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Abstract

We revisit processes generated by iterated random functions driven by a stationary and
ergodic sequence. Such a process is called strongly stable if a random initialization
exists for which the process is stationary and ergodic, and for any other initializa-
tion the difference of the two processes converges to zero almost surely. Under some
mild conditions on the corresponding recursive map, without any condition on the
driving sequence we show the strong stability of iterations. Several applications are sur-
veyed such as generalized autoregression and queuing. Furthermore, new results are
deduced for Langevin-type iterations with dependent noise and for multitype branching
processes.
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1. Introduction

We are studying stochastic processes defined by iterating random functions. For a mea-
surable function F: R? x R — R4, consider the following iteration: set X,, = X,,(v) such that
Xo =v, with a vector v € RY, and let

Xn+1 =F(Xnﬂzn+1)7 (1)

where the driving sequence {Z;}{° is a stochastic process with values in R,
In the standard setup, {Z;}{° is independent and identically distributed (i.i.d.) and so
{X;(»}g° is a homogeneous Markov process [17, 31]. Furthermore, (1) is called a forward

iteration. If, in (1), Z1, ..., Z, is replaced by Z,, ..., Zl,~ then the resulting iteration 5(,, is
called the backward iteration [40, 41]. Clearly, X,, and X, have the same distribution for
each n.
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2 L. GYORFI ET AL

In the present paper the main role is played by another type of iteration, called negative
iteration, defined as follows. For a k < 0, let the random double array Xﬁ,k) = Xf,k)(O), k<n, be
defined such that X,Ek) =0and

k
X8 =F(X®, Z1), nzk, @)

i.e. the iteration starts at negative time k with initial vector 0. This iteration scheme is also often
used and appears, e.g., in [9, 10, 16, 17, 19, 20, 25, 26, 31].

Under mild conditions, [17] proved that the backward iteration 5(,, is almost surely (a.s.)
convergent to a random vector V with a distribution v, which implies that the forward iteration
X, has the limit distribution v. As in the standard setup of Markov chains, if X¢ has distribution
v (and it is independent from the driving sequence {Z;}{°), then X,, will be a stationary Markov
process.

More general schemes have also been considered, where {Z;}{° is merely stationary and
ergodic [16, 19, 31]. In [9, 10, 20] such processes are treated under the name ‘stochasti-
cally recursive sequences’. We remark for later use that, by the Doob—Kolmogorov theorem,
a stationary sequence {Z;}{° can always be completed to a sequence {Z;}*,,, defined on the
whole integer lattice Z = {0, £1, £2, ...}. We assume henceforth that this completion has
been carried out.

In [13] the stationary process {X/}°, was called a weak solution of the iteration if there
exists a {Z/}>, such that (X], Z) satisfies the recursion (1), and {Z;}*>, and {Z]}*°,_ have the
same distribution. {X;}° is called a strong solution if it is stationary and (X;, Z;) satisfies the
recursion (1).

In this paper, we study the strong solutions. Using the almost sure limit of the negative iter-
ation we construct such solutions under mild conditions. Actually, we investigate the following
novel concept of strong stability.

Definition 1. The class of random processes {X,,(v), v € R?} is called strongly stable if:

(i) there exists a random vector V* such that {X;(V*)}7° is stationary and ergodic;
(ii) for any random vector V, X,,(V) — X,,(V*) — 0 a.s.

Note that in this definition the random initial vector V may depend on the entire trajectory
of {Z;}7°. As aresult, the concept of strong stability may seem overly demanding. Furthermore,
for integer-valued processes it follows from (ii) that there is a random index 7 such that, for all
n > t, we have X,,(V) = X, (V*). In other words, {X;(V)}g° is forward coupled with {X;(V*)}g°.
This stronger notion of stability was introduced in [35] and also discussed in [21]. Traditional
proofs establishing the existence of a unique limiting distribution for Markov chains on Polish
spaces under Doeblin’s minorization condition involve representing transitions through iter-
ated i.i.d. random maps and a coupling argument [5]. In this way, it can be shown that the
iteration starting from any possibly random initial value is forward coupled with its stationary
counterpart.

