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Abstract

Emotion recognition in conversation (ERC) faces two major challenges: biased predictions and poor cal-
ibration. Classifiers often disproportionately favor certain emotion categories, such as neutral, due to the
structural complexity of classifiers, the subjective nature of emotions, and imbalances in training datasets.
This bias results in poorly calibrated predictions where the model’s predicted probabilities do not align
with the true likelihood of outcomes. To tackle these problems, we introduce the application of conformal
prediction (CP) into ERC tasks. CP is a distribution-free method that generates set-valued predictions to
ensure marginal coverage in classification, thus improving the calibration of models. However, inherent
biases in emotion recognition models prevent baseline CP from achieving a uniform conditional cover-
age across all classes. We propose a novel CP variant, class spectrum conformation, which significantly
reduces coverage bias in CP methods. The methodologies introduced in this study enhance the reliability
of prediction calibration and mitigate bias in complex natural language processing tasks.

Keywords: Emotion recognition; conversational systems; bias; calibration; uncertainty estimation

1. Introduction

Emotion is a pivotal aspect of natural communication, shaping interpersonal dynamics, driving
the flow of conversation, and facilitating the understanding of a speaker’s intents, concerns, and
desires. A reliable emotion recognition in conversation (ERC) system can enhance user engage-
ment by providing personalized experiences, foster empathetic communication with customers
by addressing their emotional needs, and consequently improve their overall satisfaction in cus-
tomer services (Chen et al. 2023). Moreover, it can facilitate the early detection and intervention
of emotional distress in mental health applications (Casas ef al. 2021). An erroneous prediction
in high-stake ERC systems can be costly, leading to miscommunication, decreased trust, and
potential harm to users (Devillers and Cowie 2023) (Figures 1 and 2).

In recent years, advances in recurrent neural networks (RNNs) and transformer-based pre-
trained language models (PLMs) have significantly enhanced the performance of ERC systems.
However, despite these advancements, such models often fail to achieve fair classification accu-
racy across different emotion classes. This bias toward overrepresented classes results in skewed
performance, thereby hindering the development of reliable models. Furthermore, the cumula-
tive nature of metrics such as the F-score, widely used in many ERC studies (Majumder et al.
2019; Ghosal et al. 2020; Zhang et al. 2023; Feng et al. 2023), provides a misleading evaluation
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Context: )

[S1]: Well, | went over to Kyle's last night to pick
up a few things and we got to reminiscing [neutral]

(-~ )

Query:

[S1]: we talked through most of the night and we

realized that the reason we were so angry at each {sadness,
cher was because there are still feelings there. ) neutral, joy}

-

Figure 1. Illustration of emotion prediction using traditional and conformal prediction methods. The input into the predic-
tive model 7 includes a context and a query text with the true label ‘sadness’. The traditional prediction method outputs a
single prediction ‘neutral’, which isincorrect. On the other hand, the conformal prediction method provides a set of plausible
emotions ‘sadness’, ‘neutral’, and ‘joy’ considering the specified confidence level, as indicated by the dashed lineat1 — g.
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Figure 2. Architecture of a RoBERTa model, fine-tuned for emotion recognition in conversation (ERC). This model can be
replaced by any arbitrary classifier.
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Figure 3. Schematic of the conformal prediction process. The softmax scores produced by the classifier is used to calculate
nonconformity measures, which are used to establish a prediction threshold based on a calculated quantile. The final step
produces the prediction set {2,4} as potential class labels with the predefined confidence level a.

of model performance by overestimating the model’s proficiency in classifying overrepresented
classes while neglecting its suboptimal performance in classifying underrepresented classes
(Figure 3).

Beyond the issue of bias, empirical evidence across various natural language processing (NLP)
tasks indicates that these models frequently demonstrate poor calibration (Sankararaman et al.
2022; Guo et al. 2017; Jiang et al. 2021). This calibration deficiency implies that the predicted
probabilities fail to accurately reflect the true likelihood of the corresponding emotions, resulting
in either overconfident or underconfident predictions (Figure 4). The problem is particularly pro-
nounced in ERC due to several compounding factors: the intricate nuances of natural language,
the multidimensional nature of emotions, and the scarcity of high-quality ERC training datasets
(Dragos 2013). Consequently, the probabilities generated by these models often misrepresent the
actual likelihood of correct predictions. This poor calibration, coupled with biased predictions,
significantly impedes the attainment of reliable quality estimation for individual predictions. Our
findings, as illustrated in Figure 5 and Table 1, demonstrate the issues of poor calibration and
bias in model predictions, respectively. In selective prediction, predictive uncertainty allows for
a nuanced assessment of the risk or reliability associated with individual predictions to achieve a
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Table 1. Accuracy of emotion classification on three selected emotional conversation datasets. Labels 0-6 for
MELD are sadness, surprise, neutral, joy, anger, disgust, and fear; labels 0-6 for EmoWOZ are neutral, fearful
(sad), dissatisfied, apologetic, abusive, excited, and satisfied; and labels 0-3 for Emocx are others, happy, sad,

and angry
Dataset Ibl-0 Ibl-1 Ibl-2 Ibl-3 Ibl-4 Ibl-5 Ibl-6
MELD 0.25 0.53 0.83 0.57 0.38 0.10 0.03
EmoW0Zz 0.94 0.33 0.66 0.73 0.65 0.47 0.92
Emocx 0.88 0.77 0.71 0.86 NA NA NA
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Figure 4. Distribution of (a) MELD, (b) EmoWOZ, and (c) EmoContext datasets utilized in this paper: demonstrating
imbalance across emotion categories.
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Figure 5. Calibration plots for MELD, EmoWoZ, and EmoCX datasets showing reliability diagrams. ECE and MCE values
indicate poor calibration. The bars show accuracy per bin, and the blue line connects the average confidence per bin.
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better decision-making processes (Varshney et al. 2022). Uncertainty estimation has a very rich
history in learning problems. Various methods such as Bayesian methods (Neal 2012; Harper and
Southern 2022), Monte Carlo approximation (Gal and Ghahramani 2016) and ensemble meth-
ods (Lakshminarayanan et al. 2017) have been widely used in uncertainty-aware deep learning.
While promising, integrating these methods with language models are problematic because of
proprietary access to the underlying model, demanding high amount of resources and requiring
certain assumptions about data distribution (Hu et al. 2023). Conformal prediction (CP), intro-
duced by Vovk et al. (2005), offers a model-agnostic, distribution-free approach to uncertainty
quantification through set-valued classifiers. Unlike traditional methods that output a single label,
CP generates a set of potential labels for each input, ensuring the true label is included with a
predetermined marginal confidence level. A key strength of CP lies in its calibration efficacy:
operating as a post hoc framework, it leverages a hold-out (calibration) dataset to evaluate the
‘level of surprise’ for each potential label, determining its inclusion in the prediction set (Shafer
and Vovk 2008). This calibration process allows CP to maintain its validity across different under-
lying models and data distributions, providing well-calibrated uncertainty estimates. The size of
the prediction set serves as a reliable indicator of predictive uncertainty for individual instances.
Larger prediction sets suggest higher uncertainty, indicating that the model is less confident in
distinguishing between multiple plausible labels for a given input. Conversely, smaller prediction
sets imply lower uncertainty and higher confidence in the model’s predictions. Building on this
concept, Karimi and Samavi (2023) proposed a formal procedure to quantify the level of uncer-
tainty in predictions using CP output, further enhancing the interpretability and practical utility
of CP in uncertainty quantification tasks. Despite the growing interest in uncertainty quantifica-
tion for large language models (LLMs), the application of CP to NLP tasks remains underexplored.
While CP has been extensively studied in unstructured tasks like image classification and synthetic
data (Romano et al. 2020; Angelopoulos ef al. 2020; Karimi and Samavi 2023), its use in complex
NLP domains is nascent. Kumar et al. (2023) demonstrated CP’s feasibility for fact-based question
answering, but its utility in more nuanced tasks like ERCs is unexplored. Our research addresses
this gap, evaluating and improving CP’s applicability to uncertainty quantification in conversa-
tional emotion recognition. We aim to develop cost-effective strategies that ensure confidence
in model predictions, enhancing the reliability of emotion recognition systems in real-world sce-
narios. Figure 1 illustrates an example output of a distribution-free uncertainty-aware emotion
recognition system. To summarize, this paper presents the following significant contributions to

the field:

1. Adaptation of CP framework to ERC task: We successfully apply two CP techniques—
Least Ambiguous Set-Valued Classifiers (LAC) and adaptive prediction sets (APS)—to
achieve a set-valued ERC system.

