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This article considers a three-dimensional latent factor model in the presence of one
set of global factors and two sets of local factors. We show that the numbers of global
and local factors can be estimated uniformly and consistently. Given the number
of global and local factors, we propose a two-step estimation procedure based on
principal component analysis (PCA) and establish the asymptotic properties of the
PCA estimators. Monte Carlo simulations demonstrate that they perform well in
finite samples. An application to the dataset of international trade reveals the relative
importance of different types of factors.

1. INTRODUCTION

As part of the big data revolution, there has been a rapid emergence of multi-
dimensional panel data sets. In particular, the use of three-dimensional (3D)
panel data sets has gained tremendous momentum in the last decade. It has been
frequently employed in empirical research in many economic fields, such as
international trade, transportation, labor, housing, and migration, among others
(see Matyas, 2017 for a review). Latent factor models provide an effective way
of modeling panel data. They allow for unobserved heterogeneity and cross-
sectional dependence of unknown form, both of which are fundamental features
of economic and financial data. So far, the theories for factor models have been
developed mostly for traditional two-dimensional (2D) panel data (see Bai and
Ng, 2002; Stock and Watson, 2002; Bai, 2003; Onatski, 2010; Onatski, 2012; Ahn
and Horenstein, 2013; Giglio and Xiu, 2021, among others). This article develops
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theories for general 3D factor models with both global and local factors and applies
them to empirical studies.

Specifically, we consider estimation and inference for the following 3D model:

yijt = λ
(0)′
ij f (0)

t +λ
(1)′
ij f (1)

it +λ
(2)′
ij f (2)

jt +uijt, i ∈ [N], j ∈ Mi, t ∈ [T], (1.1)

where yijt is the observable data, f (0)
t is the global factor, f (1)

it and f (2)
jt are the

local factors that depend on i and j, respectively, λ
(0)
ij ,λ

(1)
ij , and λ

(2)
ij are the

corresponding factor loadings, uijt is the idiosyncratic error, and [a] = {1,2,...,a}
for any positive integer a. Let Mi = |Mi|, the cardinality of the set Mi ⊂ [M],
where M = max {Mi,i ∈ [N]}.1 We assume that the dimensions of f (0)

t ,f (1)
it , and

f (2)
jt are r(0) × 1,r(1)

i × 1, and r(2)
j × 1, respectively. That is, there are r(0),r(1)

i , and

r(2)
j global factors, i-specific local factors and j-specific local factors, respectively.

The factors, factor loadings, and factor numbers are all unknown. We treat the
factors as random and factor loadings as non-random following the literature (see,
e.g., Bai, 2003 Bai and Ng, 2023). We consider large panels where the three
dimensions (N,Mi,T) go to infinity jointly. The goal of this article is to determine
(r(0),r(1)

i ,r(2)
j ), and to estimate and conduct inferences for (f (0)′

t ,f (1)′
it ,f (2)′

jt ) and

(λ
(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij ) up to certain rotation matrices.

1.1. Examples of 3D Factor Models and Their Usefulness

There are numerous potential applications of this type of model. Below are three
examples in economic growth, trade, and macroeconomics. Note that our model
(1.1) nests some simple models that have already been employed in empirical
research, e.g., in Koren and Tenreyro (2007) and Andrade and Zachariadis (2016)
as discussed in Examples 1 and 3, respectively, which follows. However, the
general estimation and inference methods for model (1.1) are missing in the
literature.