The aim of this paper is to show the strong stability of {X,(v), v € R} in great generality for
several relevant models and important applications. As in [16], under some mild conditions on
the function F we show that the almost sure limiting process X = limg_, o Xf,k) exists and is
stationary and ergodic; [13] had similar results in the particular case of monotonic F, see (10).

Our main results are stated and proved in Section 2. Generalized autoregressions, queuing
systems, and generalized Langevin dynamics are surveyed in Sections 3, 4, and 5, respectively.
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On the strong stability of ergodic iterations 3

Section 6 treats multi-type generalized Galton—Watson processes. Finally, Section 7 discusses
open problems.

2. Iterated ergodic function systems
Defining F,(x) := F(x, Z,), n € Z, we can write
XPo)=F,0---0F1(v), k<0, n>k,

where the empty composition is defined as the identity function.

In the following, | - | refers to the standard Euclidean norm on R?. For a function g : RY —
RY, set
lg(x) — g
llgll = sup :
X7y lx — y |

The following theorem is an extension of [17, Theorem 5.1] and [31, Theorem 6.2]. It is
contained in [19, Theorem 3] (except for proving (ii)). We provide a proof for completeness.

Theorem 1. Assume that {Z;}> is a stationary and ergodic sequence. Suppose that

(i) E{(log||F1|)*} < oo, and
(ii) for some n,

Eflog |[F,o0- -0 F1|]} <O. 3)

Then the class {X,(v), v € R%)} is strongly stable.
Notice that (3) is a sort of long-run contraction condition here.

Proof. For the stationary and ergodic process Z = {Z;}>, let f,, n=1,2, ..., be vector-
valued functions such that f;(T"Z) = X;(0), where T stands for the shift transformation. Let’s
calculate f,(Z). If the process (X5} is defined in (2), then f,(Z) = X "(0), i.e. X ™(0) is the
value of the process at time 0, when the process started at negative time —n with the 0 vector.
We show that, under the conditions (i) and (ii),

X(()_")(O) is a.s. convergent to a random vector V*. 4)

It will be clear that V* = f(Z) for some suitable functional f, so we will in fact show that

JaZ) = f(Z) as. ®)

As for (4), we show that this sequence is a.s. a Cauchy sequence, i.e. even

o]

> IX50) - x5 P0)] < 00

n=1

holds a.s. Notice that iterating (2) yields
x50y = FxCP0), 2 = F(0, Z-) = X5 (F(0, Z)),

So

X5 "0 = X5 "0 = x5(0) = Xg " (F (O, Z-))
=Foo-+0F_yp1(0 = F(0, Z-y).
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4 L. GYORFI ET AL

Thus, [X50) = X" ()| < lIFoo -0 Fpyill - IF(0, Z_,)]. We will show that the
ergodicity of {Z;}> together with (i) and (ii) implies

oo
D NFgo-- 0 F il -IF(0, Z-p)| < 00 6)
n=1

a.s., and so (4) is verified.

In the following, the key ingredient is [19, Proposition 2], which is an extension of
Firstenberg and Kesten [22]. To prove (6), note that by [19, Proposition 2], the condition
(3) implies that the sequence

1
E,:= —Eflog [|[Foo- -0 F—ps1l} = E, n—> oo,
n

with E' < 0 such that .
;log [Foo---oF pnyill > E (N
a.s. Note that E is called the Lyapunov exponent. Next, we argue as in [31, Proposition 6.1]. We

have ||Foo---oF_pt1|| =exp{n(l/n)log||Foo---oF_pt1l}. The limit in (7) implies that
there are random integer ng and a > 0 such that, for all n > ng,

1
—log||Fpo---0oF_,11|| <—a<0.
n

Thus,
x o
Y NFoo---0F il IFO0, Z-)l < ) IF(O0, Z_p)le™™.
n=noq n=ny

Since A In™ |F(0, Z_1)| is integrable for all A > 0, it follows that

Z P\ In |F(0, Z_1)| > n) < oo.

n=1

Applying this observation for A := 2/«, the Borel-Cantelli lemma implies that |F(0, Z_1)| <
e%/2 holds except for finitely many # a.s., which implies that Y5 |F(0, Z_,)|e ™" < oo a.s.

