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Standard approaches to neoclassical theory do not extend into regions of strong gradi-
ents in tokamaks such as the pedestal and internal transport barriers. Here, we calculate
the modifications to neoclassical electron physics inside strong gradient regions of large
aspect ratio tokamaks in the banana regime. We show that these modifications are due to
the different ion flow and the strong poloidal variation of the potential. We also provide
a physical interpretation of the mechanisms that drive poloidal asymmetries and hence
a poloidal electric field. We apply our model to two specific example cases of pedestal
profiles, calculating the neoclassical electron flux and the bootstrap current. We find that,
depending on the ion flow, weak gradient neoclassical theory overestimates or underesti-
mates the neoclassical electron transport and the bootstrap current in regions with strong
gradients. We show that the determination of the mean parallel flow is more complex
than in weak gradient neoclassical theory. For vanishing turbulence, we can determine
the radial electric field for a given flow profile in the pedestal.
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1. Introduction

In tokamaks, strong gradients are found in the pedestal or internal transport bar-
riers where density, temperature and the radial electric field change strongly on
short length scales. Neoclassical transport can be important in these regions due to
reduced turbulence levels (Burrell 1997; Viezzer et al. 2018). One important result
of neoclassical theory is the bootstrap current (Bickerton, Connor & Taylor 1971;
Rosenbluth, Hazeltine & Hinton 1972) and its experimental validation (Bonoli et al.
2000; Wade, Murakami & Politzer 2004). The bootstrap current plays a key role
in macrostability as it can drive various instabilities such as the peeling-ballooning
mode (Connor et al. 1998; Peeters 2000; Thomas et al. 2004) as well as reduce the
amount of current that needs to be driven. Neoclassical theory usually assumes weak
gradients (Hinton & Hazeltine 1976) but the bootstrap current is mainly located in
the edge where gradients can be strong and this assumption is broken.
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Sauter, Angioni & Lin-Liu (1999) obtained fitted expressions for the neoclassical
resistivity and the bootstrap current for arbitrary aspect ratio and collisionality that
were later modified by Redl et al. (2021) to capture strong collisionality regimes
more accurately. Since these models were fitted to results from usual neoclassical
theory, it is not surprising that they have limitations in strong gradient regions, where
the model by Sauter et al. (1999) has been shown to overestimate the bootstrap
current (Hager & Chang 2016). It appears that strong gradient effects indeed modify
the bootstrap current.

These modifications in strong gradient regions have previously been considered by
Shaing, Hsu & Hazeltine (1994), Kagan & Catto (2010); see Shaing & Lai (2013).
In both cases, the poloidal variation of the electric potential due to strong gradient
effects were not accounted for. In this work, the poloidal variation of the electric
potential is kept and shown in one example to reduce the bootstrap current in the
pedestal.

A neoclassical transport model for ions in strong gradient regions is presented
in Trinczek et al. (2023), where the gradient length scales of density, temperature
and electric potential are assumed to be of the order of the ion poloidal gyrora-
dius, ρp = ρq R/r . Here, ρ is the ion Larmor radius, q is the safety factor, R is
the major radius and r is the minor radius. Choosing the gradient length scales to
be of the order of the ion poloidal gyroradius is reasonable as this matches obser-
vations of gradient length scales in the pedestal (McDermott et al. 2009; Viezzer
et al. 2013). Scale separation between the pedestal width and the Larmor radius
ρ was assumed in Trinczek et al. (2023) due to an expansion in the small inverse
aspect ratio r/R ∼ ε� 1. The orbit widths of trapped and passing particles scale as√
ερp and ερp, respectively. Thus, despite keeping strong gradients, the orbit width

is small and many orbits fit within one gradient length scale for ε� 1. The distri-
bution function stays close to a Maxwellian which allows an analytical treatment
whilst also capturing strong gradient effects. This model includes poloidal variation,
modifications to the mean parallel flow and orbit squeezing for low collisionality. All
these corrections enter as order unity modifications of the weak gradient neoclassical
transport relations.

This article discusses strong gradient effects on neoclassical electron transport
using the same framework as in Trinczek et al. (2023). The neoclassical electron
transport is much smaller than the neoclassical ion transport because of the smallness
of the electron-to-ion mass ratio, but the bootstrap current is sufficiently large to
modify the magnetic shear and other magnetic quantities. It is to be expected that the
strong gradient effects modify the bootstrap current in a similar way in which orbit
squeezing, poloidal variation and modifications to the mean parallel flow modified
the ion transport equations in the pedestal. We show that the poloidal variation
arising from strong gradient effects in transport barriers together with the changes in
the mean flow are the dominant modification mechanisms of electron transport and
the bootstrap current in the banana regime. The poloidal variation is caused by four
different strong gradient effects: asymmetry in passing particle number, centrifugal
forces, mean parallel flow gradient and asymmetry in orbit widths. The knowledge
of how poloidal variation originates and how it affects neoclassical transport can be
combined to study the neoclassical transport and the bootstrap current in transport
barriers.

The strong gradient modifications to electron neoclassical physics depend strongly
on the mean parallel flow of the ions, which can no longer be determined through the
neoclassical ion particle flux equation. Depending on the choice of the ion parallel
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flow, strong gradient effects cause an increase or decrease of the bootstrap current
and electron neoclassical transport in comparison with weak gradient neoclassical
estimates. In this article, two example pedestal cases are presented and studied.

We start in § 2 with the derivation of the electron transport equations in the banana
regime. The electron distribution function, the neoclassical electron particle flux and
the bootstrap current are calculated. The poloidal variation of the electric potential
enters in those transport equations. The origin of poloidal variation in strong gra-
dient regions is discussed in more detail in § 3. The combination of four different
strong gradient effects causes poloidal variation. This understanding is applied to
two specific example cases of pedestals with different flow profiles. We find that
strong gradient effects cause significant deviations from weak gradient neoclassical
theory in the second example case with stronger flow gradient, but less so for the
first case with weaker flow gradient. A discussion of the mean parallel flow follows
in § 4. We demonstrate that solutions to the mean parallel flow only exist for specific
sources and boundary conditions if the ion neoclassical particle flux is not small. In
§ 5, we study the case of a purely neoclassical pedestal without turbulence in which
the ion neoclassical particle flux can be assumed to be small. For such a turbulence–
free case, the transport equations in Trinczek et al. (2023) can provide a solution
for the radial electric field. A summary of our work and results is presented in § 6.

2. Electron transport

The strong gradient modifications to the neoclassical transport of electrons are
similar to those of the ion transport presented by Trinczek et al. (2023). For ions,
the derivation is based on an expansion in small collisionality, assumed to be in
the banana regime, ν∗ ≡ q Rνee/vte � ε3/2, and in the smallness of the inverse aspect
ratio ε� 1. Here, νee = 4

√
πe4ne logΛ/(3T 3/2

e m1/2
e ) is the electron–electron collision

frequency, the electron density is denoted by ne, me is the electron mass, logΛ is
the Coulomb logarithm and vte = √

2Te/me is the thermal speed of electrons with
the electron temperature Te. For simplicity, we work in a large aspect ratio tokamak
with concentric circular flux surfaces. For electrons, the square root of the mass ratio
δ ≡ √

me/mi � 1 introduces another small parameter, where mi is the ion mass. In
this work, the mass ratio and ν∗/ε3/2 are the primary expansion parameters followed
by an expansion in the large aspect ratio, so

ν∗/ε3/2 � ε� 1 and δ� ε� 1. (2.1)

These limits are interchangeable, and starting by expanding in ε first would lead to
the same results.

The strong radial electric field introduces a shift of the trapped-particle region for
ions to w≡ v‖ + u ∼ √

εvti , where v‖ is the parallel velocity, vti = √
2Ti/mi is the

thermal speed of the ions, Ti is the temperature of the ions, u ≡ (cI/B)(∂Φ/∂ψ)∼
vti , which is related to the poloidal component of the E × B-drift vE via vE · ∇θ =
u b̂ · ∇θ , c is the speed of light, B = I∇ζ + ∇ζ × ∇ψ is the magnetic field, B = |B|
is the magnetic field strength, b̂ ≡ B/B is the magnetic field direction, Φ is the
electric potential, E is the electric field, ψ is the poloidal flux divided by 2π , ζ is the
toroidal angle, θ is the poloidal angle and I = R Bζ is a flux function. The shift of the
trapped region introduces an asymmetry that leads to poloidal variation of density,
electric potential, flow and temperature. Furthermore, the mean parallel flow is no
longer set by a vanishing neoclassical ion particle flux but needs to be determined
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using higher-order momentum conservation. The mean parallel flow profile can have
a strong impact on fluxes.

For Ti ∼ Te, the shift of the trapped-particle region for electrons is small in mass
ratio, u ∼ vt i ∼ δvte. The radial electric field then has a much smaller effect on
electrons, making it possible to neglect u to lowest order in δ. Thus, the condi-
tion v‖ − u ∼ √

εvte simply gives that trapped electrons have small parallel velocity
v‖ ∼ √

εvte.
The main idea of our approach to calculate neoclassical electron transport is that

the trapped–barely passing region has a narrow width in phase space of v‖ ∼ √
εvte.

Thus, most of phase space is accurately described by the freely passing particle solu-
tion and the trapped–barely passing region reduces to a discontinuity in the freely
passing distribution function. It turns out that it is sufficient to calculate the height
of the jump and the change in the first derivative of the passing particle distribu-
tion function across the discontinuity to derive the transport relations by integration
over the drift kinetic equation. When we evaluate the transport, the height of the
jump, which is set by the trapped–barely passing particles, determines the overall
flux. More details about this procedure for the ions are found in Trinczek et al.
(2023). The jump contributions are derived from a drift kinetic equation which is
first expanded in small collisionality. A variable transformation to so-called fixed-θ
variables reduces the drift kinetic equation to a form that can be solved subsequently
for the jumps across the trapped–barely passing region by an expansion in δ first
and then ε. Once the jumps have been determined, the neoclassical electron particle
flux and the bootstrap current can be calculated.

