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Abstract. We introduce a new method of constructing Birkhoff sections for pseudo-Anosov
flows, which uses the connection between pseudo-Anosov flows and veering triangulations.
This method allows for explicit constructions, as well as control over the Birkhoff section
in terms of its Euler characteristic and the complexity of the boundary orbits. In particular,
we show that any transitive pseudo-Anosov flow has a Birkhoff section with two boundary
components.
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1. Introduction
Birkhoff sections are a classical tool for studying flows on 3-manifolds, appearing back
in the early 20th century in the work of Poincare and Birkhoff. They can be used to
reduce questions about the dynamics of three-dimensional flows to dynamics of surface
homeomorphisms. See [Fra92, HWZ98] for two classical applications. The question of
when a flow has a Birkhoff section, especially when the flow is a Reeb flow, is still a
popular research topic. See [CDHR22, CM22] for some recent progress.

One class of flows which is long known to admit Birkhoff sections are Anosov
flows, which were introduced by D. V. Anosov back in the 1960s. This result is due to
work of Fried in [Fri83]. The class of Anosov flows was later expanded to the class
of pseudo-Anosov flows by Thurston for wider applicability in the study of 3-manifold
topology, and Brunella generalized Fried’s result to this larger class of flows in [Bru95].

THEOREM 1.1. [Bru95, Fri83] Let φ be a transitive pseudo-Anosov flow on a closed
3-manifold. Then φ has a Birkhoff section.

One unsatisfying feature of Fried’s and Brunella’s proofs of Theorem 1.1, however, is
that they are compactness arguments: roughly, the proofs go by constructing small local
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transverse surfaces, using compactness to argue that finitely many of these cover up the
flow, then piecing them together. As a result, one has no control over how complicated the
Birkhoff section is.

In this paper, we present a new method of constructing Birkhoff sections for
pseudo-Anosov flows which does allow for control over the complexity. This method uses
the recent technology of veering triangulations and their connection with pseudo-Anosov
flows: roughly, given a pseudo-Anosov flow on an oriented closed 3-manifold, there exists
a veering triangulation whose faces are positively transverse to the flow.

The idea is to construct transverse surfaces to the flow using the combinatorics of the
triangulation. By piecing these surfaces together and resolving the self-intersections, we
get a Birkhoff section to the flow. The control over the complexity comes from the fact that
the combinatorics of the triangulation can be explicitly described, which allows for control
over the constructed transverse surfaces. Our main result is that it is always possible to
arrange for the final Birkhoff section to have two boundary components.

THEOREM 1.2. Let φ be a transitive pseudo-Anosov flow on a closed 3-manifold. Then φ

has a Birkhoff section with two boundary components, where each boundary component
is embedded along a closed orbit of φ.

Theorem 1.2 follows from the more technical Theorem 6.4 which, in addition, gives
explicit bounds on the Euler characteristic of the Birkhoff section as well as the complexity
of its boundary components.

For the rest of this introduction, we discuss the context of Theorem 1.2 within the
literature of pseudo-Anosov flows, describe some ideas in the proof of Theorem 1.2, and
provide an outline of the paper.

1.1. Context for ‘two boundary components’. In [Thu97, p. 57], Thurston asks for
a description of ‘the minimal collections of orbits that need to be removed for the
[pseudo-Anosov] flow to admit a section’. Theorem 1.2 can be seen as some progress
toward this: for a general pseudo-Anosov flow, a minimal collection with the least number
of elements will have two orbits. In fact, Theorem 1.2 gives slightly more since it asserts
that one can find a Birkhoff section with one boundary component embedded along each
of two closed orbits.

In the case of Anosov flows, Marty recently showed that an Anosov flow admits a
Birkhoff section with only one boundary component if and only if it is skew R-covered
([Mar21, Theorem G], [Mar23, Theorem E]). Together with Theorem 1.2, this provides
the following neat trichotomy for Anosov flows:

Orbit space Birkhoff section

Trivial R-covered Closed
Skew R-covered One boundary component
Non-R-covered Two boundary components

See also [Mar23, Table 1].
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In particular, since plenty of non-R-covered Anosov flows are known to exist (see,
for example [BI23]), this shows that Theorem 1.2 is sharp. This also gives an exact
classification of Anosov flows for which Theorem 1.2 is sharp.

1.2. Veering triangulations. We review some key points from the theory of veering
triangulations to explain some ideas in the proof of Theorem 1.2. See §§2.3, 3, and 4
for more details.

Let φ be a pseudo-Anosov flow on an oriented closed 3-manifold M. Let C be a
collection of closed orbits satisfying the technical condition that φ has no perfect fits
relative to C; we show that such a collection always exists when φ is transitive.

PROPOSITION 2.7. Let φ be a transitive pseudo-Anosov flow on a closed 3-manifold. There
exists a collection of orbits C such that φ is without perfect fits relative to C. In fact, C can
be chosen to be the set of singular orbits and one other orbit.

The main result is then that there exists a veering triangulation on the cusped manifold
M\ ⋃

C. Moreover, the 2-skeleton of the triangulation is positively transverse to φ and the
combinatorics of the triangulation encodes the dynamics of the flow.

The existence of the triangulation is the unpublished work of Agol-Guéritaud, while
transversality of the 2-skeleton is due to Landry, Minsky, and Taylor [LMT22]. To achieve
this, they had to show that one can place the edges appropriately while constructing
the triangulation. An important point for us is that there is no canonical choice for this
placement of edges, and we shall use this freedom to construct some transverse surfaces to
the flow.

1.3. Method of constructing Birkhoff sections. We introduce the notion of a broken
transverse surface to a flow. These are surfaces which have a vertical boundary and a
horizontal boundary. The vertical boundary is tangent to the flow whereas the interior of
the surface and the horizontal boundary are transverse to the flow. See Definition 2.19 for
details. Provided that their horizontal boundaries match up, one can glue up a collection
of broken transverse surfaces into a transverse surface that only has vertical boundary. If
in addition every orbit meets one of the broken transverse surfaces in finite time, then the
glued up transverse surface would be a Birkhoff section.

For a given pseudo-Anosov flow φ, we construct two types of broken transverse surfaces
out of the combinatorial data of an associated veering triangulation �.

The first type of surfaces is helicoids. We construct these from winding edge paths,
which are edge paths in the universal cover �̃ that wind around an orbit. The vertical
boundary of such a helicoidal surface is the orbit that the edge path winds around, while
the horizontal boundary is the collection of edges in the edge path (see Figure 28). It is
here that the edge placements mentioned in the previous subsection come up. We have to
argue that we can arrange for this winding behavior to occur where we expect it to. This is
done in a fairly technical trace through Landry, Minsky, and Taylor’s work in §3.

The second type of surfaces comes from the shearing decomposition of veering
triangulations, introduced by Schleimer and Segerman in [SS]. These surfaces are obtained
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by putting together faces of the triangulation, and essentially have no vertical boundary.
See §6.1 for details.

For the proof of Theorem 6.4, we first choose sufficiently many surfaces of the second
type to intersect all the orbits, then show that we can construct two helicoids with matching
horizontal boundary. This allows us to glue the surfaces up into an immersed Birkhoff
section. A standard trick of Fried [Fri83] then allows us to resolve the self-intersections
and get an honest Birkhoff section. The boundary of this Birkhoff section comes from the
vertical boundary of the two helicoids, and hence consists of exactly two closed orbits.

In our construction, we will also keep track of the complexity of the various objects
involved, so as to obtain the explicit bounds in Theorem 6.4. The reader who is ultimately
only interested in Theorem 1.2 can skip these parts.

1.4. Outline of the paper. In §2, we recall some background knowledge about
pseudo-Anosov flows, Birkhoff sections, and veering triangulations. In §3, we recall
the construction in [LMT22] of the veering triangulation associated to a pseudo-Anosov
flow, explaining how we can arrange for winding edge paths along the way. In §4, we recall
work in [LMT22] on encoding closed orbits of the flow using the dual graph and flow
graph of the veering triangulation. This is so that we can define the flow graph complexity
of closed orbits and establish some lemmas for keeping track of complexities.

In §5, we explain how to construct the helicoidal broken transverse surfaces as
mentioned above. The construction goes through objects which we call edge sequences.
These lift up to winding edge paths in the universal cover which bound the desired
helicoids. In §6, we recall the shearing decomposition, and we prove Theorems 6.3 and
6.4. In §7, we include some extra discussion of our theorems and present some future
questions coming out of this paper.

1.5. Notational conventions. Throughout this paper, we will use the following
notation.
• X\\Y will denote the metric completion of X\Y with respect to the induced path

metric from X. In addition, we will call the components of X\\Y the complementary
regions of Y in X.

• X̃ will denote the universal cover of X, unless otherwise stated.
• Suppose α is a path, then −α will denote the path traversed in the opposite direction.
• Suppose α and β are paths, where the ending point of α equals to the starting point of

β, then α ∗ β will denote the concatenated path obtained by traversing α then β.
• Suppose C is a collection of sets, then

⋃
C will denote the union over all elements

of C.

2. Background
2.1. Pseudo-Anosov flows. We recall the definition of a pseudo-Anosov flow.

Definition 2.1. Let n ≥ 2 be an integer. Let pn : R2 → R2 be the map defined by
identifying R2 ∼= C and sending z to zn/2. When n is odd, one has to choose a branch;
any choice here would work. Consider the foliations of R2 by vertical and horizontal lines.
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FIGURE 1. The dynamics of φn,0,λ for n = 3.

Let lsn, lun be the singular foliations of R2 obtained by pulling back these foliations under
pn, respectively. We refer to lifts of the quadrants in R2 under pn as quadrants as well.

Let λ > 1. Consider the map [ λ 0
0 λ−1 ] : R2 → R2. Let φn,0,λ : R2 → R2 be the lift of

this map over pn that preserves the quadrants. Let φn,k,λ : R2 → R2 be the composition of
φn,0,λ and rotation by 2πk/n anticlockwise. Since [ λ 0

0 λ−1 ] preserves the foliations of R2

by vertical and horizontal lines, respectively, lsn and lun are preserved by φn,k,λ. We depict
the dynamics of φn,0,λ for n = 3 in Figure 1.

Let �n,k,λ be the mapping torus of φn,k,λ, let 	s , 	u be the suspensions of lsn, lun ,
respectively, and consider the suspension flow on �n,k,λ. Call the suspension of the origin
the singular orbit of �n,k,λ.

Definition 2.2. A pseudo-Anosov flow on a closed 3-manifold M is a C1-flow φt satisfying
the following.
• There is a finite collection of closed orbits {γ1, . . . , γs}, called the singular orbits,

such that φt is smooth away from the singular orbits.
• There is a path metric d on M, which is induced from a Riemannian metric g away

from the singular orbits.
• Away from the singular orbits, there is a splitting of the tangent bundle into three

φt -invariant line bundles T M = Es ⊕ Eu ⊕ T φt , such that

|dφt (v)| < Cλ−t |v|
for every v ∈ Es , t > 0, and

|dφt (v)| < Cλt |v|
for every v ∈ Eu, t < 0, for some C, λ > 1.

• Each singular orbit γi has a neighborhood Ni and a map fi sending Ni to a
neighborhood of the singular orbit in �ni ,ki ,λ, for some ni ≥ 3, such that fi is
bi-Lipschitz on Ni and smooth away from γi , preserves the orbits, and sends Es , Eu to
line bundles tangent to 	s , 	u, respectively. In this case, we say that γi is ni-pronged.
By extension, we also say that a non-singular orbit is 2-pronged.
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FIGURE 2. A perfect fit rectangle.

We call the (possibly singular) foliation which is tangent to Es ⊕ T φt away from the
singular orbits and given by the image of 	s ⊂ �ni ,ki ,λ under fi near the singular orbits
the stable foliation 	s . We define the unstable foliation 	u similarly.

An Anosov flow is a pseudo-Anosov flow without singular orbits.

Definition 2.3. A flow on a closed 3-manifold M is said to be transitive if it has an orbit
that is dense in M.

Definition 2.4. Let φi be a flow on a 3-manifold Mi for i = 1, 2. We say that φ1 is
orbit equivalent to φ2 if there is a homeomorphism h : M1 → M2 sending orbits of
φ1 to orbits of φ2 in an orientation preserving way (but not necessarily preserving the
parameterizations by the flows). In this case, we say that h is an orbit equivalence.

We next recall the definition of no perfect fits. This was introduced by Fenley in [Fen99]
and slightly generalized in [AT22]. Here we use the generalized definition.

Definition 2.5. Let φ be a pseudo-Anosov flow on a closed 3-manifold M, and let C be a
non-empty finite collection of closed orbits of φ which includes all the singular orbits of φ.
Lift φ up to a flow φ̃ on the universal cover M̃ . Let C̃ be the set of orbits of φ̃ which cover
the orbits in C.

Let O be the space of orbits of φ̃, endowed with the quotient topology. We refer to O
as the orbit space of φ. It is shown in [FM01, Proposition 4.2] that O is homeomorphic
to R2, and the images of 	s , 	u under the projection M̃ → O are two (possibly singular)
one-dimensional foliations Os , Ou, respectively.

A perfect fit rectangle is a rectangle-with-one-ideal-vertex properly embedded in O such
that the restrictions of Os and Ou to the rectangle foliate it as a product that is conjugate
to the foliations of [0, 1]2\{(1, 1)} by vertical and horizontal lines. See Figure 2.

We say that φ has no perfect fits relative to C if every perfect fit rectangle in O
intersects C̃.

If φ has no perfect fits relative to the collection of singular orbits, then we say that φ

has no perfect fits.

Construction 2.6. Let φ be a pseudo-Anosov flow on a closed 3-manifold M and let γ be a
closed orbit of φ. Let N(γ ) be a small tubular neighborhood of γ . The leaf of the restricted
foliation 	s |N(γ ) containing γ intersects ∂N(γ ) in a collection of closed curves. Let l be
the union of all these curves.
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Let s be a slope on ∂N(γ ) such that |〈s, l〉| ≥ 2, and let M ′ be the closed 3-manifold
obtained by Dehn filling M\N(γ ) along s. Then there exists a pseudo-Anosov flow φ′ on
M ′ with a closed orbit γ ′ isotopic to the core of the Dehn filling, such that φ restricted to
M\γ is orbit equivalent to φ′ restricted to M ′\γ ′. Moreover, γ ′ will be |〈s, l〉|-pronged.

Such a construction is commonly known in the literature as Goodman–Fried surgery.
The history behind this is rather interesting. Goodman, in [Goo83], introduced a way of
performing this construction: one excises a round handle neighborhood of γ and inserts
another round handle neighborhood which achieves the correct filling slope s to get φ′.
Fried, in [Fri83], introduced another way of performing this construction: one ‘blows up’
the flow along γ and collapses the torus boundary component along the filling slope s
to get φ′. It was assumed early on that the flows produced by the two methods are orbit
equivalent, but it was later realized that there was no rigorous proof of this. It was only
recently shown by Shannon in his thesis [Sha20] that this is indeed the case when φ is
transitive, and even now, it is still open whether this is true when φ is not transitive. See
[Sha20] for a more in-depth discussion. For the purposes of this paper, one can just choose
their preferred way of performing the surgery when we say perform Goodman–Fried
surgery.

PROPOSITION 2.7. Let φ be a transitive pseudo-Anosov flow on a closed 3-manifold M.
There exists a collection of orbits C such that φ is without perfect fits relative to C. In fact,
C can be chosen to be the set of singular orbits and one other orbit.

Proof. We first make the following definition.

Definition 2.8. Recall the notation in Definition 2.1. The preimage of the square [−1, 1]2

under pn is a 2n-gon. We call the copy of this 2n-gon in a fiber of the mapping torus �n,k,λ

a standard transverse 2n-gon.
Now suppose x ∈ M . Suppose f is a homeomorphism sending a neighborhood of x to a

neighborhood in �n,k,λ containing a standard transverse 2n-gon R such that:
• f preserves the foliations 	s and 	u;
• f sends x to a point y ∈ R.
Then we call the preimage f −1(R) a transverse polygon at x. The leaves of lsn and lun that
contain y divide R into certain regions. We call the preimage of one of these regions that
contains y a sector of the transverse polygon.

