀x ≥
lh(n)α(x) 
= α(x).
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414 ETHAN BRAUER

Finally, one more piece of notation stems from the fact that I will be
using a free logic in what follows. Specifically, I will use a negative free
logic, so any atom Pt is true only if t denotes. Thus t = t can be used as
an existence predicate. Let t1 � t2 :↔ (t1 = t2 ∨ (t1 
= t1 ∧ t2 
= t2)). In other
words, t1 � t2 means that either t1 and t2 are both defined and identical or
neither is defined.

Since Greek letters are being used for choice sequence variables, I will use
A,B, ... as metavariables ranging over formulas. P will be a metavariable
ranging over atomic formulas. I will use both Ao1

o2
and A[o1/o2] to denote

the result of replacing all free occurrences of o1 in A with o2.

§4. The modal logic. The idea behind the modal theory of choice
sequences is that choice sequences are intra-temporal mathematical objects,
and we capture their temporal character using modal operators. The main
modal operator will be �, intuitively meaning “at all times henceforth ...,”
as well as its dual ♦, “at some later time ....” By fiat, we can take the later
than relation to be reflexive, so that henceforth includes the present moment.
Obviously, later than is transitive, and we can take it that the flow of time
is not cyclical, so that later than is antisymmetric. Since we cannot assume
that the flow of time has any other structure, the appropriate modal logic to
use will be S4. In addition to the usual box and diamond, however, we will
want to add a further modal operator.

Our choice of S4 reflects the fact that there might be multiple incompatible
futures, different branches of time, as it were. Reading the box and diamond
as temporal operators,�Ameans that A holds at every time henceforth. And
♦A means that A holds at some future moment on some branch; in other
words, A might hold in the future. To express several concepts in the modal
theory of choice sequences, however, we need something further: we need
to be able to say that A will eventually be true, no matter how the future
evolves; on every future branch of time, there is a moment at which A is
true. To express this notion, let us introduce the operator IA, pronounced
“inevitably A”.9 The logic that results from adding I to S4 can be called
S4I .10

The definition of an S4I model is exactly the same as that of an S4
model, and the satisfaction clauses are exactly the same for the vocabulary
→,∧,∨,¬, ∀, ∃,�,♦. The only thing we need to add is the clause for I. This
requires one more definition:

9McCall [21] introduced this operator in the context of temporal logic, calling it the strong
future tense.

10In [6, 7], this logic was called S4+. The label S4I is used here because it is more
perspicuous.
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Definition 4.1. In a model M, a chain above w is a set X of worlds linearly
ordered by R, such that for all u ∈ X , wRu. A chain X above w is maximal
if there is no proper superset Y ⊃ X that is also a chain above w.

Now the satisfaction clause for IA is as follows:

• M,w |= IA iff for every maximal chain X above w there is a u ∈ X such
thatM,u |= A.

This condition is pictured in the image below: every path above w through
the model M eventually intersects the set of A-worlds.

A
...

...

...

...

w |= IA

Although conservative over S4, the logic S4I is fairly strong, being
unaxiomatizable.11 Nevertheless, the following list of axiom is sufficient for
the purposes of this paper, and as we will see in Section 7.12

M0 The axioms and rules of negative free S4 with CBF. (For concreteness,
axioms M0.0–M0.13 are provided in Appendix A.)

11See [6] on the unaxiomatizability of S4I .
12The propositional axioms for I come from Burgess [10], who studied a logic that includes

the propositional fragment of what I am calling S4I .
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M1 �(A→ B) → (IA→ IB).
M2 A→ IA.
M3 �A→ ¬I¬A.
M4 IIA→ IA.
M5 I�A→ �IA.
M6 I∀oA→ ∀oIA.
M7 ∃oIA→ I∃oA.

The reason for using a free logic is that, since choice are meant to grow
with time, it might happen that, say, α(100) has not yet been defined. The
Converse Barcan Formula, however, ensures that the domain is growing, so
that once an object exists it will never disappear. Since we will be working
in a many-sorted logic, we include instances of M6 and M7 where o is each
sort of variable.

Just as the necessity operator � has the dual possibility operator ♦,
definable as¬�¬, so the inevitability operator also has a dual¬I¬. Although
I will not introduce a primitive symbol for this dual, it expresses an important
concept: ¬I¬A means, intuitively, that there is some possible path through
the future such that A holds at every time on that path. This could be glossed
in English as “it is possible that A holds into perpetuity”. I also want to draw
attention to a derivable schema governing I and ¬I¬, which I will appeal
to later.

Proposition 4.2. �S4I (IA ∧ ¬I¬B) → ♦(A ∧ B).

Proof. I prove the contrapositive.

�¬(A ∧ B) → �(A→ ¬B)
→ IA→ I¬B (by M1)
→ ¬(IA ∧ ¬I¬B). �

With S4I as our background logic, we can turn now to developing the
modal theory of lawless sequences.

§5. The modal theory of lawless sequences. Our language will be that
of second-order arithmetic: {0, S,+,×, <}. The logical vocabulary is
{∀, ∃,∧,∨,→,¬,=,�, I}. The possibility operator ♦ can of course be
defined as ♦A :↔ ¬�¬A.

There are three sorts of variables: x, y, z, ... ranging over natural numbers,
f, g, h, ... ranging over classical functions on natural numbers, andα, �, �, ...
ranging over choice sequences. The objects in the range of first-order
variables x, y, z, ... are the familiar natural numbers. I assume that the
natural numbers form a completed totality rather than themselves being
a mere potential infinity. Thus the natural numbers all exist at each moment
in time rather than coming to exist at some point in time. Functionsf, g, h, ...
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are the extensional objects familiar from classical second-order arithmetic,
and their graphs are assumed to never change, being fixed for all time. I
will occasionally use variables X,Y,Z for sets of natural numbers, though
officially such sets are identified with their characteristic functions. The
reason for taking functions as primitive and sets as defined, instead of the
other way around, is that the intuitionistic theory of lawless sequences is
formulated with variables for lawlike functions. These will be translated
as classical function variables; so taking function variables to be primitive
rather than defined simplifies the translation.

Since choice sequences are supposed to be uncompleted objects, they
should be partial functions of natural numbers. This will require our logic
to be free, as indicated above.

For some purposes, we will be interested in formulas that contain no
occurrences of choice sequence variables or modal operators, that is,
formulas in the language of second-order arithmetic. Let this restricted
language be denoted by L0.

We can separate the axioms of the theory into three categories: logical
axioms, arithmetic axioms, and sequence axioms. The logical axioms will
be those of S4I given above.

5.1. Arithmetical axioms. For arithmetic axioms we include necessita-
tions of universal closures of the following:

A0 0 = 0 ∧ (S(x) = S(x)) ∧ (x + y = x + y) ∧ (x × y = x × y).
A1 0 
= S(x).
A2 S(x) = S(y) → x = y.
A3 x + 0 = x.
A4 x + S(y) = S(x + y).
A5 x × 0 = 0.
A6 x × S(y) = (x × y) + x.
A7 x ≮ 0.
A8 x < S(y) ↔ (x < y ∨ x = y).
A9 �∀x∃y�f(x) = y.
IND ∀f

(
f(0) = 0 ∧ ∀x(f(x) = 0 → f(S(x)) = 0) → ∀xf(x) = 0

)
.

In the presence of the full axiom of choice, the induction axiom IND also
entails each instance of the induction schema, for A an L0 formula:

A(0) ∧ ∀x(A(x) → A(S(x))) → ∀xA(x).

Conversely, the schema also entails the axiom IND by taking the instance
A(x) := f(x) = 0. Of course, in various subsystems of second-order
arithmetic that we will return to in Section 9, the difference between the
induction axiom and the induction schema is important.

A0 is included to ensure that arithmetical terms always have a denotation,
and A9 ensures that classical functions are always defined and have their

https://doi.org/10.1017/bsl.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2023.12


418 ETHAN BRAUER

values necessarily. Otherwise these are the standard axioms of PA. We also
include every instance of the axiom of choice where A is an L0 formula:

AC ∀x∃yA(x, y) → ∃f�∀x�A(x,f(x)).

This of course entails the comprehension schema for sets of numbers (where,
again, A is an L0 formula):

CA ∃X�∀x(x ∈ X ↔ A(x)).

The reason for not allowing choice sequence variables to occur in the choice
schema is that, per axiom A9, we want our functions to not change with time.
If we allowed choice sequences to occur in the choice schema, we could define
a function f such that ∀x(α(x) = f(x) ∨ (α(x) 
= α(x) ∧ f(x) = 0). But
then f would be subject to change as α grew, which we do not want.

(The reason for allowing all instances of AC and the full induction schema
will be discussed in Section 8.3. For most purposes in this paper, however,
choice for Δ0

1 formulas would suffice.)
Given that the goal of this paper is to combine a modal-potentialist

construal of lawless sequences with a standard, classical theory of second-
order arithmetic, we want the arithmetic portion of the theory to hold
constant through all time. This idea of a formula holding constant through
time is captured by the notion of stability.

Definition 5.1 (Stability). Say that a formula A is positively stable when
the following holds:

�∀ �α∀ �f∀ �x[A( �α, �f, �x) → �A( �α, �f, �x)].

And A is negatively stable when:

�∀ �α∀ �f∀ �x[¬A( �α, �f, �x) → �¬A( �α, �f, �x)].

A formula that is both positively and negatively stable will be called stable
simpliciter.

Thus, to say that a formula A is provably stable in a theory T is to say
that T proves these two conditionals. Similarly, a model in which those two
conditionals are true would be a model in which A is stable.

There are at least three natural ways to ensure that the arithmetic portion
of the theory is provably stable. The first way is simply to add as axioms the
positive and negative stability of all L0 formulas. The second option appeals
to the full axiom of choice. The third option uses AC restricted to atomic
L0 formulas and the Barcan formula for individual and classical function
variables. The Barcan formula, recall, is the schema ∀o�A(o) → �∀oA(o).
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Proposition 5.2. Assume the axioms A0–A9. Then:

1. Assuming full AC, each L0 formula A is provably stable.
2. Assuming the Barcan Formula for individual variables and classical

function variables and AC restricted to atomic formulas, each L0 formula
A is provably stable.

Proof. (1) Given any L0 formula A, AC entails that there is a function:

fA( �x) =

{
1, if A( �x),
0, if ¬A( �x).

Now by A9, fA has its values necessarily. So if A, then fA( �x) = 1, hence
�fA( �x) = 1, hence �A( �x). Similarly if ¬A( �x).

(2) Induction on the complexity of A. For the atomic case, use AC as in
the proof of (1). For the induction step, the cases where A is ¬B , B ∨ C ,
B ∧ C , or B → C are all straightforward using the i.h. Consider the case
where A is ∀yB . By i.h. (suppressing other free variables for readability)
we have a proof of ∀y(B → �B), which gives ∀yB → ∀y�B , which by the
Barcan Formula gives ∀yB → �∀yB . This shows A is positively stable.

For negative stability, by the i.h. we have ∀y(¬B → �¬B), which entails
∃y¬B → ∃y�¬B), which entails ¬∀yB → �¬∀yB .

The cases of ∃xB , ∀fB , and ∃fB are similar. �
Each of these three ways of ensuring the stability of L0 formulas is well-

motivated. For instance, because arithmetic stability falls straightforwardly
out of the main goal of this paper, it would not be unreasonable to simply
stipulate it axiomatically. Likewise, the idea that the realm of numbers and
classical functions on them is fixed and unchanging suggests adopting the
Barcan Formula.13

Since I already stipulated that we have the full AC available, we could
simply leave the matter there. In Sections 8.3 and 9, however, I will return
to the question of whether one could use weaker versions of AC; in that
context, we would need to have a different way of proving stability for L0

formulas.