2.1. Distribution function and jump conditions
The drift kinetic equation of the distribution function f can be written in the form

θ̇
∂ f

∂θ
= C[ f, f ] +Σ, (2.2)

where C[ f, f ] is the collision operator and Σ is a source term. The derivative
with respect to poloidal angle θ is performed holding the magnetic moment μ≡
v2

⊥/(2B) and the fixed-θ variables v‖ f ≡ v‖(θf ) and ψf ≡ψ(θf ) fixed, where v⊥ is the
perpendicular speed and θf is a reference angle (as in Trinczek et al. 2023). To the
order required, θ̇ = (v‖ + u)/q R with f = f (ψf , θ, v‖ f , μ). The fixed-θ variables for
electrons are derived and explained in detail in Appendix A. The source for electrons
is assumed to be of order

Σe ∼ √
εδ2νee fe, (2.3)

where fe is the electron distribution function.
In the banana regime, collisionality is small, and trapped particles complete their

orbits many times before colliding. In this low collisionality limit, the drift kinetic
equation to lowest order in ν∗ is

θ̇
∂ fe

∂θ
= 0. (2.4)

The distribution function in fixed-θ variables does not depend on poloidal angle.
The transit average of (2.2) eliminates the poloidal derivative and gives

〈Ce〉τ = −〈Σe〉τ , (2.5)
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where Ce is the collision operator capturing electron–electron and electron–ion col-
lisions. The transit average of a function F is different for trapped and passing
particles. For trapped particles, it is defined as

〈F〉τ ≡ 1
τ

∫ θb

−θb

dθ

|θ̇ |F(σ = +1)+ 1
τ

∫ θb

−θb

dθ

|θ̇ |F(σ = −1), (2.6)

where

τ ≡ 2
∫ θb

−θb

dθ

|θ̇ | , (2.7)

with σ = v‖/|v‖| and where θb is the location of the bounce point, determined to
lowest order in δ by v‖ = 0. It is clear from the definition (2.6) that the tran-
sit average of an odd function in σ vanishes. The transit average for passing
particles is

〈F〉τ ≡ 1
τ

∫ π

−π

dθ

|θ̇ |F, (2.8)

where

τ ≡
∫ π

−π

dθ

|θ̇ | . (2.9)

The jump ΔF of a function F will be needed later and is defined as

ΔF =F p(v‖ → 0+)−F p(v‖ → 0−)=F bp(v‖ → ∞)−F bp(v‖ → −∞), (2.10)

where F p and F bp are defined in the passing and barely passing region, respectively.
The source term is small by δ2 according to the ordering in (2.3). Thus, it fol-

lows from (2.5) that 〈Ce〉τ = 0 and hence the distribution function is an isotropic
Maxwellian to lowest order in δ. The electron–ion collision operator forces the elec-
tron Maxwellian to have the same flow as the ions. The ion flow is smaller than vte

by δ, and hence the Maxwellian is isotropic to lowest order in δ. Equation (2.4) also
imposes that fe be independent of θ when written in terms of ψf , v‖ f and μ. We
choose

fe � fMef = ne0(ψf )

(
me

2πTe0(ψf )

)3/2

exp
{
− mev

2
‖ f

2Te0(ψf )
− meμB(θf )

Te0(ψf )
+ eφ1(ψf , θf )

Te0(ψf )

}
.

(2.11)

Here, θf is a reference angle further discussed in Appendix A. The electron density
ne0 and the temperature Te0 in fMef are only the lowest-order pieces of the full
electron density and temperature, defined by

ne ≡
∫

d3v fe,
3
2

neTe ≡
∫

d3v
mev

2

2
fe. (2.12)

Density and temperature are hence flux functions to lowest order and can be
written as

ne(ψ, θ)= ne0(ψ)+ ne1(ψ, θ), Te(ψ, θ)= Te0(ψ)+ Te1(ψ, θ), (2.13)
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where ne1/ne0 ∼ ε because of the Maxwell–Boltzmann response explained below,
and Te1/Te0 ∼ δ2 because the first-order correction to the Maxwellian will be shown
to be odd in v‖ and hence does not contribute to temperature. Similarly, the electric
potential Φ = φ(ψ)+ φ1(ψ, θ) has a flux function piece φ with eφ/T ∼ 1 and a
smaller piece φ1 that depends on poloidal angle. We showed in Trinczek et al.
(2023) that φ1/φ ∼ ε and, for circular flux surfaces, φ1(ψ, θ)= φc(ψ) cos θ . The
poloidally varying part of the electric potential can cause electrostatic trapping and
de-trapping, thus modifying the trapping condition and number of trapped particles
in the system.

Using (A.2) and ψ −ψf ∼ √
εδψ �ψ ∼ R Bpρp, where Bp is the poloidal mag-

netic field, the distribution function can be written as

fe = fMef (v‖ f , ψf , μ)+ fe1 f (v‖ f , ψf , μ)= fMe(v‖, ψ, μ, θ)+ fe1(v‖, ψ, μ, θ),
(2.14)

where

fMe = ne0(ψ)

(
me

2πTe0(ψ)

)3/2

exp
{

− mev
2
‖

2Te0(ψ)
− meμB(θ)

Te0(ψ)
+ eφ1(ψ, θ)

Te0(ψ)

}
. (2.15)

To lowest order, fixed-θ and particle variables are equivalent and thus the lowest-
order distribution function is a Maxwellian in both the fixed-θ variables and the
particle variables, except for the fact that we have made it explicit in the particle
variables that the density ne = ne0(ψ) exp{eφ1(ψ, θ)/Te0(ψ)} is not constant within
flux surfaces. The relation between (2.11) and (2.15) is given in Appendix B in (B.3).
The correction to the Maxwellian fe1 will be shown to have two parts. One part is
of order δ fMe and one part is of order

√
εδ fMe. An expression for fe1 is derived in

what follows.
The drift kinetic equation for the electrons is first expanded in δ and then in ε. We

start by expanding the collision operator. Collisions of electrons with other electrons
occur as frequently as electron–ion collisions. The collision operator for electrons
has to account for both electron–electron and electronion collisions

Ce ≡ Cee[ fe, fe] + Cei [ fe, fi ] � C (l)[ fe1] +L
[

fe1 − mev‖V‖
Te0

fMe

]
, (2.16)

with fi the ion distribution function. The nonlinear terms of the collision operator
are small to the order of interest and can be dropped. The self-collisions of electrons
are captured by C (l)[ fe1], which for electrons is

C (l)[ fe1] = ∇v ·
[

fMeMee · ∇v

(
fe1

fMe

)
− λe fMe

∫
d3v′ f ′

Me∇ω∇ωω · ∇v′

(
f ′
e1

f ′
Me

)]
,

(2.17)
where

Mee ≡ λe

∫
d3v′ f ′

Me∇ω∇ωω= λe

∫
d3v′ f ′

Me

ω2I − ωω

ω3
, (2.18)

with ω ≡ v − v′, λe = 2πe4 logΛ/m2
e and v is the particle velocity. Collisions of

electrons and ions are approximately described by a Lorentz collision operator

L
[

fe1 − mev‖V‖
Te0

fMe

]
= ∇v ·

[
fMeMei · ∇v

(
fe1

fMe
− mev‖V‖

Te0

)]
, (2.19)
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where

Mei ≡ Z 2λeni
v2I − vv

v3
. (2.20)

Here, Z is the ion charge number and the ion mean parallel flow V‖ is defined as

ni V‖ ≡
∫

d3v v‖ fi , (2.21)

where ni is the ion density. Just like density and temperature, the mean parallel
flow has a lower-order flux surface piece and a higher-order piece that depends
on the poloidal angle, V‖ = V‖0(ψ)+ V‖1(ψ, θ). We separate the first-order electron
distribution function into two pieces,

fe1 = ge + mev‖V‖
Te0

fMe. (2.22)

The first piece will be shown to be of order
√
εδ fMe and the second piece is of order

δ fMe. With this definition, C (l)[ fe1] = C (l)[ge] because C (l)[v‖ fMe] = 0. The combina-
tion of (2.17) and (2.19) gives (2.16) with the final collision operator treating both
electron–electron and electron–ion collisions

Ce = ∇v ·
[

fMeMe · ∇v

(
ge

fMe

)
− λe fMe

∫
d3v′ f ′

Me
∇ω∇ωω · ∇v′

(
g′

e

f ′
Me

)]
. (2.23)

Here,
Me ≡ Mee + Mei . (2.24)

At this point, we can perform the same large aspect ratio expansion as for the ion
calculation. We need to solve (2.5). In the trapped–barely passing region, v‖ ∼ √

εvte

and thus the derivative of gt,bp with respect to parallel velocity is larger than other
velocity derivatives by ∼ 1/

√
ε. Furthermore, ∇vv‖ f � v‖/v‖ f b̂, so we find that to

lowest order, in the trapped–barely passing region, (2.23) can be approximated by

Ce � v‖
v‖ f

∂

∂v‖ f

[
M‖e

v‖
v‖ f

∂gt,bp
e0

∂v‖ f

]
, (2.25)

where
M‖e ≡ M‖ee + M‖ei , (2.26)

M‖ee ≡ b̂ · Mee · b̂ � 3
2

√
π

2
[Θ(xe)−Ψ (xe)]

Te

me

νee

xe
, (2.27)

M‖ei ≡ b̂ · Mei · b̂ � Z
3
2

√
π

2
Te

me

νee

xe
, (2.28)

and x2
e = v2/v2

te � 2μB/v2
te. In the derivation of M‖ee and M‖ei , we have used that

u + V‖ ∼ vt i � vte for electrons. The function Θ(x)= (2/
√
π)
∫ x

0 exp(−t2)dt is the
error function and Ψ (x)= (Θ − xΘ ′)/(2x2) is the Chandrasekhar function. We take
a transit average of (2.25) and employ (2.3) and (2.5) to find〈

∂

∂v‖ f

[
τv‖ f

(
v‖
v‖ f

)2

M‖e
∂gt,bp

e0

∂v‖ f

] 〉
τ

= 0. (2.29)
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The solution to (2.29) was calculated for ions by Trinczek et al. (2023). The deriva-
tion of the electron distribution function is similar and is presented in Appendix B.
The results are

∂gt
0e

∂v‖ f
= −v‖ f

v‖
α0e and

∂gbp
0e

∂v‖ f
=
(
v‖ f

〈v‖〉ψ − v‖ f

v‖

)
α0e, (2.30)

where

α0e ≡ I

Ωe

[
∂

∂ψ
ln pe +

(
meμB

Te
− 5

2

)
∂

∂ψ
ln Te + me(u + V‖)

Te

Ωe

I

]
fMef . (2.31)

The superscripts t and bp denote the distribution functions in the trapped and the
barely passing regions, respectively. The electron pressure is pe = neTe. We can set
Te � Te0 because the difference is small in δ2, and ne � ne0 because the difference
is small in ε. To simplify our notation, we dropped the distinction between the
fixed-θ variables and (ψ , v‖, μ), and the difference between quantities with and
without the subscripts f and 0 where possible, as these differences are small. Note
that the electron Larmor frequency Ωe ≡ −eB/mc is by definition negative and
the ion Larmor frequency Ωi ≡ ZeB/mc is by definition positive. Integrating the
expression for the electron distribution function over the trapped and barely passing
region gives the height of the jump of the freely passing distribution function. The
integration was carried out by Trinczek et al. (2023) and gives

Δge ≡
〈 ∫

Vt,bp

dv‖ f
∂gt,bp

e0

∂v‖ f

〉
ψ

=
∫

Vt,bp

dv‖ f
v‖ f τ

2πq R

〈
v‖
v‖ f

∂gt,bp
e0

∂v‖ f

〉
τ

(2.32)

= −2.758

√∣∣∣∣
(
μB

r

R
+ eφc

me

) ∣∣∣∣α0e,

where 〈. . .〉ψ ≡ 1/(2π)
∫ π

−π dθ (. . .) is the flux surface average. The symbol Vt,bp

denotes the trapped–barely passing region defined by v‖ f ∼ √
εvte. The modification

of the trapping condition by the poloidal variation of the electric potential results in
the appearance of φc in (2.32). The contributions from particles trapped on the low
and high field sides were combined by choosing first θf = 0 and then θf = π to get
to the result in (2.32).