. n=ng
Because X;(V*) =f(T'Z), {X;(V*)}° is stationary and ergodic so Definition 1(i) is proved.
Furthermore,
X2 (V) = Xo(V)I < |Fpo---oFi]| - [V=V*|—=0
a.s., as before. Thus, Definition 1(ii) is verified, too. O

Theorem 1 applies, in particular, under the one-step contraction condition (8) in the
following result.

Proposition 1. Assume that {Z;}> is a stationary and ergodic sequence such that the dis-
tribution of Z is denoted by . Suppose that [ |F(0, z)|u(dz) < 00, and |F(x, z) — F(X', 2)| <
K, |x — x| with

E{log Kz} <0. ®)

Then the class {X,(v), v € Rd} is strongly stable.
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Proof. This proposition is an easy consequence of Theorem 1, since

Eflog [[Fy0---o Fi|I} <E{log (|[Full - - - |F11))} = nE{log || F1 ]}
<nE{log Kz} <0. O

Definition 2. We say that the class of strongly stable random processes {X,,(v), v € R?} satisfies
the strong law of large numbers (SLLN) if E{V*} is well-defined and finite, and, for any v € R4,
lim, (1/n) Y"1, Xi(v) =E{V*} as.

Remark 1. Under the conditions of Theorem 1, if V* has a well-defined and finite expectation
E{V*} then we have the SLLN:

1 o .
+ - D X)) = Xi (V).

i=1

=

1 < .
‘; ;x,(v)—E{V}

LS X - Eve)
n i=1

By Birkhoff’s ergodic theorem, the first term on the right-hand side tends to O a.s., while the
almost sure convergence of the second term follows from Theorem 1(ii).

Remark 2. Now we discuss some conditions guaranteeing E{|V*|} < co. By Fatou’s lemma
and the triangle inequality, we can write

o0
E{|V*]) < liminf E{ [X{ " 0)[} ZJEHXB*’O(O)—
k=0

which we can estimate further and obtain

o0
E(V} <Y E{llFoo---oF g1l - [FO, Z_p)l}.
k=0

For the sake of simplicity, assume for the moment that z — |F(0, z)| is bounded by some con-
stant C. By stationarity, it is enough to investigate E{||Fy o--- o F|}. Here, either we can
prescribe a ‘contractivity in the long run’-type condition like

limsup EV*{||Fro---oFi|} <1, 9)

k— 00

and then the nth-root test gives the desired result (i.e., E{|V*|} < 00), or, by Hélder’s inequality,
we can write

k
E{l|Fio---oFill} < [ [EVMIF I =EIF 15,
j=1
and thus we have

F
BV = sup [FO, z)IE[ Z“Fl”k] CE{%}

k=1

We should assume here that ||F{|| < 1 a.s.; moreover, E{||F1]|/(1 — ||F1]])} < oo and hence this
approach looks much more restrictive than requiring (9).

As pointed out in [47], the long-time contractivity condition (9) is stronger than (3) in
Theorem 1 or, equivalently, (7). On the other hand, in the i.i.d. case, (9) reduces to E{||F1 ||} < 1.
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If E{||F1|l} <1 fails in the i.i.d. case then E[V*] = oo can easily happen; see the example in
Remark 3.