Notice that we do not require x or y to lie on a singular orbit in this definition.
Hence, for example, a transverse polygon at a point lying on a non-singular orbit can be a
(2n ≥ 6)-gon, but in such a case, the transverse polygon will still only have four sectors.

Returning to the proof of the proposition, we fix some metric on M. There exists ε > 0
such that for every x ∈ M , there is a transverse polygon R at x for which each sector S of
R intersects every orbit passing through the ε-neighborhood of some point z ∈ S. Such ε

can be chosen for x in small neighborhoods, then using compactness of M, we obtain a
uniform ε.

Meanwhile, by transitivity and the shadowing lemma (see [Man98, Lemma 1.3]), there
exists a closed orbit γ of φ that intersects every ε-neighborhood in M. By the choice of
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FIGURE 3. A lozenge.

ε above, we know that for every x ∈ M , there is a transverse polygon R at x such that γ

intersects every sector of R. We take C to be the set of singular orbits and γ , and claim that
φ has no perfect fits relative to C.

To show the claim, we recall the notion of lozenges, which were also introduced by
Fenley in [Fen99].

Definition 2.9. A lozenge is a rectangle-with-two-opposite-ideal-vertices properly embed-
ded in O such that the restrictions of Os and Ou to the rectangle foliate it as a product that
is conjugate to the foliations of [0, 1]2\{(0, 0), (1, 1)} by vertical and horizontal lines. See
Figure 3.

The result we need to use is the following.

PROPOSITION 2.10. [Fen16, Proposition 5.5] Let φ be a pseudo-Anosov flow on a closed
3-manifold M. If the orbit space of φ contains a perfect fit rectangle, then it contains a
lozenge.

Returning to the proof of our claim, we first perform Goodman–Fried surgery on γ

to make it singular, that is, we get a pseudo-Anosov flow φ′ on a closed 3-manifold M ′
with a singular orbit γ ′, such that φ restricted to M\γ is orbit equivalent to φ′ restricted
to M ′\γ ′. If we let O and O′ be the orbit spaces of φ and φ′, respectively, then the orbit

equivalence M\γ ∼= M ′\γ ′ induces a homeomorphism Õ\{̃γ } ∼= Õ′\{̃γ ′} which maps the
lifted stable/unstable foliations of one flow to the other.

Now suppose that O contains a perfect fit rectangle disjoint from {̃γ }, then we can lift

it to Õ\{̃γ }, transfer it to Õ′\{̃γ ′}, then project down to O′ to get a perfect fit rectangle
in O′. By Proposition 2.10, O′ contains a lozenge. We can then run the above reasoning
backward to obtain a lozenge L in O disjoint from {̃γ }.

Let α be one of the (non-ideal) corners of L. Recall that α is an orbit of φ̃. Let x be a
point on α. We know from above that there is a transverse polygon R at the image of x in M
such that γ intersects every sector of R. Lift R to R̃ ⊂ M̃ containing x. One of the sectors
of R̃ projects down to a region contained in L ⊂ O. However, some element of {̃γ } lies
within such a region, contradicting the fact that L is disjoint from {̃γ }.
Remark 2.11. We note that, conversely, if φ is a pseudo-Anosov flow on a closed
3-manifold M without perfect fits relative to some collection of closed orbits C, then φ

must be transitive.
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To show this, we first perform Goodman–Fried surgery on orbits in C to make them
singular, that is, we get a pseudo-Anosov flow φ′ on a closed 3-manifold M ′ with a
collection of singular orbits C′, such that φ restricted to M\ ⋃

C is orbit equivalent to
φ′ restricted to M ′\ ⋃

C′.
We claim that φ′ has no perfect fits. Otherwise, using the argument in the proof above,

we can transfer a perfect fit rectangle in O′ to a perfect fit rectangle in O that is disjoint
from C̃, contradicting the hypothesis. Now by [Fen12, Corollary E], M ′ is atoroidal, and
by [Mos92, Proposition 2.7], φ′ is transitive. This implies that φ is transitive.

Remark 2.12. Using Theorem 1.1, one can obtain a much simpler proof of the first part
of Proposition 2.7. Indeed, the existence of a Birkhoff section, say, with boundary along
a collection of closed orbits C, implies that there exists a pseudo-Anosov flow φ′ on a
closed 3-manifold M ′ with a collection of closed orbits C′, such that φ′ is the suspension
flow on some pseudo-Anosov mapping torus, and such that φ restricted to M\ ⋃

C is orbit
equivalent to φ′ restricted to M ′\ ⋃

C′.
However, it is well known that suspension flows have no perfect fits, see, for example,

[Fen12, Theorem G]. Hence, φ has no perfect fits relative to C, for otherwise, we can apply
the argument in the proof above to transfer a perfect fit rectangle in O disjoint from C̃ to a
perfect fit rectangle in O′.

One of the drawbacks of this proof, however, is that, as pointed out in §1, Fried’s and
Brunella’s proofs of Theorem 1.1 do not offer any control over the complexity of C. In
particular, we do not know of a way of recovering the second statement of Proposition
2.7 using this proof. Another reason for using the longer proof is that we aim to offer
an independent proof of Theorem 1.1 in this paper, and so we should avoid a circular
argument.

One of the convenient features of a pseudo-Anosov flow without perfect fits is the
following generalization of [Fen99, Theorem 4.8].

LEMMA 2.13. Let φ be a pseudo-Anosov flow on a closed 3-manifold M without perfect
fits relative to a collection of orbits C. Suppose γ1 and γ2 are two closed orbits of φ which
are not elements of C. If [γ1]k1 = [γ2]k2 in π1(M\ ⋃

C), then γ1 = γ2.

Proof. Assume otherwise. We apply Goodman–Fried surgery on the orbits in C to make
them singular, that is, we get a pseudo-Anosov flow φ′ on a closed 3-manifold M ′ with a
collection of singular orbits C′, such that φ restricted to M\ ⋃

C is orbit equivalent to φ′
restricted to M ′\ ⋃

C′. Here, γ1 and γ2 are sent by the orbit equivalence to closed orbits
of φ′ in M ′\ ⋃

C′, which we still call γ1 and γ2, respectively, such that γ
k1
1 is homotopic

to γ
k2
2 in M ′. By [Fen99, Theorem 4.8], φ′ must have perfect fits. However, then one can

transfer a perfect fit rectangle from the orbit space of φ′ to that of φ as in the proof of
Proposition 2.7 and obtain a contradiction.

2.2. Birkhoff sections
Definition 2.14. Let φ be a pseudo-Anosov flow on a closed 3-manifold M. An immersed
Birkhoff section is an immersed cooriented compact surface with boundary S such that the
following hold.
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FIGURE 4. A Birkhoff section near a positive/negative boundary component.

• The interior of S is positively transverse to the orbits of φ.
• The boundary of S is a union of closed orbits of φ.
• Every orbit of φ intersects S in finite foward and finite backward time, that is, for every

x ∈ M , there exists t1, t2 > 0 such that φt1(x) ∈ S and φ−t2(x) ∈ S.
When M is oriented, we orient the boundary components of S using the induced orientation
on S. We say that a boundary component of S is positive if its orientation agrees with the
flow direction, otherwise it is negative. See Figure 4.

Let C be the set of closed orbits for which some element of ∂S lies along. The complexity
of S is defined to be c(S) = −χtop(S\C), where χtop denotes the Euler characteristic of the
underlying space. In other words, we puncture the immersed surface at the points where it
intersects its boundary and compute the negative of its Euler characteristic.

A Birkhoff section is an immersed Birkhoff section that is embedded in its interior. Note
that the complexity of a Birkhoff section is equal to the negative of its Euler characteristic.

Having an immersed Birkhoff section is essentially as good as having a Birkhoff
section, since we have the following resolution trick, introduced by Fried in [Fri83].

Construction 2.15. Let φ be a pseudo-Anosov flow on a closed 3-manifold M. Let S be an
immersed Birkhoff section. By a slight perturbation, we can assume that S is in general
position. In this case, the self-intersection set of S is a graph that can be described as
follows.

We call the interior points that are identified with a boundary point the cut points, and
call the interior points that are identified with two other interior points the triple points.
Then the self-intersection set of S is a union of some boundary components and some
curves and arcs that have endpoints on boundary components and cut points, and which
are disjoint except for intersecting three at a time at triple points. We call each such a curve
or arc a double curve or arc, respectively.

For each double curve or arc l, we cut and paste along l as in Figure 5 first row. The
local picture around a cut point is as in Figure 5 second row, and the local picture around
a triple point is as in Figure 5 third row. This results in a surface that is embedded in its
interior but may not be immersed along its boundary. We call the boundary points that
are not immersed the turning points. Inductively, for each turning point, we cut and paste
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FIGURE 5. Performing Fried resolution on an immersed Birkhoff section.

along the arcs that are identified on either side of the turning point as in Figure 5 last row.
We eventually get rid of all the turning points and get a Birkhoff section S ′. We call S′ the
Fried resolution of S.

We caution that a closed orbit γ in ∂S may not be in ∂S ′. This disappearance of
boundary orbits happens exactly when the homology class of S ∩ ∂N(γ ) is a multiple
of the meridian, where in the last step of getting rid of the turning points, we end up
collapsing the boundary components that lie on γ .

We also note that if ∂S is embedded along a closed orbit γ , then the same is true for
∂S′. In general, the (signed) intersection number of S ∩ ∂N(γ ) with the meridian at γ is
preserved under Fried resolution, since the effect of the operation on the homology class
of S ∩ ∂N(γ ) is summing with multiples of the meridian.
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LEMMA 2.16. Let S be an immersed Birkhoff section and S ′ be its Fried resolution. Then
c(S) ≥ c(S′).

To explain this proof, we make the following definition.

Definition 2.17. A surface with corners is a surface with boundary S along with a finite
collection of points on ∂S, which we call the corners. The complementary regions of the
corners in ∂S are called the sides. A punctured surface with corners is a surface with
corners S with a finite collection of interior points and corners removed.

The index of a surface with corners S is defined to be ind(S) = χtop(S) − 1
4 # corners.

If we remove x interior points and y corners from S to get a punctured surface with corners
S′, then the index of S′ is defined to be ind(S′) = ind(S) − x − 1

4y.

Note that the index is additive, in the sense that if a punctured surface with corners
S is divided into S′ by a collection of disjoint curves and properly embedded arcs, then
ind(S) = ind(S′).

Remark 2.18. A good motivation and mnemonic for the definition of the index comes from
the Gauss–Bonnet formula: if a surface with corners S can be endowed with a hyperbolic
metric such that the sides are geodesic and the corners form right angles, then ind(S) =
−area(S)/2π . Similarly, if a punctured surface with corners S ′ is obtained by removing
interior points and corners from S, and if S′ admits a hyperbolic metric such that the
sides are geodesics, the unremoved corners form right angles, and the removed points
form cusps, then ind(S) = −area(S)/2π .

Proof of Lemma 2.16. Let I be the self-intersection set of S and let V be the set of cut points
and triple points of S. Let S1 be the surface obtained after cutting and pasting along the
double curves and arcs of S, and let I1 and V1 be the images of I and V in S1, respectively.
Notice that S1 can be obtained from S by cutting along I and gluing back the pieces in a
different way.

Now observe that I\V is a collection of curves and properly embedded arcs in the
punctured surface S\V that divides it into punctured surface with corners (S\V )\\(I\V ).
Similarly, I1\V1 is a collection of curves and properly embedded arcs in the punctured
surface S1\V1 that divides it into a punctured surface with corners (S1\V1)\\(I1\V1), and
we have (S\V )\\(I\V ) = (S1\V1)\\(I1\V1). Hence, ind(S\V ) = ind(S1\V1) and

c(S) = −ind(S\V ) − # triple points = −ind(S1\V1) − # triple points = −χtop(S1).

Meanwhile, S′ is obtained from S1 by resolving the turning points on ∂S1. This changes
the topology of S1 by possibly collapsing some boundary components. This collapsing
happens when a boundary component of S1 is immersed along a closed orbit via a
null-homotopic map; after resolving turning points on this boundary component, it is
mapped to a single point in M. Topologically, this is equivalent to filling in certain
boundary components of S1 by discs, and hence

c(S) = −χtop(S1) ≥ −χtop(S
′) = c(S′).

https://doi.org/10.1017/etds.2023.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.105


2320 C. C. Tsang

As mentioned in §1, the way we will construct Birkhoff sections in this paper is to
assemble multiple pieces of surfaces. To that end, we define the notion of broken transverse
surfaces.

Definition 2.19. Let φ be a pseudo-Anosov flow on a closed 3-manifold M. A broken
transverse surface is an immersed cooriented surface with corners S such that the following
hold.
• The interior of S is positively transverse to the orbits of φ.
• Every boundary component α of S has an even number of corners. The sides along α

lie along closed orbits or are transverse to the orbits of φ alternatingly.
We denote the union of sides of S that lie along closed orbits by ∂vS and call it the vertical
boundary of S. We denote the union of sides of S that are transverse to orbits of φ by ∂hS

and call it the horizontal boundary of S.
When M is oriented, we orient the sides of S using the induced orientation on S. A side

in ∂vS is said to be positive if its orientation agrees with the flow direction, otherwise it is
negative.

If S is a broken transverse surface whose sides in ∂hS can be grouped together in pairs
(e1, e2) such that e1 = −e2 as paths, and if every orbit of φ intersects S in finite forward
and backward time, then S can be glued along each pair of sides to give a surface immersed
in its interior. The surface may not be immersed along its boundary if the signs of the sides
in ∂vS do not match up, but we can apply the last step of Fried resolution to resolve any
turning points and get an immersed Birkhoff section S ′.

Let {γ1, . . . , γk} be the set of orbits for which some element of ∂S ′ lies along.
Using additivity of the index, we get the bound c(S ′) ≤ −ind(S) + ∑k

i=1〈S, γi〉. As in
Lemma 2.16, strict inequality holds if we have to collapse a boundary component while
resolving turning points.

2.3. Veering triangulations. We recall the definition of a veering triangulation.

Definition 2.20. An ideal tetrahedron is a tetrahedron with its four vertices removed. The
removed vertices are called the ideal vertices. An ideal triangulation of a 3-manifold M is
a decomposition of M into ideal tetrahedra glued along pairs of faces.

A taut structure on an ideal triangulation is a labeling of the dihedral angles by 0 or π ,
such that the following hold.
• Each tetrahedron has exactly two dihedral angles labeled π , and they are opposite to

each other.
• The angle sum around each edge in the triangulation is 2π .

A transverse taut structure is a taut structure along with a coorientation on each face,
such that for any 0-labeled edge in a tetrahedron, exactly one of the faces adjacent to it is
cooriented inwards. A transverse taut ideal triangulation is an ideal triangulation with a
transverse taut structure.

In this paper, we will take the convention that the coorientations are always pointing
upward.
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FIGURE 6. A tetrahedron in a veering triangulation. There are no restrictions on the colors of the top and bottom
edges.

Definition 2.21. A veering structure on a transverse taut ideal triangulation of an oriented
3-manifold is a coloring of the edges by red or blue, so that if we look at each tetrahedron
with a π -labeled edge in front, the four outer 0-labeled edges, starting from an end of the
front edge and going counter-clockwise, are colored red, blue, red, blue, respectively. See
Figure 6.

A veering triangulation is a transverse taut ideal triangulation with a veering structure.

Remark 2.22. In this paper, as the reader would have noticed in §2.1, we take the
convention of drawing stable foliations in red and unstable foliations in blue, which is
common in the literature. The reader is cautioned that this usage of red/blue has no
relation with using the same colors for the edges of veering triangulations; it is simply an
unfortunate coincidence, perhaps due to the fact that there are only so many conspicuous
colors to the human eye. To avoid confusion, we will reserve the colors red/blue in our
figures for the latter usage when both contexts are present.