5.2. Sequence axioms. For sequence axioms we include nine axioms. The
first five axioms stem simply from the picture of an agent creating choice

13If the Barcan Formula were added to the logic, one would also have to check that
the mirroring theorem presented in Section 7 still held. This, however, is easy to do. (In
brief, where the proof of the mirroring theorem used Beth–Kripke models with expanding
domains, one instead appeals to Beth models with fixed domains. Everything else in the proof
can remain unchanged.)
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sequences and are not particular to lawless sequences. The first four of these
are:

S1 ∃n ∈ Seq isα = n.
S2 �∀xI∃yα(x) = y.
S3 �(∀x∀y(α(x) = y → �α(x) = y)).
S4 �∃α∀x∀y¬α(x) = y.

The first two axioms ensure that the choice sequences are growing with time,
and there is no end of time. The third axiom says that when the value of a
choice sequence has been chosen, it is fixed for all time. The fourth axiom
says that there is always a choice sequence that is not yet defined on any
argument; informally this is justified because an agent defining sequences of
natural numbers could always start a new sequence.

The fifth axiom requires defining some new notions. I will say an
L0 formula A is quasi-treelike if A(x) implies that x is a k-tuple of
sequence numbers and that if A(〈m1, ... , mk〉) and n1 � m1, ... , nk � mk
then A(〈n1, ... , nk〉). Symbolize this claim as qTreek(A). We can define the
ordering ≤A as �� A. The strict relation <A is defined in the usual way.
Obviously, if there is a set T = {x : A(x)}, then (T,≤T ) will be a partial
order, and each of its projections Ti = {ni : ∃〈n1, ... , ni , ... , nk〉 ∈ T} will
be a tree. Nevertheless, we will be interested in quasi-treelike formulas and
treat them schematically, irrespective of whether they actually form a set or
not. As usual, I will say that A is well-founded (in symbols:WF (<A)), when
there is no infinite path through A, that is, there is no function f such that for
all x, f(x + 1) >A f(x). With these notions in place, the fifth axiom says
that if any arithmetic formula A is quasi-treelike and well-founded, then any
k choice sequences will inevitably leave T :

S5 qTreek(A) ∧WF (<A) → I∃x1 ...∃xk
(∧
i isαi = xi ∧ ¬A(〈x1, ... , xk〉)

)
.

The justification for this axiom is easiest to articulate in the case k = 1, so
that A is just a (schematic definition of a) well-founded tree. A well-founded
tree has only finite branches, whereas a choice sequence grows infinitely far
and so must eventually outgrow the tree. The generalization to k > 1 would
be more verbose, but is conceptually straightforward. This is an important
axiom because, in effect, it allows us to prove things about choice sequences
by transfinite induction, which none of the other axioms do. (The induction-
like character of this axiom comes from the similarity between this axiom
and bar induction.)

The remaining four axioms pertain specifically to lawless sequences.
(Recall that t1 � t2 means that either t1 and t2 are both defined and identical
or neither is defined.)

S6 �∀n ∈ SeqI∃α(α ∈ n).
S7 ¬�∀xα(x) � �(x) → �¬�∀xα(x) � �(x).
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S8
∧
i �=j ¬�∀xαi(x)�αj(x)→ [¬∃x1∃y1 ... ∃xk∃yk

∧
i�k αi(xi) = yi ∧

fi(xi) 
= yi →¬I∃x1∃y1 ... ∃xk∃yk
∨
i�k αi(xi) = yi ∧ fi(xi) 
= yi ].

S9
∧
i �=j ¬�∀xαi(x) � αj(x) ∧

∧
i�k isαi = ni

→ ∀m1 ∈ Seq ... ∀mk ∈ Seq ♦
∧
i�k isαi = n�i mi .

The sixth axiom says that for every possible initial segment of a choice
sequence, there will inevitably eventually be a choice sequence with that
segment. There are two motivating ideas behind this axiom. The first is
that it should be possible that there is a lawless sequence with any given
initial segment. If the sequences are lawless, then no initial segment should
be ruled out from the beginning. The second idea is that we want our
universe of choice sequences to be maximally inclusive: anything that can
happen should happen. The idealized mathematician should do everything
that they can do. In this sense, S6 combines an insight about what is possible
for lawless sequences with a maximality principle about how many lawless
sequences eventually get created in the course of time.

The seventh axiom says that if α and � are distinct, then they are
necessarily distinct.

The eighth axiom is a schema, with one instance for each value of k. The
k = 1 instance says that if α and f agree on the arguments for which α is
so far defined, there is no guarantee that α and f will ever disagree. The
motivation for this axiom is similar to the first part of the motivation for
axiom S4: if there were a guarantee that α would eventually disagree with f,
then a path following f would be outlawed or off limits, contradicting the
idea that the sequences in question are lawless. Alongside S5, S8 is one of
the most important axioms and is at the heart of several arguments that
follow. These two particular axioms are important because they provide a
bridge between the existence of classical functions and the behavior of choice
sequences.

The ninth axiom says that given any k distinct lawless sequences that
currently have initial segments n1, ... , nk , they could be extended to have any
possible initial segments n�1 m1, ... , n

�
k mk . (This is again really a schema,

with one instance for each k.) This axiom combines two ideas. The first is
that for any single lawless sequenceα, if it currently has the initial segment n,
then there is nothing to preclude it going on to have the initial segment n�m.
The second idea is that whenever some initial segments are individually
possible for sequences α1, ... , αk , then they are jointly compossible—they
can all be realized at once.

Definition 5.3 (MCLS). LetMCLS be the theory based on the logic S4I
that consists of axioms A0–A9, IND, AC, axioms asserting the stability of
L0 formulas, and axioms S1–S9.

The name is chosen because it is a Modal theory of Choice sequences
restricted to Lawless Sequences.
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Although we are working in a free logic and there will be terms that may
not denote, it will be true that each term eventually acquires a denotation.

Proposition 5.4. For any term t:

1. If t does not contain any choice sequence variables, then MCLS �
�∀ �x∀ �f (t( �x, �f) = t( �x, �f)).

2. If t does contain some choice sequence variables, then MCLS �
∀ �α∀ �x∀ �fI[t( �α, �x, �f) = t( �α, �x, �f)].

Proof. (1) Induction on the complexity of t. For the basis case, if t is a
free variable this holds by logic. If t is 0, this holds by A0. The induction
step follows from A0 and the i.h. or A9 and the i.h.

(2) Induction on complexity. In the basis case, we know t = t by claim (1).
For the induction step, if t is f(t0), then by i.h. we know I∃x(x = t0), and
hence by A9, I∃yf(t0) = y. If t is α(t0), then by i.h. we know I∃x(x = t0),
so by S2, II∃yα(t0) = y, which entails I∃yα(t0) = y. �

§6. The intuitionistic theory of lawless sequences. In this section I will
introduce the intuitionistic theory of lawless sequences; then in the next
two sections I will show that this theory can be interpreted in MCLS .
Because this theory is not very well known outside intuitionistic circles,
I will both present the precise axioms of lawless sequences and also discuss
their informal motivation. (The intuitionistic theoryLS of lawless sequence
results from adding these axioms to a simple base theory of analysis. I will
return to that base theory in Section 8.3, but for now the focus will be on the
axioms peculiar to lawless sequences.) My exposition here largely follows
[31, Chapter 2] and [34, Chapter 12], and the reader familiar with those
references may skim or skip this section.

To reduce clutter, in this section only I will use n,m as variables ranging
over sequence numbers, so that if Seq is the set of sequences numbers, ∀n
and ∃n should be taken as abbreviating ∀n ∈ Seq and ∃n ∈ Seq.

There are four axioms of this theory, which I will discuss in turn. The first
axiom says that for every possible initial segment, there is a lawless sequence
with that initial segment.

LS1 ∀n∃α(α ∈ n)

Similar to the axiom S6 in my modal theory,LS1 serves as a density principle.
Troelstra also describes it as corresponding to the informal idea that we can
pick any initial segment of a sequence before we let it proceed on its own.

The second axiom says that (extensional) identity is decidable for
lawless sequences, where extensional identity α = � is understood to mean
∀x(α(x) = �(x)).

LS2 α = � ∨ α 
= �
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This axiom is justified by reference to intensional identity: two segments
are intensionally identical (written α ≡ �) if they are given as the very same
procedure for picking numbers. Intuitively, intensional identity should be
decidable. So if we can argue that α = � ↔ α ≡ � , then it would follow that
extensional identity is decidable. Clearly α ≡ � → α = � . Conversely, since
at any stage of picking, one only knows a finite initial segment of a sequence,
the only way one could know two sequences are (always) coextensive is if
they are given as the very same sequence of choices. Hence α = � → α ≡ � .
Note that this is an intuitionistic argument. It asks what it would take
to prove α = � and concludes that one would have to have proved α ≡ � .
Moreover, it does not rely on the “unfinished” character of choice sequences,
for even if we think of lawless sequences as already completed by the ideal
mathematician, our inability to survey the entire sequence, or predict its
course via a law, would preclude us from asserting α = � unless we had a
proof of α ≡ � .

The third axiom says that any property A which holds of a lawless
sequence α depends only on some finite initial segment of α. Thus, the third
axiom justifies a continuity principle for mappings from lawless sequences
to numbers.

LS3 A(α, �1, ... , �l ) ∧
∧
i α 
= �i → ∃n(α ∈ n ∧ ∀� ∈ n(

∧
i � 
= �i →

A(�, �1, ... , �l )))

This is justified by the idea that anything that can be asserted about a lawless
sequence is asserted at some finite stage, and hence is asserted on the basis
of only a finite segment of the sequence. Thus the assertion should also hold
of any sequence with that same initial finite segment. This is often called the
axiom of open data.

The reason for requiring that α be distinct from the � ’s is to rule out
counterexamples that rely on α and � being identical. For instance, if A
were the simple formula α = � , then it would be false that ∃n∀� ∈ nA(�, �).
The point is that our initial motivation for LS3 relied on the idea that A
must hold on the basis of some finite portion of α’s graph. But α = � would
provide some information about the entirety of α’s future graph, namely
that it coincides with � ’s graph. Thus we want to rule out this extra bit of
information.

Now in fact, we can require that the � ’s also be pairwise distinct. Since
identity is decidable, A(α, �1, �2) is equivalent to [A(α, �1, �2) ∧ �1 
= �2] ∨
[A(α, �1, �1) ∧ �1 = �2]. The generalization to more than two variables �i
is obvious. This gives the following alternative formulation of LS3 which it
will be somewhat more convenient to work with when we interpret LS in
MCLS .14

14For this alternate formulation LS3′ to be equivalent to the original LS3 requires that
the formula A be extensional. This, however, is a common assumption (cf. [34, pp. 186, 650]).
And it certainly holds given the vocabulary we are working with here.
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LS3′ A(α, �1, ... , �l ) ∧
∧
i α 
= �i ∧

∧
i,j �i 
= �j

→ ∃n(α ∈ n ∧ ∀� ∈ n(
∧
i � 
= �i → A(�, �1, ... , �l )))

Finally, it is easy to observe that this axiom justifies the principle of ∀α∃x-
continuity (also called weak continuity for numbers):

∀α∃xA(α, x) → ∀α∃x∃y∀� ∈ α(y)A(�, x).

To obtain this schema from LS3, for each α and x satisfying A(α, x) we
find an n as in LS3 (i.e., ∀� ∈ nA(�, x)). Then trivially there is a y such that
α(y) = n, so we have

∀α∀x[A(α, x) → ∃y∀� ∈ α(y)A(�, x)].

Then some easy quantificational logic gives us the principle of ∀α∃x-
continuity.

The fourth and final axiom is also a continuity principle, saying roughly
that whenever a lawlike sequence can be chosen from a lawless sequence,
then there is a uniform, lawlike way of choosing each such lawlike sequence
on the basis of the neighborhood in which each lawless sequence is found.