2. Identification of biased CP: We examine and highlight the issue of biased CP in ERC,
where biased models produce biased (skewed) coverage levels: while the overall marginal
promised coverage is maintained, the coverage for overrepresented classes tends to be
higher than the promised confidence level, whereas underrepresented classes experience
significantly lower coverage rates.

3. Mitigation of bias in CP: We propose a novel method, class spectrum calibration, to
address and mitigate the coverage bias in conformal ERC models. This approach improves
the balance of coverage rates across emotion categories, particularly focusing on enhancing
fairness for underrepresented classes. We apply this method to both the LAC and the APS
algorithms.

These contributions advance the development of more robust and interpretable emotion recog-
nition systems in conversational contexts. Our experimental results demonstrate the potential of
CP methods in this domain and pave the way for future explorations in other NLP tasks.
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2. Background
2.1 Emotion recognition

Emotion fundamentally underpins natural communication. It shapes interpersonal dynamics,
drives conversation flow, and facilitates the understanding of a speaker’s intents, concerns, and
desires. In critical domains, such as clinical mental health, reliable emotion recognition can help
in the early detection of emotional distress (Casas et al. 2021). Moreover, in customer service
support applications, the ability to accurately interpret emotions facilitates the acquisition of real-
istic feedback from customers, thereby empowering service providers to respond with enhanced
effectiveness and empathy (Chen et al. 2023).

Broader emotion recognition research includes techniques beyond conversation-specific con-
tent, such as facial expression analysis, vocal intonation analysis, and multimodal approaches that
integrate visual, auditory, and textual data. For instance, facial expression analysis has been exten-
sively studied for its effectiveness in detecting emotions through subtle changes in facial muscles
(Li and Deng 2020). Similarly, vocal intonation analysis leverages acoustic features such as pitch,
tone, and rhythm to infer emotional states (Wani et al. 2021). Multimodal emotion recognition
combines these modalities, providing a comprehensive understanding of emotions by integrating
visual, auditory, and textual cues (Sebe et al. 2005).

ERC is the process of automatically identifying the emotional state of an utterance considering
its context. In recent years, various approaches, including graph learning, sequence learning, and
PLMs/LLMs, have been utilized to improve the performance of ERC systems.

2.1.1 Graph learning-based ERC approaches

Graph-based methods have shown promising results in capturing the complex interdependen-
cies in conversational data. Ghosal et al. (2019) introduced DialogueGCN, which models both
speaker-level and context-level information using graph convolutional networks. Building on this,
Shen et al. (2021) proposed DAG-ERC, a directed acyclic graph-based approach that better cap-
tures the temporal dynamics of conversations. More recently, Gan et al. (2024) developed a graph
structures that encode temporal order, speaker dependencies, and long-distance context, incorpo-
rating a novel context filter and a feature-correction procedure to improve conversational emotion
recognition at the utterance level.

2.1.2 Sequence learning-based ERC approaches

As an important development of NLP studies, advanced deep learning techniques, particularly
sequence learning models based on recurrent neural networks (RNNs) and transformers, have
been widely applied to ERC tasks. Poria et al. (2017) proposed an LSTM-based model that consid-
ers contextual information from surrounding utterances. Hazarika et al. (2018) introduced ICON,
an inter-conversational attention network that models both speaker-specific and conversational
context. The COSMIC model by Ghosal et al. (2020) further enhanced this approach by incor-
porating commonsense knowledge. Majumder et al. (2019) presented DialogueRNN, a recurrent
neural network that keeps track of individual speaker states throughout the conversation, showing
significant improvements in emotion recognition accuracy.

2.1.3 PLM/LLM-based ERC approaches

The advent of PLMs and LLMs has significantly impacted the field of ERC. Li et al. (2020) pro-
posed HiTrans, a hierarchical transformer model that leverages pretrained BERT embeddings.
More recently, there has been a shift toward using LLMs for ERC tasks. DialogueLLM Zhang et al.
(2023) represents a significant advancement in this direction, being the first to apply LLMs specif-
ically to the ERC task. This model demonstrates the potential of large-scale language models in
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understanding and interpreting emotional context in conversations. In a related development,
Zhang et al. (2024) introduced RGPT for sentiment classification, showcasing the adaptabil-
ity of LLMs to various text classification tasks, including emotion recognition. Their work on
“Pushing The Limit of LLM Capacity for Text Classification” provides valuable insights into opti-
mizing LLMs for specific classification tasks. Additionally, Lei et al., proposed InstructERC which
employs a retrieval module to concatenate the historical dialog content statement, label statement
and emotional domain demonstrations with high semantic similarity (Lei et al. 2024). They also
improved the reasoning capabilities of the model by adding emotion alignment through speaker
identification and emotion prediction tasks.

2.2 The challenges of current ERC systems

The inherent ambiguities in human language, stemming from linguistic complexities like syn-
onyms and contextual nuances, significantly increase the difficulty of accurately identifying
emotions in textual conversation (Dragos 2013; Ott et al. 2018; Blodgett et al. 2020). This issue
is further complicated by the fuzzy and subjective nature of emotional states, where emotions
such as ‘happiness’ and ‘joy’, for example, often exhibit significant overlap and lack clear bound-
aries, which complicates distinct classification efforts (Schlosberg 1954). Additionally, the absence
of nonverbal cues, such as facial expressions and vocal intonations, in text-based interactions,
which are critical in multimodal emotion recognition, presents another layer of complexity in
textual ERC (Dessai and Virani 2021; Soundariya and Renuga 2017). These challenges are further
exacerbated by disparities in training datasets, which often disproportionately represent certain
emotions like ‘happiness’ or ‘neutral’. This imbalance leads to biased and overconfident predic-
tions and diminishes the effectiveness in predicting underrepresented states, such as ‘angry’ or
‘disgust’ (Deriu et al. 2021).

2.3 Reliable ERC systems through predictive uncertainty

These interconnected challenges significantly impact the entire pipeline of ERC, resulting in
biased predictions and limiting the models’ capability to generalize across diverse emotional con-
texts. Traditional evaluation metrics, such as overall accuracy, often fail to accurately reflect the
model’s performance on individual outputs. This is because overall accuracy is amplified by the
model’s proficiency in identifying overrepresented labels within the training dataset. A reliable
classifier must generate well-calibrated confidence values for its outputs, providing a meaningful
indication of the model’s uncertainty about its predictions. This form of evaluation is particularly
critical in domains like health care or customer service, where inaccuracies in emotion recognition
can have substantial consequences (Oh et al. 2017; Xu et al. 2022). Calibrated confidence measures
not only disclose model limitations but also enable informed decision-making.

Uncertainty quantification in machine learning is crucial for understanding and mitigating
the inherent uncertainties in model predictions. Methods for uncertainty quantification can be
categorized into sampling-based, calibration-based, and distribution-based approaches (Hu et al.
2023). Incorporating uncertainty quantification transforms point predictions of a model into
robust and reliable confidence values (Sankararaman ef al. 2022). A naive technique for esti-
mating uncertainty is using the complement of softmax values (i.e., 1 — softmax,(f) for each
k=1,...,C). However, this method has inherent pitfalls, particularly in deeper architectures,
which tend to exhibit overconfidence in their predictions (Guo et al. 2021). CP, a calibration-
based method, aligns a model’s predicted probabilities with the true likelihoods of outcomes,
ensuring that the model’s confidence accurately reflects its correctness. This method generates
predictive uncertainty for each individual prediction, enhancing the reliability and interpretabil-
ity of model outputs. By leveraging CP, models can provide well-calibrated confidence intervals,
offering a robust measure of the quality of each individual prediction (Shafer and Vovk 2008).
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3. Methodology
3.1 Emotion recognition in conversation

The goal of ERC is to categorize the emotional dynamics expressed within dialogues into specific
emotional categories, such as ‘happiness’ or ’sadness’. The supervised methods for ERC employ a
discriminative framework which necessitates training on datasets with emotion labels. Formally,
consider the dataset as a collection of N pairs {(x;, yi)}fi 1» Where each pair (X, Y) consists of a
structured dialogue x; and its corresponding emotion label y;. The objective of the classification
task is to optimize parameters w of a C-variate function f*(d) = (f{”(d), . . ., f¢(d)), where C s the
number of emotion classes. This optimization process aims at minimizing the cross-entropy loss:

N C
=) " Ily; = k] log [softmax;. (f(x;))] (1)

where softmax(f) is a C-variate function defined as

exp (fx)
Y i exp (f)

for vectors f = (fi, ..., fc) and I[A] is the indicator function that takes value 1 if statement A
is true and 0 otherwise. In the context of multi-class classification tasks, the softmax function
transforms a vector of real-valued logits into a set of probabilities, which together sum to 1.
Following this, the argmax function is applied to these softmax-derived probabilities to pinpoint
the class with the highest probability y; € {1, . . ., C} for the given input x;.