We recall some basic combinatorial facts about veering triangulations.
An edge e in a veering triangulation � is the bottom edge of a unique tetrahedron and

the top edge of a unique tetrahedron. We say that these tetrahedra lie above and below e,
respectively. In between these tetrahedra, on either side of e, there is an (a priori, possibly
empty) collection of tetrehedra incident to e, each having e as a side edge. We refer to
this collection as a stack of tetrahedra on a side of e. Definition 2.23 and Proposition 2.24
below describe the structure of these stacks.

Definition 2.23. A tetrahedron in � is called a toggle tetrahedron if the colors on its top
and bottom edges differ. It is called a red/blue fan tetrahedron if both its top and bottom
edges are red/blue, respectively.

Note that some authors call toggle and fan tetrahedra hinge and non-hinge, respectively.

PROPOSITION 2.24. [FG13, Observation 2.6] Let e be an edge in a veering triangulation
�. The stacks of tetrahedra on each side of e must be non-empty. Suppose e is blue/red.
If there is exactly one tetrahedron in one stack, then that tetrahedron is a blue/red fan
tetrahedron, respectively. If there are n > 1 tetrahedron in one stack, then going from
bottom to top in that stack, the tetrahedra are: one toggle tetrahedron, n − 2 red/blue fan
tetrahedra, and one toggle tetrahedron.
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FIGURE 7. The boundary triangulation at a vertex of a veering triangulation.

The number of tetrahedra in the stack of tetrahedra to a side of an edge is referred to as
the length of the stack.

For any veering triangulation �, one can complete the ideal triangulation by adding in
the removed vertices of the ideal tetrahedra. The resulting space will not be a manifold
since the link of each vertex is never a ball. Regardless, we will denote this completed
triangulation as �. Let T be a vertex of � and let N(T ) be a small neighborhood of T in
�. Here, ∂N(T ) inherits a boundary triangulation ∂�, where the vertices/edges/faces of
∂� correspond to vertices of edges/faces/tetrahedra of � at T, respectively. In particular,
each vertex of ∂� inherits the color of the corresponding edge of �, and each edge of ∂�

inherits the coorientation of the corresponding face of �.
As a consequence of the veering structure, the boundary triangulation has to take on

a particular form. Namely, there exist edge paths {li}i∈Z in ∂� such that the following
hold.
• The vertices along l2i are all colored blue, while the vertices along l2i+1 are all colored

red.
• The faces between l2i and l2i+1 form a stack of upward pointing triangles, while the

faces between l2i and l2i+1 form a stack of downward pointing triangles.
See Figure 7, and see [FG13, §2] for explanations. In this paper, we will take the
convention that the indices are increasing from left to right, when we look at ∂� from
inside N(T ).

We orient each li to go upward, that is, in the direction that agrees with the coorien-
tations on the edges of ∂�. We call these oriented curves the ladderpole curves at T. If
we want to be more specific, we will call li a blue/red ladderpole curve if it contains only
blue/red vertices, respectively.

When � is compact, ∂� is a triangulation of the torus ∂N(T ). In particular, there are
only a finite, even number of ladderpole curves, that is, we have li = li+2n for some n ≥ 1,
and l1, . . . , l2n are distinct. In this case, we say that n is the ladderpole multiplicity of T.
We can complete a ladderpole curve into a basis for H1(∂N(T )) by defining a ladderpole
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transversal at T to be an embedded edge path t of ∂� such that 〈t , l1〉 = 1. Ladderpole
transversals always exist: starting from l1, one can move from each li to li+1 (indices taken
mod n) using one edge, and when one returns to l1, one can complete the path by going up
or down along l1. We call a choice of a ladderpole transversal at each vertex of � a system
of ladderpole transversals.

For convenience, we use the following shorthand in the rest of the paper.
• We refer to a vertex of � as a vertex of �.
• We refer to a vertex of ∂� by the same name as the edge of � to which it corresponds.

We make one more definition that will play a role in §6.1.

Definition 2.25. Let t be a tetrahedron in �. An equatorial square (or square in short) in
t is a quadrilateral-with-4-ideal-vertices properly embedded in t with its four sides along
the side edges of t.

To establish the bounds in Theorems 6.3 and 6.4, we will need to compute bounds on
the complexity of various objects along the way. To that end, we fix the notation for the
following parameters of a veering triangulation �:
• N will denote the number of tetrahedra in �, which equals to the number of edges

in �;
• δ will denote the maximum length of the stack of tetrahedra to a side of an edge;
• ν will denote the maximum ladderpole multiplicity over all vertices of �;
• λ will denote the maximum length of all ladderpole curves (as edge paths of ∂�).

3. From pseudo-Anosov flows to veering triangulations
The following theorem is one of the main results in [LMT22].

THEOREM 3.1. [LMT22, Theorem 5.1] Let φ be a pseudo-Anosov flow on an oriented
closed 3-manifold M without perfect fits relative to a collection of closed orbits C. Then
there exists a veering triangulation � on M\ ⋃

C whose 2-skeleton is positively transverse
to φ.

In the following, we will refer to such a � as a veering triangulation associated to φ on
M\⋃ C. In this section, we will recall the proof of the theorem, with the goal of pointing
out how the technical property of having winding edge paths, as briefly explained in §1,
can be arranged for in the proof.

3.1. Rectangles. We fix the following setting. Let φ be a pseudo-Anosov flow on an
oriented closed 3-manifold M without perfect fits relative to a collection of closed orbits C.
Let φ̃ be the lift of φ to the universal cover M̃ and let C̃ be the set of orbits of φ̃ which
cover the orbits in C. Let O be the orbit space of φ.

We define the completed flow space P to be the infinite branched cover of O over C̃
which restricts to the universal cover of O\C̃. We denote the branch points on P by S. The
foliations Os and Ou lift to foliations Ps and Pu, respectively.

Finally, let M◦ = M\⋃ C. Lift the restricted flow φ|M◦ to φ̂ on M̃◦. Note that P\S is
the space of orbits of φ̂. In particular, π1(M

◦) acts on P , preserving the foliations Ps and
Pu. Let q : M̃◦ → P\S be the quotient map.
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FIGURE 8. From left to right: an edge rectangle, a face rectangle, and a tetrahedron rectangle.

Definition 3.2. A rectangle R in P is a rectangle embedded in P such that the restrictions
of Ps and Pu foliate the rectangle as a product that is conjugate to the foliations of [0, 1]2

by vertical and horizontal lines, and such that no element of S lies in the interior of R.
Let R1 and R2 be rectangles in P . Here, R1 is said to be taller than R2 if every leaf of

Pu that intersects R2 intersects R1. Additionally, R1 is said to be wider than R2 if every
leaf of Ps that intersects R2 intersects R1.

An edge rectangle in P is a rectangle with two opposite corners on S. A face rectangle in
P is a rectangle with one corner on S and the two opposite sides to the corner containing
elements of S in their interior. A tetrahedron rectangle in P is a rectangle all of whose
sides contain elements of S in their interior. See Figure 8.

In this paper, we will take the convention of drawing leaves of Ps as vertical lines and
leaves of Pu as horizontal lines. As such, we will call the sides of a rectangle R that lie
along leaves of Ps as the vertical sides of R, and the sides that lie along leaves of Pu as
the horizontal sides of R.

Note that by our assumption of no perfect fits, we could have alternatively defined a face
rectangle to be a rectangle maximal with respect to the property that one corner lies on S,
and a tetrahedron rectangle to be a maximal rectangle.

Recall that M is oriented. This determines an orientation on O, and hence on P , and
allows us to make the following definition.

Definition 3.3. Let R be a rectangle in P and let p be a corner of R. Let s be the vertical
side of R which contains p. Orient s to point inward at p. Similarly, let u be the horizontal
side of R which contains p and orient u to point inward at p. Here, p is said to be the SW or
NE corner of R if (orientation of u, orientation of s) agrees with the orientation of P at γ .
Otherwise, p is said to be the NW or SE corner of R.

Let R be an edge rectangle. We say that R is red if its SW and NE corners lie on S. We
say that R is blue if its NW and SE corners lie on S.

Definition 3.4. Let R be an edge rectangle in P , let p and q be the two corners of R that lie
in S. A veering diagonal is an arc in R between p and q that is transverse to Ps and Pu.

With these definitions in place, we can briefly discuss the history and recall an outline
of the proof of Theorem 3.1, as a warm up to the more technical work we will do in the
rest of this section.
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FIGURE 9. The boundary triangulation at a vertex of a veering triangulation.

It was first discovered by Agol and Guéritaud that if φ is a pseudo-Anosov flow on an
orientable closed 3-manifold M without perfect fits relative to C, then there is a veering
triangulation on M\⋃ C.

The idea of the proof is simple. Associate to each tetrahedron rectangle R a taut ideal
tetrahedron tR . Identify the ideal vertices of tR with the elements of S on the sides of R so
that the edge rectangles contained in R correspond to edges of tR and the face rectangles
contained in R correspond to faces of tR . The upper/lower π -labeled edges of tR are the
ones that correspond to edge rectangles as tall as and as wide as R, respectively, and we
color the edges of tR by the same color as the corresponding edge rectangle. See Figure 9.

We glue along two faces of two tetrahedra whenever they correspond to the same face
rectangle. This gives a 3-manifold Ñ with a veering triangulation. Notice that there is a
natural properly discontinuous action of π1(M

◦) on Ñ . Let N be the quotient of this action.
The veering triangulation on Ñ quotients down to a veering triangulation on N. Meanwhile,
by a theorem of Waldhausen [Wal68, Corollary 6.5], N is homeomorphic to M\⋃ C, and
hence there is a veering triangulation on the latter.

An unsatisfying feature of this construction, however, is that it is unclear how the
veering triangulation interacts with the flow φ. This was rectified by Landry, Minsky, and
Taylor in [LMT22], where they explicitly construct a homeomorphism N → M◦ for which
one can compare the image of the veering triangulation with the flow on M. In particular,
they show that the image of the 2-skeleton is positively transverse to the flow, that is, the
flow lines are transverse to the faces of the triangulation and the flow direction agrees with
the coorientation on the faces.

The idea of their construction is to first choose a veering diagonal for each edge
rectangle, such that for every face rectangle R, the three veering diagonals in the three
edge rectangles in R are disjoint. This choice of veering diagonal is quite technical, and
our task is to show that there is enough room in the construction so that a prescribed finite
collection of edge paths can be made to be winding. Recall that this is in turn necessary
for constructing the helicoidal broken transverse surfaces mentioned in §1.

Once this is accomplished, one defines a fibration p : Ñ → P\S by sending the edges
of the veering triangulation to the veering diagonals in the corresponding edge rectangles,
then sending the faces to the regions bounded by the three veering diagonals of the
corresponding face rectangles, and the tetrahedra to the regions bounded by the four outer
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veering diagonals of the corresponding tetrahedron rectangles. The preimages of p are
lines that are transverse to the 2-skeleton of the triangulation.

One then constructs a π1(M
◦)-equivariant map h : Ñ → M̃◦ such that p = q ◦ h.

In particular, h sends the preimages of p to flow lines of φ̃, but not necessarily by
homeomorphisms. Nonetheless, one can straighten out h on these preimages to get a
π1(M

◦)-equivariant homeomorphism f̃ : Ñ → M̃◦ such that p = q ◦ f̃ . Quotient by
π1(M

◦) to get a homeomorphism f : N → M◦. The image of the veering triangulation
in M◦ = M\⋃ C is the desired veering triangulation in Theorem 3.1.

3.2. Winding edge paths. In this subsection, we will define the technical property of
winding edge paths for which we want to arrange.

Definition 3.5. Let γ be a point on O. Recall Definition 2.1. There exists a neighborhood
of γ and a map from the neighborhood to R2 sending γ to 0 and sending the foliations
Os and Ou to lsn and lun , respectively. We call the preimage of a quadrant under the map a
quadrant at γ .

Let p be a point on P . Suppose p maps to γ in O. Then we call the lift of a quadrant at
γ to p a quadrant at p.

Recall again that P is oriented. If q1 and q2 are quadrants at p, we say that q1 is on
the left of q2 if there exists an orientation preserving local homeomorphism R × [0, ∞)

mapping (0, 0) to p, (−∞, 0] × [0, ∞) to q1, and [0, ∞) × [0, ∞) to q2. If there exists
quadrants q1, . . . , qn+1 at p such that qi is on the left of qi+1 for each i, then we say that
q1 is n quadrants to the left of qn+1.

Note that if p is a corner of a rectangle R, then R determines a quadrant at p.

Definition 3.6. Let R1, . . . , Rk be edge rectangles such that:
• there are elements s0, . . . , sk ∈ S such that Ri has corners at si−1 and si , for each i;
• the quadrant determined by Ri+1 at si is 2 quadrants to the left of that determined by

Ri , for each i.
Consider the set Sk = ⋃k

i=1[i − 1, i] × [0, i] in R2. If there exists an orientation-
preserving embedding of Sk into P sending [i − 1, i] × [i − 1, i] to Ri for each i and
sending the foliations of R2 by vertical and horizontal lines to Ps and Pu, we call the
image of the embedding a staircase for R1, . . . , Rk . See Figure 10 left.

Note that if k = 1, then the edge rectangle R1 is a staircase for itself.
Extending the definition for rectangles, for staircases S1 and S2, S1 is said to be taller

than S2 if every leaf of Pu that intersects S2 intersects S1; S1 is said to be wider than S2 if
every leaf of Ps that intersects S2 intersects S1.

Suppose we have chosen a veering diagonal ei for each Ri , then the complementary
region of

⋃
i ei in the staircase which contains the image of (k, 0) is called a slope for

R1, . . . , Rk with respect to the choice of veering diagonals. See Figure 10 right.
Note that if k = 1, then there are two slopes for R1. We will specify to which one we

are referring in such a case.

Definition 3.7. Let p be a point on P that is fixed by g ∈ π1(M
◦). We define a red g-edge

path to be an infinite sequence of red edge rectangles (Ri)i∈Z satisfying the following.
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FIGURE 10. Left: A staircase for R1, . . . , Rk . Right: A slope for R1, . . . , Rk .

FIGURE 11. A red g-edge path.

• There is a collection of elements (si)i∈Z of S such that each Ri has corners at si−1
and si .

• For each i, we have one of the following two cases:
(1) the quadrants determined by Ri and Ri+1 at si are the same and Ri+1 is taller

than Ri ;
(2) the quadrant determined by Ri+1 at si is two quadrants to the left of the quadrant

determined by Ri

and case (1) occurs for at least one value of i.
• If Rj , . . . , Rk is a maximal subsequence such that Ri and Ri+1 do not determine the

same quadrant at si for j ≤ i < k, then there is a staircase Sj ,k for Rj , . . . , Rk , such
that p lies in Sj ,k .

• There exists some positive integer P such that g · Ri = Ri+P for every i.
See Figure 11. We call P the period of the red g-edge path.
A blue g-edge path is defined similarly. When g and the color red/blue is clear from

context, we will abbreviate these as edge paths.
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FIGURE 12. Left: A choice of veering diagonals for which the edge path in Figure 11 is winding. Right: A choice
of veering diagonals for which the edge path in Figure 11 is not winding.

Intuitively, one can think of an edge path as a directed path obtained by transversing
some choice of veering diagonals ei in Ri in the direction of increasing i. Such a directed
path is g-invariant and ‘winds around’ p with increasing height and decreasing width. The
desirable case is when this intuitive picture holds.

Suppose we have chosen a veering diagonal ei for each Ri . Then the red g-edge path
(Ri) is said to be winding with respect to the choice of veering diagonals if for every
maximal subsequence Rj , . . . , Rk such that Ri and Ri+1 do not determine the same
quadrant at si for j ≤ i < k, p lies in the slope for Rj , . . . , Rk on the side of Rj−1 and
Rk+1.

See Figure 12 left for a choice of veering diagonals for which the edge path in Figure 11
is winding, and Figure 12 right for a choice of veering diagonals for which the edge path
is not winding.