The precise statement of this fourth axiom is more technical, and requires
the notion of a neighborhood function. If F ⊂ NN is a class of mappings
on natural numbers, a neighborhood function on F encodes a continuous
functional F → N. For instance, F might be the classical functions or, in the
case that interests us, F will be the lawless sequences. Intuitively, letting KF
be the class of neighborhood functions on F, a particular function e ∈ KF
takes initial segments of a sequence � ∈ F , and e(�(x)) = 0 if the initial
segment �(x) is not long enough to determine the value of the function that
e encodes and e(�(x)) = y + 1 if the function that e codes takes value y
on any argument that agrees with � on the first x arguments. The class of
neighborhood functions on lawless sequences can be defined as the class of
e satisfying:

∀α∃x(e(α(x)) > 0) ∧ ∀n,m(e(n) > 0 → e(n�m) = e(n)).

Let e ∈ K0 abbreviate this formula. For brevity, define e(α) = x :↔
∃y(e(α(y) = x + 1). Finally, let �p(α1, ... , αp) := �x.�p(α1(x), ... , αp(x))
be a pairing function on sequences.

If e is a neighborhood function on lawless sequences, then it is reasonable
also to see e as a neighborhood function encoding a continuous functional
F → N for any class of functions F ⊆ NN. If you simply abstract away
from any intensional information you have about f ∈ F , then you can
treat its graph as though it were the graph of a lawless function, and scan
through that graph until you find an n such that e(f(n)) > 0. This idea that
any neighborhood function on lawless sequences induces a neighborhood
function on all functions NN is the so-called extension principle.
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Now, �p(α1, ... , αp) ∈ NN, so we should also be able to regard any e ∈ K0

as a neighborhood function for p-tuples of lawless sequences as well. This
leads to the following preliminary version of LS4.

LS40 ∀ �α(
∧
i,j αi 
= αj → ∃fA( �α,f))

→ ∃e ∈ K0∀n(e(n) 
= 0 → ∃f∀ �α ∈ n(
∧
i,j αi 
= αj → A( �α,f)))

The motivation for this is similar toLS3: if for any lawless sequence you can
find a lawlike sequence satisfying A, then this must be possible on the basis
of some initial data from the lawless sequence. So for some neighborhood
there is a lawlike way of finding the lawlike sequence from the value of the
neighborhood function on that lawless sequence. Then we can extend this
idea to multiple lawless sequences by taking them together via pairing as
a single sequence. Since this sequence of p-tuples was formed by pairing
sequences that are entirely lawless, the paired sequence should not exhibit
any lawlike behavior either. Just as we were able to use a neighborhood
function to find a lawlike sequence from a single lawless sequence, we should
be able to do similarly with a p-tuple of lawless sequences. Hence Troelstra’s
gloss on this axiom is that “with respect to operations of types NN → N,
p-tuples of independent lawless sequences behave like single lawless
sequences” ([31, p. 28]).

To get from this preliminary version LS40 to the final, official axiom
LS4, we need to introduce another class of functions, denoted K. K is
inductively defined as the least class of functions satisfying the following
two conditions:

K1 ∃y > 0∀xf(x) = y → f ∈ K .
K2 [f(0) = 0 ∧ ∀x∃g ∈ K(∀n ∈ Seq f(〈x〉�n) = g(n))] → f ∈ K .

It is plausible that K = K0. It is easy to check that K0 satisfies both K1
and K2, so that K0 ⊆ K . Conversely, let e ∈ K0 be arbitrary. Then the
tree of n such that e(n) = 0 will be well-founded, and we can argue by
transfinite induction that for every node n in this tree, �m.e(n�m) ∈ K ,
and hence �m.e(〈〉�m) := e ∈ K . This argument can be fleshed out into a
formally rigorous argument (as we will see in Theorem 8.19), though the
inclusionK0 ⊆ K requires application of the law of excluded middle, and so
is non-constructive. Intuitionistically, K = K0 can be proved by (decidable)
Bar Induction and in fact is equivalent to decidable Bar Induction in the
background theory of elementary analysis ([34, p. 4.8.13]).

Adopting the identification K = K0 gives us our final formulation of
LS4.

LS4 ∀ �α(
∧
i,j αi 
= αj → ∃fA( �α,f))

→ ∃e ∈ K∀n(e(n) 
= 0 → ∃f∀ �α ∈ n(
∧
i,j αi 
= αj → A( �α,f)))
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§7. The Beth–Kripke translation. The main goal of this paper is to provide
an interpretation of the intuitionistic theoryLS in the classical modal theory
MCLS . In this section, I introduce the translation that will be used for that
interpretation. This translation was defined in [7], where it was also shown
to provide a faithful translation of intuitionistic logic in S4I . For full details
the reader may refer to that paper; I will just sketch the main ideas behind
the translation.

The translation is inspired by a variant of the familiar Beth semantics
for intuitionistic logic, which allows the domains of worlds in the model to
grow. Such models are sometimes called Beth–Kripke models, and hence the
translation was called the Beth–Kripke translation. One further tweak that
[7] add is to require that for every term in the relevant language, and every
path through the Beth–Kripke model, there is a world where that term has
a denotation.

The insight that enables our translation is that a Beth–Kripke model for
intuitionistic logic can equally be viewed as a model for S4I by using the
respective semantic clauses. Moreover, the semantic clauses for intuitionistic
forcing can be explicitly mimicked in an S4I model by adding some modal
operators. This is done according to the following translation.

A AB

P I�P
¬A �¬AB

A ∧ B AB ∧ BB

A ∨ B I(AB ∨ BB)
A→ B �(AB → BB)
∃oA(x) I∃oAB(x)
∀oA(x) �∀oAB(x)

When we are working in many-sorted logic, all the quantifiers are translated
according to this scheme, no matter what type o is.

Now it is easy to see that for any non-modal formula A, T � A as a Beth–
Kripke model just in case T |= AB as an S4I model. The last detail to take
care of is that in our variant Beth–Kripke models, it is required that each
term eventually have a denotation. For a term t, the following condition
asserts that t inevitably exists:

�∀ �xI[t( �x) = t( �x)]. (IEt)

For a fixed language L, let IE := {IEt : t ∈ L}. Then we have the following
result, which shows that the deductive system for S4I given in Section 4
faithfully interprets intuitionistic logic via the B translation.

Theorem 7.1. For every formula A and set of formulas Γ of many-sorted
logic, Γ �I A iff IE,ΓB �S4I A

B.
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We have already observed that MCLS proves that each term eventually
denotes. Thus, in order to prove that MCLS interprets the intuitionistic
theory LS it remains to show that MCLS proves the B translations of the
axioms of LS.

§8. Interpreting LS . In this section I show that MCLS does indeed
interpret LS under the B translation. As just noted, it only remains to show
that the translations of axioms of LS are provable inMCLS . In Section 8.1
I do this for LS1 and LS2, along with noting a few other simple facts. In
Section 8.2 I prove the translations of LS3 and LS4. The key tool here is
an elimination theorem showing that each formula AB is equivalent to an
arithmetical formula. Then in Section 8.3 I finally note thatMCLS interprets
the base theory of elementary analysis that LS is built on.

8.1. Basic properties of MCLS . In this subsection I collect some useful
simple facts aboutMCLS and prove the translations of LS1 and LS2.

Lemma 8.1. For every atomP( �α, �x, �f),MCLS � �∀ �α∀ �x∀ �f(P( �α, �x, �f) →
�P( �α, �x, �f)).

Proof. The positive stability of identity follows from logic. It is easy to
prove ∀x�x = x, from which we can infer t1 = t1 → �t1 = t1 using M0.1.
Then we infer t1 = t2 → (t1 = t2 → �t1 = t2) using M0.8, which simplifies
to t1 = t2 → �t1 = t2.

Now suppose P is of the form t1 < t2. This is equivalent to ∃x∃y(t1 = x ∧
t2 = y ∧ x < y). Then because identity is positively stable we have �t1 = x
and �t2 = y, and by the stability of L0 formulas we have �x < y. All this
gives us �t1 < t2. �

Lemma 8.2. For every L0 formula A,MCLS � �(A↔ AB).

Proof. This follows from the stability ofL0 formulas by an easy induction
on complexity. �

Lemma 8.3. MCLS � �∀α∀n�(α ∈ n ↔ (α ∈ n)B).

Proof. Reason informally in MCLS . Assume α ∈ n; we want to
show (α ∈ n)B. Now, α ∈ n is an abbreviation of n ∈ Seq ∧ ∀x(x <
lh(n) → α(x) = (n)x), so (α ∈ n)B is (n ∈ Seq)B ∧�∀x�(I�x < lh(n) →
I�α(x) = (n)x). By Lemma 8.2 we get (n ∈ Seq)B from the assumption
that n ∈ Seq. Now for arbitrary x, assume I�x < lh(n), and we want
to show I�α(x) = (n)x . Clearly I�x < lh(n) → x < lh(n), and from
x < lh(n) we get α(x) = (n)x . By S3, this then gives I�(α(x) = (n)x as
required.

Conversely, assume¬α ∈ n. Then there is somem ≤ lh(n) such that either
α(m) is undefined or α(m) = t 
= (n)m. In either case, ♦�α(m) 
= (n)m,
which entails ¬(α ∈ n)B. �
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Theorem 8.4. MCLS � LS1B.

Proof. LS1B is �∀n ∈ SeqI∃α(α ∈ n)B. Axiom S6 is �∀n ∈
SeqI∃α(α ∈ n), and by Lemma 8.3 this gives us�∀n ∈ SeqI∃α(α ∈ Seq)B,
as required. �

Now we can approach LS2 in a somewhat similar manner.

Lemma 8.5. MCLS � ¬�∀xα(x) � �(x) ↔ (¬∀xα(x) = �(x))B.

Proof. Note that (¬∀xα(x) = �(x))B is �¬�∀xI�α(x) = �(x).
Again, we reason informally withinMCLS .

First assume ¬�∀xα(x) � �(x). Then by S9 we have ♦∃x∃y∃z(α(x) =
y 
= z = �(x)), and hence ♦∃x¬I�α(x) = �(x). And since by S7
¬�∀xα(x) = �(x) has to hold necessarily, we can infer �♦∃x¬I�α(x) =
�(x), which is equivalent to (¬∀xα(x) = �(x))B.

Conversely, assume �∀x(α(x) � �(x)). Since we know �∀xIα(x) =
α(x), it follows that �∀xIα(x) = �(x). And since identity is positively
stable, we get �∀xI�α(x) = �(x). Hence ♦�∀xI�α(x) = �(x), which is
equivalent to ¬(¬∀xα(x) = �(x))B. �

Theorem 8.6. MCLS � LS2B.

Proof. LS2 is α = � ∨ ¬α = � , and recall that α = � is an
abbreviation for ∀x(α(x) = �(x)). So LS2B is I[�∀xI�(α(x) = �(x)) ∨
�¬�∀xI�(α(x) = �(x))]. Since our theory is classical, we know that
either �∀xα(x) � �(x) or ¬�∀xα(x) � �(x).

In the first case, it follows as in the previous lemma that �∀xI�α(x) =
�(x), i.e., (α = �)B. In the second case, Lemma 8.5 gives us (¬∀xα(x) =
�(x))B.

Thus we have (α(x) = �(x))B ∨ (α(x) 
= �(x))B and hence I[(α(x) =
�(x))B ∨ (α(x) 
= �(x))B]. �

I close this section with one more basic fact.

Proposition 8.7. For any formula A, MCLS � �∀xα(x) � �(x) →
(Aα ↔ A�).

Proof. Induction on the complexity of A. For the basis step, A is an
atom of the form t1 = t2 or t1 ≤ t2. We can do a subsidiary induction on the
complexity of t1 and t2, which is in turn entirely straightforward.

For the induction step, when the main connective in A is truth-functional
(that is, not a modal operator), the claim follows easily from the i.h.