Remark 3. Concerning the SLLN, we should have to verify that E{ sup,, |X(()_")(O)|} < 0.
Note that X(()O)(O) =0, and thus

o0
sup [ XS0 = 3 ‘X(()_Hl)(O) - X(()_k)(O)‘.
" k=1

One possibility would be to check that

0 0 0
Y E{|x5 V0 - x5 o)} < ZE{|F(O, Zzol ] KZ_,} < o0,
k=0 k=0 J=—k+1

Here is a counterexample, however, to show that this is not true in general. Let d =k =1 and

{Zi}icz, be iid. such that P{Zy=e"2} =3 and P{Zy=¢?} = 1. Put Xo=v >0 and X4 =

Zn11 - Xy. Clearly, Kz, = Zy with E{log K7,} = —% < 0 and so the conditions of Proposition 1
are satisfied. Furthermore, E{K7,} = E{Z;} = %e_z + %62 > 1. By independence,

E{Xy1) = E{Zup1) - E(X,) =E{Z)" ! v= (2e 2+ 1)) v o0
as n — 00. Therefore, E{V*} = oo.

Next, the contraction condition of Theorem 1 is replaced by a monotonicity assumption. We
denote by F; the sigma-algebra generated by Z;, —oo < j < t. Furthermore, we use the notation
Ri for the positive orthant endowed with the usual coordinatewise partial ordering, i.e., x <y
for x, y € R? when each coordinate of x is less than or equal to the corresponding coordinate
of y. In what follows, |x[, = [|x1[P +- - -+ |x2|P1'/P stands for the usual [,-norm on R4,

Proposition 2. Assume that {Z;}*°, is a stationary and ergodic sequence, and F : Ri x RF —
Ri is monotonic in its first argument:

F(x,2) <F(,7) ifx<x. (10)
For a fixed 1 < p < 00, suppose that there exist a constant 0 < p < 1 and K > 0 such that
E[IF(x, ZDlp | Fol < plxlp + K (11D

a.s. for all x e R, and
E[1F(0, Zo)lp] < 0. (12)

Then, the class {X,(v), v € Rd} is strongly stable. Furthermore, the SLLN is satisfied.

Notice that (11) also implies, for all ¢,
E[IFCx, ZiDlp | Fil < plxlp + K (13)

a.s. for all xe ]R‘fr. [9, 21, 40] studied the monotonic iteration under the fairly restrictive
condition that the range of the iteration is a bounded set.

Proof. This proposition extends the Foster—Lyapunov stability argument to a non-Markovian
setup. We apply the notations in the proof of Theorem 1 such that we verify the condition (5) or,
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equivalently, check (4). Since F,(-) := F(-, Zy): Ri — Ri, n € Z, are order-preserving maps
and F(0,Z_,) >0,

Xo " 7(0) = X570 = X5 (F (O, Z-) — X5(0)
=Foo- 0 F_yy1(F(0,Z-p)) = Fyo- -0 F—11(0)

is non-negative, therefore (X(()_")(O)) is monotonically increasing and so (4) is verified.

neN

As for Theorem 1(i), we need that V* =1lim,,_, X((f”)(O) takes finite values a.s., which
would follow from ]E{ sup,, |X(()_”)(0)|p} < 00. Itis easily seen that x <y implies |x|, < [y|, for
X,y € Rﬁ, and therefore, by the Beppo Levi theorem and the monotonicity of X(()_")(O), neN,

E{ sup, |X(()7”)(0)|p} = sup, E{ |X(()7”)(0)|p}. From (13) we get that

E[|X( 10|, | F]=E[|F& 0, Zynl, | Fi] < p[X O, + K, i=—n.

Iterating this leads to

n—1
- ; K
E[|x; "0)],] < o"E[|X%0)[,] + ZO Kpl <= < oo
J=

hence, sup, E{ |X87")(0)|p} is finite, which completes the proof. O

Remark 4. Proposition 2 holds with an analogous proof if we replace (13) by
E[F(x, ZipDlp | Fil = p@lxlp + K,

where p(t), t€Z, is a stationary process adapted to F, and limsup,_, . E'/"{p(1)---
p(n)} < 1.