2.2. Neoclassical electron particle flux
Now that the jump condition (2.32) is known, we can proceed to calculate

the transport relations. The electron particle flux Γe is defined by the particle
conservation equation

∂Γe

∂ψf
=
∫

d3vf 〈Σe〉τ . (2.33)

The integration over d3vf is an integration over velocity space in the fixed-θ vari-
ables, d3vf ≡ 2πBf dμdv‖ f . Following the exact same steps as for the ion particle
flux calculation, we integrate over the drift kinetic equation

−
∫

d3vf 〈Ce〉τ =
∫

d3vf 〈Σe〉τ . (2.34)
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For the integration, it is useful to express the divergence in the collision operator in
fixed-θ variables,

〈Ce〉τ = 1
v‖ f τ

∂

∂v‖ f

[
fMev‖ f τ

〈
∇vv‖ f ·

[
Me·∇v

(
ge

fMe

)

−λe

∫
d3v′ f ′

Me
∇ω∇ωω·∇v′

(
g′

e

f ′
Me

)]〉
τ

]

+ 1
v‖ f τ

∂

∂μ

[
fMev‖ f τ

〈
∇vμ·

[
Me·∇v

(
ge

fMe

)

−λe

∫
d3v′ f ′

Me
∇ω∇ωω·∇v′

(
g′

e

f ′
Me

)]〉
τ

]

+ 1
v‖ f τ

∂

∂ψf

[
fMev‖ f τ

〈
∇vψf ·

[
Me·∇v

(
ge

fMe

)

−λe

∫
d3v′ f ′

Me
∇ω∇ωω·∇v′

(
g′

e

f ′
Me

)]〉
τ

]
. (2.35)

The integration over the collision operator can be divided into an integration over
the freely passing region and the trapped–barely passing region. Multiplying by
v‖ f τ/2πq R and integrating over the freely passing region yields, to lowest order
in δ,

−
∫

Vp

d3vf
v‖ f τ

2πq R
〈Ce〉τ �

∫
dμ 2πBfΔ

[
fMe b̂ · Me · ∇v

(
g p

e

fMe

)]
+ O

(
δ2ε3/2neνe

)
,

(2.36)

where we used (2.10). Note that in the freely passing region v‖ f τ � 2πq R. The
diffusion part of the collision operator contains the jump in the derivative of g p

e
which needs to be kept. The term proportional to ∂/∂μ in (2.35) vanishes when
integrating over the freely passing region. The term proportional to ∂/∂ψf is of
order δ2ε3/2neνe because ∇vψf ∼ εψf /vte and has been dropped.

There is a region of rapid v‖ f variation for the trapped–barely passing particles.
The integration gives to lowest order in δ and ε

−
∫

Vt,bp

d3vf
v‖ f τ

2πq R
〈Ce〉τ � −

∫
dμ 2πBfΔ

[
fMe b̂ · Me · ∇v

(
g p

e

fMe

)]

− ∂

∂ψf

∫
Vt,bp

d3vf
v‖ f τ

2πq R

I

Ωe
M‖e

〈 (
v‖
v‖ f

− 1
)
v‖
v‖ f

∂gt,bp
e0

∂v‖ f

〉
τ

.

(2.37)

In the second term, we only kept terms to order δ2√εneνe. The first term is larger
than the second term by order δ2. We keep the second term in the trapped–barely
passing region because the jump terms cancel when we combine (2.36) and (2.37)

−
∫

d3vf
v‖ f τ

2πq R
〈Ce〉τ = −

∫
Vt,bp

d3vf
v‖ f τ

2πq R
〈Ce〉τ −

∫
Vp

d3vf
v‖ f τ

2πq R
〈Ce〉τ

� − ∂

∂ψf

∫
Vt,bp

d3vf
v‖ f τ

2πq R

I

Ωe
M‖e

〈 (
v‖
v‖ f

− 1
)
v‖
v‖ f

∂gt,bp
e0

∂v‖ f

〉
τ

.

(2.38)
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The integral over v‖ f gives the jump (2.32) such that

−
∫

Vp

d3vf
v‖ f τ

2πq R
〈Ce〉τ = − ∂

∂ψf

[
2.758

I

Ωe

√
r

R

∫
dμ 2πBM‖e

√∣∣∣∣μB + eφc R

mer

∣∣∣∣α0e

]
,

(2.39)

since (D.16) of Trinczek et al. (2023) shows 〈(v2
‖/v

2
‖ f )∂gt,bp

e0 /∂v‖ f 〉τ = 0. We can
calculate the integral over μ using the expression for M‖e (2.26) and α0e (2.31)

∫
dμ 2πBM‖e

√∣∣∣∣μB + eφc R

mer

∣∣∣∣α0e = 1.15
νee pe

me

I

Ωe

×
{[

∂

∂ψ
ln pe + me(u + V‖)

Te

Ωe

I

]
G1e(φc, Z)− 1.39G2e(φc, Z)

∂

∂ψ
ln Te

}
.

(2.40)

The function G1e is defined as

G1e(φc, Z)=

∫∞
0 dxe

√∣∣∣∣x2
e + eφc R

Ter

∣∣∣∣e−x2
e [Θ(xe)−Ψ (xe)+ Z ]

∫∞
0 dxe xee−x2

e [Θ(xe)−Ψ (xe)+ 1]

� 1.30
∫ ∞

0
dxe

√∣∣∣∣x2
e + eφc R

Ter

∣∣∣∣e−x2
e [Θ(xe)−Ψ (xe)+ Z ] , (2.41)

and G2e is defined as

G2e(φc, Z)=

∫∞
0 dxe

(
x2

e − 5
2

)√∣∣∣∣x2
e + eφc R

Ter

∣∣∣∣e−x2
e [Θ(xe)−Ψ (xe)+ Z ]

∫∞
0 dxe

(
x2

e − 5
2

)
xee−x2

e [Θ(xe)−Ψ (xe)+ 1]

� −0.94
∫ ∞

0
dxe

(
x2

e − 5
2

)√∣∣∣∣x2
e + eφc R

Ter

∣∣∣∣e−x2
e [Θ(xe)−Ψ (xe)+ Z ] .

(2.42)

Combining (2.33), (2.34) and (2.40) gives the lowest-order neoclassical electron
particle flux

Γe = −3.17
νee I 2 pe

Ω2
e me

√
r

R

{ [
∂

∂ψ
ln pe + me(u + V‖)

Te

Ωe

I

]
G1e(φc, Z) (2.43)

− 1.39G2e(φc, Z)
∂

∂ψ
ln Te

}
.

The neoclassical ion particle flux for strong gradient regions from Trinczek et al.
(2023) is
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Γi = −1.1

√
r

R

ν I 2 pi

|S|3/2miΩ
2
i

{[
∂

∂ψ
ln p − mi(u + V‖)

Ti

(
∂V‖
∂ψ

− Ωi

I

) ]
G1(u, V‖, φc)

− 1.17G2(u, V‖, φc)
∂

∂ψ
ln Ti

}
. (2.44)

For ions, the particle flux depends explicitly on the mean parallel flow gradient and
the squeezing factor. The functions G1 and G2 are defined in Trinczek et al. (2023),
in (5.13) and (5.14), and depend on u and V‖, which is not the case for the electrons.
The neoclassical ion and electron particle fluxes do not have to be equal. For strong
gradients where Ln,T,Φ ∼ ρp, the fluxes are not necessarily intrinsically ambipolar
(Sugama & Horton 1998; Parra & Catto 2009; Calvo & Parra 2012). The neo-
classical electron particle flux is then smaller than the neoclassical ion particle flux
by order δ. Thus, unless the turbulent particle flux compensates for the difference
between Γi and Γe, we need to impose Γi � 0.

2.3. The bootstrap current
The strong gradient effects on the electrons modify the neoclassical bootstrap

current j B
‖ , which is defined as

j B
‖ ≡ Ze

∫
d3v v‖ fi − e

∫
d3v v‖ fe

= Zeni V‖ − eneV‖ − e
∫

d3v v‖ge = −e
∫

d3v v‖ge, (2.45)

where we have used quasineutrality. The trapped–barely passing region is small in
velocity space. The main contribution to the integration for the bootstrap current
comes from the freely passing region where v‖ = v‖ f + O(εv2

te/v‖ f )〈
j B
‖
〉
ψ

� −e

〈 ∫
d3v v‖ge

〉
ψ

� −e

〈 ∫
Vp

d3vf v‖ge

〉
ψ

. (2.46)

Here, Vp denotes the freely passing region. We can calculate this integral using the
Spitzer–Härm function fe,SH which satisfies

v‖ fMe = Ce[ fe,SH ]. (2.47)

The Spitzer–Härm function is a known function

fe,SH = v‖√
2νee

fMe ASH

(
x2

e

)
. (2.48)

Here,
ASH

(
x2

e

)=∑
i

ai L
(3/2)
i

(
x2

e

)
, (2.49)

where L (3/2)
i are generalised Laguerre polynomials and the coefficients ai depend

on Z and are tabulated. For example, the first three coefficients for Z = 1 are a0 =
−1.975, a1 = 0.558 and a3 = 0.015. One can use the property of self-adjointness of
the collision operator in velocity space to calculate the bootstrap current. Starting
with (2.47) inserted in (2.46), self-adjointness gives〈

j B
‖
〉
ψ

= −e

〈 ∫
d3v

ge

fMe
Ce[ fe,SH ]

〉
ψ

= −e

〈 ∫
d3v

fe,SH

fMe
Ce[ge]

〉
ψ

. (2.50)
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We can write the expression for the bootstrap current as

〈
j B
‖
〉
ψ

� −
〈 ∫

d3v
e√
2νee

v‖ ASH Ce[ge]
〉
ψ

, (2.51)

where we used the explicit form of the Spitzer–Härm function in (2.48). The largest
contribution comes from the lowest-order term in the trapped–barely passing region

〈
j B
‖
〉
ψ

� − e√
2νee

〈 ∫
Vt,bp

d3v v‖ ASH
v‖
v‖ f

∂

∂v‖ f

[
M‖e

v‖
v‖ f

∂gt,bp
0e

∂v‖ f

] 〉
ψ

∼ √
εδni evte. (2.52)

Using d3v = (v‖ f /v‖)d3vf , we can make a change to fixed-θ variables

〈
j B
‖
〉
ψ

� − e√
2νee

〈 ∫
Vt,bp

d3vf v‖ ASH
∂

∂v‖ f

[
M‖e

v‖
v‖ f

∂gt,bp
0e

∂v‖ f

] 〉
ψ

= e√
2νee

〈 ∫
Vt,bp

d3vf ASH M‖e
∂gt,bp

0e

∂v‖ f

〉
ψ

, (2.53)

where we integrated by parts in the second step and we employed ∂v‖/∂v‖ f = v‖ f /v‖.
For trapped and barely passing particles, mev

2/(2Te)� meμB/Te, so ASH is indepen-
dent of v‖ f . The integration over v‖ f gives the jump Δge, which is given in (2.32),
and we arrive at,