Example 1 (Economic Growth). One important question in development eco-
nomics is to decompose the volatility of economic growth into different sources,
such as country factors and industry factors (see, e.g., Koren and Tenreyro, 2007).2

Let yijt be the growth rate of value-added per worker for industry j in country
i in year t. f (0)

t is the global factor that affects all industries and countries, e.g.,
the COVID-19 pandemic or a global financial crisis. f (1)

it and f (2)
jt are country

and industry specific factors, respectively. For example, let i be China and j be
the mining industry. f (1)

it is a China-specific factor that only affects all industries

1Here, i and j are symmetric. Equivalently, we can write the indices as j ∈ [M],i ∈ Nj,and t ∈ [T] .
2Koren and Tenreyro, 2007 consider a simpler model than ours, where there are no global factors, and factor loadings
of country factors and industry factors are assumed to be constant. Using our notations, their model is specified as

yijt = f (1)
it + f (2)

jt +uijt .
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in China (not other countries), e.g., China’s entry into the WTO or a major
earthquake. f (2)

jt is the mining-industry-specific factor that only affects the mining
industry (not other industries) in all countries, e.g., giant oil discoveries. The
effects of those factors are captured by their factor loadings, which depend on
the country and industry. In this application, we could examine how the volatility
of global factor components, country factor components and industry factor
components contribute to the overall economic volatility of a country, which is
important for industrial policy and risk management, as discussed in Koren and
Tenreyro (2007).

Example 2 (International/Firm-to-Firm Trade). Consider the international trade
data, where yijt is the volume of trade from source (export) country i to destination
(import) country j in year t. f (0)

t is the global factor that affects every trade volume,
and its effect (λ

(0)
ij ) depends on the specific source country i and destination

country j. For example, worldwide technological advancement in transportation
can be thought of as a global factor, which is likely to affect all trade volumes
between any pair of countries. The local factors f (1)

it and f (2)
jt represent source

country and destination country factors, respectively: f (1)
it is the factor of the i th

exporting country (say, China) that affects the trade volumes from China to all
destination countries; f (2)

jt is the factor of the jth importing country (say, the U.S.)
that affects all trade volumes to the U.S. from all other countries. If China’s export
price level increases (say, f (1)

it increases), its export volume to all other countries
may decrease; if the U.S. economy booms (say, f (2)

jt increases), it may increase
its imports from all other countries.3 Here, the local factors are unobservable, and
they can also be thought of as time-varying country fixed effects, which have been
argued to be important both theoretically and empirically for the gravity models
(see, e.g., Feenstra, 2015). In Section S8 of the Supplementary Material, we show
that our model matches the structural gravity model considered in Anderson and
van Wincoop (2003) and each element in our model is economically meaningful.
In particular, we show that the global factor f (0)

t represents the technological
improvement in reducing trading costs, the source country factor f (1)

it represents the
export price level and the destination country factor f (2)

jt includes the destination
country’s income and its multi-lateral resistance level.4 The global factor loading
includes elements of an individual country’s heterogeneous preference parameter
(the elasticity of substitution) and geographic distance between countries. The two
local factor loadings include elements of the heterogeneous preference parameters.
The same framework can be applied to firm-to-firm trading, where yijt denotes
the sales from firm i (supplier) to firm j (purchaser), f (0)

t represents the factor

3Here, we discuss the total export volume from China to the U.S. We may also study more detailed industry-level
exports. Then, the data will become four-dimensional with the fourth dimension being industry.
4Multilateral resistance is a term proposed in Anderson and van Wincoop (2003) and can be thought of as an index
of bilateral trade costs. Its precise definition can be found in Section S8 of the Supplementary Material or Anderson
and van Wincoop (2003).
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that affects every firm’s sales (e.g., a macroeconomic variable), and f (1)
it and f (2)

jt
represent firm specific supply-side and demand-side factors, respectively. Dhyne
et al. (2021) and Bernard et al. (2022) consider such buyer-supplier data among all
firms in Belgium during 2002–2014.