3. Generalized autoregression

In this section, ||A|| will denote the operator norm of a matrix A. Several authors investigated
the iteration of matrix recursion. Set X,, = X,,(v) such that Xo = v, and

Xny1 =An1 Xy +Bpy1, n>0, (14)

where {(A,, B,)} arei.i.d., A, is ad x d matrix, and B, is a d-dimensional vector. In this section
we study a more general case of (14) where the sequence {(A;,, B,)} is stationary and ergodic.
The minimal sufficient condition for the existence of a stationary solution for (14) was proved
in [12]. In the i.i.d. case, [11] showed that those conditions are indeed minimal.

For the stationary and ergodic case, we now reprove the sufficiency part of [11,
Theorem 2.5].

Proposition 3. Assume that {(A,, B,)} is stationary and ergodic such that E{log™ ||Ag||} < oo
and E{log™ |By|} < c0. If
Eflog[|Ag - --A—nll} <O 15)

for some n, then the class {X,(v), v € R} is strongly stable.
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Proof. Since ||A,A,—1 - A1 corresponds to ||Fj,o---0F1]|, we can verify the condi-
tions of Theorem 1 easily: (15) implies (ii) and the integrability conditions of Proposition 1
imply (i). (]

Remark 5. Note that the argument above showed up first in [22], which proved that if
E{log™ ||Aoll} < oo, then lim, (1/n)log |A,A,—1 ---A{|| =E a.s., where E stands for the
Lyapunov exponent.

In the rest of this section we recall results about a similar iteration which are based on
negative iterations (though they cannot be treated by our results in this paper). Let us consider
the stochastic gradient method for least-squares regression, when there are given observation
sequences of random, symmetric, and positive semi-definite d x d matrices A, and random
d-dimensional vectors V, such that A=E(A,) and V=E(V,) (n=0, £1, 42, ...). If A~!
exists then the aim is to estimate ¢ = A~!'V. For this reason, a stochastic gradient algorithm
with constant gain is introduced. Set Xo = v, and

Xnt+1=Xn — MAn+1Xn — Var1), n20, (16)

followed by an averaging, X, = (1/n) Y, X;.

If A depends on n, then X,, is called an averaged stochastic approximation introduced in [39,
45, 46]. If the sequence {(A,, V,)}X, isi.i.d., then they proved the optimal rate of convergence
of X, to 9.

The case of dependent {(4,, V,)}*%, was studied in [26]. Assume that the sequence
{(An, Vn)}X,, is stationary and ergodic such that E||A,| < oo, E|V,| < oo, and A is positive
definite. Then there is a A9 > 0 such that, for all 0 <A < )¢, there exists a stationary and
ergodic process {X;'}> satisfying the recursion (16) and lim, (X, — X;}) =0 a.s. Moreover,
lim, X,, =9 + 8, a.s. with an asymptotic bias vector 8;. In [26] there is a 3-dependent
example of {(An, V,,)}>,, where 8, # 0. Furthermore, under a suitable mixing condition on

{(An, Vi)Y, 181 is of order +/A.

4. Lindley process

We recall some results from queuing theory. They do not follow from arguments of the
present paper but they are also based on negative iterations and hence provide one more
illustration of the usefulness of this technique.

For d =k =1, consider the following iteration. Set X,, = X,,(v) such that Xy =v >0, and
X1 =X, +Z,.1)". The next proposition is an extension of the concept of strong stability.
Let {X]}3° be a stationary and ergodic sequence. Recall that {X;}5° is forward coupled with
{X}}5° if there is a random index  such that, for all n > 7, X) = X,,.

Proposition 4. Assume that {Z;}>_ is a stationary and ergodic sequence with E{Z} < 0. Put
V*=sup,o(Zj+--+ Zo)t and X), = X,(V*). Then {X{}3° is stationary and ergodic, and
{Xi}5° is forward coupled with {X}}5°.