〈
j B
‖
〉
ψ

= −2.758

√
r

R

e√
2νee

2πB
∫

dμ

√∣∣∣∣μB + eφc R

mer

∣∣∣∣α0eM‖e ASH

(
meμB

Te

)
. (2.54)

The expression for α0e is given in (2.31). Appendix C gives a derivation that treats
the discontinuities more carefully but demonstrates that our procedure presented
here is completely consistent with the jump conditions that we calculated in § 2.1.
The neoclassical bootstrap current including strong gradient effects is

〈
j B
‖
〉
ψ

= −2.43
cIpe

B

√
r

R

[ (
∂

∂ψ
ln pe + me(u + V‖)

Te

Ωe

I

)
J1e(φc, Z)

− 0.71J2e(φc, Z)
∂

∂ψ
ln Te

]
, (2.55)

where

J1e(φc, Z)=

∫∞
0 dx

∑
i ai L

3/2
i (x2) [Θ(x)−Ψ (x)+ Z ] e−x2

√∣∣∣∣x2 + eφc R

Ter

∣∣∣∣∫∞
0 dx

∑
i ai,Z=1L3/2

i (x2) [Θ(x)−Ψ (x)+ 1] e−x2 x

� −1.2
∫ ∞

0
dx
∑

i

ai L
3/2
i (x2) [Θ(x)−Ψ (x)+ Z ] e−x2

√∣∣∣∣x2 + eφc R

Ter

∣∣∣∣,
(2.56)
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and

J2e(φc, Z)=
∫∞

0 dx

(
x2 − 5

2

)∑
i ai L

3/2
i (x2) [Θ(x)−Ψ (x)+ Z ] e−x2

√∣∣∣x2 + eφc R

Ter

∣∣∣
∫∞

0 dx

(
x2 − 5

2

)∑
i ai,Z=1L3/2

i (x2) [Θ(x)−Ψ (x)+ 1] e−x2 x

� 1.7
∫ ∞

0
dx
∑

i

ai L
3/2
i (x2) [Θ(x)−Ψ (x)+ Z ] e−x2

√∣∣∣∣x2 + eφc R

Ter

∣∣∣∣.
(2.57)

The weak gradient expression for the bootstrap current is modified by the poloidal
variation of the electric potential, which is captured by the modification of the coef-
ficients via the functions J1e and J2e. The bootstrap current also depends on the ion
flow which can be different in the strong gradient region as it is no longer deter-
mined through flow damping, see Trinczek et al. (2023). The origin of the poloidal
variation and its effects on the electron particle flux, the bootstrap current and the
mean parallel flow are further discussed in the next sections.

3. Poloidal variation

Both the electron particle flux and the bootstrap current are modified with respect
to the usual neoclassical expressions via the coefficients G1e, G2e, J1e and J2e,
which are functions of the amplitude of the poloidally varying part of the potential,
φ1 = φc(ψ) cos θ . The possibility of poloidal variation of the electric potential mod-
ifying neoclassical transport and the bootstrap current was already considered by
Chang (1983), although he did not calculate the poloidally varying part of the electric
potential. Impurity measurements of H-mode pedestals on Alcator C-Mod (Theiler
et al. 2014; Churchill et al. 2015) and Asdex-Upgrade (Cruz-Zabala et al. 2022)
have demonstrated poloidal asymmetry in density, electric field and ion temperature.
Trinczek et al. (2023) found that neoclassical effects in regions with large gradi-
ents can produce poloidal asymmetries similar to the ones measured in pedestals.
Impurity injection is also responsible for poloidal variation (Helander 1998). At
large aspect ratios, the model by Bielajew & Catto (2023) allows eφ1/T ∼ ε (with
up–down as well as in–out asymmetries) but it cannot treat strong gradients since it
assumes eφ/T ∼ ε and is thus not applicable in strong gradient regions at present.
Here, we combine the poloidal variation calculated by Trinczek et al. (2023) with
our formulas for electron physics. First, we revisit the origin of the in–out poloidal
variation and complete the physical picture in Trinczek et al. (2023), then we apply
the transport calculation to a specific set of pedestal profiles to understand how the
strong gradient effects act through poloidal variation.

3.1. Origin of poloidal variation
The amplitude φc of the part of the electric potential that depends on poloidal

angle was derived by Trinczek et al. (2023). The final result reads
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ene

Te
− Z 2ni eI

TiΩi

[√
2Ti

mi
J

(
∂

∂ψ
ln pi − 3

2
∂

∂ψ
ln Ti

)

+
[
1 − 2

√
mi

2Ti
(V‖ + u)J

] (
∂V‖
∂ψ

− Ωi

I
− (V‖ + u)

2
∂

∂ψ
ln Ti

)]}
φc

= −Zni
Ir

Ωi R

{√
2Ti

mi
J

[(
mi V 2

‖
Ti

+ 1

)(
∂

∂ψ
ln pi − 3

2
∂

∂ψ
ln Ti

)

+ ∂

∂ψ
ln Ti

]
+
[
1 − 2

√
mi

2Ti
(V‖ + u)J

] [
(V‖ − u)

(
∂

∂ψ
ln pi − 3

2
∂

∂ψ
ln Ti

)

+
(
∂V‖
∂ψ

− Ωi

I

)(
mi u2

Ti
+ 1 − mi(V‖ + u)2

Ti

)
− V‖ + u

2

(
mi V 2

‖
Ti

+ 1

)
∂

∂ψ
ln Ti

]

+
[

1 + 2
mi

2Ti
(V‖ + u)2 − 4

(
mi

2Ti

)3/2

(V‖ + u)3 J

]

×
(
∂V‖
∂ψ

− Ωi

I
+ V‖ − u

2
∂

∂ψ
ln Ti

)}
− 2Zni

r

R
, (3.1)

where

J ≡
√
π

2
exp
[
−m(u + V‖)2

2T

]
erfi
[√

m

2T
(u + V‖)

]
, (3.2)

and erfi(x)≡ (2/
√
π)
∫ x

0 exp(t2) dt . The strong gradients cause poloidal variation in
four different ways: passing particle number asymmetry, centrifugal forces, orbit
width asymmetry and mean parallel flow gradient. The first effect, passing particle
number asymmetry, was presented in detail in § 4.4 and figure 5 in Trinczek et al.
(2023). In this paper, we want to explain the other three strong gradient effects that
cause poloidal variation and were not explicitly mentioned in Trinczek et al. (2023).

We start by reminding the reader that there is a passing particle number asym-
metry, and that this asymmetry causes poloidal variation in the density, flow,
temperature and potential. For V‖ �= −u, the passing particle region is no longer
symmetric around the trapped-particle region. This causes an asymmetry in the num-
ber of passing particles circulating in the positive and negative poloidal direction.
For example, for V‖ >−u more particles circulate poloidally in the positive direc-
tion than in the negative one. For any flux surface of interest, there are two groups
of particles at the outboard and at the inboard side: one group with positive and
one with negative poloidal velocity. The average radial position of the particles with
positive poloidal velocity on the outboard side lies inside the flux surface of interest,
that is, in the high density region, whereas the average radial position of the other
group of particles, the group with negative poloidal velocity on the outboard side,
is in the region of slightly lower density. Due to the asymmetry in passing particle
numbers, this creates a point of slightly higher density on the outboard sign. For the
inboard side, this picture reverses and a point of slightly lower density is created.
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Setting V‖ + u = 0 eliminates the asymmetry in passing particle number, yet the
poloidal variation of the electric potential does not vanish,

[
ene

Te
− Z 2ni eI

TiΩi

(
∂V‖
∂ψ

− Ωi

I

)]
φc = −Zni

Ir

Ωi R

[
− Ωi

I

mi V 2
‖

Ti
+ 2

∂V‖
∂ψ

(
1 + mi V 2

‖
2Ti

)

+ 2V‖
∂

∂ψ
ln ni

]
. (3.3)

The first term, which is proportional to mi V 2
‖ /Ti , is the centrifugal force. The

centrifugal force pushes ions to the outboard side. The electrons are lighter and less
affected by the centrifugal force, so an electrostatic potential is created that is posi-
tive on the outboard side and negative on the inboard side to ensure quasineutrality.
This effect vanishes in the low flow limit of weak gradient theory because V‖ is small.

The last term is proportional to the density gradient and V‖. This term is related to
the asymmetry in orbit widths. Looking back at the ion orbit equations for passing
particles derived by Trinczek et al. (2023), particles with negative poloidal velocity
have a slightly larger orbit width than particles with positive poloidal velocity, that
is, the orbit widths are not symmetric in v‖ + u. The asymmetry is caused by the
curvature drift which is symmetric in v‖ but not with respect to v‖ + u = 0. We
explain this effect in figure 1, where we assume u > 0 and hence V‖ < 0. Particles
with parallel velocity v‖− < V‖ = −u in figure 1 experience a stronger curvature drift
than particles with parallel velocity v‖+ > V‖ = −u. In other words, the red particles
have a larger orbit width and move away from their flux surface further than the
blue particles, see figure 1. On the outboard side, the average radial position of the
red particles is deeper into the low density region than the average radial position of
the blue particles is in the high density region. The outboard side turns into a point
of slightly lower density. The picture again reverses for the low field side, where
the inward going particles travel further in radius such that the high field side has
slightly higher density than the low field side and poloidal variation occurs. This
effect depends on the sign of V‖. In this argument and in figure 1, we assumed that
u > 0 and thus V‖ = −u < 0. If V‖ > 0, |v‖−|< |v‖+|, so the orbit width of the blue
particles would be bigger. In the limit of weak gradients, this effect vanishes because
V‖ and the density gradient are small.

The remaining term is proportional to the mean parallel flow gradient. If the
mean parallel flow varies radially, particles with different average radial positions
belong to different ion Maxwellian distributions. The difference in mean parallel
flow translates into a difference in number of particles. The shift of the Maxwellians
between the different flux surfaces are shown in figure 2 for V‖ = −u. If, for example,
∂V‖/∂ψ is positive, the mean parallel flow is smaller on the inside of a flux surface
than on the outside. There are fewer particles with positive poloidal velocity v‖+ >
V‖ = −u on the low field side (blue particles in figure 2(a,c)) because their average
radial position is inside the flux surface of interest, where the average flow is smaller
than the one in the flux surface of interest. The average radial position of particles
with negative poloidal velocity v‖− < V‖ = −u on the low field side (red particles
in figure 2a,c) locates them in a region of larger mean parallel flow and hence
with fewer particles with v‖−. The low field side develops a region of slightly lower
density on the flux surface. On the high field side, the picture reverses. The positively
circulating particles with velocities v‖+ (blue particles in figure 2b,d) are, on average,
in the region where the mean parallel flow is larger. There are more particles with
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FIGURE 1. The orbit width of co- and counter-circulating particles is asymmetric because of
curvature drift. In this figure, we assume V‖ = −u < 0. On the low field side, red particles have
a larger orbit width so their average radial position locates them deeper in the low density region
than blue particles are located in the high density region (a). The opposite happens on the high
field side (b). This creates a higher density on the high field side than on the low field side. This
effect depends on the sign of V‖ and reverses for positive V‖.

parallel velocities close to v‖+. The particles with negative poloidal velocity v‖− (red
particles in figure 2b,d) belong to a distribution with less particles with v‖−. The
inboard side turns into a region of slightly higher density. Overall, the Boltzmann
response of the electrons creates a poloidal potential variation where the outboard
side has slightly smaller potential than the inboard side. This effect vanishes in the
limit of weak gradients because the mean parallel flow gradient is small.