Example 3 (Macroeconomics). Factor models are often used to study the global
co-movements of inflation rates. For example, following Andrade and Zachariadis
(2016) (2016, (AZ) hereafter) but with our notation, let yijt be the inflation rate of
product item j in location i at date t. For example, j can be apple, mineral water,
and annual premium for car insurance, among others. Table 1 in (AZ) list 276
products (goods and services) in their sample. The location i refers to city i in
different countries. Table 1 in (AZ) includes 88 cities in 59 countries. The date t
in (AZ)’s sample is semi-annual from 1990 to 2010. (AZ) decomposes the global
inflation rates exactly into the same four components as in our model (1.1) and
provide interpretation for the three different types of factors. f (0)

t is the global
factor that affects every price in every location. (AZ) explain that “typical examples
of such global factors would be oil prices or global liquidity shocks associated
with worldwide money supply”. f (1)

it is the location-level local factor that affects
every price in a given location i. (AZ) also explain that “typical examples of such
local macro factors are monetary or fiscal policies”. f (2)

jt is the product-level local
factors that affect a given product j in every location, and an example includes
“technological innovation specific to a given product” (AZ). The factor loadings
measure the effects of those factors, which are product and location-specific. (AZ)
assume that the numbers of factors are all 1 and use different sample averages to
proxy different factors in their estimation. We allow the number of factors to be
data-driven and propose a PCA-type estimation method. In addition, (AZ) is an
applied paper without much econometric theory.

There are many other examples for yijt, including the retail price at a supermarket
chain i in region j, the foreign direct investment from region i to region j, the total
value of bilateral asset flows (assets of region i bought by agents of region j), and
the number of immigrants from region i to region j, among others. The model
considered here can be used in various ways. First, it provides an effective way
of reducing the dimensionality and summarizing information for large data sets.
Here, the dimensionality of the original time series data (

∑N
i=1 Mi) is reduced to

the total number of factors: r(0) +∑N
i=1 r(1)

i +∑M
j=1 r(2)

j , where M = max1≤i≤N Mi.

For example, for a balanced panel with N = 60,Mi = M = 60,r(0) = 1,r(1)
i = 1,

and r(2)
j = 1, the dimensionality is reduced from 3600 to 121. Second, it provides

useful variance decomposition in the spirit of analysis of variance (ANOVA).
Assuming that the global factors and local factors are uncorrelated, and two types
of local factors are uncorrelated, we can decompose the variance of yijt into four
parts.

Var
(
yijt

) = Var(c(0)
ijt )+Var(c(1)

ijt )+Var(c(2)
ijt )+Var(uijt),
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Table 1. Comparison of estimators of global factors

Bias2 ×104 Variance×104 MSE×104

1st-step 2nd-step 1st-step 2nd-step 1st-step 2nd-step

(initial) (final) Orcale (initial) (final) Orcale (initial) (final) Orcale

DGP 1

(50,50,50) 0.19 0.03 0.02 31.40 4.98 4.07 31.59 5.01 4.09

(50,100,50) 0.09 0.02 0.01 19.36 2.39 1.96 19.46 2.40 1.97

(100,100,50) 0.05 0.01 0.00 10.56 1.18 0.99 10.61 1.19 1.00

(50,50,100) 0.10 0.02 0.02 24.56 4.56 4.04 24.66 4.58 4.05

(50,100,100) 0.06 0.01 0.01 14.19 2.16 1.95 14.25 2.17 1.96

(100,100,100) 0.04 0.01 0.00 7.46 1.07 0.99 7.51 1.08 0.99

DGP 2

(50,50,50) 1.49 0.51 0.01 173.87 5.23 1.98 175.36 5.74 1.99

(50,100,50) 0.97 0.36 0.00 144.07 3.03 0.95 145.04 3.39 0.96

(100,100,50) 0.61 0.13 0.00 83.10 1.46 0.49 83.71 1.58 0.49

(50,50,100) 1.52 0.56 0.01 166.83 3.98 1.97 168.35 4.54 1.98

(50,100,100) 1.04 0.39 0.00 136.75 2.06 0.96 137.79 2.45 0.96

(100,100,100) 0.54 0.15 0.00 83.34 1.03 0.50 83.88 1.17 0.50

Note: Numbers in the main entries are the bias, variance, and MSE of the three estimators: the
1st-step estimator, the 2nd-step estimator, and the oracle estimator. The two steps are described in
Algorithm 2.3. The oracle estimator is the infeasible one assuming that the local factor components
are absent and the number of global factors is known.