Notice that the condition is automatically true when k − j ≥ 1, since p must lie outside
of Rj , . . . , Rk in this case. So one only needs to check the condition for Ri where Ri−1

and Ri determine the same quadrant at si−1 and Ri and Ri+1 determine the same quadrant
at si .

The technical property we want is for specified edge paths to be winding, with respect
to the choice of veering diagonals determined by to where the edges of the veering
triangulation �̃ project. We are able to satisfy this technical property under an extra
condition on the edge paths, which we now define.

Definition 3.8. [LMT22, §5.1.2] Let R be an edge rectangle. Set R0 = R. We define Ri

for i ≥ 1 inductively in the following way: There exists a unique tetrahedron rectangle
Qi whose two elements of S on its vertical sides are the corners of Ri−1. Consider the
sub-rectangle of Qi which has corners at the elements of S on its horizontal sides. This
is an edge rectangle which we call Ri . Similarly, for each i ≤ −1, there exists a unique
tetrahedron rectangle Qi+1 whose two elements of S on its horizontal sides are corners of
Ri+1. Consider the sub-rectangle of Qi+1 which has corners at the elements of S on its
vertical sides. This is an edge rectangle which we call Ri .
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FIGURE 13. The core sequence and core point of an edge rectangle R.

We call the bi-infinite sequence (Ri) the core sequence of R. The intersection⋂∞
i=−∞ Ri is a single point, which we call the core point of R and denote as c(R). See

Figure 13.

Definition 3.9. A red g-edge path is said to be nice if whenever Ri−1 and Ri determine the
same quadrant at si−1, and Ri and Ri+1 determine the same quadrant at si , p lies closer to
the vertical side of Ri containing si than the core point of Ri .

A nice blue g-edge path is defined similarly.

Let γ be a closed orbit of φ that is not an element of C. Suppose for every p ∈ P
that corresponds to an orbit of φ̂ covering γ and which is fixed by h[γ ]h−1 ∈ π1(M

◦),
we are given a nice red h[γ ]h−1-edge path (Ri,h). If these nice red edge paths are
π1(M

◦)-equivariant, or more precisely, if Ri,gh = g · Ri,h for every g ∈ π1(M
◦), then we

call this collection a nice red γ -edge path. A nice blue γ -edge path is defined similarly.
We can finally state our result.

PROPOSITION 3.10. In the setting of Theorem 3.1, suppose we are given a finite collection
of closed orbits of φ which is disjoint from C, and a nice γ -edge path for every γ in
the collection. Then there exists a veering triangulation � on M\⋃ C with 2-skeleton
positively transverse to the flow φ and such that each given edge path is winding, with
respect to the choice of veering diagonals determined by to where the edges of �̃ project.

3.3. Proof of Proposition 3.10. As remarked before, we only need to modify the first
part of the proof in [LMT22, Proposition 5.2]. So we will only explain in depth the parts
that we need to modify, and refer the reader to [LMT22] for details concerning the rest of
the proof.

We recall some of the definitions found in [LMT22].

https://doi.org/10.1017/etds.2023.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.105


2330 C. C. Tsang

FIGURE 14. An s-staircase.

Definition 3.11. An anchor system is a pair (A, α) where α is a bijection from the set of
edge rectangles onto a subset A ⊂ P satisfying:
• for each edge rectangle R, α(R) lies in the interior of R;
• g · α(R) = α(g · R) for each edge rectangle R and each g ∈ π1(M

◦);
• for edge rectangles R1 and R2 sharing a corner s ∈ S and determining the same

quadrant at s, if R1 is wider than R2, then the rectangle with corners at s and α(R1) is
wider and no taller than the rectangle with corners at s and α(R2).

Let (A, α) be an anchor system. Let F be a face rectangle. Let s be the corner of F
that lies in S, let x be the element of S that lies in the interior of a vertical side of F, and
let y be the element of S that lies in the interior of a horizontal side of F. Let ax be the
image of the edge rectangle with corners at s and x under α, and ay be the image of the
edge rectangle with corners at s and y under α. If the rectangle R with corners at x and
ax intersects the rectangle Q of F with corners at y and ay , then F is said to be busy. If
F is busy, let R′ be the maximal sub-rectangle of R with the property that the stable and
unstable leaves through each point in R′ do not intersect the interior of Q. An F-buoy is a
point in R′ which corresponds to an orbit of φ̂ covering a closed orbit of φ.

Definition 3.12. Let s be an element of S, and let q be a quadrant at γ . An s-staircase is
the union of all edge rectangles that have a corner at s and determine the quadrant q (see
Figure 14). Generally, an S-staircase is an s-staircase for some s ∈ S. Notice that these
were simply called staircases in [LMT22] but in this paper, we need to distinguish them
from the objects in Definition 3.6.

An edge rectangle R is pinched if there exists another edge rectangle Q such that R and
Q lie in the same S-staircase and c(R) = c(Q). A core point c is pinched if it is the core
point of a pinched edge rectangle.

The preimage of a core point c is the union of edge rectangles whose core point is c.

Definition 3.13. A family of rectangles {b(R) : edge rectangles R} is a choice of core
boxes if it satisfies the following properties.
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(1) For every edge rectangle R, b(R) lies in the interior of R and contains the core point
of R.

(2) If R1 and R2 are edge rectangles that lie in the same S-staircase with distinct core
points and R1 is taller than R2, then for any points xi ∈ b(Ri), the rectangle R′

1 with
corners at s and x1 is strictly taller than the rectangle R′

2 with corners at s and x2,
and R′

2 is strictly wider than R′
1.

(3) b(g · R) = g · b(R) for all edge rectangles R and g ∈ π1(M
◦).

We follow [LMT22] to construct an anchor system. First construct a choice of core
boxes: from each π1(M

◦)-orbit of S-staircases, choose a particular s-staircase S, then
choose preliminary boxes bS(R) for edge rectangles R ⊂ S satisfying the following.
(1) For every edge rectangle R, bS(R) lies in the interior of R and contains the core point

of R.
(2) If R1 and R2 are edge rectangles that lie in S with distinct core points and R1 is taller

than R2, then for any points xi ∈ b(Ri), the rectangle R′
1 with corners at s and x1 is

strictly taller than the rectangle R′
2 with corners at s and x2, and R′

2 is strictly wider
than R′

1.
(3) bS(g · R) = g · bS(R) for all edge rectangles R in S and all g ∈ π1(M

◦) that
preserve S.

Then define bg·S(g · R) = g · bS(R) for each g ∈ π1(M
◦). Finally, define b(R) =

bS1(R) ∩ bS2(R) for the two S-staircases S1 and S2 in which R lies.
To proceed, we need the following fact.

LEMMA 3.14. [LMT22, Claim 5.8] Let c be a pinched core point, let g be the primitive
element of π1(M) that preserves c, and let Pc be the preimage of c. Then for any λ > 1,
there exists an embedding �c,λ : Pc → R2 that conjugates the action of g with φ2,k,λ for
some k.

From each π1(M
◦)-orbit of pinched core points, choose a particular one c. Apply

Lemma 3.14 to obtain a �c,λ, then define �g·c,λ = g · �c,λ for every g ∈ π1(M
◦). For

each pinched edge rectangle R, in �c(R),λ coordinates, draw the straight line between the
corners of R that lie in S, and let the point where this straight line passes through the x-axis
be aλ(R).

It is argued in [LMT22, Claim 5.9] that for small enough λ, aλ(R) ∈ b(R) for all edge
rectangles R. Fix such a λ. Define α(R) = c(R) for non-pinched R and α(R) = aλ(R) for
pinched R. [LMT22, Claim 5.10] shows that this defines an anchor system.

In this construction, notice that bS(R), and hence b(R), can be chosen to be arbitrarily
small, and so aλ(R), and hence α(R), can be chosen to be arbitrarily close to c(R) for each
edge rectangle R. In particular, we may assume that for a given g-edge path (Ri), if Ri−1

and Ri lie in the same quadrant at si−1, and Ri and Ri+1 lie in the same quadrant at si ,
then p lies closer to the vertical side of Ri containing si than α(Ri).

Now with respect to this choice of anchor system, choose an F-buoy for each busy
face F. Let B be the collection of all F-buoys and all points that correspond to an orbit of
φ̂ covering a closed orbit of φ in the given collection. Notice that B is discrete.
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FIGURE 15. Using the anchor system (green) and the points in B (pink) to choose paths (orange) that will form
the veering diagonals. This figure is a reproduction of [LMT22, Figure 21].

For every S-staircase S, say S is an s-staircase, let g be a primitive element of π1(M
◦)

that preserves S. Choose a g-equivariant family of paths from s to the anchors of the edge
rectangles in S with the following three properties.
(1) For each edge rectangle R ⊂ S, let Q be the sub-rectangle with corners at

s and α(R). The path from s to α(R) is homotopic rel endpoints to the
first-horizontal-then-vertical path in Q\B.

(2) The paths are disjoint except at s.
(3) The paths are transverse to Ps and Pu.

See Figure 15, which is a reproduction of [LMT22, Figure 21], for an illustration of
what these paths look like.

Construct the veering diagonal for each edge rectangle R by concatenating the paths
from each of the corners at S to α(R). In [LMT22, Lemma 5.3], it is argued that the three
veering diagonals of every face rectangle have disjoint interiors. We further claim that each
of the given edge paths is winding with respect to this choice of veering diagonals.

To see this, fix a given red g-edge path (Ri). If Ri−1 and Ri determine the same quadrant
at si−1, and Ri and Ri+1 determine the same quadrant at si , then p ∈ B lies closer to the
vertical side of Ri containing si than α(Ri). Therefore, by property (1) above, p lies in the
slope for Ri to the side of Ri−1 and Ri+1.

The rest of the proof proceeds exactly as in [LMT22], as outlined in §3.1. The edges of
the lift of the constructed triangulation �̃ project down to the chosen veering diagonals,
and hence each of the given edge paths are winding.

4. Closed orbits of the flow
One of the advantages to studying pseudo-Anosov flows using veering triangulations is
that one can encode orbits of the flow using discrete, combinatorial objects coming from
the triangulation. This is the idea we will be exploring in this section.

We define the dual graph and the flow graph of a veering triangulation. In the setting
of Theorem 3.1, cycles of these encode the closed orbits of φ. This was described in
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FIGURE 16. Left: The portion of the stable branched surface and the flow graph within each tetrahedron. Right:
The portion of the flow graph on each sector of the stable branched surface.

[LMT22], but we will recall how this works in §4.1. Using this fact, we can define the
complexity of a closed orbit according to how long of a flow graph cycle we need to use to
encode it. This complexity then provides a bound on the number of interactions between
the closed orbit and objects of the triangulation, which we explain in §4.2.

4.1. Dual graph and flow graph

Definition 4.1. Let � be a veering triangulation on a 3-manifold M. We define the stable
branched surface B of �: as a 2-complex, B is the dual cell complex to �. The branched
surface structure is then determined by declaring that within each tetrahedra, B contains a
smooth quadrilateral with vertices on the top and bottom edges and the two side edges of
the same color as the top edge. See Figure 16 left.

The 2-cells of B are known as the sectors, while the 1-skeleton of B is known as the
branch locus. We orient the 1-cells of B to be positively transverse to the faces of �. Then
the 1-skeleton of B becomes a directed graph embedded in M, which we call the dual graph
of � and denote by �.

Suppose c is a directed path of �, then at a vertex v of c, we say that c takes a branching
turn at v if it can be realized by a smooth arc on B near v, otherwise we say that c takes an
anti-branching turn at v. A cycle of � that only takes branching turns is called a branch
cycle. A cycle of � that only takes anti-branching turns is called an AB cycle.

Definition 4.2. [LMT20] Let � be a veering triangulation on a 3-manifold M. Define the
flow graph � to be a directed graph with the set of vertices equal to the set of edges of �,
and adding three edges for each tetrahedron, going from the bottom edge to the top edge
and the two side edges of opposite color to the top edge.

Here, � can be naturally embedded in the stable branched surface B, and hence in M,
by placing each vertex at the top corner of the sector of B that its corresponding edge of �

meets, and placing the edges that enter that vertex within that sector of B. See Figure 16
right. We will always consider the flow graph to be embedded in M in this way.

We recall the notion of a dynamic plane, which was introduced in [LMT22].

Definition 4.3. Let � be a veering triangulation on a 3-manifold M. Lift the triangulation,
its stable branched surface B, its dual graph �, and its flow graph � to the universal cover
M̃ to get �̃, B̃, �̃, and �̃, respectively.
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FIGURE 17. A descending set in a dynamic plane and the restriction of �̃ (green). This figure is a reproduction of
[LMT22, Figure 6].

A descending path on B̃ is a path that intersects the branch locus of B̃ transversely and
induces the maw coorientation at each intersection, that is, it goes from a side with more
sectors to a side with less sectors. Let x be a point on B̃. The descending set of x, denoted
by �(x), is the set of points on B̃ that can be reached from x via a descending path. By
[LMT22, Lemma 3.1], each descending set is a union of sectors that forms a quarter-plane.

Now let c be a cycle of the dual graph � that is not a branch cycle. Lift c to a bi-infinite
path c̃ of �̃. The dynamic plane associated to c̃, denoted by D(̃c), is the set of points on B̃

that can be reached from a point on c̃ via a descending path. A dynamic plane is a union of
sectors that forms a plane. In fact, if the vertices of c̃ are (vi)i∈Z, then D(γ ) = ⋃

i �(vi).
Consider the restriction of �̃ to a dynamic plane D. This is an oriented train track with

only converging switches. In particular, the forward �̃-path starting at any given point
x ∈ �̃ is well defined.

In Figure 17, which is a reproduction of [LMT22, Figure 6], we illustrate a descending
set in a dynamic plane, and the restriction of �̃ to it.

Consider the case when c is an AB cycle. Let c̃ be a lift of c. Then there are two �̃-paths
on the dynamic plane D(̃c) for which every vertex of c̃ lies along. The region bounded by
the two �̃-paths is called an AB strip. By [LMT22, Proposition 3.10], for a fixed dynamic
plane D, all the AB strips, if any, must be adjacent. We call the union of them the AB
region of D.

In Figure 18, which is a reproduction of [LMT22, Figure 6], we illustrate a case where
the AB region of a dynamic plane contains two AB strips.

As promised, we will explain how these objects can be used to study closed orbits of
pseudo-Anosov flows. For the rest of this section, we fix the following setting: let φ be
a pseudo-Anosov flow on an oriented closed 3-manifold M without perfect fits relative
to C. Let � be a veering triangulation associated to φ on M◦ = M\⋃ C. We will use the
notation in §3.
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FIGURE 18. A dynamic plane containing two AB strips in its AB region. The �̃-paths starting at x1 and x2 never
converge. This figure is a reproduction of [LMT22, Figure 10].

Let B, �, � be the stable branched surface, the dual graph, and the flow graph of �,
respectively. Let �̃, B̃, �̃, and �̃ be the lift of the corresponding objects to the universal
cover M̃◦.

Let O be the set of closed orbits of φ, let Z� be the set of cycles of the dual graph �,
and let Z� be the set of cycles of the flow graph �.

Remark 4.4. In [LMT22], closed orbits include non-primitive orbits and cycles include
non-primitive cycles. We will follow their convention in this section since it is more
convenient for the discussion. However, to be consistent with this, we will temporarily
abuse notation and include all the multiples of the orbits in C inside C as well.

Define a map F� : Z� → O as follows: given a cycle c of the dual graph �, let g =
[c] ∈ π1(M

◦), and let c̃ be the lift of c that is preserved by g. Here, c̃ is a bi-infinite
path in �̃. Suppose the vertices of c̃ are, in order, ti , for i ∈ Z. Let Ri be the tetrahedron
rectangle in P corresponding to the tetrahedron of �̃ dual to ti . Then since for each i, Ri+1

is taller than Ri and Ri is wider than Ri+1, the intersection
⋂

i Ri is a single point that
is invariant under g. This point corresponds to an orbit of φ̂. We take the quotient of this
orbit by g to get a closed orbit γ of φ and set F�(c) = γ .