When the main connective in A is a modal operator, first note that
the i.h. gives us a proof of �∀xα(x) � �(x) → �(Bα ↔ B�). Now from
�(Bα ↔ B�) we can easily infer each of �Bα ↔ �B� , ♦Bα ↔ ♦B� , and
IBα ↔ IB� , giving the desired result. �
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8.2. Continuity principles. In this section I show thatMCLS proves LS3B

and LS4B. To do so, I will establish an elimination theorem showing
that every formula A in the range of the B translation is equivalent to
an arithmetical formula with no occurrences of choice sequence variables,
either free or bound.15 When A is in the range of the B translation, we
can define the arithmetical translation T of A relative to �n. If A has k choice
sequence parameters,T (A, �n) will be an arithmetical formula with k number
parameters n1, ... , nk . The intention is that when A says something about
α1, ... , αk , T (A, �n) says something about all classical functions g1, ... , gk
that have initial segments n1, ... , nk . The elimination theorem will then show
that these are equivalent, so that any formula AB(α) amounts to a claim
that all classical functions with isα as an initial segment behave in a certain
way.

Definition 8.8 (T-translation). If A is a formula in the range of the B
translation with at most k choice sequence parameters α1, ... , αk , define the
translation T (A, �n) relative to sequence numbers n1, ... , nk inductively as
follows:

• When A is the translation of an atom, I�P( �x, �α, �f), define T (A, �n)
to be

∀g1 ∈ n1 ... ∀gk ∈ nk∃y1 ... ∃yk∀h1 ∈ g1(y1) ...∀hk ∈ gk(yk)P( �x, �h, �f).

• When A is a conjunction B ∧ C , let T (A, �n) be T (B, �n) ∧ T (C, �n).

• When A is I(B ∨ C ), let T (A, �n) be ∀�g ∈ �n∃�y
(
T

(
B,

−−→
g(y)

)
∨

T
(
C,

−−→
g(y)

))
.

• When A is �¬B , let T (A, �n) be ∀ �m � �n¬T (B, �m).
• When A is �(B → C ), let T (A, a) be ∀ �m � �n(T (B, �m) → T (C, �m)

)
.

• When A is �∀xB , let T (A, �n) be ∀ �m � �n∀xT (B, �m).
• When A is �∀fB , let T (A, �n) be ∀ �m � �n∀fT (B, �m).

• When A is I∃xB , let T (A, �n) be ∀�g ∈ �n∃�y∃xT
(
B,

−−→
g(y)

)
.

• When A is I∃fB , let T (A, �n) be ∀�g ∈ �n∃�y∃fT
(
B,

−−→
g(y)

)
.

• When A is �∀αk+1B , let T (A, �n) be

∀ �m � �n
⎛
⎝ ∧

1≤i≤k
T (Bαk+1

αi , �m) ∧ ∀mk+1 ∈ Seq T (B, �m,mk+1)

⎞
⎠ .

15A similar elimination theorem can be used to show that LS is conservative over a weak
background theory of intuitionistic analysis known as IDB1 ([31, Chapter 3]). IDB1 will also
be described in Section 8.3.
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• When A is I∃αk+1B , let T (A, �n) be

∀�g ∈ �n∃�y
⎛
⎝ ∨

1≤i≤k
T

(
B
αk+1
αi ,

−−→
g(y)

)
∨ ∃m ∈ Seq T

(
B,

−−→
g(y), m

)⎞
⎠ .

The goal will be to show that any formula in the range of the B translation
is equivalent to its T translation. I begin with some simple facts that I will
often appeal to without mention.

Proposition 8.9. When A is in the range of the B translation, T (A, �n) is
a formula in the language L0 of second-order arithmetic. Hence T (A, �n) is
positively and negatively stable.

Lemma 8.10. Say �x and �f are the free variables in T (A,m, �n). ThenMCLS
proves:

1. For all �x and �f, if T (A,m, �n) and m � m′, then T (A,m′, �n).
2. For all �x and �f, if for all m′ � m, T (A,m′, �n), then T (A,m, �n).

Proof. Both claims can be proved simultaneously by a straightforward
induction on A. �

I will also define one more notion, which I will call the α-n replacement
of an atom P. This notion only plays a supporting role in the proof of the
elimination theorem, but it will return in Section 9 as a key part of the
conservativity argument there.

Definition 8.11 (α-n replacement). Given an atom P( �α), possibly with
other free variables not shown, define the �α-�n replacement R(P, �α, �n) as
follows. Let αi1(t1), ... , αik (tk) be a list of all occurrences of choice sequence
variables and their arguments, subject to the constraint that no earlier item
on the list itself contains an occurrence of an item later in the list. Let t′j be
the result of successively replacing in tj any occurrences of αil (tl ), for l < j,
with (nil )t′l . Let P′ be the result of successively replacing each occurrence of
αij (tj) with (nij )t′j . Then R(P, �α, �n) is the formula:⎛

⎝ ∧
1≤j≤k

t′j < lh(nij ) ∧ P′

⎞
⎠ ∨

⎛
⎝ ∨

1≤j≤k
t′j ≥ lh(nij ) ∧ 0 = 1

⎞
⎠ .

(For classical functions �g, the �g-�n replacement R(P, �g, �n) can be defined
in exactly the same way.)

This definition is quite wordy, but the idea is simple: we replace occurrences
of α(x) with (n)x , and iterate for nested occurrences such as α2(α1(x)). The
motivation, of course, is that when n is the initial segment of α, this will
provide an L0 formula that is equivalent to the original atom containing
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choice sequence variables. An example of an �α-�n replacement will illustrate
the idea.

Example 8.12. Let P :↔ α1(α2(4)) < α3(α3(2)). Then R(P,α1, α2, α3,
n1, n2, n3) is the formula:(

4 < lh(n2) ∧ (n2)4 < lh(n1) ∧ 2 < lh(n3) ∧ (n3)2 < lh(n3) ∧ (n1)(n2)4
< (n3)(n3)2

)
∨

((
4 ≥ lh(n2) ∨ (n2)4 ≥ lh(n1) ∨ 2 ≥ lh(n3) ∨ (n3)2 ≥ lh(n3)

)
∧ 0 = 1

)
.

It is evident that Pα is provably equivalent to its α-is α replacement:

Proposition 8.13. For each atom P, MCLS � �∀ �α∀�n(∧i isαi = ni →
(P �α ↔ R(P, �α, �n))

)
.

And here is the key theorem.

Theorem 8.14 (Elimination theorem). If A is a formula in the range of the
B translation with free variables among �x, �f, �α, thenMCLS proves

�∀ �x∀f∀ �α
⎛
⎝∧
i,j

¬�∀xαi(x) � αj(x)

→
(
A( �x, �α, �f) ↔ ∀�n

(∧
i

isαi = ni → T (A, �n)

)))
.

This is proved by a lengthy induction on the complexity of A. Although
the proof illustrates some key argument patterns used inMCLS , the details
are somewhat tedious, and hence it is relegated to Appendix B. With the
elimination theorem in hand, it is straightforward to prove the translation
of LS3′.

Theorem 8.15. MCLS � LS3′B.

Proof. LS3′B is

�
( ⎛

⎝AB(α, ��) ∧
∧
i

(α �= �i )B ∧
∧
i,j

(�i �= �j)B
⎞
⎠ →

→ I∃n�
(
SeqB(n) ∧ (α ∈ n)B ∧�∀��

(
(� ∈ n)B ∧

∧
i

(� �= �i )B → AB(�, ��)

)) )
.

We can immediately make some obvious simplifications in light of the fact
that Seq(n) and α ∈ n are equivalent to their B translations and (α 
= �)B

is equivalent to ¬�∀x(α(x) � �(x)).
Suppose that AB(α, ��) and that α and the � ’s are all pairwise distinct.

Let n be isα and let is�i = mi . Then by Theorem 8.14 we have T (AB, n, �m).
Let � ∈ n be an arbitrary choice sequence distinct from all the � ’s. Then
necessarily there are some n′ � n and �m′ � �m such that is� = n′ and is�i =
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m′
i . But by Lemma 8.10, we know T (AB, n′, �m′), so by Theorem 8.14 we

know AB(�, ��). �
I turn now to the translation of LS4. First, recall the definition of a

neighborhood function:

e ∈ K0 :↔ ∀α∃xe(α(x)) > 0 ∧ ∀n(e(n) > 0 → ∀m � n e(m) = e(n)).

This concept has an equivalent arithmetical definition, as the following
lemma shows.

Lemma 8.16. MCLS � (e ∈ K0)B ↔ ∀g∃x e(g(x)) > 0 ∧ ∀n(e(n) > 0 →
∀m � n e(m) = e(n)).

Proof. Observe that (e ∈ K0)B is equivalent to �∀αI∃x e(α(x)) >
0 ∧ ∀n(e(n) 
= 0 → ∀m � n e(m) = e(n)). So clearly it will suffice to show
withinMCLS that �∀αI∃xe(α(x)) > 0 ↔ ∀g∃x e(g(x)) > 0.

First assume �∀αI∃x e(α(x)) > 0. Then, in particular, for a sequence �
such that is� = 〈〉, it is true that I∃x e(�(x)) > 0. Every function g agrees
with the defined segment of �, so for each g it is not inevitable that � and g
disagree. Hence for each g it is possible that ∃x(�(x) = g(x) ∧ e(g(x)) > 0.
So for each g there is an x such that e(g(x)) > 0.

Conversely, assume that ∀g∃x e(g(x)) > 0. Let C (n) :↔ n ∈ Seq ∧
e(n) = 0. So C holds of the sequence numbers that a choice sequence
α could go through and still have e(isα) be 0. By the assumption, C is
quasi-treelike and well-founded. (In fact, C will define a tree.) So by S5 it is
inevitable that α leaves C. That is, it is inevitable that there is some x such
that e(α(x)) > 0. �

This lemma is interesting for two reasons. First, it is technically useful
because it reduces the property (e ∈ K0)B to something arithmetical and
hence stable. Second, it is interesting because it shows that the neighborhood
functions that encode continuous operations from lawless sequences to
natural numbers also encode continuous operations from lawlike sequences
(represented as classical functions) to natural numbers. This is a version of
what has been called the extension principle in intuitionistic mathematics.16

The extension principle admits of very compelling informal plausibility
arguments, but it is nevertheless a substantive claim. That this version of the
principle is actually provable inMCLS is of some interest.

16See [34, p. 651]. The extension principle in full generality says that neighborhood
functions for lawless sequences in fact comprise neighborhood functions for all sequences
of type NN. In a universe that includes sequences which are neither lawless nor lawlike, this
amounts to a stronger claim. In MCLS , however, there are no sequences in between the
lawless and lawlike ones.
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We can also observe that neighborhood functions so defined really do
encompass k-adic neighborhood functions in the way informally sketched
in the discussion of Section 4.

Lemma 8.17. MCLS � (e ∈ K0)B →∀α1 ... ∀αkI∃x∃n ∈ Seq(lh(n) = x ∧
∀y < x (n)y = 〈α1(y), ... , αk(y)〉 ∧ e(n) > 0).

Proof. Consider the formula C (n) :↔ e(n) = 0 ∧ ∀x < lh(n)∃y1, ... , yk
x = 〈y1, ... , yk〉. The �-downward closure C (m) :↔ ∃n(C (n) ∧m � n is
then quasi-treelike, and by Lemma 8.16, C will be well-founded. So
inevitably �α will leave C . That is, inevitably ∃x∃n ∈ Seq(lh(n) = x ∧ ∀y <
x (n)y = 〈α1(y), ... , αk(y)〉 ∧ e(n) > 0). �

Theorem 8.18. MCLS � LS4B0 .

Proof. Applying some obvious simplifications whose validity we have
already established, LS4B0 is

�∀ �α�
⎛
⎝∧
i,j

¬�∀xαi(x) � αj(x) → I∃fAB( �α,f)

⎞
⎠

→ I∃e ∈ K0�∀n�

⎛
⎝e(n) > 0 → I∃f�∀ �α ∈ n

�

⎛
⎝∧
i,j

¬�∀xαi(x) � αj(x) → AB( �α,f)

⎞
⎠

⎞
⎠ .

Suppose the antecedent of this large conditional holds. Then by Theo-
rem 8.14 we know that for any pairwise distinct α’s, ∀�n[

∧
i isαi = ni →

∀�g ∈ �n∃�y∃fT (AB,
−−→
g(y))].