where c(0)
ijt = λ

(0)′
ij f (0)

t ,c(1)
ijt = λ

(1)′
ij f (1)

it , and c(2)
ijt = λ

(2)′
ij f (2)

jt are three factor com-
ponents, and study their relative contributions. In the above economic growth
example, we can examine whether the country factors or industry factors are impor-
tant in terms of explaining the variations of economic growth of countries. Third,
the underlying unobservable factors may contain useful economic information.
For example, in the international trade application discussed above, f (0)

t can be
interpreted as the global driving force of international trade flows, and f (1)

it and
f (2)
jt are the specific country factors, such as the export price level, the income,

and the multilateral resistance level. Fourth, the estimated factors can be thought
of as diffusion indices and used to improve forecasting accuracy (see, e.g., Stock
and Watson, 2002; Bai and Ng, 2006 Cheng and Hansen, 2015). Fifth, our model
provides foundations for the more general model with observable exogenous
regressors, i.e.,

yijt = β ′
ijxijt +λ

(0)′
ij f (0)

t +λ
(1)′
ij f (1)

it +λ
(2)′
ij f (2)

jt +uijt, i ∈ [N], j ∈ Mi, t ∈ [T], (1.2)
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where xijt is a K × 1 vector of observable regressors and βij is the corresponding
vector of slope coefficients. For example, in the international trade application
above, xijt could be the observed trading costs from country i to country j in year t.
Another example of xijt is the lagged dependent variable, that is, xijt = yij,t−1 in
the dynamic model. This model is often referred to as panel data models with
interactive fixed effects, as we allow the regressor xijt to be correlated with the
unobservable factors. Kapetanios, Serlenga, and Shin (2021) consider model (1.2)
and propose a common correlated effects (CCE) estimation approach to estimate
βij, as in Pesaran (2006).

Despite the advantages of our model discussed above, several limitations
warrant mention. First, like all factor models, ours is fundamentally statistical and
“agnostic” in nature and may not fully capture complex economic relationships
implied by theoretical frameworks. For instance, while we attempt to align our
model with a structural gravity framework in Section S8 of the Supplementary
Material, it cannot fully account for intricate cross-country economic linkages.
Second, our current specification is a pure factor model that excludes observable
variables. This limitation could be addressed through extensions such as Model
(1.2), which incorporates observable variables linearly. Alternatively, one might
allow the factors or their loadings to depend on observable variables (e.g., Fan,
Ke, and Liao, 2016a; Fan, Liao, and Wang, 2016b and Kelly, Pruitt, and Su, 2019).
The optimal approach for integrating observable variables while maintaining
theoretical coherence remains an open question that likely depends on specific
empirical applications.

1.2. Related Literature

There is an enormous literature on the 2D factor models. Omitting the j index,
model (1.1) reduces to yit = λ′

ift +uit, where ft and λi are r×1 vectors of factors and
factor loadings, respectively. There is only one type of factor here. The literature
on 2D factor models has been developing rapidly (see Bai and Wang (2016) for
a detailed review). For the pure factor models, Bai (2003) considers estimation
based on PCA and develops the inference theory by assuming the number of factors
r is known. Various methods have been proposed to determine r (see, e.g., the
information criterion (IC) method of Bai and Ng (2002)), the edge-distribution
method of Onatski (2010), and the eigenvalue ratio (ER) and growth ratio (GR)
methods of Ahn and Horenstein (2013) (2013, (AH) hereafter). For the model with
exogenous regressors, Pesaran (2006) and Chudik and Pesaran (2015) consider
CCE estimation; Bai (2009), Moon and Weidner (2015), Lu and Su (2016), and
Moon and Weidner (2017) study PCA-based Gaussian quasi-maximum likelihood
estimators.