In this paper, we used the RoBERTa transformer as the baseline model for ERC. The model
architecture consists of two primary components: an encoder module, which processes the input
text and extracts contextualized representations of dialogues, and a classification head, designed to
predict the corresponding emotion label using latent data. We use the RoBERTa model as the base-
line encoder (Liu et al. 2019). Throughout the training process, the weights of both the encoder
and the classification head are iteratively updated to minimize the loss value between the predicted
emotion labels and their ground-truth counterparts. Figure 2 provides a schematic overview of our
classifier for the ERC task.

It is noteworthy that the main goal of this paper is to investigate the often overlooked aspect
of uncertainty within the ERC task, rather than the development of complex structured methods
for the task of emotion recognition. We adapt and introduce distribution-free, uncertainty-aware
frameworks to integrate and assess predictive confidence for predicted labels. AsCP is a model-
agnostic framework, it can be easily adapted to other applications and models of NLP.

An input to the model is a windowed multi-turn conversation between interlocutors, tagged
using special tokens. We set the window size to 3, meaning that each input includes a starting
utterance and the subsequent two utterances by the speakers as context and the third utterance as
query. Let’s consider a conversation represented as a sequence [(s1, #1), - - - , (SN, n)], where each
pair (s, ;) includes an utterance u; and its corresponding speaker s; fori=1, - - - , N. The goal of
ERC is to predict the emotion label y € #for the query utterance u;, considering the context pro-
vided by a sequence of d preceding utterances [u;_g4, - - - , uj—1], here d = 2, and the corresponding
speaker information [s;_g, - - - , si—1].

Each input text x; into the prompt generation code model is constructed by appending special
tokens to u; for the query utterance as follows:

softmaxy(f) = (2)

x; = [context: [s;_gl: ui_g, - -+ > <s>[siliu; </s>1]. (3)
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3.2 Set-valued classifiers

Set-valued classifiers are a category of classifiers that, instead of predicting a singular class label
for an input, assign a set of possible class labels. The size of prediction set serves as an indicator of
model uncertainty regarding its output. This approach is particularly advantageous in scenarios
characterized by ambiguity in the class categories, or when the cost of making an incorrect pre-
diction is high. Formally, let us define 77 as a classifier trained on a dataset {(x, y)} € (2, %), where
#%={l1,...,C}, and consider (x,ew, Ynew) as a new instance in (Z, %). In the context of ERC task,
C is the number of emotion classes. The objective of a set-valued classifier is to establish a set func-
tion I" to map Xy to a subset of {1, . . ., C}, ensuring I' (X, ) encompasses ¥, with a predefined
significance level « € (0, 1):

P[ynew elM(xpew)] >1—a. (4)

An initial strategy to achieve this objective might involve sequentially adding labels to the
prediction set in descending order of their softmax probability values, as determined by 7 and
stopping when the aggregative sum of these probability values marginally surpasses 1 — « (Guo
et al. 2017; Platt 1999). As highlighted in Angelopoulos ef al. (2020), this ‘naive’ strategy, albeit
intuitive, does not meet the indented coverage criterion in Equation (4) due to reliance on uncal-
ibrated probability estimates and is liable to generate excessively large sets for instances with
poorly calibrated tail probabilities, thus failing to precisely reflect the model’s intrinsic predictive
uncertainty.

3.3 Conformal prediction

CP, as introduced by Vovk et al. (2005), is a distribution-free framework for uncertainty quan-
tification in predictions. It guarantees the marginal coverage condition, outlined in Equation (4),
across N + 1 data points. This post hoc framework assesses the ‘level of surprise’ associated with
observing a specific label for a new input, relative to the hold-out (calibration) data (Shafer and
Vovk 2008). CP’s procedure begins with an arbitrary pretrained classifier, denoted 7, which, in
our context. Then using a small amount of data {(x;, y,')}f\] | € (Z, %), which has not been previ-
ously seen by the classifier (known as hold-out or calibration set), it understands the predictive
performance of 7 on future inputs. The baseline CP utilizes the probability vector produced by 7
(e.g., softmax values) to calculate the model’s error for each instance in the calibration set using
a nonconformity (conformity) function. Nonconformity function for classification tasks can be
S(x;) = 7 (x;)[yi], where 7 (x;)[yi] refers to the probability value of the correct class y;, predicted by
the classifier 77. This step effectively ranks all calibration set examples by their probability. Then
these ranked probability values are segregated into certain and uncertain groups based on a pre-
determined significance level «, a process known as the calibration step. This step establishes a
decision-making threshold for future predictions. The conformity threshold is calculated using
the [(V+D(1-a)]
N
this quantile.
During the test stage, g is employed to generate a prediction set for a new unseen example
xN+1- For each potential label y. € %; we accept the hypothesis that y is the correct label for xn;
if 7 (xN+1)[yc] does not exceed g:

-quantile of the conformity scores from the calibration set, with g representing

F(xnt1) = {ye A (v [yl =1 —g). (5)

The overall procedure of CP is illustrated in Figure 3. The length of the prediction set generated by
CP is an indicator of predictive uncertainty. This length can be converted into certified boundaries
to quantify the model uncertainty on outputs. A formal procedure for converting CP output to
uncertainty measures is discussed in Karimi and Samavi (2023).

For any new exchangeable instance xn+1, the conformal coverage theorem, introduced by
Vovk et al. (1999), guarantees that the prediction set will encompass the correct label yn41 with
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the probability of at least 1 — « (see Theorem 1). It is noteworthy that Theorem 1 holds regardless
of the underlying data distribution until the exchangeability assumption is met.

Theorem 1 (Conformal coverage guarantee (Vovk et al. 1999)). Let (x1,¥1),. .., (XN, yN) be a
sequence of observations, and let (XN41, yN+1) be a new observation. Assume that all observations
are exchangeable. For any significance level a € (0, 1), a conformal classifier provides a prediction
set T'(xn+1) for yn41 such that:

P(J’n+1 el(xpr1)) =1 —oa.

However, CP often falls short of meeting the stronger notion of conditional coverage:
PyeTrX)|X=x]>1—a. (6)

Conditional coverage necessitates valid coverage for any observation in 2. While achieving con-
ditional coverage theoretically requires additional modeling assumptions, the goal in conformal
methods is to develop classification approaches that maintain marginal coverage, approximate
conditional coverage, and ensure robust prediction sets with the possible minimum size as pro-
posed by Barber et al. (2019). Various strategies have been developed to balance the trade-offs
between approximating conditional coverage and minimizing the size of prediction sets. It is
important to note that CP is a flexible framework rather than a fixed methodology, and its specific
settings can vary across different implementations. In this paper, we adapted the implementation
of LAC as described by Kumar et al. (2023) for the baseline CPs.

3.3.1 Theissue of bias in ERC

A significant challenge for conventional ERC models is their reliance on datasets characterized
by imbalanced emotion classes. Typically, within ERC datasets, certain emotions, for example
‘neutral’ or positive emotions, are overrepresented. This imbalance results in the development of
biased classifiers, which exhibit overconfidence in these overrepresented classes, even in instances
with incorrect predictions (Guo et al. 2017; Johnson and Khoshgoftaar 2019). The issue of class
imbalance is widespread in emotion recognition datasets and significantly affects the reliability of
models (see Figure 4). Our findings, detailed in Section 4, demonstrate that this biased classifiers
can compromise the efficacy of conformal classifiers during both calibration and prediction stages
(Figures 5 and 6).