Define the function e as follows. If n codes a k-tuple of sequences �n
but ¬∃fT (AB, �n), then e(n) = 0. If n codes a k-tuple of sequences �n and
∃fT (AB, �n), then e(n) = 1. And, just so e is a well-defined function, if n
does not code a k-tuple of sequences, put e(n) = 2. To ensure that e is a
neighborhood function, we need to show that ∀�g∃x e(g(x)) > 0. For this,
given the suppositions in place, it will suffice to show that for all �g there
is some x such that it is possible to have

∧
isαi = gi(x). Using S4 and

S9, we can argue that for any functions g1, ... , gk it is possible for there to
exist distinctα1, ... , αk with respective initial segments g1(0), ... , gk(0). Thus

∀�g∃�y∃fT (AB,
−−→
g(y)). This ensures that e is indeed a neighborhood function.

Now suppose e(n) > 0. If e(n) = 2, let f be arbitrary; since there will not
be any �α ∈ n in that case, the whole antecedent of our big conditionalLS4B

0
will hold trivially. But if e(n) = 1, then n must code a k-tuple of sequences �n
and we know that ∃fT (AB, �n). Let f be any such witness. By Lemma 8.10,
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we also know that for any �m � �n,T (AB, �m) (where f occurs as a parameter).
For any k distinct choice sequences �α ∈ n, there will be some �m � �n such
that

∧
i is αi = mi ; and hence by Theorem 8.14, AB( �α,f) will hold. �

As a slight digression, note that in this proof we had to appeal to an
instance of the axiom of choice for a formula ∃fT (AB, �n)—actually, a
boolean combination of this formula with some Δ0

1 formulas. The complexity
of T (AB, �n) can be bounded in terms of the complexity of A, but there are
formulasT (AB, �n) of arbitrarily high quantificational complexity. So, unlike
the proofs ofLS1,LS2, andLS3, this proof actually requires the strength of
MCLS with the full axiom of choice. It is open, however, whether a different
proof might use weaker assumptions.

Returning now to our discussion of LS4, recall that the official version of
LS4 is formulated with the inductively defined class of functions K in place
of the explicitly defined class K0. To directly define an analogous class K in
MCLS , I would have to extend MCLS to a stronger theory such as third-
order arithmetic. Rather than do that, however, I will simply show that K0

satisfies the inductive closure conditions and then show schematically that
K0 is included in any other class that satisfies the inductive conditions. Then
it will follow that any theory extendingMCLS which is capable of formally
defining K will interpret LS4. The limitation of MCLS is merely in what
definitions it can formalize, not in its deductive strength.

Make the following two abbreviations, which are schematic in the
formula A:

• K1(A) :↔ ∃y > 0∀x f(x) = y → f ∈ A.
• K2(A) :↔ [f(0) = 0 ∧ ∀x∃g ∈ A(∀n ∈ Seq f(〈x〉�n) = g(n))] →
f ∈ A.

Then the following theorem is essentially the combination of Propositions
4.8.5 and 4.8.7 in [34].

Theorem 8.19. MCLS proves:

1. K1(K0) ∧ K2(K0).
2. K1(A) ∧ K2(A) → ∀f(f ∈ K0 → f ∈ A).

Proof. (1) That K1(K0) is obvious. To see that K2(K0) holds, suppose
f satisfies the antecedent of K2(K0), but f /∈ K0. So ∃h∀xf(h(x)) =
0 ∨ ∃n(f(n) > 0 ∧ ∃m � n f(m) 
= f(n)). The possibility that ∃n(f(n) >
0 ∧ ∃m � n f(m) 
= f(n)) is ruled out by the fact that f(0) = 0 ∧ ∀x∃g ∈
K0(∀n ∈ Seq f(〈x〉�n) = g(n)). So we must have that ∃h∀xf(h(x)) = 0.
Let h ′(x) := h(x + 1). But then let g ∈ K0 be the witness forf(〈h(0)〉�n) =
g(n). So ∀xg(h ′(x)) = 0, which contradicts g ∈ K0.

(2) Suppose K1(A) ∧ K2(A) but that we have some f ∈ K0 but f /∈ A.
We can uniformly define the functions gn so that gn(m) = f(n�m). Now
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since A satisfies K2, we know that for every n, if gn /∈ A, then there is an
extension n′ � n with length lh(n) + 1 such that gn′ /∈ A. Thus by the axiom
of dependent choice there is a function H enumerating these n such that
gn /∈ A. Then it is easy to define a function h such that h(x) = H (x + 1).
Since f is a neighborhood function, there will be some x such that for
all m � h(x), f(m) = f(h(x)) > 0. But then gm is a constant, non-zero
function, so gm ∈ A, a contradiction. �

This theorem shows that K0 is closed under the inductive clauses K1 and
K2 and, schematically, for any other class which is also so closed, K0 is
included in that class. Since this latter fact is schematic, any extension of
MCLS that proved the existence of a least fixed point for the inductive clauses
K1 and K2 would prove thatK0 was that fixed point. Such an extension might
for instance frameMCLS in a background third-order arithmetic, or might
extend the language with a new constant K for the fixed point, or might use
some other means. More to the point, for present purposes, any proof in
LS that appeals to the minimality of K will appeal to a particular instance
A ⊆ K ; this can then be interpreted inMCLS asA ⊆ K0, which we have just
seen to be provable. All that matters is that the axiom of dependent choice
can be applied to formulas of the form gn /∈ A.

8.3. Elementary analysis and IDB. I have shown so far thatMCLS proves
the B translations of the axioms LS1–LS4. The theory LS, however, is
based on a background theory called IDB1.17 (IDB stands for “inductively
defined Brouwer-operations”.) Thus, the last thing to do to complete our
interpretation of LS is to show thatMCLS proves the B translations of the
axioms of IDB1.
IDB1 itself results from starting with the theory of elementary analysis

known as EL1 and adding to the language a constant K and axioms
K1(K), K2(K) and the schema K1(A) ∧ K2(A) → K ⊆ A. This portion of
the theory is handled by translating K asK0 and appealing to Theorem 8.19.

The language of EL1 consists of the language of arithmetic plus function
symbols f, g, ... , an abstraction operator �, and a recursor R. The axioms
are those of Heyting Arithmetic HA, with induction extended to the full
language of EL1, the conversion axiom:

(�xt)s = txs (CON)

and recursion axioms, where Φ is some unary functor:

R(t1,Φ, 0) = t, (REC-1)

R(t1,Φ, S(t2)) = Φ(〈R(t1,Φ, t2), t2〉), (REC-2)

17My exposition of IDB1 is primarily based on [34], where elementary analysis is described
in Section 3.6 and IDB1 in Section 12.3. See also [31], ch. 3.
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and finally, the axiom of choice for numbers and functions:

∀x∃fA(x,f) → ∃g∀xA(x, g(x, ·)). (AC-NF)

It is clear that we can omit � andR from the development ofEL1 by appeal
to the axiom of choice. Given any proof in EL1 that includes instances
�x.t(x), we know ∃f∀xf(x) = t(x), and then replace each instance of
�x.t(x) with f(x) throughout the proof. (In case there are instances
of �-abstracts that themselves contain �-abstracts, we work from the
inside out, gradually replacing more and more �-abstracts.) Similarly, the
axiom of choice allows us to prove the existence of a function g such that
∀xg(x) = R(t1,Φ, x), so we can replace instances of R by function variables.
Then since AC holds inMCLS , we can interpret these modified proofs from
which occurrences of � and R have been removed.

Next, we can observe that AC-NF holds inMCLS . SinceMCLS includes
second-order arithmetic, this is a standard result.

Proposition 8.20. MCLS � AC-NF.

Proof. Suppose ∀x∃fA(x,f), and for simplicity suppose f is unary.
Define a relation f1 	f2 :↔ ∃x(f1(x) < f2(x) ∧ ∀y < xf1(y) = f2(y)).
Then defineg(x, y) = z :↔ ∃f[A(x,f) ∧ f(y) = z ∧ ∀f′(A(x,f′) → f	
f′)]. To show that g is well-defined, we need to show that among the
functions satisfying A(x,f) there indeed one which is 	-least among them.
Consider the set X = {〈y, z〉 : ∃f1∃f2[A(x,f1) ∧ A(x,f2) ∧ f1(y) = z <
f2(y) ∧ ∀w < yf1(w) = f2(w)}. In other words, 〈y, z〉 is the argument-
value pair that witnesses f1 	f2. Now if there were no 	-least function
satisfying A, then (using QF-DC) the lexicographic ordering of X would
not be well-founded, which is impossible. �

Finally, the axioms of HA—which are, of course, the same as the axioms
of PA—will be equivalent to their B translations by stability. Putting all this
together, we have the main theorem:

Theorem 8.21. MCLS interprets the theory LS under the translation B.

Obviously, this interpretation is not faithful. That is, there are non-
theorems of LS whose B translations will be theorems of MCLS . Indeed,
there will be non-theorems A of EL1 such that MCLS � AB. This is a
consequence of the fact that the arithmetic portion ofMCLS is both classical
and equivalent to its B-translation.

The fact thatELB
1 is equivalent inMCLS to the result of erasing all modal

operators is the reason we have had to include such strong choice principles
and the full schema of induction. AC-NF being an axiom of EL1 requires
that AC-NFB, and hence AC-NF itself, be a theorem of MCLS . Likewise,
since EL1 includes every instance of the schema of induction, MCLS also
needs to include every instance in order to interpret EL1 via B.
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On the other hand, the interpretation of LS1–LS3 required no essential
use of induction and only Δ0

1-AC. (In inferring that various formulas were
quasi-treelike, I often implicitly assumed that function-existence was closed
under recursive operations.) On the other hand, as I observed above, the
interpretation of LS4 seems to require the full axiom of choice. Given that
LS4 requires the existence of a sufficiently inclusive class of neighborhood
functions, it is perhaps not surprising that this requires a commitment
to strong function existence principles. With the exception of assuming
that there are enough classical functions, however, the principles about
choice sequences per se require very little mathematical strength. They
are all provable on the basis of our philosophically well-motivated axioms
S1–S9. And as we will see in the next section, these axioms have very little
mathematical strength on their own.

§9. MCLS and classical theories. In this section I study the relation
between the modal three-sorted theoryMCLS and the standard non-modal
two-sorted theories of second-order arithmetic. Given a familiar theory Z of
second-order arithmetic, letMCLS(Z) be the theory likeMCLS except that
the arithmetical axioms are those of Z. For instance, MCLS(RCA0) is the
theory consisting of axioms A0–A9, and the induction schema restricted to
Σ0

1 formulas, AC restricted to Δ0
1 formulas, arithmetic stability axioms, and

the axioms S1–S9. Then the main result of this section will be that if Z is any
subsystem of second-order arithmetic extending RCA0, then MCLS(Z) is
conservative over Z. (The choice ofRCA0 is so that the basic coding of finite
sequences and so forth is possible, as this is necessary for the meaningfulness
of several of the sequence axioms.)

To prove this, I will show how, given a countable model M of Z, we can
define a partial order P that can serve as a Kripke model for MCLS . The
key to this result is providing a non-standard interpretation of I in P.18

To distinguish this non-standard interpretation of the modal vocabulary
from the standard, intended interpretation given in Section 4, I will use the
expression “forcing” and the symbol � to refer to the interpretation in P.19

Then I will show that (1) all arithmetic formulas that are true in M are forced
at everyw ∈ P, (2) all the axioms ofMCLS(Z) are also forced at everyw ∈ P,
and (3) that forcing is closed under S4I deducibility. Conservativity follows
from these three facts.

18The technique of giving a non-standard interpretation of I is not original to me, going
back at least to [10]. What is novel, however, is the way that I use M to provide this non-
standard interpretation.