Similarly, we define a map F� : Z� → O as follows: given a cycle c of the flow graph
�, let g = [c] ∈ π1(M

◦), and let c̃ be the lift of c that is preserved by g. Here, c̃ is a
bi-infinite path in �̃. Suppose the vertices of c̃ are, in order, ei , for i ∈ Z. Let Ri be
the tetrahedron rectangle in P corresponding to the tetrahedron of �̃ which has ei as its
bottom edge. Then since for each i, Ri+1 is taller than Ri and Ri is wider than Ri+1, the
intersection

⋂
i Ri is a single point that is invariant under g. This point corresponds to

an orbit of φ̂. We take the quotient of this orbit by g to get a closed orbit γ of φ and set
F�(c) = γ .

By construction, c is homotopic to F�(c) for every cycle c of �. Similarly for cycles of
� and F�. Also note that if c is a branch cycle of �, then F�(c) is some multiple of the
element of C corresponding to the vertex of � into which c is homotopic.
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PROPOSITION 4.5. [LMT22, Theorem 6.1] We have the following properties of F�:
(1) if γ ∈ C, then |F−1

� (γ )| ≤ 2ν;
(2) if γ �∈ C and F−1

� (γ ) does not contain AB cycles, then |F−1
� (γ )| = 1;

(3) if γ �∈ C and F−1
� (γ ) contains AB cycles, then 1 ≤ |F−1

� (γ 2)| ≤ δ and the elements
of F−1

� (γ 2) have the same length.

Proof. Let O+ be the set of closed orbits of φ except for those in C, union the set of
multiples of red ladderpole curves at all the vertices of �. There is a natural projection
p : O+ → O defined by sending orbits to themselves and multiples of a red ladderpole
curve at a vertex of � to the corresponding element of C to which it is homotopic. In
[LMT22, §6], a map F : Z → O+ is defined, such that p ◦ F = F ; indeed, the definition
of our F is essentially the same as F , except for a way of ‘lifting’ F(c) when it is an
element of C.

We also point out that an orbit γ of φ being homotopic to an AB cycle is equivalent
to F−1

� (γ ) containing AB cycles. The backward implication is clear. For the forward
implication, if γ is homotopic to an AB cycle c, then γ is homotopic to F�(c), and hence
by Lemma 2.13, γ = F�(c).

With this understanding, most of the proposition follows from the statement of
[LMT22, Theorem 6.1]. The last part of item (3) follows from the fact that the elements of
F−1

� (γ 2) are exactly some common multiple of the images of the boundary components
of the AB strips on some dynamic plane. This fact is in turn established in the proof of
[LMT22, Theorem 6.1].

We will use a partially defined multi-function h : Z� ��� Z� to complete the commu-
tative diagram:

Z� Z�

O

F�

h

F�

Given a cycle c of � that is not a branch cycle, let g = [c] ∈ π1(M
◦), and let c̃ be the

lift of c that is preserved by g. Consider the dynamic plane D associated to c̃ and consider
the restriction of �̃ to D. If there is a g-invariant bi-infinite �̃-path on D, then its quotient
by g is a cycle c′ of � that is homotopic to c. Such a g-invariant bi-infinite �̃-path may not
exist and may not be unique in general. In any case, we set h(c) to be the set of cycles c′
that are obtained in this way.

LEMMA 4.6. Suppose c is a cycle of the dual graph � that is not a branch cycle. For every
c′ ∈ h(c), F�(c) = F�(c′).

Proof. By construction, c is homotopic to any element c′ in h(c), so F�(c) is homotopic
to F�(c′) in M◦. By Lemma 2.13, F�(c) = F�(c′).

4.2. Complexity of closed orbits
Definition 4.7. Let γ be a closed orbit of φ which is not an element of C. Take
c ∈ F−1

� (γ 2), which exists by Proposition 4.5. We define the flow graph complexity of
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γ with respect to C, denoted by cC(γ ), to be 1
2 times the length of c. By Proposition 4.5,

cC(γ ) is well defined.
When the collection C is clear from context, we will just write c(γ ) and call it the flow

graph complexity of γ .

There is a natural motivation for making this definition. In [AT22, §5], it is shown that
using the veering triangulation � on M◦, one can construct a pseudo-Anosov flow φ′ on
M with a collection of core orbits C′, such that M\⋃ C′ = M◦, and such that φ′ is without
perfect fits relative to C′. Moreover, by [AT22, Proposition 5.15], φ′ admits a Markov
partition encoded by the reduced flow graph �red of �, which is defined by deleting the
infinitesimal cycles of �.

It is highly speculated, even though a complete proof has not been written down, that φ

and φ′ are orbit equivalent. Assuming that this is true for the moment, then �red encodes
a Markov partition for φ. By [AT22, Lemma 3.8], c in Definition 4.7 can be chosen to be
a cycle in �red. Thus, the flow graph complexity of γ essentially records the length of a
cycle needed to represent γ in this particular Markov partition.

Furthermore, such a Markov partition is canonically associated to the flow if it is without
perfect fits (for one can choose C to be the set of singular orbits), and canonically associated
to the flow and the choice of C in general. Hence, this flow graph complexity would be, at
least in the case of no perfect fits, a canonical way of measuring the complexity of closed
orbits.

Remark 4.8. A natural way to extend the definition of flow graph complexity to all closed
orbits might be to define the flow graph complexity of γ ∈ C to be the sum over the
lengths of all elements in F−1

� (γ n) then divide by n, where n is the number of prongs
at γ . The intuition is that there should be cycles in the Markov partition mentioned above
that together n-fold cover γ , and hence we can average them out.

However, we will not need to deal with this case in this paper, so we will leave the
definition open for future interpretation.

A significance of the flow graph complexity is that it controls how many times the closed
orbit can interact with the rectangles, in the sense of Lemma 4.14 below. To establish
that, we show the following proposition, which is a quantitative upgrade of [LMT22,
Proposition 3.15].

PROPOSITION 4.9. Let c be a cycle of � that is not a branch cycle. Suppose c is of length L,
then the length of any element in h(c) is at most (2L − 1)L and at least L/(δ2 − δ + 1).

Proof. Let g = [c] ∈ π1(M
◦), and let c̃ be the lift of c that is preserved by g. Consider the

dynamic plane D determined by c̃ and consider the restriction of �̃ on D. Recall that if the
vertices of c̃ are, in order, vi , for i ∈ Z, then D = ⋃

i �(vi). The boundary of each �(vi)

is a union of two �̃-rays, and we can measure the distance between two points on ∂�(vi)

by the number of edges between them on ∂�(vi). It is argued in [LMT22, Lemma 3.7]
that if x1, x2 are two points on ∂�(vi), and if y1, y2 are the intersections of the �̃-paths
starting at x1, x2 with ∂�(vi+1), respectively, then the distance between y1, y2 is less than
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FIGURE 19. The �̃-path starting at any point on the kth chain enters the (k − 1)th chain within 2 edges. This
figure is a reproduction of [LMT22, Figure 30].

or equal to that between x1, x2. We refer to this property as ‘following �̃-paths contracts
distances’.

We first make the following claim.

LEMMA 4.10. If we have a �̃-path (v0, . . . , vl) on D, then the �̃-path starting at v0 and
ending on ∂�(vl) has length at most (l − 1)2 and has endpoint at most l edges away
from v0.

Proof of Lemma 4.10. We apply induction on l. For l = 1, this is clear. For l ≥ 2, by
applying the lemma to the path (v0, . . . , vl−1), we know that the �̃-path α starting at
v0 and ending on ∂�(vl−1) has length ≤ (l − 2)2 and has endpoint ≤ l − 1 edges away
from vl−1. If the endpoint of α on ∂�(vl−1) lies on ∂�(vl) as well, then α is also
the �̃-path starting at v0 and ending on ∂�(vl), and hence has length ≤ (l − 2)2 and
has endpoint ≤ 1 + (l − 1) = l edges away from v0. Otherwise, since following �̃-paths
contracts distance, the �̃-path α′ starting at v0 and ending on ∂�(vl) has endpoint ≤ l − 2
edges away from v0. To compute the length of α′, we recall the following definition from
[LMT22].

Definition 4.11. A chain of sectors in a dynamic plane is a collection of sectors σ1, . . . , σn

such that an entire bottom side of σi is identified with a top side of σi+1 for each i, and
there is a branch line that contains a top side of each σi . In this case, we call n the length
of the chain of sectors.

Returning to the proof of the lemma, we can divide the side of ∂�(vl−1) not on ∂�(vl)

into bottom sides of chains of sectors. By the proof of [LMT22, Claim 6.10], the �̃-path
starting at any point on the kth chain enters the (k − 1)th chain within 2 edges. For the
reader’s convenience, we demonstrate the pictorial proof of this in Figure 19, which is a
reproduction of [LMT22, Figure 30].

From this, we see that the �̃-path starting at the endpoint of α must meet ∂�(vl)

within 2(l − 2) + 1 edges, and hence the length of α′ is ≤ (l − 2)2 + 2(l − 2) + 1 =
(l − 1)2.

https://doi.org/10.1017/etds.2023.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.105


Constructing Birkhoff sections 2339

FIGURE 20. Bounding the length of α from below by inspecting the situation at each antibranching turn.

Applying this lemma to the vertices (v0, . . . , vL) of c̃, we see that the �̃-path α starting
at v0 and ending on ∂�(vL) has length ≤ (L − 1)2 and has endpoint ≤ L edges away
from v0.

Next, we claim that if c̃ takes an antibranching turn at vL−1, which we can always
arrange for by relabeling the vertices, then α has length ≥ L/(δ2 − δ + 1).

To see this, suppose c̃ takes an antibranching turn at some vi , but takes a branching turn
at vi−k+1, . . . , vi−1 for k ≥ 1. We illustrate this scenario in Figure 20.

If α ∩ ∂�(vi−k) lies on the same branch line as vi−k , . . . , vi , then the portion of
α between ∂�(vi−k) and ∂�(vi+1) has length at least the number of chains between
vi−k , . . . , vi . However, each sector in such a chain sits on top of ≤ δ edges on the branch
line, and it is shown in [LMT22, Lemma 6.8] that any chain of sectors in a dynamic plane
has length ≤ δ − 1. So this length is ≥ �k/δ(δ − 1)� ≥ (k + 1)/(δ2 − δ + 1).

If α ∩ ∂�(vi−k) lies on the different branch line as vi−k , . . . , vi , let j be the smallest
positive number so that α ∩ ∂�(vi−j ) lies on the different branch line as vi−k , . . . , vi .
Then the portion of α between ∂�(vi−s) and ∂�(vi−s+1) has length at least one
for k ≥ s ≥ j , and the portion of α between ∂�(vi+1) and ∂�(vi−j+1) is at least
�(j − 1)/δ(δ − 1)� by the above argument. So the portion of α between ∂�(vi−k) and
∂�(vi+1) has length ≥ (k − j + 1) + �(j − 1)/δ(δ − 1)� ≥ (k + 1)/(δ2 − δ + 1).

Applying this observation to every antibranching turn of c̃ between v0 and vL (or every
other antibranching turn in a sequence of consecutive antibranching turns), we get the
lower bound on the length of α.

We now restrict to the case when g acts on D in an orientation-preserving way. Let β be
the infinite �̃-path starting at vL. We claim that β and g−1 · β must converge at some point
w. This follows from the proof of [LMT22, Lemma 3.7] if v0 lies outside of the AB region
of D, and follows from the fact that the AB region is g-invariant otherwise. The portion of
β between w and g · w descends down to a �-cycle in h(c). Thus, it remains to bound the
length of this portion of β.

Consider the descending sets gi · �(v0), i ≥ 0. Suppose w lies between gr−1 · ∂�(v0)

and gr · ∂�(v0), then g · w lies between gr · ∂�(v0) and gr+1 · ∂�(v0). Let βi be the
portion of β between gi · ∂�(v0) and gi+1 · ∂�(v0). Let β ′

r−1 be the portion of β between
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FIGURE 21. Computing the length of an element in h(c) by comparing the infinite �̃-path β starting at vL and
the infinite �̃-path g−1 · β starting at v0.

gr−1 · ∂�(v0) and w, and let β ′
r be the portion of β between gr · ∂�(v0) and g · w. Then

the length of the portion of β between w and g · w is

l(βr−1) − l(β ′
r−1) + l(β ′

r ) = l(β1) +
r−2∑
i=1

(l(βi+1) − l(βi)) + (l(β ′
r ) − l(β ′

r−1))

= l(β1) +
r−1∑
i=1

(l(βi+1) − l(βi)).

Notice that each l(βi+1) − l(βi) is the difference of the lengths of the portions of g−1 ·
β and β between gi · ∂�(v0) and gi+1 · ∂�(v0).

We illustrate the situation, in the case when r = 3, in Figure 21.
Since g acts in an orientation-preserving way on D, β ∩ gi · ∂�(v0) and g−1 · β ∩ gi ·

∂�(v0) lie on the same side of gi · ∂�(v0), with β ∩ gi · ∂�(v0) closer to gi · v0 than
g−1 · β ∩ gi · ∂�(v0), for each i.

We make the following general claim.

LEMMA 4.12. If �(v) ⊂ �(v′) is a inclusion of descending sets, x1 and x2 are two points
on the same side of ∂�(v) with x1 closer to v than x2, such that the �̃ paths β1, β2 starting
at x1, x2 end at y1, y2, respectively, which lie on the same side of ∂�(v′) with y1 closer
to v′ than y2, then l(β1) ≤ l(β2) and l(β2) − l(β1) is less than or equal to the decrease in
distance between yi compared to between xi .

Proof of Lemma 4.12. It suffices to prove the lemma when xi are one edge apart. In this
case, β1 and β2 converge exactly when both of them enter the bottom side of a sector
through vertices that are not the side vertex of the sector. Before this point, the length of
β2 equals to the length of β1 or the length of β1 plus one.

Applying Lemma 4.12 to β and g−1 · β between gi · ∂�(v0) and gi+1 · ∂�(v0) for
each i, we deduce that
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0 ≤
r−1∑
i=1

(l(βi+1) − l(βi)) ≤ Distance between g−1 · β and β on ∂�(vL).

Hence, the length of the �-cycle as described above is ≤ (L − 1)2 + L and ≥
L/(δ2 − δ + 1).

If g acts in an orientation-reversing way on D, then we apply the entire argument on
c2, which has length 2L, to see that every element of h(c2) has length ≤ (2L − 1)2 + 2L

and ≥ 2L/(δ2 − δ + 1). Hence, by Proposition 4.5, every element of h(c) has length ≤
� 1

2 ((2L − 1)2 + 2L)� = (2L − 1)L and ≥ L/(δ2 − δ + 1).

LEMMA 4.13. Let γ be a closed orbit of φ which is not an element of C. Suppose γ has
flow graph complexity c, then γ intersects at most 2δ2c faces of �.

Proof. A closed orbit γ that positively intersects M faces of � can be perturbed to a path
that positively intersect ≥ 1

2M faces of � in their interiors, since the worst case scenario
here is if γ intersects an edge, in which case we can push γ off to the side with more
tetrahedra. Thus, γ is homotoped to a �-cycle c of length ≥ 1

2M . By definition of F� ,
F�(c) is homotopic to c, and hence to γ , so by Lemma 2.13, F�(c) = γ . From this we
deduce that c is not a branch curve, since otherwise γ ∈ C. Now by Proposition 4.9,
the length of any element in h(c2) is ≥ M/(δ2 − δ + 1), so 2c = c(γ 2) = l(h(c2)) ≥
M/(δ2 − δ + 1) ≥ M/δ2.

Notice that the lemma can be restated as follows: let γ be a closed orbit of φ which is
not an element of C. Let g = [γ ] and let p be the point in P which is invariant under g.
Consider the set F = {Projections of faces of �̃ on P which contain p}, on which 〈g〉 acts.
Suppose γ has flow graph complexity c, then there are ≤ 2δ2c many 〈g〉-orbits in F.