Although baseline CP methods such as LAC can achieve marginal coverage, as guaranteed
by Theorem 1, their application to ERC tasks may not adequately address the desideratum of
approximating conditional coverage (Figures 7 and 8). Specifically, the prediction sets generated
for underrepresented classes often exhibit coverage levels significantly below the predefined con-
fidence threshold (see Figure 9). This discrepancy severely limits the applicability of such methods
in scenarios where accurate estimation of uncertainty for nuanced emotional states is crucial. For
instance, in conversational systems used in customer service or mental health support, the reli-
able detection of complex negative emotions is essential (Tivatansakul et al. 2014; Vaudable and
Devillers 2012).

To address this issue, this study evaluates the efficacy of two distinct methodologies. Initially,
we employed the adaptive prediction set (APS) method introduced by Romano et al. (2020),
from the domain of image processing, to assess its applicability and performance in the task
of ERC. Subsequently, we introduce a novel strategy, termed class spectrum calibration. Unlike
previous methods that compute a universal single nonconformity metric, our method calculates
per-class nonconformity metrics. The core aim of class spectrum calibration is to fulfill several
key objectives: maintaining marginal coverage, producing small prediction sets and approximat-
ing conditional coverage as stated Section 4. Notably, we integrate the class spectrum approach
into both the baseline CP and APS.
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3.3.2 Adaptive prediction set (APS)

As discussed before, CP provides a guarantee of marginal coverage. This denotes that, on aver-
age, for any new input xy+1, the produced prediction set is expected to encompass the true label
yN+1 at least with the probability of the predefined confidence level, across the last N + 1 inputs.
This guarantee stands irrespective of the underlying distribution of the data. Nonetheless, in most
cases, CP fails to achieve the conditional coverage for a specific class. This shortfall points to a
potential discrepancy in the method’s efficacy across different class-specific scenarios.

APS introduces a novel nonconformity score to address the coverage discrepancies by cali-
brating the quantile value. It provides an adaptive score function for the calculation of g-value
through computing a generalized inverse quantile conformity score. This process involves sum-
ming the sorted predicted probabilities, starting from the highest toward the true class, and using
this cumulative value as a nonconformity score for each instance. Then in the prediction step,
APS uses a randomization criterion to include or exclude the label that exceeds the cumulative
value beyond the threshold. The resulted prediction set is the smallest randomized prediction set
with conditional coverage at level 1 — «. This adaptive scoring guarantees finite-sample coverage
for future test points. APS provides marginal coverage on synthetic and image data, but its per-
formance on more complex structures such as natural language has not been explored yet. For
an in-depth understanding and comprehensive insights, refer to the seminal paper by Romano
et al. (2020).

3.3.3 Class spectrum conformal prediction (CSCP)

LAC and APS rely on a universal quantile value, overlooking the class distributions in the dataset.
Our results shown in Figure 9 indicate that such an approach leads to biased g-values, partic-
ularly for the models trained on imbalanced datasets. This bias negatively affects the ability of
CP to achieve an approximation of conditional coverage. In this respect, the calibration stage,
designed to determine the thresholds for making predictions, often fails to adequately represent
minority classes. For overrepresented classes, coverage may exceed the predetermined confidence
level, whereas it significantly falls below this threshold for minority classes. Class spectrum con-
formal prediction (CSCP) is an effective strategy designed to compute calibration values for each
class independently. It produces nonconformity scores that are adjusted with the distinct distri-
bution of calibration data and complexities of each class, thereby improving the coverage and
fairness of CP.

In CSCP prediction sets for test inputs are generated by leveraging class-specific p-values,
derived from nonconformity scores, offering an alternative to quantile-based approaches. These
p-values quantify how unusual a specific emotion label demonstrates the emotional state of the
new input x,,41. As outlined in Algorithm 1, the process starts with a prediction model 77, the cal-
ibration data {(x;, y,-)}fi | € (2, %), and the unseen input xy41 from 2. The classifier 7 calculates
softmax probabilities for each class, which are then used to compute nonconformity scores for the
true class across the calibration data. These nonconformity scores measure the alignment between
each sample’s true label and the predicted probability.

In the testing step, the same classifier 7 is utilized to calculate the softmax probability vector
for xn1. Then this vector is used for calculating a p-value for each label as stated in stage 9 of
the algorithm. The p-value quantifies the proportion of instances in the calibration set with the
same label that exhibit a degree of nonconformity equal to or greater than that of the test instance.
These p-values serve as indicators of the probability of each label being included in the prediction
set of xyy1, regarding the statistical insights extracted from the calibration data:

p-value[y] =

M
1
M+ 1 Zl: ]I[Sl[y] = S(XN+1,)})],V)/ c (7)
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Algorithm 1 Class Spectrum Conformal Prediction (CSCP)

1. Inputs: Prediction model 7, calibration data {(X,-,y,-)}f’zl, new input xy.+1, and significance level

ae(0,1)
2: for each sample (x;, y;) in the calibration data do > Calibration stage
3: Predict probability vector probscqlyi] < P(yi|x;) using &
4: Compute nonconformity scores using score function scores[y;] < 1 — probscqlyi]  >can

can be any arbitrary function

5: end for

6: Predict probability vector probsyy1 < P(Y|X = xj+1) using &

7 Cny1=1] > Prediction stage
8: foreachy e %do > %is the label space
9:

py < probsy41[y]

10: Compute p-valuey, using py and probscqly]

11: if p-value,) > o then add label y into €41

12: end for

13: Output: The prediction set Gy1for the new input xy41

14: end algorithm

Here, p-value[y] denotes the p-value for emotion label y, M is the number of calibration instances
for each label y, s; is ©'th nonconformity score for the label y in the calibration set, and I[ - ] is
the indicator function that returns 1 if the condition inside is true and 0 otherwise. In stage 10,
labels are included in the prediction set ¥n if their associated p-value exceeds or is equal to the
predefined significance level . This criterion ensures that the prediction sets achieve the desired
coverage level, reliably containing the true label yn41, with a confidence level of at least 1 — .
This approach provides a flexible and robust method for approximating conditional coverage in
scenarios with nonuniform class distributions.

3.3.4 Class spectrum adaptive prediction sets (CS-APS)
The last approach we investigated in this paper is the class spectrum adaptive prediction sets (CS-
APS), which incorporates the strategy of class spectrum quantile calculation into standard APS
algorithm, an adaptation we derived from image processing (Romano et al. 2020). In Section 4, we
demonstrate that implementing an adaptive set in ERC tasks significantly improves coverage levels
across different classes. Despite this improvement, we observed that applying APS to the task of
ERC still resulted in imbalanced coverage across emotion classes (see Figure 9). To get a more
accurate approximation of conditional coverage, we modified the standard APS by incorporating
a class spectrum strategy. This modification involves a tailored calibration process, where for each
sample in the calibration set, we append the adaptive nonconformity for the true label to its label-
specific list (e.g., Q[y]), rather than relying on a universal list for all classes. This process results in
distinct arrays of g-values for each class, enabling more precise class-wise coverage adjustment.
To choose the right value from the list of g-values for instance xy41 at test time, one intu-
itive heuristic is to apply the CP process on each class and then combine their outputs to form
the final prediction set. However, this approach tends to generate overly large prediction sets,
which can’t effectively convey useful information on predictive uncertainty. Instead, we lever-
age the label predicted by 7 (xN+1) to guide the selection of a more appropriate g-value and
construct the prediction set accordingly. For instance, if argmax (77 (xn+1)) = happy, we utilize
Qlhappy] as the target g-value for that instance. This approach is advantageous as it allocates pro-
portional consideration to each class, corresponding to the model’s confidence in its prediction.

https://doi.org/10.1017/nlp.2024.48 Published online by Cambridge University Press


https://doi.org/10.1017/nlp.2024.48

Natural Language Processing 13

Algorithm 2 Class Spectrum Adaptive Prediction Set (CS-APS)

N

1: Inputs: Prediction model 7, calibration data {(x;, yi)};_;, new input xy41, significance level

ae(0,1)
2: for each example (x;, y;) in the calibration data do > Calibration stage
3 Predict probability vector P; <— P(Y|X = x;) using
4: Pisorted <Sort the vector P; in descending order
5: S; < calculate the cumulative sum of Pjsoteq Starting from index zero to the position of
true label Y; in Pisorted
6: Compute generalized inverse quantile conformity score using S; and add the result into
Elyil
7: end for
8: foreachye %do > #is the label space
9: Qly] < (1 — a)(1+ | calibration data | )] largest values in E[y]
10: end for
111 bn+1=I] > Prediction stage

12:  Predict probability vector probsy4+1 < P(Y|Xn+1) using &

13:  prediction <— arg max (probsy.1)

14: q < Q[predition]

15:  Sort probsy+1 in descending order

16: Add labels into €y1, starting with the largest probability, until threshold g is reached
17:  Apply randomization criterion

18: Output: A prediction set 41 for the new input Xy1

19: end algorithm

It encourages the inclusion of a larger range of classes in the prediction set when the model pro-
duces predictions with higher entropy (e.g., when the prediction is an underrepresented class).
This approach is particularly beneficial for models prone to bias, as it ensures that the predic-
tion set reflects a more balanced consideration of all possible outcomes. This strategy leads us to
enhanced coverage across all classes. We present a modified version of APS, the class spectrum
adaptive prediction set (CS-APS), in Algorithm 2.