We discussed the centrifugal force, orbit width asymmetry and flow gradient
effects for V‖ = −u, but they also exist for V‖ �= −u. Allowing for V‖ �= −u intro-
duces cross-terms that could be attributed to either of the four physical effects:
passing particle number asymmetry, centrifugal force, orbit width asymmetry and
mean flow gradient. Appendix E has a full list of expressions for the four effects for
the purpose of the discussion in § 3.2. For example, we choose to attribute all terms
that vanish as V‖ = −u to the passing particle number asymmetry.

We now turn our attention to the left-hand side of (3.1) and (3.3). The right-hand
side describes the potential in relation to the magnetic drifts whereas the left-hand
side is related to the E × B-drift due the poloidal electric field. The origin of the
different terms in (3.1) can be traced back to equation (E1) in Trinczek et al. (2023),
where the poloidal variation is calculated. An integration is carried out over an
expression including the orbit width ψf −ψ of particles, which is given in (A6) in
Trinczek et al. (2023), and contains terms proportional to (v2

‖ +μB) cos θ/(v‖ + u)
(the magnetic dirft terms) and terms proportional to ZeRφ1/mr(v‖ + u) (the E × B-
drift terms). Since the E × B-drift also contributes to the orbit widths of passing
particles, it is equally subject to the passing particle number asymmetry and the mean
parallel flow gradient effect. Hence we find contributions to the ion density that are
proportional to φc in addition to the usual adiabatic response term, i.e. ene/Te +
Z 2ni e/Ti , that are also proportional to the gradient of the mean parallel flow or
V‖ + u. The orbit width asymmetry effect is intrinsically a curvature drift effect and
unaffected by the poloidal electric field. The centrifugal force is unrelated to drifts
and does not appear on the left-hand side either. For V‖ + u = 0, the term multiplying
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FIGURE 2. In this figure, we assume ∂V‖/∂ψ > 0. A blue (red) passing particle with parallel
velocity v‖+ > V‖ = −u (v‖− < V‖ = −u) on the low field side (a,c) or the high field side (b,d)
is circulating in the positive (negative) sense in the poloidal direction. The solid lines represent
the Maxwellian on the flux surface of interest. The dashed lines indicate the shifted Maxwellians
radially inwards or outwards from the flux surface of interest. On the low field side, blue (red)
particles complete their orbits through a region with smaller (larger) mean parallel flow (c), so
their average radial position locates them in a region with fewer particles that have a parallel
velocity close to v‖+ (v‖−) (a). A point of slightly lower density develops on the outboard side.
On the high field side, blue (red) particles complete their orbits through a region with larger
(smaller) mean parallel flow (d), so their average radial position locates them in a region with
more particles that have a parallel velocity close to v‖+ (v‖−) (b). A point of slightly higher
density develops on the high field side.

φc in (3.3) can go negative if ∂V‖/∂ψ is large enough. When this happens, the E × B-
drift induced poloidal variation of the electric potential is strong enough to overcome
the effects of the magnetic drifts and the sign of φc reverses.

The poloidal variation of the electric potential enters the transport equations via
the four modification functions J1e, J2e, G1e and G2e which are shown in figure 3.The
four functions are all larger than 1 for φc > 0 in which case the electric potential
is slightly higher on the low field side than on the high field side. Consequently,
electrons are pushed to the low field side and trapping by the magnetic field is
increased. Trapped particles are the main drive of transport, so an increased number
of trapped particles gives roughly speaking an enhancement of particle transport and
bootstrap current. For a small poloidal variation amplitude, the electrostatic force
weakens the magnetic force and less particles are trapped on the low field side. When
the poloidal variation becomes negative enough, electrostatic trapping of electrons
on the high field side dominates, the number of trapped particles increases again
and the electron transport and bootstrap current are enhanced.
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FIGURE 3. Modifications G1e, G2e, J1e and J2e as a function of φ̄c = Zeφc R/T0r as defined in
(2.41), (2.42), (2.56) and (2.57).

3.2. A case study
Not only do we know how poloidal variation modifies neoclassical transport prop-

erties but we also know where this variation is coming from and how to calculate it
self-consistently inside strong gradient regions. To demonstrate this procedure, we
first introduce a set of normalised equations and then compare two examples of a
pedestal.

The poloidal variation, the neoclassical electron flux and the bootstrap current can
be calculated for a given set of profiles for density, temperature and mean parallel
flow. For this purpose, we introduce the normalised variables

ū =
√

mi

2Ti0
u, V̄ =

√
mi

2Ti0
V‖, T̄ = Ti

Ti0
, n̄ = ni

ni0
,

φ̄c = Zeφc R

Ti0r
,

∂

∂ψ̄
= I

Ωi

√
2Ti0

mi

∂

∂ψ
, Γ̄i = Γi

ni0 I
√

2Ti0r
mi R

ν0
|Ωi |
,

n̄e = ne

Zni0
, T̄e = Te

Ti0
, j̄ B =

〈
j B
‖
〉
ψ

Zeni0

√
2Ti0r
mi R

, Γ̄e = Γe

Zni0 I
√

2Ti0r
mi R

νee,0
|Ωe |

, (3.4)

where ni0, Ti0, ν0 and νee,0 are ion density, temperature and ion and electron collision
frequencies at a reference flux surface ψ̄ = 0. The electron particle flux in these
normalised variables is

Γ̄e = −1.59
Zn̄2

e

T̄ 3/2
e

{ [
T̄e
∂

∂ψ̄
ln p̄e − 2

Z
(ū + V̄ )

]
G1e(φ̄c, Z)− 1.39G2e(φ̄c, Z)

∂ T̄e

∂ψ̄

}
,

(3.5)

and the bootstrap current is

j̄ B = −1.21n̄e

{ [
T̄e
∂

∂ψ̄
ln p̄e − 2

(
ū + V̄

)]
J1e(φ̄c, Z)− 0.71J2e(φ̄c, Z)

∂ T̄e

∂ψ̄

}
. (3.6)

https://doi.org/10.1017/S0022377825100421 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100421


Journal of Plasma Physics 19

FIGURE 4. Input profiles for density, temperature, mean parallel flow and radial electric field.

The point ψ̄ = 0 is not the magnetic axis but a point where gradients are suf-
ficiently small that usual neoclassical theory can be used. The radial electric field
in the pedestal is often assumed to be mostly determined by the pressure gradi-
ent (Kagan & Catto 2008; McDermott et al. 2009; Viezzer et al. 2013). For this
example, we assume

Zeni
∂Φ

∂ψ
+ ∂pi

∂ψ
= 0, (3.7)

from which u can be calculated as shown in figure 4.
The mean parallel flow no longer follows from the neoclassical ion particle flux

equation in strong gradient regions because for strong radial electric fields the mech-
anism of flow damping is no longer dominant (Trinczek et al. 2023). The parallel
flow has to be determined via a balance between flow damping and momentum
transport. We discuss the intricacy of the calculation of the mean parallel flow in the
next section. In this section, we compare two different, sensible cases for the mean
parallel flow. In the first case

V‖ = − I Ti

miΩi

(
∂

∂ψ
ln pi + Ze

Ti

∂Φ

∂ψ
− 1.17

∂

∂ψ
ln Ti

)
. (3.8)

We call this case ‘low flow’ because this expression is the typical result for the mean
parallel flow in the low flow regime of weak gradient neoclassical theory. We call
the second case ‘high flow’ because of the choice

V‖ = −u, (3.9)

which is the result for the mean parallel flow in the high flow regime of weak
gradient neoclassical theory. Thus, the system is not studied in the usual low flow or
high flow limits when comparing the two example cases – rather, we choose these
two V‖ profiles as reasonable assumptions for the ion mean parallel flow.

The example profiles for temperatures and density for Z = 1 displayed in
figure 4 are taken from Viezzer et al. (2016). The analytical formulas of the pro-
files are given in Appendix D. The poloidal variation of the electric potential as well
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FIGURE 5. Amplitude of the poloidal variation of the electric potential and neoclassical ion
particle flux for the example profiles in figure 4.

as ion transport profiles were calculated by Trinczek et al. (2023) for the set of input
profiles in figure 4. We replicate the results for the neoclassical ion particle flux
and φ̄c in figure 5. For weak gradients, φ̄c is very small, as expected. The different
contributions to the potential amplitude as discussed in § 3.1 are plotted individually
for the ‘high flow’ and ‘low flow’ case in figure 6. The effect of passing particle
number asymmetry vanishes exactly in the ‘high flow’ case because V‖ + u = 0 = J
and gives only a small contribution in the ‘low flow’ case. Interestingly, centrifu-
gal force and orbit width asymmetry effects balance each other such that the main
contribution to the total poloidally varying part of the potential is derived from the
mean parallel flow gradient effect in both cases. The cancellation between centrifu-
gal force and orbit width asymmetry is partially due to our choice of force balance
in (3.7).

Using the set of input profiles in figure 4, we find the profile of the neoclassical
electron flux and bootstrap current as shown in figure 7.

The overall particle fluxes of ions and electrons have to balance each other to
satisfy ambipolarity. The total fluxes consist of a turbulent and a neoclassical contri-
bution. Trinczek et al. (2023) showed that, due to the strong gradients considered,
the neoclassical ion and electron particle fluxes need not balance each other. That is
why the ‘high flow’ ion flux can be large as shown in figure 5(b). Note that Γi and Γe

are normalised differently in (3.4) when comparing the neoclassical particle fluxes
for ions and electrons. This is different from weak gradient neoclassical theory,
where the neoclassical ion and electron fluxes have to be equal and the lowest-order
ion particle flux has to vanish. As pointed out in Trinczek et al. (2023), a non-zero
lowest-order neoclassical ion transport in a strong gradient system requires a source
of parallel momentum that could be provided via interactions with turbulence.

The neoclassical electron particle flux grows significantly in the strong gradient
region that is bracketed between the dashed lines in both the ‘low flow’ case and
the ‘high flow’ case. Interestingly, the neoclassical particle flux of electrons in the
‘high flow’ case is smaller than in the ‘low flow’ case as opposed to the neoclassical
ion flow, where the picture was reversed and the larger particle flux was found
in the ‘high flow’ case. Similarly, the bootstrap current grows significantly in the
strong gradient region and is smaller in the ‘high flow’ case than in the ‘low flow’
case. The difference between the ‘high flow’ and the ‘low flow’ cases can be traced
back to the difference in the coefficients G1e, G2e, J1e and J2e. For positive φ̄c,
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FIGURE 6. The poloidal potential variation amplitude can be split up into four different con-
tributions, associated with the effect of passing particle number asymmetry, centrifugal force,
mean parallel flow gradient and orbit width asymmetry. The mathematical expressions we used
for this figure are summarised in Appendix E. The blue line shows the normalised contribution
from the passing particle number asymmetry, the red line shows the piece due to the centrifugal
force, the yellow line shows the normalised contribution from the asymmetry in the orbit width
and the purple line shows the normalised contribution from the mean parallel flow gradient.
Panel (a) shows the individual contributions in the ‘high flow’ example and panel (b) shows the
individual contributions in the ‘low flow’ example.