LEMMA 4.14. Let γ be a closed orbit of φ which is not an element of C. Let g = [γ ] and
let p be the point in P which is invariant under g. Consider the following sets:
• Q = {Projections of equatorial squares of �̃ on P which contain p};
• E = {Edge rectangles in P which contain p};
• T = {Tetrahedron rectangles in P which contain p},
and 〈g〉 acts on each of these sets. Suppose γ has flow graph complexity c, then there are
≤ 2δ2c, ≤ 16δ3c, ≤ 32δ4c many 〈g〉-orbits in Q, E, T , respectively.

Proof. A projection of a square q is the union of the projections of the two top faces of
the tetrahedron q lies in. See Figure 22 left. Conversely, any projection of a face appears
exactly once in such a union. So the first statement follows from Lemma 4.13.

For the second statement, we will first show that an edge rectangle R, say, associated to
a blue edge e, can be covered by projections of certain squares. If a side of e has two or
more tetrahedra, then the slope of R to that side is covered by projections of squares in the
tetrahedra to that side of e. See Figure 22 middle, top right of the center edge. If a side of
e only has one tetrahedron t, then consider one of the red side edges e′ of t. The slope of R
to this side of e is covered by projections of squares in the tetrahedra to the same side of e′
as t. See Figure 22 middle, bottom left of the center edge.
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FIGURE 22. We consider how projections of faces/projections of equatorial squares/edge rectangles can cover
projections of equatorial squares/edge rectangles/tetrahedron rectangles, respectively, to deduce Lemma 4.14 from

Lemma 4.13.

Conversely, any square lies on four sides-of-edges and the union of squares in the
tetrahedra to a side of an edge can appear in the collection of squares as above for at
most 2δ − 3 edges. So the second statement follows from the first statement.

Finally, a tetrahedron rectangle corresponding to a tetrahedron t is covered by the union
of edge rectangles corresponding to the four side edges and the top edge of t. See Figure 22
right. Conversely, any edge rectangle can appear in such a collection of edge rectangles
for at most 2δ + 1 tetrahedron rectangles. So the third statement follows from the second
statement.

5. Broken transverse helicoids
In this section, we will construct the first type of broken transverse surfaces which we will
use to assemble our Birkhoff sections. To briefly outline the construction: we start with an
admissible collection of edges in the veering triangulation, then construct an edge sequence
containing the given collection, lift this to a winding edge path which bounds a helicoidal
transverse surface, then finally quotient this down to the desired broken transverse surface.
For convenience we will just describe this for red edges/edge sequences/edge paths; the
symmetric construction holds for blue edges/edge sequences/edge paths.

5.1. Edge sequences
Definition 5.1. Let � be a veering triangulation. Let T be a vertex of �. Recall the form
of the boundary triangulation ∂� at T, as explained in §2.3. Suppose e1 and e2 are two
vertices of ∂� of the same color, then they each determine a ladderpole curve. We say that
e1 is 2k ladderpoles to the left of e2 at T if the ladderpole curve determined by e1 is 2k

ladderpole curves to the left of that determined by e2, for k ≥ 0. When k = 0, we also say
that e1 and e2 lie in the same ladderpole at T.

Definition 5.2. A red edge sequence is a sequence of red oriented edges (ei)i∈Z/P of �

satisfying the following.
• There is a collection of vertices (Ti)i∈Z/P such that each ei goes from Ti−1 to Ti .
• For each i, we have one of the following two cases:
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(1) ei and ei+1 lie in the same ladderpole at Ti ;
(2) ei+1 lies 2 ladderpoles to the left of ei at Ti ,
and case (1) occurs for at least one value of i.

We call P the period of the red edge sequence.
In case (2) above, suppose l is the blue ladderpole curve to the left of the red ladderpole

curve determined by ei , then we say that the edge sequence crosses l at Ti . If there are n
indices i such that the edge sequence crosses l at Ti , then we say that the edge sequence
crosses l n times.

A blue edge sequence is defined similarly. When the color red/blue is clear from context,
we will abbreviate these as edge sequences.

A broken transverse surface S is said to have boundary along closed orbits {γj } and a
red edge sequence (ei) if the sides in one component of ∂S that are in ∂hS are (ei) in that
order, while the other components of ∂S lie along

⋃
γj .

The reader will notice that the definition of an edge sequence bears a strong resemblance
to the definition of an edge path. Indeed, in §5.3, we will show how to lift an edge sequence
to an edge path.

To the readers that find our terminology of edge sequences and edge paths confusing,
one should think of an edge path as the path of edges of �̃ corresponding to the edge
rectangles, which we will later show to be part of the boundary of a helicoidal transverse
surface in M̃◦. Meanwhile, an edge sequence should only be thought of as a sequence of
oriented edges, and not as a path, since it is not specified how to travel from ei to ei+1

within the boundary torus of a neighborhood of Ti . Indeed, the freedom of choosing how
to do this will play a big role in the proof of Theorem 6.4.

5.2. Constructing edge sequences

Definition 5.3. A collection of red oriented edges {d1, . . . , dN } of � is said to be
admissible if for each vertex of �, the number of incoming edges is equal to the number
of outgoing edges.

LEMMA 5.4. Let {d1, . . . , dM} be an admissible collection of red oriented edges. Then
there exists a collection of red oriented edges {d ′

1, . . . , d ′
k} and a red edge sequence

(e1, . . . , eM+2k) such that (e1, . . . , eM+2k) is a permutation of (d1, . . . , dM , d ′
1, . . . , d ′

k ,
−d ′

1, . . . , −d ′
k). Moreover, if we are given a positive integer αT for every vertex T, then

we can arrange it so that the minimum number of times the edge sequence crosses a
blue ladderpole curve on T is αT and, in that case, k can be arranged to be at most
((ν/2)M + maxT αT + 1)N + M .

Proof. We choose {d ′
1, . . . , d ′

k} to be (ν/2)M + maxT αT + 1 copies of the set of all
red edges (with some choice of orientation). Let E = (d1, . . . , dM , d ′

1, . . . , d ′
k , −d ′

1, . . . ,
−d ′

k). We first show that E can be arranged into circular sequences {(em
i )i}m such that the

following hold.
• There is a collection of vertices T m

i such that each em
i goes from T m

i−1 to T m
i .

• For each i, we have one of the following two cases:
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FIGURE 23. A schematic picture of how we divide E into sequences. We group the vertices according to on which
ladderpole curves they lie. The vertices above the dotted lines are in the given admissible collection, while the
vertices below the dotted lines are copies of all the red edges. The placement of the arrows is rather arbitrary and,

by moving them around, we can arrange it so that we divide E into only one sequence.

(1) em
i and em

i+1 lie in the same ladderpole at T m
i ;

(2) em
i+1 lies 2 ladderpoles to the left of em

i at T m
i .

In other words, each (em
i )i is almost a red edge sequence, except the property that case (1)

occurs for at least one value of i may not be satisfied.
Consider each vertex T of �. Suppose the red ladderpoles on T are l1, . . . , ln in circular

order. Suppose the elements of E that enter T through a vertex on lj are aj ,1, . . . , aj ,sj and
the elements of E that exit T through a vertex on lj are bj ,1, . . . , bj ,tj . By the choice of E
and the definition of admissibility, we have the following properties of sj and tj :
• for every j, sj and tj are greater or equal to (n/2)M + maxT αT + 1;
• for every j, |sj − tj | ≤ M;
•

∑n
j=1 sj = ∑n

j=1 tj .
We claim that there exists positive integers u1, . . . , un, each less than or equal to

(n/2)M + maxT αT , such that sj − tj = uj − uj−1, where the indices are taken mod
n. To see this, consider the integers

∑j

k=1(sk − tk) as j ranges from 1 to n. By cycling
permuting l1, . . . , ln, we may assume that the minimum of these integers is attained at
j = n, and hence the minimum is 0. The difference between two adjacent such integers
is sk − tk , which has absolute value at most M, so the maximum over all these integers is
bounded above by (n/2)M . Hence, we can simply set uj = αT + ∑j

k=1(sk − tk).
Now we arrange E by requiring, for each vertex T of � as above, aj ,i be followed by

bj ,i for i = 1, . . . , sj − uj−1, and aj ,i be followed by bj−1,i−sj +tj−1 for i = sj − uj−1 +
1, . . . , sj . Intuitively, we make the edge sequences stay within lj for the first sj − uj−1 =
tj − uj indices and make them cross the blue ladderpole curve between lj and lj+1 for
the last uj indices. We draw a schematic picture of this in Figure 23. This divides E into
sequences as claimed.

Note that there is a large amount of freedom in the above construction, coming from
the fact that there is no constraint on how to label the aj ,1, . . . , aj ,sj and bj ,1, . . . , bj ,tj .
Indeed, our next task is to argue that the labelling can be made so that we only end up with
a single sequence.

For each vertex T as above, if aj ,i1 and aj ,i2 lie in different sequences for some i1, i2,
we exchange their labels. This effectively performs a cut and paste operation on the two
sequences and reduces the number of sequences by one. Thus, we can assume that aj ,i
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all lie in the same sequence for fixed j. Similarly, we can assume that bj ,i all lie in the
same sequence for fixed j. Since sj − uj−1 ≥ ((n/2)M + maxT αT + 1) − ((n/2)M +
maxT αT ) ≥ 1, the common sequences of aj ,i and bj ,i agree. Similarly, since uj ≥ 1, the
common sequences of aj ,i and bj+1,i agree. Hence, we can assume that all the elements
of E that have a vertex at a fixed T lie in the same sequence. Once this is achieved, we see
that there is only one sequence, since � is connected thus has connected 1-skeleton. Since
each uj ≥ 1, case (1) in Definition 5.2 must occur at some index for this single sequence,
and thus we have the desired red edge sequence.

Remark 5.5. Notice that in Lemma 5.4, for a fixed admissible collection, the minimum
number of times the constructed edge sequence crosses a blue ladderpole curve l on a fixed
T is attained at the same l for any choice of αT . Indeed, the way l is chosen in the proof
only depends on the integers sk − tk , which in turn only depends on the given admissible
collection.

5.3. From edge sequences to edge paths. In this section, we show that edge sequences
can be lifted to nice edge paths. For the purpose of proving the bounds in Theorems 6.3
and 6.4, we need to pay attention to how these edge paths behave at the vertices. We make
the following definition.

Definition 5.6. Suppose we fix a system of ladderpole transversals {tT }. Consider the
complete set of lifts of {tT } in �̃, thus at each vertex T̃ of �̃, we get a Z-collection of
curves (tT̃ ,j )j∈Z which we index, in order, from bottom to top.

Now let (Ri) be an edge path. Let the vertices determined by the edges of �̃

corresponding to Ri and Ri+1 at si be vi and vi+1, respectively. Let α be a curve from
vi to vi+1. We say that Ri+1 lies k ladderpoles above Ri at si if the signed intersection
number between α and the tsi ,j is k. Here we take the convention that if the starting or
ending point of α approaches some tsi ,j from above, we do not count that point in the
intersection number, but if the point approaches some tsi ,j from below, we do count it
in the intersection number. This ensures that the intersection number has the expected
additivity properties.

LEMMA 5.7. Every red edge sequence (ei) of period P lifts to a nice red g-edge path (Ri)

of period P. Moreover, given integers βi ≥ 4, it can be arranged so that each Ri+1 lies βi

ladderpoles above Ri at si , and in that case, it can be arranged so that g quotients an orbit
of φ̂ to a closed orbit γ of φ of flow graph complexity at most 2((maxi βi + 4)λ + 3)2δ2P 2.

Proof. By cycling permuting the edges, we can assume that e1 and e2 lie in the same
ladderpole at T1. Choose some lift ẽ1 of e1, and let R1 be the edge rectangle corresponding
to ẽ1. We will inductively define R2, R3, . . .. Suppose we have defined R1, . . . , Rj−1

where ej−1 and ej lie in the same ladderpole at Tj−1.
Let ej , . . . , ek be a maximal subsequence such that ei+1 lies two ladderpoles to the left

of ei at Ti for j ≤ i < k. Let ẽj−1 be the edge of �̃ corresponding to Rj−1. Let sj−1 ∈ S
be the corner of Rj−1 that corresponds to a vertex of �̃ covering Tj−1. Let Ej−1 be the
tetrahedron of �̃ which has ẽj−1 as its bottom edge. Let f̃j be the blue side edge of Ej−1
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FIGURE 24. Constructing f̃j , ẽ′
j , and ẽj .

that has a vertex at sj−1. Let Fj be the tetrahedron of �̃ which has f̃j as its bottom edge.
Let ẽ′

j be the red side edge of Fj with a vertex at sj−1. Let e′
j be the image of ẽ′

j in �. See
Figure 24.

Meanwhile, let l be the ladderpole curve on Tj−1 determined by both e′
j and ej . Let

a be the sub-arc of l going from ej−1 to e′
j , and let b be the sub-arc going from e′

j to
ej . Here, if e′

j = ej , we take b = l. Additionally, a ∗ b crosses the ladderpole transversal
some x ∈ [0, 2] times. Lift a ∗ b ∗ lβj−1−x ∗ ej to a path starting at the endpoint of ẽj−1 at
sj−1, and let Rj be the edge rectangle corresponding to the edge ẽj to which ej lifts.

Let R′
j be the edge rectangle corresponding to ẽ′

j . We note that by construction, any
point in Rj−1 ∩ R′

j is closer to the vertical side of Rj−1 containing sj−1 than the core
point c(Rj−1).

We will then inductively define Ri for j < i ≤ k. Let si−1 ∈ S be the corner of Ri−1

that corresponds to a vertex of �̃ covering Ti−1. Let ti−1 be the tetrahedron of �̃ which has
ẽi−1 as the top edge. Let g̃i−1 be the blue side edge of ti with a vertex at si−1, and h̃i−1 be
the red side edge of ti with a vertex at si−2. Let gi−1 be the image of g̃i−1 in �. Let Gi−1

be the tetrahedron of �̃ which has g̃i−1 as the bottom edge. Let f̃i be the blue side edge of
Gi−1 that has a vertex at si−1. Let fi be the image of f̃i in �. Let Fi be the tetrahedron of
�̃ which has f̃i as its bottom edge. Let ẽ′

i be the red side edge of Fi with a vertex at si−1.
Let e′

i be the image of ẽ′
i in �. See Figure 25.

Let l be the ladderpole curve on Ti−1 determined by both e′
i and ei . Let a be a path going

from ei−1 to e′
i , and let b be the sub-arc of l going from e′

i to ei . Here, again, if e′
i = ei , then

we take b = l. Additionally, a can be taken to be an edge path on the boundary triangulation
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FIGURE 25. Constructing f̃i , ẽ′
i , and ẽi for j < i ≤ k.

going from ei−1 to gi−1 to fi then e′
i , and hence crosses the ladderpole transversal some

y ∈ [−3, 3] times, while b crosses the ladderpole transversal some z ∈ [0, 1] times, and
hence a ∗ b crosses the ladderpole transversal some x = y + z ∈ [−3, 4] times. Lift a ∗
b ∗ lβi−1−x ∗ ei to a path starting at the endpoint of ẽi−1 at si−1, and let Ri be the edge
rectangle corresponding to the edge ẽi to which ei lifts. We note that we use the fact that
βi−1 ≥ 4 here.

By construction, for each j < i ≤ k, the edge rectangle corresponding to f̃i is taller than
that of f̃i−1 and the edge rectangle corresponding to f̃i−1 is wider than that of ẽ′

i−1, and
hence wider than that of f̃i . From this, we can construct a staircase Sj ,k for Rj , . . . , Rk .

Following the construction, we arrive at RP+1 eventually, which is the edge rectangle
corresponding to ẽP+1. However, ẽP+1 and ẽ1 are both lifts of e1, so ẽP+1 = g · ẽ1 for
some g ∈ π1(M

◦). By naturality of the construction, Ri+rP = gr · Ri for all r ≥ 0. We
thus extend the definition of Ri by setting Ri+rP = gr · Ri for all r.