Beyond ERC, the methods proposed in this paper can be effectively applied to various other
NLP tasks that require reliable uncertainty quantification. For instance, CP techniques can be
leveraged in sentiment analysis to provide more nuanced and trustworthy sentiment predictions
by generating sets of potential sentiments with associated confidence levels. Similarly, in tasks
like machine translation and text classification, these methods can enhance the interpretability
and reliability of predictions by offering well-calibrated uncertainty estimates. This adaptability
underscores the broader applicability of our approach, paving the way for its integration into
diverse NLP applications.

4. Experiments

In this paper, we evaluated the performance of LAC, APS, CSCP, and CS-APS focusing on the task
of ERC. The inherent complexity of emotion within textual conversational contexts, as discussed
in (2), positions ERC as an ideal benchmark for examining the methods under study.
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All the experiments and source code in this study are accessible in the project’s GitHub
repository?.

4.1 Model and datasets

Pretrained transformers like RoBERTa (Liu et al. 2019) have achieved significant attention in
recent years across various NLP tasks, primarily for their proficiency in capturing long-range
dependencies and synthesizing rich contextual cues, including sentiment analysis (Tan et al.
2022), question answering, and text classification (Nassiri and Akhloufi 2023). In this paper, we
fine-tuned a RoBERTa model on the task of ERC using three widely used datasets for emotional
conversation:

« Multimodal EmotionLines Dataset (MELD): Developed by Poria et al. (2019), comprises
approximately 1,400 dialogues from the TV series Friends and private Facebook Messenger
conversations. The utterances are annotated with one of seven emotion categories, extend-
ing Ekman’s six basic emotions (‘joy’, ‘sadness’, ‘anger’, ‘fear’, ‘surprise’, ‘disgust’) by adding
a ‘neutral’ category.

o EmoWOZ: Developed by Feng et al. (2022), features around 11,000 task-oriented human-
machine dialogues, annotated with a novel set of seven emotions: ‘neutral’, ‘fearful’,
‘dissatisfied’, ‘apologetic’, ‘abusive’, ‘excited’, and ‘satisfied’.

« EmoContext: Published by Chatterjee et al. (2019) for the emotion detection challenge of
SemEval-2019 Task 3, in which each dialogue includes three turns labeled by using one
of the emotion classes: ‘happy’, ‘sad’, ‘angry’, or ‘others’. This dataset comprises 30,160
dialogues from a conversational agent for training and two separate sets for evaluation,
with 2,755 and 5,509 dialogues, respectively.

The datasets chosen for this research exhibit a pronounced imbalance across different emo-
tion classes, making them a particularly suitable choice for the objectives of this paper. Figure 4
illustrates the distribution of emotion classes within the datasets, organized in order of decreasing
frequency.

4.1.1 The problem of biased prediction distribution in transformer-based ERC

The results presented in Table 1 highlight the skewed prediction distribution for RoOBERTa model
using three emotional conversation datasets: MELD, EmoWOZ, and Emocx. In the MELD dataset,
the highest accuracy is achieved for the ‘neutral” class (0.83), while the ‘fear’ class has the lowest
accuracy (0.03), indicating significant challenges in correctly classifying fear. For the EmoWOZ
dataset, the ‘neutral’ class also has the highest accuracy (0.94), and the ‘fearful (sad)’ class has
the lowest accuracy (0.33), suggesting that neutral emotions are generally easier to classify. The
Emocx dataset shows the highest accuracy for the ‘others’ class (0.88) and the lowest for the ’sad’
class (0.71). These discrepancies point to potential biases in the datasets or the models’ difficulty
in distinguishing certain emotions, especially those with more subtle or overlapping features.

4.1.2 The problem of poor calibration in transformer-based ERC

Figure 5 represents the calibration performance of the fine-tuned RoBERTa model on three ERC
datasets. In all three cases, the model’s confidence (x-axis) does not align well with its actual accu-
racy (y-axis), as evidenced by the deviation of the blue line from the ideal calibration. This poor

2https://github.com/samadroohi/cerc
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Figure 6. Comparative analysis of prediction set coverage between (a) naive top-k prediction sets and (b) size-stratified
prediction sets for CP. CP demonstrating consistently higher accuracy and superior performance across various set sizes
compared to the naive methods.

calibration is quantified using expected calibration error (ECE). ECE measures the average differ-
ence between confidence and accuracy across all predictions. Notably, all three datasets exhibit a
tendency toward overconfidence, especially in higher confidence ranges, where the blue line falls
below the diagonal. This indicates that the model is often more confident in its predictions than
its actual performance.

4.1.3 Comparison of size-stratified CP with naive top-k prediction

In Angelopoulos et al. (2020), the size-stratified coverage is used as a metric to assess error rates
across prediction sets of varying sizes, highlighting the effectiveness of CP over naive methods.
We follow the same paradigm in the first experiment to compare the coverage achieved by the
baseline CP algorithm and the conventional naive top-k prediction sets, which are simply formed
by taking the top-k softmax scores across all predictions.

The results illustrated in Figure 6 highlight the superior accuracy of CP in single-size predic-
tion sets when compared to the naive top-1 accuracy. Additionally, while both methods exhibited
an increase in coverage with larger set sizes, CP consistently tends to maintain a higher level of
accuracy across almost all prediction set sizes. In contrast, the naive top-k approach demonstrates
sharp improvements but starts from the lower level of accuracy than the desired confidence levels.

This comparative analysis indicates that relying merely on the top-k highest probability scores
fails to achieve comprehensive coverage effectively. In contrast, CP maintains consistent adher-
ence to the predetermined confidence levels across various prediction set sizes. This observation
highlights the superiority of CP methods, which not only provide a more accurate estimation of
error rates but also sustain robust performance throughout.

4.1.4 The calibration of conformal prediction coverage

Figure 7 illustrates the calibration of CP, comparing the empirical coverage to the specified confi-
dence level. In contrast to the traditional ERC systems (as presented in Section 4.1.2), CP exhibits
superior calibration performance. This suggests that prediction sets provide a true likelihood of
the output. Therefore, for each individual prediction, the prediction set size provides a reliable
indicator of predictive uncertainty.
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Figure 7. The calibration for conformal prediction considering various confidence levels.

4.1.5 Marginal coverage and average prediction set size

The results of our experiments, which examined four distinct methodologies across designated
significance thresholds (90% for MELD and 95% for EmoWOZ and EmoCX), are depicted in
Figure 8. This analysis focuses on the marginal coverage and average prediction set sizes achieved
by each method, calculated using the outcomes of ten experimental iterations utilizing ran-
domly selected calibration and testing samples. Notably, the coverage level provided by the LAC
method did not meet the predetermined confidence criteria for the MELD and EmoWOZ datasets.
In comparison, the CSCP approach demonstrated relatively enhanced coverage relative to LAC,
albeit at the cost of a noticeable increase in prediction size. Both APS and CS-APS achieved cov-
erage rates surpassing the predetermined confidence levels, consistent with the criterion outlined
in Equation (4). Specifically, the CS-APS method outperformed the other approaches in terms of
marginal coverage. For EmoWOZ and EmoCX, the CS-APS maintained prediction sizes that were
smaller or comparable to prediction sizes generated by APS.