FIGURE 7. Neoclassical electron flux and bootstrap current for the example profiles in figure 4.

G2e >G1e and J2e > J1e. From (3.5) and (3.6), one can see that the term proportional
to G2e (J2e) decreases the neoclassical electron flux (bootstrap current), whereas the
terms proportional to G1e (J1e) increase it. The poloidal variation of the potential is
stronger in the ‘high flow’ case and thus the difference between G1e (J1e) and G2e

(J2e) is larger. The modifications due to large gradients reduce the electron particle
flux (bootstrap current) in the ‘high flow’ case more strongly than in the ‘low flow’
case. Additionally, the term multiplying G1e (J1e) is smaller in the ‘high flow’ case
because V̄ + ū vanishes exactly.

A comparison of the ‘low flow’ and ‘high flow’ cases with the respective results
in the weak gradient limit (F.5) and (F.6) shows the significance of the poloidal
variation modification. All four comparisons are shown in figure 8. The equations
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FIGURE 8. Comparison of strong gradient and weak gradient neoclassical electron particle
fluxes and bootstrap current for ‘high flow’ and ‘low flow’.

for the weak gradient limit that we use are those in Appendix F. In the weak gradient
high flow limit, the poloidal variation reduces to the contribution from centrifugal
forces (F.2). In the ‘low flow’ case, the differences between strong gradient and weak
gradient neoclassical theory are small. In the ‘high flow’ case, the difference between
weak gradient and strong gradient theory are significant. The respective maxima of
the particle flux and bootstrap current are reduced by a factor of Γ̄e/Γ̄

wg,h f
e � 0.36

and j̄ B/ j̄ B,wg,h f � 0.68.
These results are not universal and they are highly dependent on V‖ (see § 4). In

fact, for Te = Ti , using the Te and ni profiles in figure 4, the ‘low flow’ case gives an
increase in bootstrap current of the order of 5 %. It is thus possible to construct cases
that predict a higher or lower bootstrap current in comparison with weak gradient
neoclassical theory. Less current drive might be required if the bootstrap current
in the pedestal is in fact larger than assumed. However, a larger bootstrap current
might also lead to more instabilities and is not necessarily favourable.

It is clear from figure 7 that the strong gradient modifications are very different in
the ‘high flow’ and ‘low flow’ examples. The strong dependence on the mean parallel
flow profile is reflected in the amplitude of the poloidal variation of the electric
potential in figure 5. The mean parallel flow is not only relevant for the enhancement
or reduction of fluxes and bootstrap current but it also leads to qualitative differences
as can be seen from the sign change of φc in the ‘high flow’ case (see figure 5). More
work is needed to accurately determine the mean parallel flow and its impact on
neoclassical transport in strong gradient regions.
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4. Mean parallel flow

In the preceding section, we chose profiles for density and temperature, assumed
radial force balance between the radial electric field and the pressure gradient and
compared the fluxes and bootstrap current for two different example profiles for the
mean parallel flow. This procedure begs the question: Can one reverse the process
and determine the mean parallel flow, density and temperature for a given set of
particle, momentum and heat sources? The calculation of the mean parallel flow is
particularly interesting as experimental profiles for the mean parallel flow of bulk
ions are difficult to obtain. Furthermore, the strong gradient effects presented here
depend strongly on the mean parallel flow profile, as demonstrated by figure 8.
Without a full understanding of the mean parallel flow, it is unclear if strong gradient
effects modify weak gradient neoclassical theory significantly (‘high flow’ case in
figure 8) or not (‘low flow’ case in figure 8). It turns out that solving for the mean
parallel flow is not straightforward.

Trinczek et al. (2023) derived the parallel momentum equation

∂

∂ψ
(mi uΓi)+ miΩi

I
Γi = −γ, (4.1)

where γ is the source of parallel momentum.
First, we consider the case of a purely neoclassical pedestal. Without turbulent

transport, ion and electron neoclassical particle fluxes have to be ambipolar and
thus the neoclassical ion particle flux to this order has to vanish. The left side of
(4.1) vanishes identically and no information can be extracted from this equation.
One has to go to higher order in the parallel momentum equation derivation. This
higher-order equation could then be used to determine the mean parallel flow. This
work is ongoing and will be presented in the future.

If we allow for a non-vanishing ion neoclassical particle flux to this order, i.e.
a strong turbulent electron particle flux exists to provide ambipolarity, (4.1) is not
identically zero. However, the mean parallel flow does not appear in this equation.
For a given parallel momentum source and particle source, which sets Γi , one could
determine u, but not V‖. Instead, the particle flux equation needs to be solved to
determine the mean parallel flow, where the ion neoclassical particle flux is given
in (2.44). If we solve this equation for a given density and temperature profile, a
known particle flux Γi and a profile for u as determined from the parallel momentum
equation (4.1), one should, in principle, be able to determine the mean parallel flow.
Indeed, one can try to integrate the profile of the mean parallel flow profile for a
given set of profiles of Ti , Te, ni , u and a boundary value for V‖ by solving (2.44)
for ∂V‖/∂ψ at every radial point. However, this procedure does not always yield a
solution, that is, solutions do not exist for all boundary conditions and sources. On
the right-hand side of (2.44), there is an explicit linear dependence on the gradient
of the mean parallel flow. However, in addition to this dependence, the functions
G1 and G2 depend on the gradient of the mean parallel flow through the poloidally
varying part of the electric potential φc which is given in (3.1). Through the coupling
between the particle flux equation, (2.44), and the poloidal variation of the potential
in the argument of G1 and G2, (3.1), the equation is highly nonlinear in the gradient
of the mean parallel flow.

In figure 9 we plot the right-hand side of (2.44) in blue as a function of ∂ V̄ /∂ψ̄
and compare it with different values of Γi , keeping everything else fixed. The blue
curve has an asymptote where φc goes to infinity because the factor multiplying φc
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FIGURE 9. We plot in blue the right-hand side of (2.44) as a function of ∂ V̄ /∂ψ̄ for T̄ =
T̄e = 0.47, n̄ = 0.87, ū = 0.1, V = −0.1, ∂ T̄ /∂ψ̄ = −0.13, ∂ n̄/∂ψ̄ = −0.14, ∂ ū/∂ψ̄ = 0.09.
Solutions to (2.44) exist for specific values of the neoclassical ion particle flux but the num-
ber of roots changes with the value of Γi . Solutions disappear or run away when Γi changes.
Five solutions exist for Γ̄i = 0.03 but only three solutions exist for Γ̄i = 0.06 and one for Γ̄i = 0.

on the left-hand side of (3.1) vanishes. Up to five roots can be found for a given
value of the particle flux. Due to radial dependence of Γi , taking a step in radius
can be thought of as moving from one horizontal line to another, although, in our
examples, temperature, density and mean flow are not constant and the blue curve
itself would change its shape when taking a step in radius. However, if Γi changes
from, for example, Γ̄i = 0.03 to Γ̄i = 0.06, the number of roots reduces from 5 to 3.
The number of solutions reduces to one when Γi changes from Γ̄i = 0.03 to Γ̄i = 0.
Solutions seem to disappear as Γi changes, holding everything else fixed. Some solu-
tions to (2.44) run off to infinity and give unphysical solutions such as the rightmost
solution in the example in figure 9, for which increasing Γ̄i from 0.03 to 0.06 leads
to an increase in ∂ V̄ /∂ψ̄ , or the leftmost solution, for which decreasing Γ̄i from 0.03
to 0 gives a decrease in ∂ V̄ /∂ψ̄ . This example shows how for zero neoclassical ion
particle flux, only a solution with very strong mean parallel flow gradient and con-
sequently strong rotation exists for our choice of density, temperatures and radial
electric field. The sources need to be constructed such that a sensible solution exists
at each radial point for a changing set of parameters. It is difficult to find the correct
boundary conditions and source terms to construct sensible, non-singular solutions.

Solutions that extend all across the pedestal only exist for specific boundary con-
ditions and source terms. For this reason, we limit ourselves to studying realistic
example profiles for V‖ in this article. We will investigate the derivation of V‖ from
higher-order parallel momentum conservation in the context of purely neoclassical
transport further in future work.

5. Radial electric field

Previously, the assumption of radial force balance in (3.7) was used to determine
the radial electric field from the pressure profile. Equation (3.7) is an assumption
based on experimental observations that the radial electric field is mostly set by the
pressure gradient (Kagan & Catto 2008; McDermott et al. 2009; Viezzer et al. 2013).
Despite the experimental motivation behind this assumption, enforcing radial force
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FIGURE 10. We compare the profile of ū for the case where the radial electric field is determined
by neoclassical ambipolarity (NA), so Γi = 0, to the previous approach using radial force balance
(FB) in (3.7) for the ‘high flow’ and ‘low flow’ example.

balance does not enable us to calculate the mean parallel flow and close the system
of equations. However, the assumption of radial force balance can be dropped in a
system where the neoclassical ion particle flux Γi is small and balances the neoclassi-
cal electron particle flux Γe. We show that in such a case the radial electric field can
be determined for a given profile of the mean parallel flow.

In the absence of turbulence and external injection, no source of parallel momen-
tum is present. Therefore, the right-hand side of the parallel momentum equation
(4.1) can be set to zero. Equation (4.1) then predicts an exponential decay of the
neoclassical ion particle flux in the pedestal (Trinczek et al. 2023). This is consistent
with neoclassical ambipolarity where the neoclassical fluxes are equal in the absence
of turbulence, forcing Γi � 0. In such a turbulence-free pedestal, the left-hand side
of (2.44) vanishes to lowest order and the right-hand side of (2.44) can be solved
for u, i.e. the radial electric field for a given set of density, temperature and mean
parallel flow profiles. Although this does not solve the problem of determining the
mean parallel flow, this procedure does not rely on the assumption of radial force
balance. Instead, the argument for neoclassical particle flux balance Γi ∼ Γe follows
from the lack of turbulent fluxes. The balance does not follow automatically from
the neoclassical equations like in the weak gradient regions.

Turning back to the example profiles for density and temperature in figure 4,
we can determine the radial electric field. We set the left-hand side in (2.44) to
zero as predicted by neoclassical ambipolarity and solve for u for the ‘low flow’
and the ‘high flow’ mean parallel flow examples. The results for u are shown in
figure 10. We compare the solution using neoclassical ambipolarity to u as predicted
by force balance (3.7). In the ‘low flow’ case, the radial electric field as determined
by neoclassical ambipolarity and radial force balance agree very well in a purely
neoclassical pedestal. In the ‘high flow’ case, the radial electric field as determined
by neoclassical ambipolarity exceeds the radial electric field that follows from (3.7)
by a factor of ūh f,N A/ūh f,F B � 1.59 at the maximum values. The radial electric field
based on neoclassical ambipolarity is larger in a turbulence-free pedestal than one
expects from radial force balance. Again, the choice of the mean parallel flow is
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crucial. For the purely neoclassical pedestal, (4.1) vanishes exactly and a higher-
order calculation is needed to determine the mean parallel flow and close the system
of equations self-consistently.