Suppose ej1 , . . . , ek1 and ej2 , . . . , ek2 are two consecutive maximal subsequences such
that ei+1 lies two ladderpoles to the left of ei at Ti for js ≤ i < ks (hence j2 = k1 + 1),
then it follows from the definition of staircases and the fact that Rj2 is taller than Rk1 at sj2

that we have property (1) below.
(1) Sj1,k1 is wider than Sj2,k2 and Sj2,k2 is taller than Sj1,k1 .
(2) Any point x ∈ Rk1 ∩ Sj2,k2 lies closer to the vertical side of Rk1 containing sk1 than

the core point c(Rk1).
For property (2), notice that R′

j2
is wider than Sj2,k2 , so this follows from the corresponding

property of Rk1 ∩ R′
j2

pointed out before.
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Now consider the intersection of all Sj ,k . By property (1) above, the intersection is
non-empty. Moreover, since the set is invariant under g, it must consist of a single point p
corresponding to an orbit of φ̂ covering a closed orbit γ of φ of homotopy class g.

This shows that {Ri} is a red g-edge path. We now show that it is nice: if Ri−1 and Ri

lie in the same quadrant at si−1, and Ri and Ri+1 lie in the same quadrant at si , then p,
being inside Si,i ∩ Si+1,k , lies closer to the vertical side of Ri containing si than the core
point c(Ri) by property (2) above.

It remains to bound the flow graph complexity of γ . What we will do is bound the length
of a cycle c of the dual graph which maps to γ under F� and apply Proposition 4.9.

We will use the following observation repeatedly in our computation.
Observation: let e be an edge. For any tetrahedron t with e as a side edge, there exists a

path in the dual graph from t to the tetrahedron with e as the bottom edge of length ≤ δ.
Let ej , . . . , ek be a maximal subsequence such that ei+1 lies two ladderpoles to the

left of ei at Ti for j ≤ i < k. By the observation, there is a �̃-path from Ej−1 to Fj of
length ≤ δ. Then for j ≤ i ≤ k, there is a �̃-path from Fi to the tetrahedron E′

i with ẽ′
i

as the bottom edge of length ≤ δ. There exists a �̃-path from E′
i to Ei as the bottom edge

of length ≤ (βi−1 + 4)λδ. For i < k, this includes as a sub-arc a �̃-path from E′
i to the

tetrahedron Hi with h̃i as the bottom edge of length ≤ (βi−1 + 4)λδ. There exists a �̃-path
from Hi to Gi of length ≤ δ. Finally, there exists a �̃-path from Gi to Fi+1 of length ≤ δ.
Putting everything together, we see that there is a �̃-path from Ej−1 to Ek of length

≤ δ + (k − j)(δ + (max βi + 4)λδ + δ + δ) + (δ + (max βi + 4)λδ)

≤ (k − j + 1)((max βi + 4)λ + 3)δ.

Hence, there exists a �̃-path from E1 to EN+1 of length ≤ ((max βi + 4)λ + 3)δP , which
descends to a �-cycle c, with the same bound on length, which is homotopic to γ . Now
apply Proposition 4.9.

Note that the �̃-path constructed in the proof of Lemma 5.7 contains as a subpath βi − 4
consecutive lifts of a �-cycle ci that is homotopic to the orbit in C corresponding to Ti ,
between E′

i+1 and Hi+1 for each i. Thus, up to increasing some βi by 1, which concatenates
the constructed �-cycle c with one more copy of ci , we can arrange for c to be a primitive
cycle. However, this does not guarantee that the orbit γ = F�(c) is primitive. If one wants
γ to be primitive (equivalently, g to be primitive) in this construction, which is what we
will need in the proof of Theorem 6.4, one needs to work harder.

We first inspect the dynamic plane Di determined by a lift c̃i of ci . Suppose ci has length
li . We label the vertices of c̃i as (vi

j )j∈Z. One can check that ci lies on an annulus face of
the complementary region of the stable branched surface that contains Ti . The two branch
cycles on the boundary of this face lift to two branch lines on Di . Any infinite �̃-path
must enter the region Ri bounded by these two branch lines eventually. See Figure 26 for a
picture of the form of Di . Also see [LMT20, §5.1.1] for a similar discussion. In particular,
this implies that if α is a �̃-path starting from a point x on ∂�(vi

j ) outside of Ri and
ending on a point y on ∂�(vi

j+li
), then the distance between y and Ri on ∂�(vi

j+li
) must

be strictly less than the distance between x and Ri on ∂�(vi
j ).
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FIGURE 26. The dynamic plane Di associated to a lift c̃i of ci . There are branch lines l1 and l2 bounding a region
Ri such that any infinite �̃-path must enter the region Ri eventually.

Moreover, since the segment of each ∂�(vi
j ) within Ri lies on the bottom sides of only

two sectors, Di has at most two [ci]-invariant bi-infinite �̃-paths (hence, Di has at most
one AB strip) and any �̃-path starting at a point on ∂�(vi

j ) in Ri and ending on ∂�(vi
j+li

)

will converge into one of these paths. This also implies that any point on ∂�(vi
j ) in Ri is

≤ δ edges away from vi
j .

Returning to the �̃-path constructed in the proof of Lemma 5.7, we elongate it by
equivariance so that it is a lift of c, then consider the dynamic plane D associated to it.
Here D contains βi − 4 adjacent fundamental regions of Di , the union of which we denote
by D′

i . We identify each D′
i with the region between ∂�(vi

0) and ∂�(vi
(βi−4)li

) on Di . From
the proof of Lemma 5.7, we know that the segment of c̃ between D′

i and D′
i+1 has length

≤ (16λ + 3)δ. In particular, the �̃-path starting at vi
(βi−4)li

and ending on ∂�(vi+1
0 ) is ≤

(16λ + 3)δ edges away from vi+1
0 by Lemma 4.10. Hence, if βi − 4 ≥ (16λ + 3)δ + δ + 1,

then the infinite �̃-path starting at any point on ∂�(v1
0) ∩ R1 must converge into one of

the [ci]-invariant �̃-paths within each D′
i that it passes through. We illustrate the situation

schematically in Figure 27. As reasoned in the proof of Proposition 4.9, such a path
eventually becomes periodic, and hence we can find a g-invariant bi-infinite �̃-path on
D satisfying the same property, assuming that D has any g-invariant bi-infinite �̃-paths at
all, which quotients down to an element of h(c).

The significance of this is that if we now increase βi by one, then we concatenate this
element of h(c) by a �-cycle homotopic to ci . As in the case of �-cycles, this can be used
to ensure that h(c) contains a primitive element. Moreover, since each Di can have at most
one AB strip, D cannot have more than one AB strip as well, so this primitive element of
h(c) does not lie between AB strips. Hence, using Proposition 4.5, we can guarantee that
γ = F�(h(c)) is primitive. If D does not contain g-invariant bi-infinite �̃-paths, then we
can apply a similar argument to c2.

We record this as an addendum to Lemma 5.7.

LEMMA 5.8. In the setting of Lemma 5.7, if each βi ≥ (16λ + 4)δ + 1, then up to
increasing some βi by one, we can assume that g is primitive for the constructed nice
red g-edge path.
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FIGURE 27. A schematic picture of the proof of Lemma 5.8. By increasing the number of fundamental regions in
D′

i , we can obtain an g-invariant bi-infinite �̃-path on D that meets the [ci ]-invariant �̃-paths within each D′
i .

5.4. From edge paths to broken transverse helicoids

Construction 5.9. Suppose we are given a winding red g-edge path (Ri) of period P, where
g quotients an orbit γ̂ of φ̂ to a closed orbit γ of φ. We construct a broken transverse surface
as follows.

For each i such that Ri and Ri+1 lie in the same quadrant at si , choose a path αi on
P from p to si that lies in the intersection of the slope for Rj , . . . , Ri and the slope for
Ri+1, . . . , Rk that is topologically transverse to Ps and Pu. This ensures that within each
staircase Sj ,k , the paths αj and αk are disjoint. We can also arrange it so that αi+rP = grαi .
Next, for each of the remaining i, take a path αi on P from p to si in the slope Sj ,k in which
si lies. Again, we make the choice so that αi , j ≤ i ≤ k are topologically transverse to Ps

and Pu, are mutually disjoint within the staircase, and so that αi+rP = grαi .
Now take a sequence of points {xi} on γ̂ such that xi+rP = gr · xi and xi+1 lies further

along γ̂ as a flow line than xi . Also let ẽi be the edge of �̃ that corresponds to the edge
rectangle Ri . For each i, consider the restriction of the fibration M̃ → O to αi , which is
a trivial bundle, and choose a lift of αi to α̃i starting at xi ∈ γ̃ . Then for each i, consider
the restriction of the fibration to the region bounded by αi , ẽi , and αi+1, minus the points
γ̂ , si , and si+1. For generic choices of lifts α̃i and placements of ẽi , we can lift this region
to a hexagonal broken transverse surface H̃i with horizontal boundary along α̃i , ẽi , α̃i+1,
and vertical boundary along γ̂ , and the orbits of φ̂ corresponding to si and si+1. Again, we
make the choice so that H̃i+rP = gr · H̃i .

Finally, take the union over all H̃i , possibly resolving any turning points on the orbits of
φ̂ corresponding to the si as in the last step of Fried resolution, to get a helicoidal broken
transverse surface H̃ (Ri) with one boundary component lying along γ̂ and the sides of
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FIGURE 28. The helicoidal broken transverse surface H̃ (Ri) with boundary along γ̂ and (ẽi ).

the other boundary component that lie in ∂hH̃ (Ri) being (ẽi ). See Figure 28. This surface
is g-invariant, so we can take its quotient to get a broken transverse surface H(Ri) with
boundary along γ and {ei}.

Moreover, if g is primitive, then the boundary component of H(Ri) along γ is
embedded. In general, if g is the rth power of a primitive element, then the boundary
component of H(Ri) along γ r-fold covers γ .

LEMMA 5.10. If (Ri) is a winding red g-edge path of period P and γ ′ is a closed orbit of
φ that is not an element of C of flow graph complexity c, then γ ′ intersects H(Ri) at most
≤ 32δ4cP times.

Proof. The projection of H̃ (Ri) on P is covered by the 〈g〉-orbits of the tetrahedron
rectangles corresponding to the tetrahedra with the edges corresponding to R1, . . . , RP

as bottom edges. Conversely, the 〈g〉-orbit of a tetrahedron rectangle can appear at most P
times in such a union. So this follows from the third statement in Lemma 4.14.

6. Constructing Birkhoff sections
In this section, we will introduce the remaining type of broken transverse surfaces which
we will use in our construction, and use them to prove Theorems 6.3 and 6.4.

6.1. Shearing decomposition. We recall the shearing decomposition of a veering trian-
gulation, introduced by Schleimer and Segerman in [SS].

Fix the same setting as before: let φ be a pseudo-Anosov flow on an oriented closed
3-manifold M without perfect fits relative to C, and let � be a veering triangulation
associated to φ on M\⋃ C.

Pick and fix an equatorial square qt for each tetrahedron t in � that is transverse
to the flow φ. Each square qt divides t into an upper half-tetrahedron and a lower
half-tetrahedron. Let Q be the union over all squares. The complementary regions of Q
can be obtained by gluing all upper and lower half-tetrahedra along their triangular faces.
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FIGURE 29. A blue shearing region of length 6.

These complementary regions are known as the shearing regions. The decomposition of
� into these shearing regions is known as the shearing decomposition.

We describe each shearing region in more detail. Each of these is topologically a solid
torus with some l ≥ 1 upper square faces and l lower square faces on their boundary. We
call l the length of the shearing region. The upper square faces meet along edges of a fixed
color. We call these edges the upper helical edges. The lower square faces also meet along
edges of that same fixed color. We call these edges the lower helical edges. If the color
of these helical edges is blue/red, we say that the shearing region is blue/red, respectively.
We call the union of upper/lower square faces the upper/lower boundary of the shearing
region, respectively. The upper and lower boundary meet along edges of the opposite color
as the shearing region. We call these edges the longitudinal edges. Finally, the interior
of the shearing region contains 2l triangular faces, each of which has two blue/red edges
along the helical edges, and one red/blue edge along the longitudinal edges, if the shearing
region is blue/red, respectively.

We illustrate a blue shearing region of length 6 in Figure 29.
We denote the upper boundary of a shearing region U by ∂U . The closure of an

upper boundary in the closed 3-manifold M is a broken transverse surface with horizontal
boundary along the edges of � and vertical boundary along C, at least for generic
placements of the edges. We will abuse notation and refer to the closure of an upper
boundary by the same name as the upper boundary itself.

Since each shearing region has a product structure induced by the orbits of φ, it is clear
that each orbit of φ intersects Q in finite forward and backward time. In other words, we
have the following lemma.

LEMMA 6.1. Let E = ⋃
U ∂U , where the union is taken over all shearing regions U. Each

orbit of φ intersects U in finite forward and backward time.

Notice that if we orient the boundary edges in the upper boundary of a blue shearing
region using the (co)orientation on the squares, then such a collection of red edges is
admissible in the sense of Definition 5.3. We also have the symmetric fact for red shearing
regions. We will make use of both of these facts to show Theorem 6.4.

However, for Theorem 6.3, we want to just deal with edges of one color, so we have
to work harder. Let U be a red shearing region. Let f be a triangular face in the interior
of U, let e be the blue edge of f. Here e is the upper helical edge of some blue shearing
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FIGURE 30. A croissant.

region U ′. Let q ′ be the upper square face of U ′ that has an edge on e and lies in the same
side of e as f. Additionally, q ′ must be the lower square face of a red shearing region U ′′.
Let e′ be the other blue edge of q ′, and let f ′′ be the triangular face in U ′′ that has its blue
edge along e′. Then the upper boundary of U ′ with q ′ removed but with f and f ′′ added is
a surface transverse to orbits of φ which contains f and whose boundary consists solely of
red edges. We call this surface the croissant with tip f and denote it by Gf . See Figure 30.

Similarly to the case of upper boundaries, if we orient the edges in the boundary of a
croissant using the (co)orientation on the squares and triangles, then such a collection of
red edges is admissible in the sense of Definition 5.3. Also, the closure of a croissant in
the closed 3-manifold M is a broken transverse surface with horizontal boundary along the
edges of � and vertical boundary along C, at least for generic placements of the edges. We
will abuse notation and refer to the closure of a croissant by the same name as the croissant
itself.

LEMMA 6.2. Let ER = ⋃
U ∂U ∪ ⋃

f Gf , where the first union is taken over all blue
shearing regions U and the second union is taken over all triangular faces f in red shearing
regions. Each orbit of φ intersects ER in finite forward and backward time.

Proof. A square in the upper boundary of a red shearing region can be flowed backwards
into the union of two triangular faces in the shearing region. This implies that each orbit of
φ intersects the union of all upper boundaries of blue shearing regions and triangular faces
of red shearing regions in finite forward and backward time. Thus, the lemma follows from
the fact that Gf contains f.

6.2. Birkhoff sections on the cusped manifold. In this subsection, we prove
Theorem 6.3. This is a good warm-up to the proof of Theorem 6.4. As we will discuss in
§7.3, Theorem 6.3 also has some relevance in the theory of veering triangulations.

Recall the notation for the parameters of a veering triangulation as set up in §2.3. We
will employ the rough bounds δ, λ ≤ 2N , and ν ≤ N to obtain bounds that only depend
on the number of tetrahedra N, as far as the veering triangulation is concerned.

THEOREM 6.3. Let φ be a pseudo-Anosov flow on an oriented closed 3-manifold M
without perfect fits relative to a collection of closed orbits C. Let � be the veering
triangulation associated to φ on M\⋃ C. Suppose � has N tetrahedra.
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Then there exists a closed orbit γ of φ of complexity ≤ 106N12 and a Birkhoff section
S with boundary along

⋃
C ∪ γ and with Euler characteristic ≥ −1010N20.