4.1.6 Class spectrum coverage level

The findings from the previous section indicated that, apart from LAC for MELD and EmoWOZ
datasets, the other approaches were aligned well with the expected marginal coverage as out-
lined by CP. However, a notable limitation observed in the results depicted in Figure 8 was
the lack of granular insight regarding the class-specific performance of these methods. In an
effort to bridge this gap, we conducted a comprehensive class-wise analysis for each method,
adhering to the parameters established in the first experiment. The results of this analysis are
illustrated in Figure 9, which displays the class spectrum coverage of the methodologies LAC,
CSCP, APS, and CS-APS across datasets MELD, EmoWOZ, and EmoCX, with a confidence level
of 90% for MELD and 95% for both EmoWOZ and EmoCX. This analysis revealed that, across all
examined tasks, LAC consistently underperformed in comparison to its counterparts, while CS-
APS demonstrated superior class spectrum coverage, indicating its effectiveness in the respective
tasks.

These findings suggest that using a universal quantile value inadequately captures the diverse
degrees of uncertainty and the intrinsic distribution characteristic of emotional classes. This
issue is particularly pronounced in datasets characterized by uneven representation, leading to
a g-value that is affected by the model’s bias toward overrepresented classes. For example, in the
EmoWOZ dataset, both LAC and APS underperformed in comparison to their class spectrum
counterparts, CSCP and CS-APS. Notably, this can be observed in the performance metrics for
the underrepresented emotion category ‘fearful’. A detailed comparison of coverage values for
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CS-APS) across three datasets (MELD, EmoWOZ, and EmoCX). CS-APS outperformed other methods in marginal coverage
with an efficient prediction size.

these four methodologies is delineated in Appendix (A), underscoring the significance of this
issue.

4.1.7 Class spectrum prediction set size

Figure 10 presents the size of class spectrum prediction sets across methodologies analyzed within
this research. The LAC generates relatively small prediction sets. However, its class spectrum cov-
erage, as shown in Figure 9, significantly falls below the predetermined confidence threshold. This
suggests that LAC tends to underestimate the uncertainty level for a given input. In contrast, CSCP
maintains class spectrum coverage close to the predetermined confidence level, though referring
to this as conditional coverage might be somewhat misleading. CSCP tends to produce signifi-
cantly larger prediction sets, potentially overestimating the actual level of uncertainty, which could
limit its utility in practical applications. As highlighted in (3.3), achieving conditional coverage is
a challenge, but approximating it is a desired objective in CP methods. Both APS and CS-APS
find a good balance between the coverage and the size of prediction sets. This offers an adaptive
level of uncertainty that results in prediction sets considerably more compact than CSCPs while
achieving a class spectrum coverage level similar to CSCPs.

5. Conclusion

The primary motivation underlying this work was to establish a novel paradigm for leverag-
ing CP in addressing two problems in traditional ERC systems: the biased classification and
poor calibration. In our exploration, we focused on three principal objectives of the CP frame-
work: maintaining marginal coverage, minimizing prediction set sizes, and achieving a close
approximation of conditional coverage. To this end, we adapted and evaluated two established
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methods—LAC and APS—and introduced two novel approaches: CSCP and CS-APS. Our find-
ings revealed that CP can significantly improve the issue of poor calibration in ERC tasks.
Furthermore, we found that while the baseline CP (LAC) generates compact prediction sets, its
performance in maintaining marginal coverage fluctuates, likely due to inherent biases in ERC
models. Among the evaluated techniques, LAC was also the least capable of approximating con-
ditional coverage. In contrast, CSCP demonstrated superiority in achieving marginal coverage
and approximating conditional coverage but at the cost of producing overly large prediction sets,
which limits its practical utility. APS and CS-APS maintained consistent marginal coverage and
produced smaller prediction sets, comparable to LAC, with CS-APS outperforming in conditional
coverage approximation.

These findings highlight the limitations of employing a universal calibration metric, such as
a singular g-value, in complex NLP tasks. An effective calibration strategy should dynamically
reflect the class distribution in the calibration data. The methodologies devised and applied in this
study are easily adaptable to other NLP tasks with minimal modifications to the predictive model.

A critical limitation of our approach lies in handling the class spectrum calibration, wherein
we employ calibration values for each class without considering their frequency in the hold-out
set, a gap that requires optimization through hyperparameter tuning specific to each class’s char-
acteristics. Future research should explore the performance of these algorithms through the lens
of uncertainty quantification metrics, such as the area under the receiver operating characteristic
curves, thereby offering a more granular understanding of their efficacy and potential applications
in predictive uncertainty.

Competing interests. None.

References

Angelopoulos A., Bates S., Malik J. and Jordan M.I. (2020). Uncertainty sets for image classifiers using conformal
prediction. In International Conference on Learning Representations (ICLR). Retrieved from https://iclr.cc/virtual/2021/
spotlight/3435

Barber R.F., Candés E.J., Ramdas A. and Tibshirani R.J. (2021). The limits of distribution-free conditional predictive
inference. Information and Inference: A Journal of the IMA, 10(2), 455-482.

Blodgett S.L., Barocas S., Daumé H. IIL. and Hal W. (2020). Language (Technology) is Power: A Critical Survey of “Bias” in
NLP. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online: Association for
Computational Linguistics, pp. 5454-5476. DOI:10.18653/v1/2020.acl-main.485

Casas J., Spring T., Daher K., Mugellini E., Khaled O.A. and Cudré-Mauroux P. (2021). Enhancing Conversational Agents
with Empathic Abilities. In Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents (IVA 21),
New York, NY, USA: Association for Computing Machinery, pp. 41-47, https://doi.org/10.1145/3472306.3478344

Chen D., Zhengwei H., Yiting T., Jintao M. and Ribesh K. (2023). Emotion and sentiment analysis for intelli-
gent customer service conversation using a multi-task ensemble framework.. Cluster Computing 27, 2099-2115.
https://doi.org/10.1007/s10586-023-04073-z.

Chatterjee A., Narahari K.N., Joshi M. and Agrawal P. (2019). SemEval-2019 Task 3: EmoContext Contextual
Emotion Detection in Text. In Proceedings of the 13th International Workshop on Semantic Evaluation, Minneapolis,
Minnesota, USA: Association for Computational Linguistics, pp. 39-48, https://doi.org/10.18653/v1/S19-2005,
https://aclanthology.org/S19-2005

Dessai A. and Virani H. (2021). Emotion detection using physiological signals. In. 2021 International Conference
On Electrical, Computer and Energy Technologies (ICECET), vol. 1, pp. 1-4. https://doi.org/10.1109/ICECET52533.
2021.9698729.

Devillers L. and Cowie R. (2023). Ethical considerations on affective computing: an overview. In Proceedings of the IEEE

Deriu J., Rodrigo A., Otegi A., Echegoyen G., Rosset S., Agirre E. and Cieliebak M. (2021). Survey on evaluation methods
for dialogue systems. Artificial Intelligence Review, 54. Publisher:Springer, pp. 755-810.

Dragos V. (2013). An ontological analysis of uncertainty in soft data. In IEEE Conference Publication — IEEE Xplore, Available
at: https://ieeexplore.ieee.org/document/6641188, Accessed on 21 October 2023.

Feng S., Sun G., Lubis N., Zhang C. and Gasi¢ M. (2023). Affect recognition in conversations using large language models,
In Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue (pp. 259-273). Kyoto,
Japan: Association for Computational Linguistics.

https://doi.org/10.1017/nlp.2024.48 Published online by Cambridge University Press


https://iclr.cc/virtual/2021/spotlight/3435
https://iclr.cc/virtual/2021/spotlight/3435
https://doi.org/10.18653/v1/2020.acl-main.485
https://doi.org/10.1145/3472306.3478344
https://doi.org/10.1007/s10586-023-04073-z
https://doi.org/10.18653/v1/S19-2005
https://aclanthology.org/S19-2005
https://doi.org/10.1109/ICECET52533.2021.9698729
https://doi.org/10.1109/ICECET52533.2021.9698729
https://ieeexplore.ieee.org/document/6641188
https://doi.org/10.1017/nlp.2024.48

Natural Language Processing 21

Feng S., Lubis N., Geishauser C., Lin H.-C., Heck M. and van Niekerk C. (2022). EmoWOZ: a large-scale corpus and
labelling scheme for emotion recognition in task-oriented dialogue systems. In Proceedings of the 13th Language Resources
and Evaluation Conference, (pp. 4096-4113). Marseille, France: European Language Resources Association. ISBN 979-10-
95546-72-6.