There are a limited number of papers on 3D pure factor modelsFirst, some papers
assume that numbers of global factors (see Dias, Pinheiro, and Rua, 2013; Wang,
2014; Breitung and Eickmeier, 2016;; Ando and Bai, 2017; Choi et al., 2018;
Andreou et al., 2019; Han, 2021; Chen, 2023; Choi, Lin, and Shin, 2023 Gao and
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Tsay, 2023. In all these papers, there is only one local factor component,5 i.e.,

yijt = λ
(0)′
ij f (0)

t +λ
(1)′
ij f (1)

it +uijt, i ∈ [N], j ∈ Mi, t ∈ [T] . (1.3)

This model is often referred to as a multidimensional or multilevel/hierarchical
factor model depending on whether there is a nested relationship between the
two crosssection indices. According to Yang and Schmidt (2021), the concept of
nesting corresponds to the distinction in the literature between a multidimensional
model (not nested) and a multilevel or hierarchical model (nested). For the nested
case, for example, i and j may refer to industries and firms, respectively; any
firm j must belong to certain industry i that may have Mi firms so that

∑N
i=1 Mi

denotes the total number of firms. Even for the model in (1.3), there are certain
limitations of the existing methods. First, some papers assume that numbers of
global factors

(
r(0)

)
and local factors (r(1)

i ) are known (see, e.g., Wang, 2014;
Breitung and Eickmeier, 2016. Choi et al. (2018) use IC to select the number of
local factors (r(1)

i ) assuming that the number of global factors
(
r(0)

)
is known. Dias

et al. (2013) consider IC for both r(0) and r(1)
i , but their method is not practical

when N is large. Choi et al. (2023) develop a novel method to determine both r(0)

and r(1)
i in (1.3) consistently using canonical correlation analysis (CCA). Second,

most of the papers do not provide inference theory for the factors and factor
loadings except Andreou et al. (2019).6 They only establish the consistency of
their estimators, and it is unclear how to conduct inferences. Third, some papers
impose strong assumptions on local factors f (1)

it . For example, Choi et al. (2018) and
Han (2021) assume that the local factors are uncorrelated, i.e., Cov(f (1)

i1,t
,f (1)

i2,t
) = 0

for i1 �= i2, which may not be satisfied in practice. In contrast, Andreou et al.
(2019), Chen (2023), and Choi et al. (2023) allow non-zero correlations in the local
factors. All the methods mentioned above are based on PCA or CCA. Alternatively,
Moench and Ng (2011) and Moench, Ng, and Potter (2013) propose estimation
methods based on the MCMC algorithm for dynamic hierarchical factor models.
As discussed above, multidimensional and hierarchical factor models are special
cases of our model in terms of model specification. Our method can be applied
to (1.3) with little modification if (N,Mi,T) pass to infinity jointly and

∑N
i=1

Mi = o(T2). However, our method is not applicable if one cross-sectional dimen-
sion is fixed, say, in a dataset with a small number of industries but a large number
of firms.

There is a rapidly growing literature on 3D panel data models with exogenous
regressors. Matyas (2017) provides an excellent review on both econometric

5Superficially, in terms of model specification, this model is a special case of ours. Nevertheless, the detailed
conditions are different. In particular, we need all three dimensions, N,M, and T to pass to infinity in order to identify
all types of factors and loadings. In the model with only one type of local factors, often one cross-sectional dimension
is fixed.
6Andreou et al. (2019) consider model (1.3) with N = 2 and they consider both estimation and inference theory. In
addition, there are inference theories for other types of 3D factor models. For example, Freeman (2022) and Babii,
Ghysels, and Pan (2024) consider inference for tensor factor models which we review below.
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theories and empirical applications. Most of the research on 3D panel data models
focuses on linear models with different specifications of fixed effects. Lu, Miao,
and Su (2021) consider seven commonly used specifications of fixed effects
and provide a cross-validation method to determine the correct specifications.
The most general 3D linear fixed effect model considered in Lu et al. (2021) is
yijt = β ′xijt +γij +αit +α∗

jt +uijt, where xijt is a vector of observable regressors and
β is the corresponding slope coefficients, γij,αit, and α∗

jt are fixed effects. The fixed
effect specification in this model can be thought of as a special case of our model
(1.1). Chiang, Rodrigue, and Sasaki (2023) consider post-selection inferences for
a subset of the models studied in Lu et al. (2021). Kapetanios et al. (2021), Feng
et al. (2024), and Jin et al.2025 consider panels with exogenous regressors and
factor structures.