As an application of Proposition 4 consider the extension of the G/G/1 queuing model. Let
X, be the waiting time of the nth arrival, S, be the service time of the nth arrival, and 7,4
be the inter-arrival time between the (n + 1)th and nth arrivals. Then, we get the recursion
Xnr1 =X — Ty + Sn)Jr-

The generalized G/G/1, where either the arrival times, or the service times, or both are not
memoryless, was studied in [25, 37]; see also [2, 3, 9, 13, 23].
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Proposition 4 implies that if {Z;} := {S;_1 — T;}°% is a stationary and ergodic sequence
with E{So} < E{T1}, then {X;}§° is forward coupled with a stationary and ergodic {X;}{°.

5. The Langevin iteration

For a measurable function H : R? x R” — R, the Langevin iteration is defined as follows.
Set X,, = X,,(v) such that Xy = v, and

Xnt1 =Xy — AH(Xy, Y) + V2ANy 1, n2>0, (17)

where {Y;}%°, and {N;}>, are random sequences. In the literature of stochastic approximation
A > 0 is called the step size, while in machine learning it is called the learning rate.

The simplest case is where the sequences N,, and Y, are independent, Y, is i.i.d., and N, is
i.i.d. standard d-dimensional Gaussian. This algorithm was introduced in [50] and later ana-
lyzed by a large corpus of literature which we cannot review here. It is called ‘stochastic
gradient Langevin dynamics’ and it can be used for sampling from high-dimensional, not nec-
essarily log-concave, distributions and for finding the global minimum of high-dimensional
functionals. In this context, ¥;, represents a data sequence (obtained, for instance, by averaging
a big dataset over randomly chosen minibatches), and N, is artificially added noise to guarantee
that the process does not get stuck near local minima.

The case where the data sequence Y, may be a dependent stationary process (but NV, is still
i.i.d. standard Gaussian) has been treated less extensively: see [4, 15] for the convex and [14]
for the non-convex settings.

Another stream of literature, starting from [30], concentrated on stochastic differential equa-
tions driven by colored Gaussian noise. The discrete-time case of difference equations was
treated in [49]. This setting corresponds to the case where in (17), Y, is constant and N, is a
dependent Gaussian sequence.

We know of no studies so far that allowed both Y,, and N, to be only stationary. We manage
to establish strong stability in this case, under reasonable assumptions.

Defining F(x, z) = x — AH(x, y) + ~/2Au, z=(y, u), and Ziy1 := (Y;, Ni+1), Proposition 1
implies the following result.

Corollary 1. Assume that the sequence {(Y;, Ni+1)}> is stationary and ergodic, and that, for
ato>0andforall0 <\ < iy, E|—AH(O0, Y1) + v2AN>| < 00 and
v — AH(x, 2) — (X' = MH(X, 2))| < K |x — X'|

with (8). Then, for all 0 < A < Ao, the class {X,,(v), v e Rd} is strongly stable.

Remark 6. Next, we prove the convergence of the iterative scheme (17) assuming only that H
satisfies

(@1 H(x, y)v, v) = m)v*  and  [91H(x, y)| < M(y) (18)

with measurable m, M : R™ — [0, 00). (This is a parametric form of the usual strong convexity
condition. We can replace it by a so-called dissipativity condition and hence extend the analysis
beyond the convex case. However, this direction requires a different technology.) We introduce
g(tH)=H(tx' + (1 — x, y), and thus we can write

IF(x, y) — F&, )I* = |x — X2 = 2 {x — ¥/, g(0) — g(1)) + 2%|g(0) — g(DI?,
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where g(0) —g(1) = fol A H(x + (1 —0)x, y)(x —x')de. Using (18), we estimate |g(0) —
gD <Mylx — x| and (x — X', g(0) — g(1)) = my|x — x'|2, and arrive at