19Despite the notation, there is no real connection to either forcing in the sense of Beth
semantics for intuitionism or in the sense of set theory.
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Let M be a countable model of some subsystem of second-order arithmetic
Z extending RCA0. |M | will denote the first-order domain of Z, and SM
its second-order domain, that is, the functions of M. Let 〈w ′

k〉k∈N be an
enumeration of the functions that map natural numbers to SeqM and that
are non-zero on a finite set. (Recall that 0 codes the empty sequence 〈〉.)
Further, letw ′

0 be the constant 0 function. Let 〈nk〉k∈N be an enumeration of
SeqM . Since M is countable, both of these enumerations will exist, though
not necessarily in M. Now define a new enumeration 〈wk〉k∈N of functions as
follows:w0 = w ′

0, and for k > 0, if i1, ... , ik are the least arguments on which
w ′
k is 0, put wk(ij) = nj for 1 ≤ j ≤ k and otherwise let wk(x) = w ′

k(x).
Let PM be the set of functions wk , and define the relation w � u to mean

that whenever w(i) = n > 0 we have u(i) = m, for some m � n. Clearly
(PM,�) is a partial order with least element the constant zero function w0.
In general I will omit the subscript and just write P.

Also, define a variable assignment to be a function from choice sequence
variables to natural numbers. I will use 
, possibly subscripted, to denote
a variable assignment; 
[α �→ i ] will denote the variable assignment that
agrees with 
 except possibly on α, which 
 maps to i. Since the functions
w serve as the worlds in our Kripke model, the idea is that, when 
(α) = i ,
w(i) is interpreted as the initial segment of α.

Recall the definition of the α, n replacement R(P,α, n) from Defini-
tion 8.11. In particular, note that if �α are all the choice sequence variables
occurring in P, then R(P, �α, �n) is arithmetic, and if P has no instances of
choice sequence variables, then R(P,α, n) is just P.

For the interpretation of I, we will need to define two new notions:
the function w[fi(xi)]I , and an [fi ]I -chain. This can be pronounced
“f -I-chain.”

Definition 9.1 (w[fi(xi)]I ; [fi ]I -Chain). Suppose we are given a node
w ∈ P and some functions fi ∈ SM such that fi ∈ w(i) and numbers xi ∈
|M | (with i ranging over some finite index set I of true natural numbers).
Define the function w[fi(xi)]I as follows:

• If j /∈ I , then w[fi(xi)]I (j) = w(j).
• If i ∈ I but xi < lh(w(i)), then w[fi(xi)]I (i) = w(i).
• If i ∈ I and xi ≥ lh(w(i)), then w[fi(xi)]I (i) = fi(xi – 1).

Note that this will be a well-defined function, but there is no guarantee that
it will be a member of P. Now define an [fi ]I -chain above w to be a maximal
chain C above w such that:

• For every u ∈ C there are some xi such that u and w[fi(xi)]I agree on
arguments from I.

• For every xi ∈ |M | there is some u ∈ C such that for all i ∈ I , u(i) �
fi(xi).
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It is not difficult to see that f -I-chains exist:

Lemma 9.2. For any w ∈ P, any non-empty finite set of natural numbers
I, and any functions fi ∈ SM (indexed by i ∈ I ) such that fi ∈ w(i), there
exists an [fi ]I -chain C above w.

Proof. It is easy to see that for any u ∈ P that agrees with w[fi(xi)]I
on I, and any yi > xi , there is some v ∈ P such that v � u and w[fi(yi)]I
and v agree on I. Let 〈xj〉j∈N be cofinal in |M | (under the <M relation),
and let vi be an enumeration of worlds such that vj and w[fi(xj)]I agree
on I. For each j we can (using the axiom of choice) define a maximal set
Cj ⊆ {u : vj � u � vj+1} that is linearly ordered by �. Then C =

⋃
j Cj is

an [fi ]I -chain. It is easy to see that it satisfies the two conditions:

• For every u ∈ C there are some xi such that u and w[fi(xi)]I agree
on I.

• For every xi ∈ |M | there is some u ∈ C such that for all i ∈ I , u(i) �
fi(xi).

And the fact that C is a maximal chain above w follows from the fact that
the enumeration 〈xj〉j∈N was cofinal in |M |. �

Now we can define the forcing relation that will provide an interpretation
ofMCLS(Z). I will assume that the background metatheory has a name for
every x ∈ |M | and f ∈ SM .

Definition 9.3. Define the forcing relation w, 
 � A inductively as
follows:

• w, 
 � P iffM |= R(P, �α,w(
(α))).20

• w, 
 � ¬A iff w, 
 � A.
• w, 
 � A ∧ B iff w, 
 � A and w, 
 � B .
• w, 
 � A ∨ B iff w, 
 � A or w, 
 � B .
• w, 
 � A→ B iff w, 
 � A or w, 
 � B .
• w, 
 � ∀xA iff ∀x(w, 
 � A).
• w, 
 � ∃xA iff ∃x(w, 
 � A).
• w, 
 � ∀fA iff ∀f(w, 
 � A).
• w, 
 � ∃fA iff ∃f(w, 
 � A).
• w, 
 � ∀αA iff ∀i(w, 
[α �→ i ] � A).
• w, 
 � ∃αA iff ∃i(w, 
[α �→ i ] � A).
• w, 
 � �A iff ∀u � w(u, 
 � A).
• w, 
 � ♦A iff ∃u � w(u, 
 � A).

20Since R(P, α,w(
)) may have free variables, this definition requires that M |= A is
meaningful for formulas A as well as sentences. This is of course easy to accomplish by
appealing to a notion of satisfaction, but since the details will not matter here I leave it
implicit in the background.
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• w, 
 � IA iff for every non-empty finite index set I ⊇ {
(α) :
α is free in A}, every fi ∈ w(i), and every [fi ]I -chain C, there is
some u ∈ C such that u, 
 � A.

The intuitive idea behind the clause for I is that, fixing some fi ’s, the
extensions w[fi(xi)]I of w trace out a possible future history of how the
choice sequences assigned to members of I evolve. Considering all index
sets I that include at least the free variables of A is a way of saying that this
happens for every possible future history, which is the intended meaning
of I. The extra complications involving the chain C come from the fact
that the function w[fi(xi)]I may not be in P. An [fi ]I -chain is a way of
approximating the path of extensions w[fi(xi)]I within P.

Note that a formula w, 
 � A may have free variables; in fact, the free
variables of this formula will be w, 
, and the free number and classical
function variables of A.

As usual, we can say that w � A when w, 
 � A for all 
. And it is easy
to see that if A is a sentence, then w, 
 � A for some 
 iff w, 
 � A for all 
.

As an exercise in applying definitions, one can verify the following simple
facts:

Proposition 9.4. 1. w, 
 � α ∈ n iff w(
(α)) � n.
2. If w, 
 � α ∈ n then w, 
 � �α ∈ n.
3. w, 
 � isα = n iff w(
(α)) = n
4. w, 
 � �∀xα � � iff w(
(α)) = w(
(�)).

It is also easy to see that the forcing definition coincides with truth in M
for arithmetical formulas:

Theorem 9.5. If A is a formula of the language of Z and M is any Z-model,
then for any w, w � A iffM |= A.

Proof. Induction on the complexity of A. Straightforward. �
Next, we want to observe that the axioms ofMCLS are forced.

Theorem 9.6. Every axiom ofMCLS(Z) is forced at every w ∈ P.

This proof just consists in checking each axiom. The details are in
Appendix C. Then, by checking that each axiom of S4I is forced everywhere,
and that the inference rules of S4I preserve the property of being forced
everywhere, we can establish:

Theorem 9.7. Every theorem ofMCLS(Z) is forced at every w ∈ P.

The proof, again, is in Appendix C. In summary, the theorems of this
section entail our conservativity result.

Corollary 9.8. If Z is any subsystem of second-order arithmetic extending
RCA0, and A is any formula in the language of second-order arithmetic, then
MCLS(Z) � A only if Z � A.
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Proof. SupposeZ � A. Then there is a model M of Z such thatM 
|= A,
and by the Löwenheim–Skolem Theorem we may assume M is countable.
Then forming P as above and taking any w ∈ P, w � A by Theorem 9.5. So
by Theorem 9.7,MCLS(Z) � A. �

§A. Axioms for free many-sorted S4. I present a formulation of S4 to
which the axioms M1–M7 can be added to obtain S4I . This axiomatization
is based on a standard list such as can be found in [19, 292ff], but with
some tweaks in the quantifier rules. We have three sorts of variables, namely
x, y, z for individuals, f, g, h for classical functions, and α, �, � for choice
sequences, with the latter two of course being distinct sorts of functions on
individuals.

M0.0 Any instance of a propositional S4 theorem schema.
M0.1 (∀xAx ∧ t = t) → At, when x is an individual variable and t is

any individual term.
M0.2 ∀fAf → Ag, letting g be any classical function term (since there

are more than just variables).
M0.3 ∀�A� → Aα.
M0.4 ∀o(A→ B) → (∀oA→ ∀oB), where o is a variable of any type.
M0.5 A↔ ∀oA, when o is not free in A, for o a variable of any type.
M0.6 ∀x(x = x).
M0.7 (t1 = t1 ∧ t2 = t2 ∧ t1 
= t2) → �t1 
= t2.
M0.8 t1 = t2 → (At1 → At2).
M0.9 Pt → t = t, for P any atom and t any individual term.
M0.10 �∀oA→ ∀o�A, for o a variable of any type.
M0.11 From � A→ B and � A, infer � B .
M0.12 From � A infer � �A.
M0.13 From � A infer � ∀oA, for o a variable of any type.

Since this is a negative free logic, the schema t = t is being used as an
existence predicate for t. Completeness of this axiomatization can be proved
using the standard canonical model technique.

Given that this logic is meant to underlie MCLS , it is appropriate to
assume that there are individual constants and constant terms for functions
of the same type as f, but that there are only function variables, not terms,
of type α.

§B. Proof of the elimination theorem.

Lemma B.1. Let P( �α, �x, �f) be an atom with free variables shown. Then in
MCLS , we have that necessarily for all �x, and �f:

1. ∀α1 ... ∀αk∃n1 ... ∃nk
(

�α ∈ �n ∧
(
P(α1, ... , αk, �x, �f) → ∀g1 ∈ n1 ... ∀gk

∈ nkP(g1, ... , gk, �x, �f)
))

.
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2. P( �α, �x, �f) → ∃�n( �f ∈ �n ∧R(P, �f, �n)).
3. ∀n1 ... ∀nk

(
∀g1 ∈ n1 ... ∀gk ∈ nkP(g1, ... , gk, �x, �f) → ∀α1 ∈ n1 ... ∀αk

∈ nkIP(α1, ... , αk, �x, �f)
)

.

Proof. (1) In light of Proposition 8.13, it suffices to show, reasoning
within MCLS , that R(P, �α, �n) → ∀�g ∈ �nP(�g). Suppose that R(P, �α, �n)
holds. Then for P′ as in Definition 8.11, we know P′ holds, and for every
occurrence of (nij )t′j in P′, t′j < lh(nij ). So for any terms sj , if sj = (nij )t′j ,
the substitutionP′[(ni1)t1/s1, ... , (nik )tk /sk] will also hold. For any �g ∈ �n, we
will have gij (t

′
j) = (nij )t′j ), and hence P′[(ni1)t′1/gi1(t

′
1), ... , (nik )t′k /gik (t

′
k)].

That is, P(�g), as required.
(2) Assume for simplicity that there is only one function variable f ; the

argument easily generalizes to any finite number of functions �f. Suppose
P(f) holds, and suppose f(t1), ... , f(tk) are all the occurrences of f in
P. Provably there is some z which is the greater than each of t1, ... , tk .
Let n = f(z), so for all x ≤ s , (n)x = f(x). In particular, (n)ti = f(i) for
each i ≤ k. Thus the result P′ of successively substituting (n)tj for each
occurrence f(tj) in P will also hold. That is, R(P,f, n) will hold.