Gan C., Zheng]J., Zhu Q., Jain D.K. and Struc V. (2024). A graph neural network with context filtering and feature correction
for conversational emotion recognition. Information Sciences, 658, Elsevier, pp. 120017.

Gal Y. and Ghahramani Z. (2016). Dropout as a Bayesian approximation: Representing model uncertainty in deep learning.
In International Conference on Machine Learning, PMLR, pp. 1050-1059.

Ghosal D., Majumder N., Gelbukh A., Mihalcea R. and Poria S. (2020). COSMIC: COmmonSense knowledge for eMo-
tion identification in conversations. In Findings of the Association for Computational Linguistics: EMNLP 2020. Online:
Association for Computational Linguistics, pp. 24702481, https://doi.org/10.18653/v1/2020.findings-emnlp.224.

Ghosal D., Majumder N., Poria S., Chhaya N. and Gelbukh A. (2019). DialogueGCN: A Graph Convolutional
Neural Network for Emotion Recognition in Conversation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Hong Kong, China: Association for Computational Linguistics.https://doi.org/10.18653/v1/D19-1015,
https://aclanthology.org/D19-1015

Guo H., Pasunuru R. and Bansal M. (2021). An Overview of Uncertainty Calibration for Text Classification and
the Role of Distillation. In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021),
Association for Computational Linguistics, pages 289-306, DOI:10.18653/v1/2021.repl4nlp-1.29, https://aclanthology.org/
2021.repl4nlp-1.29

Guo C.,, Pleiss G., Sun Y. and Weinberger K.Q. (2017). On calibration of modern neural networks. In International
Conference on Machine Learning, PMLR, pp. pages.1321-1330.

Harper R. and Southern J. (2022). A bayesian deep learning framework for end-to-end prediction of emotion from heartbeat.
IEEE Transactions On Affective Computing 13, 985-991. https://doi.org/10.1109/TAFFC.20201610

Hazarika D., Poria S., Mihalcea R., Cambria E. and Zimmermann R. (2018). ICON: Interactive Conversational Memory
Network for Multimodal Emotion Detection. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium: Association for Computational Linguistics. https://doi.org/10.18653/v1/D18-1280,
https://aclanthology.org/D18-1280

Hu M., Zhang Z., Zhao S., Huang M. and Wu B. (2023). Uncertainty in natural language processing: sources, quantification,
and applications. CoRR, abs/2306.04459.

Jiang Z., Araki J., Ding H. and Neubig G. (2021). How can we know when language models know? On the calibration
of language models for question answering. Transactions of the Association for Computational Linguistics 9, 962-977.
https://doi.org/10.1162/tacl_a_00407

Johnson J.M. and Khoshgoftaar T.M. (2019). Survey on deep learning with class imbalance. Journal of Big Data 6,27.
https://doi.org/10.1186/s40537-019-0192-5

Karimi H. and Samavi R. (2023). Quantifying deep learning model uncertainty in conformal prediction, Publisher: arXiv.
http://arxiv.org/abs/2306.00876 (Accessed 2023-07-24.).

Kumar B., Lu C., Gupta G., Palepu Anil, Bellamy D., Raskar R. and Beam A. (2023). Conformal prediction with large
language models for multi-choice question answering, In Proceedings of the 40th International Conference on Machine
Learning (ICML 2023), PMLR, pp. 493-502.

Lakshminarayanan B., Pritzel A. and Blundell C. (2017). Simple and scalable predictive uncertainty estimation using deep
ensembles, Advances in Neural Information Processing Systems (NeurIPS 2017), 30, 6402-6413.

Lei S., Dong G., Wang X., Wang K. and Wang S. (2024). InstructERC: reforming emotion recognition in conversation with
a retrieval multi-task LLMs framework, arXiv preprint arXiv: 2309.11911., https://arxiv.org/abs/2309.11911,

Li S. and Deng W. (2020). Deep facial expression recognition: a survey. In IEEE Transactions On Affective Computing, 13,
IEEE, pp. 1195-1215.

Li J., Ji D, Li F., Zhang M. and Liu Y. (2020). HiTrans: A Transformer-Based Context- and Speaker-Sensitive
Model for Emotion Detection in Conversations. In Proceedings of the 28th International Conference on Computational
Linguistics, Barcelona, Spain: International Committee on Computational Linguistics. https://doi.org/10.18653/v1/2020.
coling-main.370, https://aclanthology.org/2020.coling-main.370

Liu Y., Ott M., Goyal N., Du Jingfei, Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L. and Stoyanov
V. (2019). RoBERTa: a robustly optimized BERT pretraining approach, arXiv: 1907.11692 [cs], Available at:
http://arxiv.org/abs/1907.11692.

Majumder N., Poria S., Hazarika D., Mihalcea R., Gelbukh A. and Cambria E. (2019). Dialoguernn: an attentive RNN for
emotion detection in conversations. Proceedings of the AAAI Conference On Artificial Intelligence 33, 6818-6825.

Nassiri K. and Akhloufi M. (2023). Transformer models used for text-based question answering systems. Applied Intelligence
53, 10602-10635. https://doi.org/10.1007/s10489-022-04052-8.

Neal R.M. (2012). Bayesian Learning for Neural Networks. Springer Science & Business Media. ISBN 978-1-4612-0745-0.

https://doi.org/10.1017/nlp.2024.48 Published online by Cambridge University Press


https://doi.org/10.18653/v1/2020.findings-emnlp.224
https://doi.org/10.18653/v1/D19-1015
https://aclanthology.org/D19-1015
https://aclanthology.org/2021.repl4nlp-1.29
https://aclanthology.org/2021.repl4nlp-1.29
https://doi.org/10.1109/TAFFC.20201610
https://doi.org/10.18653/v1/D18-1280
https://aclanthology.org/D18-1280
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1186/s40537-019-0192-5
http://arxiv.org/abs/2306.00876
https://arxiv.org/abs/2309.11911
https://doi.org/10.18653/v1/2020.coling-main.370
https://doi.org/10.18653/v1/2020.coling-main.370
https://aclanthology.org/2020.coling-main.370
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/s10489-022-04052-8
https://doi.org/10.1017/nlp.2024.48

22 S. Roohi et al.

Oh K.-]., Lee D., Ko B. and Choi H.-J. (2017). A chatbot for psychiatric counseling in mental healthcare service based on
emotional dialogue analysis and sentence generation. In Proceedings of the 2017 18th IEEE International Conference on
Mobile Data Management (MDM) (pp. 371-375). Daejeon, South Korea. IEEE. https://doi.org/10.1109/MDM.2017.64.

Ott M., Auli M., Grangier D. and Ranzato M. (2018). Analyzing uncertainty in neural machine translation. In Proceedings
of the 35th International Conference on Machine Learning (ICML 2018), PMLR 80, 3956-3965. Stockholm, Sweden.

Platt J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In
Advances in Large Margin Classifiers, 10. Cambridge, MA: Publisher, pp. 61-74.

Poria S., Cambria E., Hazarika D., Majumder N., Zadeh A. and Morency L.-P. (2017). Context-Dependent
Sentiment Analysis in User-Generated Videos. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1 Long Papers), Vancouver, Canada: Association for Computational Linguistics,
https://doi.org/10.18653/v1/P17-1081, https://aclanthology.org/P17-1081

Poria S., Hazarika D., Majumder N., Naik G., Cambria E. and Mihalcea R. (2019). MELD: a multimodal
multi-party dataset for emotion recognition in conversations. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (pp. 527-536). Florence, Italy: Association for Computational Linguistics.
https://doi.org/10.18653/v1/P19-1050

Romano Y., Sesia M. and Candes E.J. (2020). In Advances in Neural Information Processing Systems (NeurIPS 2020), 33,
1-11.

Sankararaman K.A., Wang S. and Fang H. (2022). BayesFormer: transformer with uncertainty estimation. In Proceedings of
the 39th International Conference on Machine Learning (ICML 2022), PMLR, pp. 1-15.