6. Conclusion

Strong gradient effects cause poloidal variation of the electric potential and change
the mean flow according to Trinczek et al. (2023). Both of these effects modify the
neoclassical transport of electrons and the bootstrap current. In this paper, these
modifications were derived, explained and studied using example profiles.

Consecutive expansions in small collisionality, mass ratio and large aspect ratio
facilitate an analytical treatment of electron physics in strong gradient regions such
as the pedestal and internal transport barriers. Expressions for the electron distribu-
tion function were derived using fixed-θ variables and a jump condition approach.
The resulting neoclassical electron particle flux equation is different from the one
given by weak gradient neoclassical theory due to poloidal variation in the electric
potential, and differences in the mean parallel flow caused by strong gradient effects.
The bootstrap current can be derived using self-adjointness of the collision operator
or alternatively using the same jump condition approach (as in Appendix C). The
bootstrap current experiences modifications driven by the poloidal variation of the
electric potential and the changes in the parallel flow just like the electron particle
transport.

The poloidal variation of the electric potential was revisited and studied in more
detail. The poloidal variation originates from four different strong gradient effects.
The four effects are the asymmetry in the number of passing particles, the centrifugal
force, the asymmetry in the orbit width and the gradient of the mean parallel flow.
We have provided physical pictures for all four of them.

The neoclassical electron particle flux and the bootstrap current can be calculated
for a given set of density, temperature and mean flow profiles. Assuming radial
force balance between the pressure gradient and the electric field, ‘low flow’ and
‘high flow’ profiles were studied and compared with weak gradient neoclassical pre-
dictions. The relevance of the four strong gradient effects was evaluated. The passing
particle number asymmetry effect is relatively small in the ‘high flow’ and the ‘low
flow’ cases. Centrifugal and orbit width effects have significant contributions that
balance each other. The total poloidal variation is mostly set by the mean parallel
flow gradient effect. The ‘low flow’ electron flux and bootstrap current are larger
than in the ‘high flow case’, which is related to the sign of φc and the size of V‖ + u.
No significant changes from weak gradient neoclassical theory were observed in the
‘low flow’ example. The ‘high flow’ weak gradient solutions for the bootstrap cur-
rent overestimate the bootstrap current in the pedestal by roughly a factor of two
and the neoclassical electron particle flux by a factor of three. For a different choice
of temperature profiles, an increased bootstrap current in the ‘low flow’ example
can be observed, a result that demonstrates strong gradient effects can, in principle,
cause an increased or decreased prediction of the bootstrap current.

We showed that different mean parallel flow profiles can lead to very different
outcomes for electron transport and bootstrap current. In general, solutions for the
parallel flow only exist for specific sources and boundary conditions. Momentum
conservation to higher order is required to determine the mean parallel flow for the
purely neoclassical pedestal. More work is required to understand the mean parallel
flow in the pedestal.

https://doi.org/10.1017/S0022377825100421 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377825100421


Journal of Plasma Physics 27

In the case of a purely neoclassical pedestal, the ion neoclassical particle flux
vanishes to lowest order. For a known parallel flow profile, neoclassical ambipolarity
can be used to determine the radial electric field in this turbulence-free case.
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Appendix A. Fixed-θ variables for electrons
The concept of fixed-θ variables was first introduced by Trinczek et al. (2023) for

ions. Here, we extend the derivation to electrons.
Particles on trapped and passing orbits undergo changes in their parallel velocity

v‖ and radial position ψ due to the magnetic and electric fields. In other words,
the parallel velocity and radial position of a particle depend on the poloidal angle.
The orbits are periodic and one can choose a reference angle θf to take the poloidal
velocity and radial position at this reference angle as a constant of the motion of
the particle. For passing particles, the choice of velocity and position at θf is unam-
biguous. Trapped-particle orbits generally do not extend to all poloidal angles and
cross each poloidal point once on their upwards leg and once on the downwards leg.
Thus, the choice of the reference point is not unique. We capture all trapped par-
ticles and avoid double counting by choosing v‖ f = v‖(θ = θf ) positive for trapped
particles and by first setting θf = 0, then θf = π . This way, we can capture parti-
cles trapped on the outboard side, and particles that are potentially trapped by the
poloidal variation of the correction to the electrostatic potential φ1 on the inboard
side.

The fixed-θ variables v‖ f ≡ v‖(θ = θf ) and ψf =ψ(θ = θf ) together with the mag-
netic moment μ can be interpreted as labels of an orbit. If v‖ f , ψf and μ are
known, the corresponding orbit is uniquely determined. This formalism is equiv-
alent to using the conserved quantities energy E ≡ v2/2 + ZeΦ, canonical angular
momentum ψ∗ ≡ψ − Iv‖/Ω and magnetic moment μ, but the fixed-θ variables have
the advantage that their deviation from the particle quantities v‖ and ψ is small in a
large aspect ratio tokamak as will be shown in what follows.

The derivation of the orbit relations uses the conservation of energy and angular
momentum. First, we expand in the smallness of the square root of the mass ratio
δ, keeping ε ∼ 1. The quantity ψ −ψf is small in δ while v‖ − v‖ f is small in ε.
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Angular momentum conservation gives

ψ − Iv‖
Ωe

=ψf − Iv‖ f

Ωe f
. (A.1)

The deviation from v‖ f and ψf as the particle completes its orbit are thus
related via

ψ −ψf � I

Ωe f
(v‖ − v‖ f )+ Iv‖ f

Ωe f

(
Bf

B
− 1
)

∼ δR Bpρp. (A.2)

The energy of a particle is conserved, so

v2
‖
2

+μB − e

me
Φ(ψ, θ)= v2

‖ f

2
+μ f Bf − e

me
Φ(ψf , θf ), (A.3)

which can be written as

(v‖ − v‖ f )
2

2
+ v‖ f (v‖ − v‖ f )+μBf

(
B

Bf
− 1
)

= e

me

[
Φ(ψ, θ)−Φ(ψf , θf )

]
. (A.4)

The electric potential Φ has a piece φ that is a flux function and a piece φ1 that
varies with poloidal angle

Φ(ψ, θ)= φ(ψ)+ φ1(ψ, θ), (A.5)

with eφ/Te ∼ 1 and eφ1/Te ∼ ε. The electric potential can be expanded around ψf

as

Φ(ψ, θ)=Φ(ψf , θ)+ (ψ −ψf )
∂Φ

∂ψf
+ . . . . (A.6)

From (A.2) and the gradient length scale ordering LΦ ∼ ρp, it follows that the second
term of (A.6) is of order δΦ and thus small in δ. The right-hand side of (A.4)
becomes

e

me

[
Φ(ψ, θ)−Φ(ψf , θf )

]= e

me

[
φ1(ψf , θ)− φ1(ψf , θf )

]+ O
(
δv2

te

)
. (A.7)

We now expand in ε� 1 for which we need to distinguish between trapped–barely
passing and freely passing particles. Trapped–barely passing particles have an orbit
width of

√
εδρp whereas freely passing particles have an orbit width of εδρp. For

freely passing particles, the first term in (A.4) can be dropped as small in ε, such
that the orbit equations for the passing particles read

v‖ − v‖ f = −μBf

(
B/Bf − 1

)+ e
[
φ1(ψf , θ)− φ1(ψf , θf )

]
/me

v‖ f
∼ εvte, (A.8)

and

ψ −ψf = − I

Ωe f

(
v2

‖ f +μBf

) (
B/Bf − 1

)+ e
[
φ1(ψf , θ)− φ1(ψf , θf )

]
/me

v‖ f
∼ ε Iρe.

(A.9)
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For trapped–barely passing particles, all terms in (A.4) need to be kept because
v‖ f ∼ √

εvte, but the second term on the right of (A.2) can be dropped as small in ε
such that to lowest order in δ, the energy equation becomes

v‖ − v‖ f = −v‖ f + σ

√
v2

‖ f − 2
[
μBf

(
B

Bf
− 1
)

− e

me

(
φ1(ψf , θ)− φ1(ψf , θf )

)]
,

(A.10)
and

ψ −ψf = I

Ωe f
(v‖ − v‖ f ), (A.11)

where σ = v‖/|v‖| is the sign of the particle’s parallel velocity.

Appendix B. Lowest-order distribution function for electrons
The calculation of the lowest-order distribution function for electrons in the

trapped–barely passing region follows the ion calculation by Trinczek et al. (2023).
The difference in the derivation is that the first step is an expansion in δ before
a further expansion in

√
ε gives the final answer. The idea is to calculate ge from

(2.14) and (2.22)

ge(v‖, ψ)= fMef − fMe + fe1 f (v‖ f , ψf )− mev‖V‖
Te0

fMe. (B.1)

We use (A.3) to write the Maxwellian as

fMe = ne0(ψ)

(
me

2πTe0(ψ)

)3/2

exp
{

− mev
2
‖ f

2Te0(ψ)
− meμB(θf )

Te0(ψ)
+ eφ1(ψf , θf )

Te0(ψ)

− e

Te0(ψ)

[
φ(ψ)− φ(ψf )

] }
. (B.2)

We expand the density, temperature and electric potential in (B.2) in ψ −ψf in the
same way as in (A.6). Keeping terms up to order δ, we find

fMe � fMef +
{
∂

∂ψf
ln pe0 f +

[
mev

2
‖ f

2Te0 f
+ meμBf

Te0 f
− 5

2

]
∂

∂ψf
ln Te0 f

+ meuf

Te0 f

Ωe f

I

}
(ψ −ψf ) fMef , (B.3)

where Te0 f ≡ Te0(ψf ) and ne0 f ≡ ne0(ψf ). For trapped–barely passing particles,
v‖ ∼ √

εvte, so

ge(v‖, ψ)� fMef − fMe + gef (v‖ f , ψf )− (v‖ − v‖ f )
meV‖ f

Te0(ψf )
fMef , (B.4)

where gef (v‖ f , ψf )= fe1 f (v‖ f , ψf )− mev‖ f V‖ f /Te0(ψf ). To lowest order in
√
ε,

(A.11) holds and thus combining (B.3) and (B.4) gives

ge = −(v‖ − v‖ f )α0e + gef (v‖ f , ψf ), (B.5)

where α0e was defined in (2.31). In the definition of α0e, all f and 0 subscripts were
dropped where possible to simplify the notation. The function gef can be solved for
using the procedure presented by Trinczek et al. (2023) and gives the results for ge0

in (2.30). The largest piece of ge is ge0 ∼ √
εδ fMe, and there is no ge ∼ δ fMe piece.
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Appendix C. Alternative calculation of the bootstrap current
When the bootstrap current was derived in § 2.3, we used self-adjointness of the

collision operator in (2.50). However, one can also switch to fixed-θ variables and
use the jump properties of the distribution function to take the integrals and derive
the same expression for the bootstrap current. For this alternative derivation that
treats the discontinuities more carefully, we substitute the expression for v‖ in terms
of the Spitzer–Härm function (2.47) into (2.46), which gives

〈
j B
‖
〉
ψ

= −e

〈 ∫
Vp

d3vf
ge

fMe
∇v ·

[
fMeMe · ∇v

(
fe,SH

fMe

)

− λe fMe

∫
d3v′ f ′

Me∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) ]〉
ψ

= e

〈 ∫
dμ 2πBfΔ

[
ge b̂ · Me · ∇v

(
fe,SH

fMe

)

− λege

∫
d3v′ f ′

Me b̂ · ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) ]〉
ψ

+ e

〈 ∫
Vp

d3vf ∇v

(
ge

fMe

)
·
[

fMeMe · ∇v

(
fe,SH

fMe

)

− λe fMe

∫
d3v′ f ′

Me∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) ]〉
ψ

. (C.1)

We integrated by parts and picked up the jump at the trapped–barely passing region
v‖ f = −uf � 0. In what follows, we rewrite each of these terms in a convenient form.