(3) Let �n be arbitrary, and suppose ∀�g ∈ �nP �g. Consider the formula
C ( �m) :↔ ¬R(P,α1, ... , αk, n

�
1 m1, ... , n

�
k mk). Clearly C is quasi-treelike

and by the supposition and claim (2), C is well founded. So by S5
the �α’s will inevitably leave C. That is, inevitably

∧
i isαi = n�i mi ∧

R(P,α1, ... , αk, n
�
1 m1, ... , n

�
k mk), and hence inevitably P( �α).

(Although it is not important for what follows, we can note that the
arguments for (1) and (2) still go through when there are other choice
sequence parameters �� in P.) �

Note that atoms are positively stable, so this lemma also holds with �P
in place of P. Now we are able to prove the elimination theorem.

Proof of Theorem 8.14. We proceed by a (lengthy) induction on the
complexity of A. For the sake of brevity, we may take it as a background
assumption for the duration of this proof that distinct choice sequence
variables αi , αj denote distinct choice sequences and are not necessarily
coextensive.

Basis step: A will be of the form I�P, for some atom P.
(⇒) Suppose is αi = ni but that ∃�g ∈ �n∀�y∃�h ∈ g(y)¬P �h. Then by

Lemma B.1(1), as long as each αi and gi agree—that is, as long as each
is αi = gi(y) for some y—we will have that ¬P �α and hence ¬�P �α. In other
words, if �P �α, then some αi and gi disagree. So by M1, if it is inevitable
that �P �α, then it is inevitable that some αi and gi disagree. Since by S8 it
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is not inevitable that any αi and gi disagree, it follows that ¬I�P �α. (This
pattern of reasoning will be used often.)

(⇐) Assume that isαi = ni that ∀�g ∈ �n∃�y∀�h ∈ g(y)P �h. Consider the
formula C ( �m) :↔ �n � �m ∧ ∃�h ∈ �m¬P �h. C will be quasi-treelike,21 and by
our assumption it is well-founded. Hence it is inevitable that �α leaves C. That
is, it is inevitable that

∧
i isαi = si ∧ ∀�h ∈ �sP �h. Then with Lemma B.1(3),

this entails IIP �α and hence, because atoms are positively stable, I�P �α.
We turn now to the induction step, broken into the obvious series of cases.
Case 1: A is B ∧ C . This case follows directly from i.h.
Case 2: A is I(B ∨ C ).
(⇒) Suppose I(B ∨ C ), and let isαi = ni . Let �g ∈ �n be arbitrary. Then

it is not inevitable that any gi and αi disagree. Since it is inevitable that
B ∨ C , it must be possible that �g and �α agree and that Bα ∨ Cα. That is,
♦∃�y(

∧
i isαi = gi(yi) ∧ (Bα ∨ Cα)). Then by i.h.T (B, g1(y1), ... , gk(yk)) ∨

T (C, g1(y1), ... , gk(yk)). Since �g ∈ �n was arbitrary, this gives the desired
result.

(⇐) Suppose isαi = ni and ∀�g ∈ �n∃�y(T (B, g1(y1), ... , gk(yk)) ∨
T (C, g1(y1), ... , gk(yk)). Let C ( �m) be the formula

∧
i ni � mi ∧

¬T (B, �m) ∧ ¬T (C, �m). C will be quasi-treelike and well-founded, so it
is inevitable that �α leaves C. So it is also inevitable that

∃ �m
(∧
i

isαi = mi ∧ (T (B, �m) ∨ T (C, �m))

)
.

Hence by i.h. I(B �α ∨ C �α).
Case 3: A is �¬B .
(⇒) Suppose for reductio that�¬B �α and isαi = ni , but that¬T (�¬B, �n).

By the definition of T, there are some mi � ni such that T (B, �m). But
♦

∧
i isαi = mi , so by i.h. ♦B �α, a contradiction.

(⇐) Suppose ¬�¬B �α, i.e., ♦B �α, and let isαi = ni . It follows that
♦∃m1 � n1 ... ∃mk � nk(

∧
i isαi = mi ∧ B �α)). From i.h. this gives ♦∃m1 �

n1 ... ∃mk � nk(
∧
i isαi = mi ∧ T (B, �m)), so it is not the case that ∀m1 �

n1 ... ∀mk � nk¬T (B, �m). That is, ¬T (A, n), as required.
Case 4: A is �(B → C ).
(⇒) Suppose �(B �α → C �α) and let isαi = ni . Let m1 � n1, ... , mk � nk

be arbitrary, and suppose T (B, �m). We know ♦
∧
i isαi = mi , so by i.h.

♦(isαi = mi ∧ B �α). Thus ♦(isαi = mi ∧ C �α), and by i.h. T (C, �m). So
∀m1 � n1, ... , mk � nk(T (B, �m) → T (C, �m)).

21Technically, C is not quasi-treelike, and we should officially consider the formula
C ′( �m′) :↔ ∃ �m � �m′C ( �m). This complication does not affect the argument, however, so
in what follows I will omit it for simplicity.
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(⇐) Suppose isαi = ni and ∀m1 � n1, ... , mk � nk(T (B, �m) → T (C, �m)).
Now, �∃m1 � n1, ... , mk � nk

∧
i isαi = mi . So, necessarily: if B �α, then by

i.h. T (B, �m), from which our initial assumption gives T (C, �m), and then by
i.h. C �α. Thus, �(B �α → C �α).

Case 5: A is �∀xB . Both directions can be proved simultaneously. By the
i.h. we have

�∀x
(
B �α ↔ ∀�n

(∧
i

isαi = ni → T (B, �n)

))
.

This gives us

�∀xB �α ↔ �∀x∀�n
(∧
i

isαi = ni → T (B, �n)

)
,

which entails

�∀xB �α ↔ �∀�n
(∧
i

isαi = ni → ∀xT (B, �n)

)
.

Now, if
∧
i isαi = ni , then �∃m1 � n1 ... ∃mk � nk

∧
i isαi = mi and also

∀m1 � n1 ... ∀mk � nk♦
∧
i isαi = mi . This gives

�∀�n
(∧
i

isαi = ni → ∀xT (B, �n)

)
↔ �∀�n

(∧
i

isαi = ni → ∀ �m � �n∀xT (B, �m)

)
.

Finally, note that

�∀�n
(∧
i

isαi = ni → ∀ �m � �n∀xT (B, �m)

)

↔ ∀�n
(∧
i

isαi = ni → ∀ �m � �n∀xT (B, �m)

)
.

The left-to-right part is trivial. For the right-to-left, consider three cases.
First, if �n is incompatible with −→isα, then

∧
i isαi = ni is necessarily false.

Second, if �n = −→isα, then by Lemma 8.10, ∀ �m � �n∀xT (B, �m) is true and
hence by stability necessarily true. Third, if �n � −→isα, then from the fact
that ∀m � −→isα∀xT (B, �m) it also follows that ∀ �m � ∀�n∀xT (B, x) is true,
and hence necessarily true. Putting this all together, we have our desired
equivalence:

�∀xBα ↔ ∀�n
(∧
i

isαi = ni → ∀ �m � �n∀xT (B, �m)

)
.

Case 6: A is I∃xB .
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(⇒) Suppose I∃xB �α and that isαi = ni . By i.h. we have �∀x[B �α →
∀ �m(

∧
i isαi = mi → T (B, �m))]. This entails I∃xBα → I∃x∀ �m(

∧
i isαi =

mi → T (B, �m)), and so by modus ponens I∃x∀ �m(
∧
i isαi = mi →

T (B, �m)). Since x is not free in isαi = mi , this entails I∀ �m(
∧
i isαi =

mi → ∃xT (B, �m)). Now suppose for reductio that ∃g1 ∈ n1 ... ∃gk ∈
nk∀y1 ... ∀yk¬∃xT (B, g1(y1), ... , gk(yk)). Then as long as each αi and
gi agree—that is, as long as for some y1, ... , yk ,

∧
i isαi = gi(yi)—it

will not be the case that ∃xT (B, isα1, ... , isαk). But since all the αi ’s
and gi ’s agree so far, it is not inevitable that they ever disagree. Thus,
¬I∀ �m(

∧
i isαi = mi → ∃xT (B, �m)), which is a contradiction.

(⇐) This is exactly the same as “⇐” in Case 2, except that we work with
the formula C ( �m) :↔ �n � �m¬∃xT (B, n�m).

Cases 7 and 8: A is �∀fB or I∃fB . These are exactly the same as Cases 5
and 6.

Case 9: A is�∀�B( �α, �). First observe that by Proposition 8.7,�∀�B( �α, �)
is equivalent to �

∧
i B
�
αi ( �α) ∧�∀�(

∧
i ¬�∀x�(x) � αi(x) → B( �α, �). I

will treat the two conjunctions as separate cases.
By i.h. we know that for each i, B�αi ( �α) ↔ ∀�n (∧

i isαi = ni → T (B�αi , �n)
)
.

And hence by Lemma 8.10, B�αi ( �α) ↔ ∀�n (∧
i isαi = ni → ∀ �m �

�nT (B�αi , �m)
)
. This entails

�B�αi ( �α) ↔ �∀�n
(∧
i

isαi = ni → ∀ �m � �nT (B�αi , �m)

)
.

By the argument from Case 5, we know

�∀�n
(∧
i

isαi = ni → ∀ �m � �nT (B�αi , �m)

)

↔ ∀�n
(∧
i

isαi = ni → ∀ �m � �nT (B�αi , �m)

)
.

Putting these together gives our result.
Turn now to the other case,�∀�(

∧
i ¬�∀x�(x) � αi(x) → B(�, �α). From

i.h. we know

∀�
(∧
i

¬�∀x�(x) � αi (x)

→
(
B(�, �α) ↔ ∀�n∀nk+1

(∧
i

isαi = ni ∧ is� = nk+1 → T (B, �n, nk+1)

)))
.
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This gives us:

�∀�
(∧
i

¬�∀x�(x) � αi(x) → B( �α, �)
)
↔

�∀�
(∧
i

¬�∀x�(x) � αi(x) → ∀ �m∀mk+1

(∧
i

isαi = mi ∧ is� = mk+1 → T (B, �m,mk+1)

))
.

For every mk+1 it is possible that there is a � distinct from all the α’s with
is� = mk+1. (This follows from S4 and S9.) Conversely, for every � there
will necessarily be some mk+1 that is its initial segment. And moreover, if
isαi = ni , then necessarily there is some �m � �n such that isαi = ni ; and for
each �m � �n this is possible. From all this we may infer:

�∀�
(∧
i

¬�∀x�(x) � αi(x) → B( �α, �)
)

↔ ∀�n
(∧
i

isαi = ni → ∀ �m � �n∀mk+1T (B, �m,mk+1)

)
.

Putting these two cases together gives us the desired result:

�∀�B( �α, �) ↔ ∀ �m � �n
⎛
⎝ ∧

1≤i≤k
T (B�αi , �m) ∧ ∀mk+1T (B, �m,mk+1)

⎞
⎠ .

Case 10: A is I∃�B .
(⇒) Suppose I∃�B( �α, �) and let isαi = ni . Then for every �g ∈ �n it is

not inevitable that any gi and αi disagree. So by Proposition 4.2, we have
♦∃�y(

∧
i isαi = gi(yi) ∧ ∃�B). Again we consider two possible ranges of

values for the witness �: either for some i, �∀x�(x) � αi(x), or not.
In the first case, by i.h. we have ♦∃�y(

∧
i isαi = gi(yi) ∧ T (B�αi , g1(y1), ... ,

gk(yk)), from which we get ∃�y T (B�αi , g1(y1), ... , gk(yk)).
In the second case, we know from i.h. that

∃�
(∧
i

¬�∀x�(x) � αi(x) ∧ B
)

→ ∃�
(∧
i

¬�∀x�(x) � αi(x) ∧ ∀ �m∀mk+1

(∧
i

isαi = mi ∧ is� = mk+1 → T (B, �m,mk+1)

))
.
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Now, necessarily for all � there is some mk+1 that is its initial segment, so
this simplifies to

∃�
(∧
i

¬�∀x�(x) � αi (x) ∧ B
)
→ ∀ �m

(∧
i

isαi = mi → ∃mk+1T (B, �m,mk+1)

)
.