Schlosberg H. (1954). Three dimensions of emotion. Psychological Review 61, 81-88. https://doi.org/10.1037/h0054570.

Sebe N., Cohen I. and Huang T.S. (2005). Multimodal emotion recognition. Handbook of Pattern Recognition and Computer
Vision. World Scientific, pp. 387-409.

Shafer G. and Vovk V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(3), 371-42.

Shen W., Wu S., Yang Y. and Quan X. (2021). Directed Acyclic Graph Network for Conversational Emotion Recognition.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (vol. 1: Long Papers). Association for Computational Linguistics, pp.
1551-1560.

Soundariya R. S. and Renuga R. (2017). Eye movement based emotion recognition using electrooculography. In 2017
Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1-5. https://doi.org/10.1109/TPACT.2017.

Tan K.L., Lee C.P., Anbananthen K.S. and Lim K.M. (2022). RoBERTa-LSTM: a hybrid model for sentiment analysis with
transformer and recurrent neural network. IEEE Access 10, 21517-21525.

Tivatansakul S., Ohkura M., Puangpontip S. and Achalakul T. (2014). Emotional healthcare system: emotion detection
by facial expressions using Japanese database. In Proceedings of the 2014 6th Computer Science and Electronic Engineering
Conference (CEEC), pp. 41-46. IEEE. https://doi.org/10.1109/CEEC.2014.6958573.

Varshney N.,Mishra S. and Baral C. 2022). Investigating selective prediction approaches across several tasks in IID,
OOD, and adversarial settings. In Muresan S., Nakov P. and Villavicencio A., (eds), Findings of the Association for
Computational Linguistics: ACL 2002. Dublin, Ireland: Association for Computational Linguistics, pp. 1995-2002,
https://doi.org/10.18653/v1/2022.findings-acl.158.

Vaudable C. and Devillers L. (2012). Negative emotions detection as an indicator of dialogs quality in call cen-
ters. In. 2012 IEEE International Conference On Acoustics, Speech and Signal Processing (ICASSP) 6, 5109-5112.
https://doi.org/10.1109/ICASSP.2012.

Vovk V., Gammerman A. and Shafer G. (2005). Algorithmic Learning in a Random World, volume 29. New York, NY, USA:
Springer.

Vovk V., Gammerman A. and Saunders C. (1999). Machine-Learning Applications of Algorithmic Randomness. In
Proceedings of the Sixteenth International Conference on Machine Learning, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc, pp. pages 444-453.

Wani T.M., Gunawan T.S., Qadri S.A.A., Kartiwi M. and Ambikairajah E. (2021). A comprehensive review of speech
emotion recognition systems IEEE Access, 9, 47795-47814.

Xu Q., Yan J. and Cao C. (2022). Emotional communication between chatbots and users: an empirical study on online
customer service system. In Degen H. and Ntoa S., (eds), Artificial Intelligence in HCI, Lecture Notes in Computer Science.
Cham: Springer International Publishing, pp. 513-530. https://doi.org/10.1007/978-3-031-05643-7_33.

Zhang Y., Wang M., Wu Y., Tiwari Prayag, Li Q. Wang B. and Qin J. (2023). DialogueLLM: con-
text and emotion knowledge-tuned large language models for emotion recognition in conversations. arXiv.org.,
https://arxiv.org/abs/2310.11374v4.,

Zhang Y., Wang M., Tiwari P., Li Q., Wang B. and Qin J. (2023). Dialoguellm: context and emotion knowledge-tuned llama
models for emotion recognition in conversations, In Proceedings of the 39th International Conference on Machine Learning
(ICML 2023), pp. 1-10. PMLR.

Zhang Y., Wang M., Ren C., Li Qiuchi, Tiwari P., Wang B. and Qin J. (2024). Pushing the limit of LLM capacity for text
classification, arXiv preprint arXiv: 2402.07470, https://arxiv.org/abs/2402.07470

https://doi.org/10.1017/nlp.2024.48 Published online by Cambridge University Press


https://doi.org/10.1109/MDM.2017.64
https://doi.org/10.18653/v1/P17-1081
https://aclanthology.org/P17-1081
https://doi.org/10.18653/v1/P19-1050
https://doi.org/10.1037/h0054570
https://doi.org/10.1109/IPACT.2017
https://doi.org/10.1109/CEEC.2014.6958573
https://doi.org/10.18653/v1/2022.findings-acl.158
https://doi.org/10.1109/ICASSP.2012
https://doi.org/10.1007/978-3-031-05643-7_33
https://arxiv.org/abs/2310.11374v4
https://arxiv.org/abs/2402.07470
https://doi.org/10.1017/nlp.2024.48

Natural Language Processing 23

Appendix A. Class spectrum coverage values

The coverage values for LAC, CSCP, APS, and CS-APS across datasets MELD, EmoWoZ, and
EmoContext are as follows: (Table 2)

Table 2. Results of four approaches on three selected emotional conversation datasets. Labels 0-6 for MELD
are sadness, surprise, neutral, joy, anger, disgust, and fear; for EmoWOZ are neutral, fearful (sad), dissatisfied,
apologetic, abusive, excited, and satisfied; and labels 0-3 for EmoContext are others, happy, sad, and angry

Emotion labels

Dataset Method Ibl-0 Ibl-1 Ibl-2 Ibl-3 Ibl-4 Ibl-5 Ibl-6
MELD LAC 70.94 87.10 99.78 89.43 76.03 67.38 68.02
(¢=0.1) CSCP 92.67 90.34 90.49 87.28 87.52 95.36 94.88
APS 80.81 87.28 99.28 91.55 83.56 65.86 72.16
CS-APS 85.47 90.05 99.78 94.31 86.64 77.87 77.93
EmoW0Zz LAC 97.38 43.13 77.30 80.78 64.48 63.80 96.59
(¢ =0.05) CSCP 95.23 94.44 95.21 94.49 94.11 95.59 94.56
APS 98.37 54.64 84.17 84.28 75.29 74.14 97.61
CS-APS 99.49 59.34 89.89 90.34 77.64 82.16 98.88
EmoContext LAC 91.69 88.00 86.46 92.94 NA NA NA
(¢ =0.05) CSCpP 92.70 83.45 85.60 93.01 NA NA NA
APS 94.01 96.43 97.77 93.47 NA NA NA
CS-APS 99.00 95.58 94.35 96.81 NA NA NA

Appendix B. Comparison of prediction size

The detailed analysis of the size of prediction set approaches of LAC, CSCP, APS, and CS-APS
across datasets MELD, EmoWoZ, and EmoContext is as follows: (Table 3)

Table 3. Results of four approaches on three selected emotional conversation datasets. Labels 0-6 for MELD
are sadness, surprise, neutral, joy, anger, disgust, and fear; for EmoWOZ are neutral, fearful (sad), dissatisfied,
apologetic, abusive, excited, and satisfied; and labels 0-3 for EmoContext are others, happy, sad, and angry

Emotion labels

Dataset Method lbl-0 Ibl-1 Ibl-2 Ibl-3 Ibl-4 Ibl-5 lbl-6
MELD LAC 4.21 4.11 2.35 2.82 4.18 5.26 5.16
CSCpP 5.08 5.24 3.46 3.49 5.16 5.54 5.68

APS 4.48 4.72 2.85 3.13 4.49 5.13 5.12

CS-APS 4.99 521 3.31 3.66 4.95 5.59 5.61
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Table 3. (Continued)

Emotion labels

Dataset Method Ibl-0 lbl-1 Ibl-2 Ibl-3 Ibl-4 lbl-5 Ibl-6
EmoW0Zz LAC 111 143 1.30 119 1.76 135 1.19
CSCP 2.54 4.83 4.39 4.82 4.70 4.75 3.16
APS 1.48 2.72 2.40 2.75 3.79 2.61 77
CS-APS 1.78 3.40 2.92 3.36 4.84 3.18 2.15
EmoContext LAC 1.10 112 1.06 1.09 NA NA NA
CSCP 1.08 1.08 1.06 1.08 NA NA NA
APS 1.65 1.88 1.78 1.84 NA NA NA
CS-APS 1.66 2.00 1.90 1.99 NA NA NA
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