Proof. Consider the surfaces in ER in Lemma 6.2. The collection of sides in the horizontal
boundary of the surfaces, which we denote by D, is a collection of red oriented edges which
is admissible. We bound the size of D. The union

⋃
U ∂U involves at most N squares, and

hence contributes at most 2N edges. Each Gf consists of two triangles and at most N − 1
squares, and hence contributes at most 2N + 2 edges, and there are at most 2N many f.
Putting all this together, we deduce that |D| ≤ 2N + 2N(2N + 2) ≤ 10N2.

Now we can apply Lemma 5.4 to the negative of D, with αT chosen to be one for all T, to
get a red edge sequence E of period ≤ (ν/2 · 10N2 + 1 + 1)N + 10N2 ≤ 17N4. Then we
apply Lemma 5.7 to E , with βi chosen to be four for all i, to get a nice red g-edge path (Ri).
Here g quotients an orbit of φ̂ to a closed orbit γ of complexity ≤ 2(8λ + 3)2δ2(17N4)2 ≤
834632N12 =: c.

Once we have this γ , we apply Proposition 3.10 to rechoose the triangulation so that
(Ri) is winding. Then we apply Construction 5.9 to get a broken transverse surface H(Ri)

with boundary along γ and E .
Form an immersed Birkhoff section S′ by taking the union of H(Ri) and ER . That

every orbit intersects S′ in finite forward and backward time follows from Lemma 6.2. We
bound the complexity of S′. The index of H(Ri) is ≥ −(17/2)N4. The surfaces in ER

consist of N squares in the upper boundaries, and 2N(N − 1) squares and 4N triangles in
the croissants. Each square has index −1 and each triangle has index − 1

2 , so the sum of
indices of surfaces in ER is ≥ −N − 2N(N − 1) − 2N ≥ −3N2.

Meanwhile, γ intersects each square and each triangle at most 2δ2c times, by Lem-
mas 4.14 and 4.13. So γ intersects the surfaces in ER for ≤ 2Nδ2c + 4N(N − 1)δ2c +
8Nδ2c ≤ 40N4c times. By Lemma 5.10, γ intersects H(Ri) (away from its boundary)
for ≤ 32δ4c · 17N4 ≤ 8704N8c times. Putting everything together, the complexity of S ′ is
bounded above by (17/2)N3 + 3N2 + 40N4c + 8704N8c ≤ 1010N20.

Finally, we apply Fried resolution to get a Birkhoff section S as in the statement of the
theorem.

6.3. Birkhoff sections on the closed manifold. In this subsection, we finally come to the
proof of Theorem 6.4.

THEOREM 6.4. Let φ be a pseudo-Anosov flow on an oriented closed 3-manifold M
without perfect fits relative to a collection of closed orbits C. Let � be the veering
triangulation associated to φ on M\⋃ C. Suppose � has N tetrahedra. For each vertex
T of �, let lT be a ladderpole curve and let tT be a ladderpole transversal at T. Let the
meridian of M at T be aT tT + bT lT , for aT > 0.

Then there exists two closed orbits γ1 and γ2 of φ, each of complexity ≤
1010N20(max aT + max |bT |)2(max aT )2, and a Birkhoff section S with two boundary
components, one embedded along γ1 and one embedded along γ2, with Euler
characteristic ≥ −1013N27(max aT + max |bT |)2(max aT )3.

Proof. Consider the collection EL of upper boundaries of blue shearing regions. The
collection of sides in the horizontal boundary of the annuli in the collection, which we
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denote by DR , is a collection of red oriented edges which is admissible. There are at most
N squares in the upper boundaries, so there are at most 2N elements in DR .

Notice that this implies that the number of sides in the vertical boundary of the surfaces
is also at most 2N . Each such side is formed by two squares meeting along a blue edge,
and hence they each cross a blue ladderpole curve once. Therefore, we conclude that the
number of times the sides in the vertical boundaries cross a fixed blue ladderpole curve at
vertex T is some yT ∈ [0, 2N]. Here we choose the fixed blue ladderpole curve at vertex T
to be the one at which the minimum in Lemma 5.4 is attained. By Remark 5.5, this is well
defined since we have a fixed admissible collection DR .

Next, we bound the number of times the sides in the vertical boundaries cross the
ladderpole transversal at a vertex T. Again, each such side is formed by two squares
meeting along a blue edge, and hence each side crosses a ladderpole transversal for some
x ∈ [−2, 2] times. Together, the total number of times the sides cross the ladderpole
transversal at T is some xT ∈ [−4N , 4N] times.

Now we apply Lemma 5.4 to the negative of DR , choosing αT = 3NaT − yT , to
get a red edge sequence ER , of period ≤ (ν/2 · 2N + 3N max aT + 1)N + 2N ≤ 4N3 +
3N2 max aT ≤ 7N3 max aT .

Let BT = 511N5 max aT + 6N |bT | + 4N for each vertex T. Apply Lemma 5.7 to
E to get a nice red gR-edge path (RR,i ), where we choose the integers βi in the
lemma such that for each vertex T, all but one of the βi for which Ti = T equals to
(16λ + 4)δ + 1 and the sum of such βi equals BT + 6NbT − xT . This is possible since
7N3 max aT · ((16λ + 4)δ + 1) ≤ 511N5 max aT ≤ BT + 6NbT − xT and there are at
most 7N3 max aT indices. Here gR is primitive, up to increasing one of the βi by one
(and hence increasing BT by one) by Lemma 5.8, and gR quotients an orbit of φ̂ to a
closed orbit γR of complexity

≤ 2((max(BT + 6NbT − xT ) + 1)λ + 3)2δ2(7N3 max aT )2

≤ 2(511N5 max aT + 12N max |bT | + 8N + 1)λ + 3)2δ2(7N3 max aT )2

≤ 2(1043N6 max aT + 24N2 max |bT |)2(2N)2(7N3 max aT )2

≤ 426436808N20(max aT + max |bT |)2(max aT )2 =: c.

Symmetrically, we look at the collection ER of upper boundaries of red shearing regions
and let the collection of sides in the horizontal boundary of the annuli in the collection
be DL. Then we apply Lemma 5.4 with the analogous choice of αT to get a blue edge
sequence EL, then Lemma 5.7 to get a nice blue gL-edge path (RL,i ), but this time we
choose the integers βi in the lemma such that for each vertex T, all but one of the βi

for which Ti = T equals to (16λ + 4)δ + 1 and the sum of such βi equals BT ; such a
choice is possible since 7N3 max aT · ((16λ + 4)δ + 1) ≤ 511N5 max aT ≤ BT . Here gL

is primitive, up to increasing one of the βi by one (and hence increasing BT by one) by
Lemma 5.8 and gL quotients an orbit of φ̂ to a closed orbit γR of complexity ≤ c by a
similar computation as above.

Once we have γR and γL, we apply Proposition 3.10 to rechoose the triangulation so that
(RR,i ) and (RL,i ) are winding. Then we apply Construction 5.9 to get broken transverse
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surface H(RR,i ) with boundary along γR and ER , and broken transverse surface H(RL,i )

with boundary along γL and EL.
Form a surface SR transverse to the flow by taking the union of H(RR,i ) and surfaces

in EL, and form a surface SL transverse to the flow by taking the union of H(RL,i ) and
surfaces in ER . The homology class of ∂SR on vertex T is 3NaT tT + (BT + 6NbT )lT ,
while the homology class of ∂SL on vertex T is 3NaT tT − BT lT , so together they add up
to 6N(aT tT + bT lT ), which is a multiple of the meridian.

Note that SR ∪ SL is an immersed Birkhoff section, since every orbit intersects it in
finite forward and backward time by Lemma 6.1. We bound the complexity of SR ∪ SL.
The index of H(RR,i ) and H(RL,i ) are each ≥ − 7

2N3 max aT . The surfaces in EL and
ER consist of N squares, so the sum of indices of surfaces in EL and ER is −N .

Now, γR intersects all of the squares at most 2δ2c times by Lemma 4.14. So γR intersects
the surfaces in EL and ER for ≤ 2δ2c ≤ 8N2c times. Meanwhile, by Lemma 5.10,
γR intersects H(RR,i ) (away from its boundary) at most 32δ4c · 7N3 max aT ≤
3584N7c max aT times and intersects H(RL,i ) at most 3584N7c max aT times similarly.
Symmetric statements hold for γL. Putting everything together, the complexity of
SR ∪ SL is

≤ 7
2
N3 max aT + 7

2
N3 max aT + N + 2(8N2c + 3584N7c max aT + 3584N7c max aT )

≤ 8N3 max aT + 14352N7c max aT

≤ 1013N27(max aT + max |bT |)2(max aT )3.

Finally, we apply Fried resolution to get a Birkhoff section S. Since the homology
classes of the boundary components of SR ∪ SL along each element of C add up to a
multiple of the meridian, after we resolve the turning points in the last step of Fried
resolution, the resulting surface S only has boundary components along γR and γL.

By the discussion in Construction 5.9, the boundary component of H(RR,i ) along
γR is embedded and similarly for H(RL,i ). Thus, after applying Fried resolution, S has
one boundary component embedded along γR and one boundary component embedded
along γL.

Technically, one has to worry about the possibility that γR = γL =: γ . In that case,
SR ∩ SL has two boundary components along γ whose homology class adds up to a
multiple of the meridian in M, and hence after Fried resolution S will in fact be a global
section for φ, which is even better. However, if one still wants to show the statement
of the theorem in this case, one can just modify the choice of βi slightly for, say, γR ,
which will make [γR] �= [γL] in π1(M) and hence ensure that they are distinct orbits by
Lemma 2.13.

7. Discussion and further questions
7.1. Birkhoff sections with one boundary component. As remarked in §1, one cannot in
general find a Birkhoff section with only one boundary component. However, one can ask
the following question.
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Question 7.1. How can one characterize the orbit equivalence class of pseudo-Anosov
flows which have a Birkhoff section with only one boundary component?

Here we make some speculations as to what an answer to this might look like.
Recall that in the case of Anosov flows, one answer to this question has been provided

by Marty.

THEOREM 7.2. [Mar21, Theorem G], [Mar23, Theorem E] An Anosov flow admits a
Birkhoff section with only one boundary component if and only if it is skew R-covered.

Motivated by this, one can try to look for a generalization of the ‘skew R-covered’
condition to pseudo-Anosov flows, such that the statement of Theorem 7.2 holds with
such a generalization. A natural guess of such a generalization might be the condition that
there are only lozenges of a fixed sign, where one defines the sign of a lozenge using the
orientation on the orbit space, similar to Definition 3.3.

Another good starting point might be the following weaker version of Question 7.1.

Question 7.3. How can one characterize the orbit equivalence class of pseudo-Anosov
flows which have a Birkhoff section with all the boundary components of the same sign?

We also point out that in the case when M is a rational homology sphere, there is a
notion of right-handed flows, introduced by Ghys in [Ghy09]. The basic idea is that orbits
of a right-handed flow have positive (asymptotic) linking number. In [Ghy09], Ghys proves
that a right-handed flow admits a Birkhoff section with boundary along any chosen finite
collection of closed orbits. In other words, for a fixed 3-manifold M that is a rational
homology sphere, if we let:

B+
1 be the orbit equivalence class of pseudo-Anosov flows on M which have a Birkhoff

section with only one positive boundary component,
B+ be the orbit equivalence class of pseudo-Anosov flows on M which have a Birkhoff

section with only positive boundary components,
BRH be the orbit equivalence class of pseudo-Anosov flows on M which are

right-handed,
then BRH ⊂ B+

1 ⊂ B+.

Question 7.4. Is BRH = B+?

7.2. More on complexity. The reader will notice that we handled the complexity bounds
in this paper very loosely, in the sense that we employ very loose bounds on, for example,
the parameters δ, ν, λ. One could conceivably work harder and improve the bounds in the
statement of Theorems 6.3 and 6.4 by a bit. However, we do not believe that a bound
obtained via our methods would be the sharpest possible bound in any case, so we have
not bothered to be tighter with our bounding.

In this connection, one can ask the following question.

Question 7.5. What are the sharpest possible bounds in Theorems 6.3 and 6.4, for both the
Euler characteristic of the Birkhoff section and the flow graph complexity of the boundary
orbits?
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This is likely a very difficult question. Perhaps a more tractable question would be the
following question.

Question 7.6. What are the smallest possible exponents of N in the bounds in Theo-
rems 6.3 and 6.4?

The bounds would certainly have to be at least linear, since one can always take covers.
The question concerns how complicated the flows that are not just covers of other flows
can be as one increases N.

A variation of this question would be to impose a constraint on the Euler characteristic
of the Birkhoff section, and ask for the sharpest bound for the flow graph complexity of
the boundary orbits among the Birkhoff sections that satisfy the constraint; and vice versa.

We would be remiss not to mention the following well-known conjecture of Fried.

Conjecture 7.7. (Fried) Any Anosov flow with orientable stable and unstable foliations
admits a genus one Birkhoff section.

The Birkhoff sections we construct in this paper are in a sense the opposite of those
asked for in Fried’s conjecture; they have large genus but small number of boundary
components. One might be able to use the techniques of this paper to construct Birkhoff
sections with relatively small genus but large number of boundary components. In
particular, in practice, one might be able to find substantially smaller collections of
oriented edges when applying Lemma 5.4 to get edge sequences, for a given veering
triangulation. However, new ideas would probably be required to push the genus of the
Birkhoff section in the general case down to one, if it is even possible.

On the topic of complexity, one can also attempt to define the complexity of a
pseudo-Anosov flow. One way to do this is to ask for the maximum Euler characteristic
among all Birkhoff sections to the flow. A potentially more interesting definition would be
to ask for the minimum number of tetrahedra in the veering triangulation associated to the
flow on M\⋃ C, as C varies over all collections of orbits for which the flow has no perfect
fits relative to.

For either definition, one can then ask the following question.

Question 7.8. How does the complexity of a flow behaves under operations such as taking
covers or performing surgery (e.g. Goodman–Fried surgery, Foulon–Hasselblatt surgery
[FH13], or Salmoiraghi’s surgeries [Sal21, Sal22])?

7.3. Questions regarding veering triangulations. We already mentioned that it might
not be very meaningful to try to improve the bounding on complexities done in this paper,
but one exception to this might be Proposition 4.9. In particular, we are interested in the
following question.

Question 7.9. Can the upper bound in Proposition 4.9 be made linear?

A positive answer to this question would mean that the dual graph and the flow graph
are ‘equally good’ at encoding closed orbits. In any case, attempts to answer this question
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might also lead to better intuition of the combinatorics of dynamic planes, thus veering
triangulations.

Another question that is interesting to the study of veering triangulations is to
understand the operation of drilling out orbits on the level of triangulations. More precisely,
let φ be a pseudo-Anosov flow on an oriented closed 3-manifold M without perfect fits
relative to a collection of orbits C. Let � be the veering triangulation associated to φ on
M\C. For any collection C′ ⊃ C, φ has no perfect fits relative to C′ as well. Let �′ be
the veering triangulation associated to φ on M\C′. We say that �′ is obtained from � by
drilling out the orbits in C′\C.

It is known that circular pseudo-Anosov flows give rise to layered veering triangula-
tions. See for example [LMT20, Theorem 5.15] for an explanation of this. In this language,
Theorem 6.3 may be restated as saying that any veering triangulation can be drilled along
a single orbit to give a layered veering triangulation.

Layered veering triangulations are generally better understood than non-layered ones.
This motivates one to understand how the combinatorics of a veering triangulation change
under drilling, in the hopes that one can transfer facts from layered triangulations to general
triangulations via Theorem 6.3.

Question 7.10. Can one describe the triangulation �′ in terms of � and, say, flow graph
cycles that encode each orbit in C′\C?

Question 7.11. Can one bound the change in flow graph complexity of an orbit γ of φ

which is not an element of C′ when measured relative to C and to C′?

Finally, we relay a question that is asked to us by Schleimer and Segerman.

Question 7.12. (Schleimer, Segerman) For any veering triangulation, is it always possible
to drill out some collection of orbits to get a veering triangulation with only toggle
tetrahedra?

A positive answer to this question would have significance toward the enumeration of
veering triangulations, at least on a conceptual level.
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