In the recent literature, there are studies on 3D panel data model with tensor
factor structures or matrix-valued time series. There are two types of tensor factor
models: the canonical polyadic (CP) tensor factor model (see, e.g., Freeman, 2022;
Babii et al., 2024; Chen, Han, and Yu, 2024 Han et al., 2024) and the Tucker tensor
factor model (see, e.g., Wang, Liu, and Chen, 2019; Chen, Tsay, and Chen, 2020;
Chen, Yang, and Zhang, 2022; Lettau, 2022; Yu et al., 2022 He et al., 2024). The
CP model can be written as

yijt =
∑r

�=1
ϕi�ψj�ft� +uijt, (1.4)

where ϕi�,ψj�, and ft� are all scalars and r is generally assumed to be fixed. So in this
model, there are r global factors {ft�}r

�=1 with factor loadings {λij,� ≡ ϕi�ψj�}r
�=1.

The Tucker model can be written as

yijt = 	′
i ft
j +uijt,

where the factors ft is an r×R matrix, 	i and 
j are r×1 and R×1 factor loadings,
respectively. Note that CP model is a special case of Tucker model if we impose
r = R and that ft is a diagonal matrix. See, e.g., Babii et al., 2024 and Han et al.,
2024 who discuss the differences between these two tensor factor models. There
are three main differences between these two types of tensor models and ours.
First, they only consider global factors in our framework, while we allow both
global factors and two types of local factors. Second, for the global factor loadings,
they impose a certain multiplicative form, while we do not impose any restrictions.
Third, the number of parameters in the tensor models is of order O(N + M + T)

while it is O(NM+NT +MT) in our model. In general, the tensor factor models are
more parsimonious than ours. There is a trade-off between model generality and
parsimony, and which model is more appropriate depends on specific applications.
In Section S1.1 of the Supplementary Material, we provide more discussions on
the model specification.
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1.3. Contributions of the Article

To the best of our knowledge, this article is the first systematic study of the
general 3D factor model in (1.1), which has many potential applications. We make
both methodological and empirical contributions, which we discuss separately
below.

On the methodological side, we develop theories to determine the number of
factors, to estimate the factors and loadings, and to make inferences on them. First,
we show how the global and local factors can be identified and extend (AH)’s
ER or GR statistics to determine the number of global factors and local factors
sequentially. Intuitively, for the complicated model in (1.1), the singular values
corresponding to the global factors are larger than those from the local factors and
error terms in order of magnitude so that the global factors are well separated from
the local factors and error terms. See Remark 1 in Section 2.1 for the discussion
and the proofs of Lemma S4.1 in the Supplementary Material and Theorem 3.1 in
the for details. Once the global factor component is identified, it can be treated as
known, allowing for the identification of the two types of local factors, similar to
the standard 2D case. We establish the consistency of the ER and GR estimators for
the number of global factors, as well as the uniform consistency of the estimators
for the number of local factors, a result that requires a more intricate analysis as
the set of the total number of local factors in {r(1)

i }N
i=1 and {r(2)

j }M
j=1 increases with

the sample size.
Second, we provide estimators for all the factors and loadings and show their

consistency up to a certain rotation matrices. Our estimation method is a PCA-
based two-step procedure. In the first step, we disregard the presence of local
factors and consistently estimate the global factor component at a slow rate.
Subsequently, by subtracting the estimated global factor component, we obtain
consistent estimators of the two local factor components. In the second step, we re-
estimate the global and local factors by regressing yijt on all the loading estimators
from the first step, after which we similarly update the loading estimators. We show
that the mean squared error (MSE) rate for the first-step global factor estimator
is given by Op(N−1 + M−1 + T−2) whereas that for the second-step global factor
estimator is improved to Op((NM)−1 + T−2). See the proofs of Lemma S4.1(i)
in the Supplementary Material and Theorem 4.1(i) in the Third, we develop the
asymptotic normal and inference theories for our estimators in the presence of
both cross-sectional and serial dependence in the error terms. The results are
substantially different from those in the 2D case. For example, there are two main
differences in the asymptotic properties of the estimator of the global factors:
(1) we now have an O( 1