IF(x, ) — F(X', )| < (14+A2M; — 22my)' /2 |x — |

In (18), without loss of generality, we can assume that E(mz, ) < oo. Furthermore, requiring
E(M}z,) < 00, we can set A such that the conditions of Proposition 1, i.e. (8), are satisfied. It
is also not restrictive to assume that E(mz, )2 < ]E(M%1 ). Since Kz, = (1 + AZM%I —2kmg, )2,
Jensen’s inequality implies that

E(Kz,) < (1+ A EM3,) — 22E(mz,)'/* < 1
whenever A < 2[E(mgz, ) /E(M%] ).

Remark 7. Strong convexity is a usual assumption in the stochastic gradient Langevin dynam-
ics literature [4, 15, 18]. Remark 6 shows that our results cover this case. It would, however, be
nice to weaken this condition to dissipativity (see [14, 36]). It seems that such a generalization
requires much more advanced techniques; see, e.g., [49].

Remark 8. Note that the iteration (16) in Section 3 is a special case of the Langevin iteration
(17) such that H(X,, An+1) = An+1Xy, with the difference that for this, only convexity holds
and not strong convexity. In a least-squares regression setup it is important that A, is assumed
positive semi-definite only and not necessarily positive definite.

6. Generalized multi-type Galton—Watson process

We follow the notation of [33]. A d-type Galton—Watson branching process with immigra-
tion (GWI process) X, = (X1, . . ., Xn.q4), n € Z, is defined as

X,_ Xn—
Xo =20 A+ -+ 0 Anja+ By, nx1,
Xo=v,
where v € N9 and {Anji,By:n,jeN, ie{l, ..., d}} are random vectors with non-negative

integer coordinates. Here, X, ; is the number of i-type individuals in the nth generation of a
population, A, ;; is the vector of the number of offspring produced by the jth individual of
type i belonging to the (n — 1)th generation, and B, is the vector of the number of immigrants.

LetC,:= {A,i:jeN, ie{l,...,d}}. Inthe standard setup the families of random vari-
ables {C,:neN} and {B,:n €N} are independent and (C,, B,), n €N, is a sequence of
independent vectors. The process {X,, : n € N} is called homogeneous when (C,, B,), n € N,
are identically distributed, otherwise it is inhomogeneous. In this section we study the gener-
alization of the homogeneous case, when {Z, := (C,, B,,) : n € N} is a stationary and ergodic
process. As before, we extend this stationary process to the timeline Z. We furthermore assume
for each i that Ay ;; has, for each j € N, the same conditional law with respect to JFy.

Note that the state space of Z, is RY. It can easily be checked that all the arguments of our
paper also apply for such state spaces.

Homogeneous multi-type GWI processes were introduced and studied in [42, 43]. In [42],
a necessary and sufficient condition is given for the existence of a stationary distribution in the
subcritical case. A complete answer is given by [32]. Also, [38] gives a sufficient condition
for the existence of a stationary distribution, and in a special case shows that the limiting
distribution is a multivariate Poisson process with independent components.
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Branching process models are extensively used in various parts of the natural sciences, in
biology, epidemiology, physics, and computer science, among other subjects. In particular,
multi-type GWI processes were used to determine the asymptotic mean and covariance matrix
of deleterious and mutant genes in a stationary population in [24], and in a non-stationary
population in [34]. Another rapidly developing area where multi-type GWI processes can be
applied is the theory of polling systems: [44] pointed out that a large variety of polling models
can be described as a multi-type GWI process. [1, 6, 7, 44, 48] investigated several commu-
nication protocols applied in info-communication networks with differentiated services. There
are different quality of service requirements, e.g. some of them are delay sensitive (telephone,
online video, etc.), while others tolerate some delay (email, internet, downloading files, etc.).
Thus, the services are grouped into service classes such that each class has its own transmis-
sion protocol, like priority queuing. In the papers mentioned above the d-type Galton—Watson
process has been used, where the process was defined either by the sizes of the active user
populations of the d service classes, or by the length of the d priority queues. For the general
theory and applications of multi-type Galton—Watson processes we refer to [29, 38].