Recall we already had ♦∃�y(
∧
i isαi = gi(yi) ∧ ∃�B), so this gives us

∃�y∃mT (B,
−−→
g(y), mk+1).

Putting these two cases together, and since �g ∈ �n was arbitrary, we have
our desired conclusion:

∀�g ∈ �n∃�y
(∨
i

T (B�αi , g1(y1), ... , gk(yk)) ∨ ∃mk+1T (B, g1(y1), ... , gk(yk), mk+1)

)
.

(⇐) Suppose isαi = ni and that

∀�g ∈ �n∃�y
(∨
i

T (B�αi , g1(y1), ... , gk(yk)) ∨ ∃mk+1T (B, g1(y1), ... , gk(yk), mk+1)

)
.

LetC ( �m) be the formula �m � �n ∧ ∧
i ¬T (B�αi , �m) ∧ ¬∃mk+1T (B, �m,mk+1).

Clearly C is quasi-treelike and by assumption it is well-founded, so inevitably
�α will leave C. If �α leaves C by satisfying one of the disjuncts T (B�αi ,

−→isα),
then by i.h. we have B�αi and hence ∃�B . On the other hand, if �α leave
C by satisfying ∃mk+1T (B,−→isα,mk+1), then we cannot necessarily infer
∃�B because there may not be a � with an initial segment identical to (or
extending, by Lemma 8.10) the witness mk+1. What we do know, however,
is that there will inevitably be some such �. So if �α leaves C, then it follows
that I∃�B . So, since it is inevitable that �α leaves C, we infer I∃�B . �

§C. Proofs for the conservation theorem. This appendix includes proofs
of Theorems 9.6 and 9.7.

Theorem 9.6, recall, asserts that every axiom of MCLS(Z) is forced at
every w ∈ P.

Proof of Theorem 9.6. The arithmetic axioms are forced in light of
Theorem 9.5, so it suffices to show that every node forces S1–S9. Letting
w ∈ P and 
 be arbitrary, we consider each axiom in turn.

S1 is ∃n ∈ Seq isα = n. This is forced at w just in case for every 
 there is
an n ∈ SeqM such that w, 
 � isα = n. Letting n = w(
(α)), this holds by
the definition of forcing.

S2 is �∀xI∃yα(x) = y. Letting u � w be arbitrary, we need to show
that for every x, u, 
 � I∃yα(x) = y. Let I be an arbitrary index set
including 
(α), let fi ∈ u(i) be arbitrary, and let C be an arbitrary
[fi ]I -chain above u. By the definition of an [fi ]I -chain, there will be
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some v ∈ C such that v(
(α)) � f
(α)(x), so v, 
 � ∃yα(x) = y. Hence
w, 
 � �∀xI∃yα(x) = y.

S3 is �∀x∀y(α(x) = y → �α(x) = y). Let u � w be arbitrary, we need
to show that for all x and y, u, 
 � (α(x) = y → �α(x) = y). Suppose
u, 
 � α(x) = y. Then u(
(α))(x) = y. For any v � u, v(
(α)) will be an
extension of u(
(α)), so v, 
 � α(x) = y, and hence u, 
 � �α(x) = y.

S4 is �∃α∀x∀yα(x) 
= y. Letting u � w be arbitrary, we need to show
that there is some i such that for all x and y, u, 
[α �→ i ] � α(x) 
= y. By the
definition of P, there will be some i such that u(i) = 0; so 
[α �→ i ] assigns
the empty sequence to α at u. Thus for all x and y, u, 
[α �→ i ] � α(x) 
= y,
as required.

S5 is the schema qTreek(A) ∧WF (<A) → I∃z1 ... ∃zk(
∧
j isαj = zj ∧

¬A(〈z1, ... , zk〉)). Assume that w � qTreek(A) ∧WF (<A). Let I and
fi ∈ w(i) be arbitrary, and let C be an arbitrary [fi ]I -chain above w.
Since WF (<A), there will be some xi such that ¬A〈f1(x1), ... , fk(xk)〉.
Further, there will be some u ∈ C such that u(i) � fi(xi). Letting zi = u(i),
the definition of forcing ensures u, 
 �

∧
j isαj = zj and by the choice

of zi ’s we know u, 
 � ¬A(〈z1, ... , zk〉). So w, 
 � I∃z1 ... ∃zk(
∧
j isαj =

zj ∧ ¬A(〈z1, ... , zk〉)).
S6 is �∀n ∈ SeqI∃α(α ∈ n). Let u � w and n be arbitrary. Further, let I

andfi ∈ u(i) be arbitrary, and let C be an arbitrary [fi ]I -chain above u. By
the definition of P, there are only finitely many v ∈ P such that for no j does
v(j) = m � n. Since there are infinitely many v ∈ C , there must be some
v ∈ C such that for some j, v(j) = m � n. Then v, 
[α �→ j] � α ∈ n.

S7 is ¬�∀xα(x) � �(x) → �¬�∀xα(x) � �(x). Assume w, 
 �

�∀xα(x) � �(x). So there is some u � w and x such that u, 
 � (α(x) =
α(x) 
= �(x)) ∨ (α(x) 
= �(x) = �(x)). This obviously can only happen if

(α) 
= 
(�). Now we need to show that for every u � w there is a v � u
and an x such that v, 
 � (α(x) = α(x) 
= �(x)) ∨ (α(x) 
= �(x) = �(x)).
But since 
(α) 
= 
(�), this is easily achieved by picking some v such that
v(
(α)) 
= v(
(�)).

S8 is the formula:∧
i,j

¬�∀xαi (x) � αj(x) →
(
¬∃x1∃y1 ... ∃xk∃yk

∧
i

(αi (xi ) = yi ∧ fi (xi ) 
= yi )

→ ¬I∃x1∃y1 ... ∃xk∃yk
∨
i

(αi (xi ) = yi ∧ fi (xi ) 
= yi )
)
.

Assumew, 
 �
∧
i,j ¬�∀xαi(x) � αj(x) andw, 
 � ¬∃x1∃y1 ... ∃xk∃yk

∧
i

(αi(xi) = yi ∧ fi(xi) 
= yi). Then we need to show that for some I, there
are some gi ∈ w(i) and some [gi ]I -chain C such that for all u ∈ C and
all x1, y1, ... , xk, yk , u, 
 �

∧
j(αj(xj) = yj → fj(xj) = yj)). This is easily

accomplished by letting gi = fi and taking any [gi ]I -chain C.
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S9 is the formula:

∀n1 ∈ Seq ... ∀nk ∈ Seq
(∧
i,j

¬�∀xαi(x) � αj(x) ∧
∧
i

isαi = ni

→ ∀m1 ∈ Seq ... ∀mk ∈ Seq♦
∧
i

isαi = n�i mi
)
.

Letting n1, ... , nk be arbitrary, assumew, 
 �
∧
i,j ¬�∀xαi(x) � αj(x) and

w, 
 �
∧
i isαi = ni . Now letting m1, ... , mk be arbitrary, we want to show

that there is some u � w such that u, 
 �
∧
i isαi = n�i mi . But it is easy to

see that there will exist a u ∈ P such that u(
(αi)) = n�i mi , and such a u
will clearly satisfy u, 
 �

∧
i isαi = n�i mi . �

Theorem 9.7, recall, asserts that every theorem ofMCLS(Z) is forced at
every w ∈ P. The proof of this theorem uses the following fact.

Lemma C.1. For all w, 
1, 
2 and for any formula A(α1, ... , αk) whose free
(i.e., unbound ) choice sequence variables are among those shown, if 
1(αi) =

2(αi) for 1 ≤ i ≤ k, then w, 
1 � A iff w, 
2 � A.

This lemma can be proved by a straightforward induction on complexity.

Proof of Theorem 9.7. Argue by induction on the length of proof. Since
we have seen that the axioms of MCLS are forced everywhere, we need to
show that the axioms of S4I are forced everywhere and that the inference
rules of S4I preserve the property of being forced everywhere. It is routine
to check that each of the axioms of S4—the axioms not involving I—are all
forced at every w ∈ P. I will consider a few examples.

M0.5: Consider the case where o is a choice sequence variable: A↔ ∀αA,
where α does not occur free in A. Then by Lemma C.1, for each i we have
that w, 
 � A iff w, 
[α �→ i ] � A. Hence w, 
 � A iff w, 
 � ∀αA.

M0.7: Suppose w, 
 � t1 = t1 ∧ t2 = t2 ∧ t1 
= t2. We want to show that
for all u � w, u, 
 � t1 
= t2. This can be rigorously proved by induction on
the complexity of t1 and t2, but the following sketch summarizes the key
ideas. If w, 
 � t1 = t1 ∧ t2 = t2, then the values of w ◦ 
 suffice to fix the
denotations of all subterms occurring in t1 and t2. In other words, if α(t)
occurs anywhere in t1 or t2, then t < lh(w(
(α))). Then also for arbitrary
u � w we know that t < lh(u(
(α))) and indeed (w(
(α)))t = (u(
(α)))t .
So the values of t1 and t2 are the same at u as they were at w; hence it remains
true at u that t1 
= t2.

M0.9: If t has no occurrence of choice sequence variables, then t = t will
be forced at every w ∈ P. On the other hand, by definition we know that
R(Pt, �α,w(
(α))) is only true if every term occurring within it denotes, and
hence we know that w, 
 � t = t.
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It is also routine to check that the inference rules of S4 preserve the
property of being forced everywhere. For instance, consider M0.13: If
universal generalization is the last line of a proof, then by i.h. we know
that w, 
 � A for every w and 
. If o is an individual or classical function
variable, then we can infer ∀o(w, 
 � A) in our background logic and hence
w, 
 � ∀oA. If o is a choice sequence variable, then since w, 
 � A for every

, it follows that for every i, w, 
[α �→ i ] � A. Hence, w, 
 � ∀αA.

It remains to check that the axioms M1–M7 governing I are forced
everywhere. M1 and M3 are straightforward, and I will consider M2 and
M4–M7.

M2: Suppose w, 
 � A. We want to show w, 
 � IA. Note that for
arbitrary I and fi and an arbitrary [fi ]I -chain C above w, we have w ∈ C .
So there is some u ∈ C such that u, 
 � A; that is, w, 
 � IA.

M4: Suppose that w, 
 � IA. Then there are some I and fi ∈ w(i) and
some [fi ]I -chain C above w such that for all u ∈ C , u, 
 � A. Note that
the restriction Cu := C � {v : v � u} will be an [fi ]I -chain above u. Thus
for each u ∈ C , Cu is an [fi ]I -chain above u such that for all v ∈ Cu ,
v, 
 � A. Thus u, 
 � IA. Since this holds for every u ∈ C , it follows that
w, 
 � IIA.

M5: Suppose w, 
 � �IA, so there is some u � w such that u, 
 � IA.
Then there are some I and fi ∈ u(i) and some [fi ]I -chain C above u such
that for all v ∈ C , v, 
 � A. Since fi ∈ u(i) and w � u, fi ∈ w(i) as well.
If C ′ is any linear ordering of worlds between w and u, let Cw := C ∪ C ′.
Then Cw will be an [fi ]I -chain C above w. Then for every v ∈ Cw , there is
some v′ � v such that v′, 
 � A. So w, 
 � I�A.

M6: I will consider the case where o is a choice sequence variable. The cases
of a natural number or classical function variable are substantively similar.
Suppose thatw, 
 � I∀αA. Then for every I andfi ∈ w(i) and every [fi ]I -
chain C abovew there is some u ∈ C such that for every j, u, 
[α �→ j] � A.
By some simple quantifier inferences, this entails that for every j, for every
I and fi ∈ w(i) and every [fi ]I -chain C above w there is some u ∈ C such
that u, 
[α �→ j] � A. That is, w, 
 � ∀αIA.

M7 is substantively similar to M6. �
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