The gradient of the Spitzer–Härm function is

∇v

(
fe,SH

fMe

)
= 1√

2νee

[
b̂ASH + v‖

v

vtev

∂ASH

∂xe

]
, (C.2)

such that to lowest order the jump terms become

e

〈 ∫
dμ 2πBfΔ

[
ge b̂ · Me · ∇v

(
fe,SH

fMe

)

− λege

∫
d3v′ f ′

Me b̂ · ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) ]〉
ψ

=
〈 ∫

dμ 2πBfΔge

[
e√
2νee

M‖e ASH

− eλe

∫
d3v′ f ′

Me b̂ · ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) ]
v‖=0

〉
ψ

. (C.3)

In this expression, the functions M‖e and ASH , the Maxwellian fMe and ω = v − v′ are
evaluated at v‖ = 0. To lowest order, the only quantity in this expression experiencing
a jump is the electron distribution function. The jump is given in (2.32).
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Next, we integrate by parts the third term in (C.1) containing the derivative
of ge

e

〈 ∫
Vp

d3vf ∇v

(
ge

fMe

)
· Me · ∇v

(
fe,SH

fMe

)
fMe

〉
ψ

= −e

〈 ∫
Vp

d3vf
fe,SH

fMe
∇v ·

[
fMeMe · ∇v

(
ge

fMe

)] 〉
ψ

− e

〈 ∫
dμ 2πBfΔ

[
fe,SH b̂ · Me · ∇v

(
ge

fMe

)] 〉
ψ

. (C.4)

The second term on the right in (C.4) vanishes because the integrand is evaluated in
the limit v‖ → 0+,−, where fe,SH = 0.

For the last term in (C.1), we can write

− e

〈 ∫
Vp

d3vf

∫
d3v′λe fMe f ′

Me∇v

(
ge

fMe

)
· ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) 〉
ψ

� −e

〈 ∫
d3v

∫
d3v′λe fMe f ′

Me∇v

(
ge

fMe

)
· ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) 〉
ψ

+ e

〈 ∫
Vt,bp

d3v

∫
d3v′λe fMe f ′

Me∇v

(
ge

fMe

)
· ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) 〉
ψ

. (C.5)

Exchanging v and v′ in the first term and taking the v‖ integral over the trapped
region in the second term, we get

− e

〈 ∫
Vp

d3vf

∫
d3v′λe fMe f ′

Me∇v

(
ge

fMe

)
· ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) 〉
ψ

� −e

〈 ∫
d3v λe fMe∇v

(
fe,SH

fMe

)
·
∫

d3v′ f ′
Me∇ω∇ωω · ∇v′

(
g′

e

f ′
Me

) 〉
ψ

+ e

〈 ∫
dμ 2πBfΔgeλe

∫
d3v′ f ′

Me b̂ · ∇ω∇ωω · ∇v′

(
f ′
e,SH

f ′
Me

) 〉
ψ

. (C.6)

The last term in (C.6) cancels the second term in (C.3). Combining (C.1), (C.3),
(C.4) and (C.6) gives

〈
j B
‖
〉
ψ

=
〈 ∫

dμ 2πBΔge
e√
2νee

M‖e ASH

∣∣∣
v‖=0

〉
ψ

− e

〈 ∫
Vp

d3vf
fe,SH

fMe
∇v ·

[
fMeMe · ∇v

(
ge

fMe

)] 〉
ψ

− e

〈 ∫
d3v λe fMe∇v

(
fe,SH

fMe

)
·
∫

d3v′ f ′
Me∇ω∇ωω · ∇v′

(
g′

e

f ′
Me

) 〉
ψ

. (C.7)

When the last term is integrated by parts again, the combination of the second and
the third term gives the collision operator Ce, such that

〈
j B
‖
〉
ψ

=
〈 ∫

dμ 2πBΔge
e√
2νee

M‖e ASH

∣∣∣
v‖=0

〉
ψ

− e

〈 ∫
Vp

d3vf
fe,SH

fMe
Ce

〉
ψ

, (C.8)
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where M‖e and ASH are evaluated at v‖ = 0, e.g. x2
e = meμB/Te. The flux surface

average and the transit average for freely passing particles are equivalent, such that
we can use the expression for the drift kinetic equation (2.5) to argue that the last
term of (C.8) vanishes. Indeed, the source term (2.3) is small, so this term is of order
δ2√εenevte and can be neglected. Using the jump condition (2.32), we arrive back
at the expression for the bootstrap current in (2.54).

Appendix D. Input profiles for case study
The profiles for density, ion and electron temperature are based on those measured

by Viezzer et al. (2016). We use the analytical expressions

n̄ = 0.6035 + 0.3965 tanh
[−1.2929(ψ̄ − 9.3942)

]− 0.0075ψ̄, (D.1)

T̄i = 1 − 0.0459ψ̄ + 0.0038ψ̄2 − 0.0007ψ̄3, (D.2)

and
T̄e = 1.2648 − 0.2798 tanh

[
1.3578(ψ̄ − 9.0470)

]− 0.0871ψ̄. (D.3)

Appendix E. Poloidal asymmetry effects
There are four sources of poloidal asymmetry – passing particle number asymme-

try, centrifugal force, mean parallel flow gradient and orbit width asymmetry. We
split up the terms in (3.1) and attribute them to these four effects in figure 6. The
categorisation is not unique as there are many cross-terms between the four effects.
However, for the purpose of figure 6, we use

number asymmetry = −Z
√

T̄

{
J

(
2ū2

T̄
+ 1
) [

∂

∂ψ̄
ln p̄ − 3

2
∂

∂ψ̄
ln T̄

− 2(ū + V̄ )

T̄

(
∂ V̄

∂ψ̄
− 1
) ]

+ ∂

∂ψ̄
ln T̄

[
J − ū + V̄

2
√

T̄

(
1 − 2

ū + V̄√
T̄

J

)(
2ū2

T̄
+ 1
)] }

/N ,

(E.1)

centrifugal force =
(

2ū2

T̄

)
/N , (E.2)

flow gradient = −2
∂ V̄

∂ψ̄

(
1 + ū2

T̄

)
/N , (E.3)

orbit width =
[
−(V̄ − ū)

∂

∂ψ̄
ln n̄

]
/N , (E.4)

where

N = 1

T̄e

− Z

T̄

[
J
√

T̄

(
∂

∂ψ̄
ln p̄ − 3

2
∂

∂ψ̄
ln T̄

)

+
(

1 − 2
ū + V̄√

T̄
J

)(
∂ V̄

∂ψ̄
− 1 − V̄ + ū

2
∂

∂ψ̄
ln T̄

) ]
. (E.5)
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Appendix F. Weak gradient limit
Our results for the neoclassical particle flux and the bootstrap current reduce to

the standard neoclassical weak gradient results for high flow and low flow in the
appropriate limit.

In the limit of weak gradients, the high flow ion particle flux equation gives

V‖ + u = − I Ti

miΩi

(
∂

∂ψ
ln pi − 1.17

G2(0, z̄wg,h f )

G1(0, z̄wg,h f )

∂

∂ψ
ln Ti

)
, (F.1)

where G1 and G2 are given in (5.13) and (5.14) in Trinczek et al. (2023) and z̄wg,h f =
mu2/T − Zeφwg,h f

c R/T r . The first argument of G1 and G2 vanishes because V‖ +
u � 0. In the high flow limit, centrifugal forces drive the poloidal potential variation(

ene

Te
+ Z 2eni

Ti

)
φwg,h f

c = Zni
r

R

mi u2

Ti
. (F.2)

Using both expressions in (2.43) gives the weak gradient–high flow neoclassical
electron particle flux

Γ wg,h f
e � −3.17

νee I 2 pe

Ω2
e me

√
r

R

{[ (
1 + Ti

Z Te

)
∂

∂ψ
ln ne

+ Ti

Z Te

(
1 − 1.17

G2(0, z̄wg,h f )

G1(0, z̄wg,h f )

)
∂

∂ψ
ln Ti

]
G1e(φ

wg,h f
c , Z)

+ [G1e(φ
wg,h f
c , Z)− 1.39G2e(φ

wg,h f
c , Z)

] ∂

∂ψ
ln Te

}
. (F.3)

Similarly, the weak gradient–high flow limit of the bootstrap current (2.55) is

〈
j B
‖
〉wg,h f � −2.43

cI

B

√
r

R
pe

{[ (
1 + Ti

Z Te

)
∂

∂ψ
ln ne

+ Ti

Z Te

∂

∂ψ
ln Ti

(
1 − 1.17

G2(0, z̄wg,h f )

G1(0, z̄wg,h f )

) ]
J1e(φ

wg,h f
c , Z)

+ [J1e(φ
wg,h f
c , Z)− 0.71J2e(φ

wg,h f
c , Z)

] ∂

∂ψ
ln Te

}
. (F.4)

In the low flow limit, the centrifugal force is weak and the poloidal variation of the
electric potential vanishes, φc → 0. For Z = 1, the particle flux in the weak gradient
limit reduces to the known result for the low flow regime

Γ wg,l f
e = −3.17

νee I 2 pe

Ω2
e me

√
r

R

[(
1 + Ti

Te

)
∂

∂ψ
ln ne − 0.17

Te

∂Ti

∂ψ
− 0.39

∂

∂ψ
ln Te

]
.

(F.5)
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Similarly, the expression for the bootstrap current (2.55) in the weak gradient–low
flow limit and Z = 1 reduces to

〈
j B
‖
〉wg,l f

ψ
= −2.43

cI

Bf

√
r

R
pe

[(
1 + Ti

Te

)
∂

∂ψ
ln ne − 0.17

Te

∂Ti

∂ψ
+ 0.29

∂

∂ψ
ln Te

]
,

(F.6)

which is in agreement with the weak gradient–low flow neoclassical prediction
(Helander & Sigmar 2005).
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