Define the random row vectors m; := E[A] 1.; | Fol, i=1, ..., d, where F; is the sigma-
algebra generated by Z;, —oo < j <t. Note that, by our assumptions, m; has the same law as
E[A;41,;i | Fu] for each n and j. For x € R? we will use the £;-norm |x|; := Z/[.lzl |xi|, where
x; is the ith coordinate of x.

Proposition 5. If
max |m;l; <o (19)
1<i<d
almost surely for some constant o0 < 1 and E{|B1|1} < oo, then X; = X;(v) is strongly stable
and the SLLN holds.

Proof. Define F(x,z):= Z}izl ZT’:] zij + 20, Where z;;€N?, ieN, 1 <j<d, zpe N
Note that this iteration is monotone. As already defined, the stationary process will be
Zy = ((An,i;j)1<j<d,ieN> Bp).

Let us check (11) with p=1:

&

E[FCx, ZDI1 | Fol ZEHAM;}‘M | Fol + E[|B11]
i=1

d
=)
j=1
d
< ijQ-i-E“Blh] =olxl1 + E[|B1]1].
j=1
Note also that E[|F(0, Z1)|]=E[|B1]|1] < oo, as required by (12). We may conclude the
required result from Proposition 2. (|

Remark 9. In the case where the sequence A, ..., n € N, is i.i.d., we have m; = E[A] 1.; | Fol =
E[A],1.;]. In that case, the standard assumption is that the matrix M composed from row vectors
m; satisfies

oM) <1, (20)

where o(M) denotes the spectral radius [33]. Our (19) is stronger than (20). In arguments for
ii.d. A, ..., the general case (20) can be easily reduced to (19). However, it is not clear to us
how to do so in the current, non-independent, setting. Perhaps the techniques of [16, Theorem
4] could be adapted.
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7. Open problems

The study of iterated random functions driven by stationary and ergodic sequences, par-
ticularly their strong stability, opens several intriguing avenues for future research. While we
have established foundational results and explored various applications, there remain numer-
ous questions that merit further investigation. Addressing these open problems could not only
deepen our understanding of the underlying theoretical framework but also expand its applica-
bility to broader contexts. Below, we outline several key areas where additional research could
be highly beneficial, identifying specific challenges and potential directions for future work.

For instance, Theorem 1 implies weak convergence of the laws of the process Xj,. A particu-
larly intriguing question is under what conditions we could strengthen this to, e.g., convergence
in total variation. Furthermore, it is also not uninteresting whether we could relax the con-
tractivity condition (3) to some kind of dissipativity condition. This was done in [49] only
for a particular class of Gaussian infinite moving average processes Z,, using heavy techni-
calities. As for the strong law of large numbers, the condition deduced in Remark 2 to ensure
E{|V*]} < oo also looks too restrictive. Can this assumption be weakened in a reasonable way?

The Lindley iteration is addressed in [17, Theorem 4.1] when {Z;}*° is i.i.d., noting that
the condition E{Z;} < O can be weakened to

XO: P{Zi+ -+ 2> 0}

J

<0

j=—00

We hypothesize that this observation is valid for the ergodic case as well.

In Section 5, we studied Langevin iteration driven by stationary and ergodic noise under the
strong convexity assumption. It would be desirable to replace this with a dissipativity condition,
thereby extending the analysis beyond the convex case.

The limit distribution of the inhomogeneous Galton—Watson processes, which means that
the driving processes are independent but not identically distributed, was studied in [27, 28].
A challenging research problem is how to weaken the independence. Finally, we conjecture
that the condition (19) we imposed on the expected number of offspring in the Galton—Watson
process could certainly be relaxed with more sophisticated arguments.
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