T ) bias term that is non-vanishing asymptotically unless√
NM
T = o(1), and (2) the estimation of the local factors may or may not have

asymptotically nonnegligible effect on the estimator of the global factors, and in
some extreme cases, the second-step estimator of the global factor enjoys the oracle
property. See Remark 9 for details. In contrast, due to the fact that the global factors
can be estimated at a fast rate, their estimation does not have asymptotic effect on
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the estimation of the two types of local factors. We also propose a method to correct
the bias in the global factor estimators and conduct valid inference based on the
asymptotic normality. Given the complicated structure of the model, the theoretical
development is obviously challenging.

On the empirical side, we apply our methods to the international trade flow
data, where yijt is the growth of the trade flow from source country i to destination
country j in year t. We find that there is one global factor and most local factor
numbers are 0 or 1. The global factor, source country factor, and destination
country factor contribute to 14.4%, 21.0%, and 28.1% of the total sample variance,
respectively. The estimated global factor is closely related to the lagged world
economic growth and the world openness index.

1.4. Roadmap

The rest of the article is structured as follows. In Section 2, we discuss the
identification of the model and propose the methods for determining the number
of factors and estimating factors and factor loadings. In Section 3, we study the
asymptotic properties of the estimators of the number of factors. In Section 4,
we show the asymptotic distribution of the estimators of the factors and factor
loadings. Section 5 reports Monte Carlo simulation results. In Section 6, we
apply our method to study international trade flow data. Section 7 concludes.
Section S1 of the Supplementary Material provides more discussions for the model
specification and some additional notations. Sections S2–S7 of the Supplementary
Material contain the proofs of the main results in the article. Section S8 of the
Supplementary Material discusses a simple gravity model with heterogeneous
preferences. Sections S9 and S10 of the Supplementary Material contain some
additional simulation and empirical results, respectively.

Notation. By symmetry, we assume that for each j,i ∈ Nj ⊂ [N], where∣∣Nj

∣∣ = Nj,N ≡ max
{
Nj,j ∈ [M]

}
and ≡ signifies a definitional relationship.

Let N̄ = 1
M

∑M
j=1 Nj and M̄ = 1

N

∑N
i=1 Mi. For balanced panels, Mi = M̄ =

M,Nj = N̄ = N. Let
∑

i,j,t = ∑N
i=1

∑
j∈Mi

∑T
t=1 = ∑M

j=1

∑
i∈Nj

∑T
t=1 . Define∑

i,j ,
∑

i,t ,
∑

j,t ,
∑

i ,
∑

j, and
∑

t analogously. Let maxi = max1≤i≤N and
maxj = max1≤j≤M . Define mini and minj analogously. Let Ia denote an a × a
identity matrix. For a real m × n matrix A = (aij), we use ‖A‖ and ‖A‖sp to
denote its Frobenius norm and spectral norm, respectively: ||A||sp ≡ μ1(A), and
||A|| ≡ (

∑m
i=1

∑n
j=1 a2

ij)
1/2, where μk(A) denotes the kth largest singular value

of A for k ≤ m ∧ n ≡ min(m,n) and ≡ signifies a definitional relationship.
For a real symmetric matrix A, we use A ≥ 0 and A > 0 to denote that
A is positive semidefinite (p.s.d.) and positive definite, respectively. We use
ψk (A) to denote the kth largest eigenvalue of a symmetric p.s.d. matrix A. For
two numbers a and b, let a ∧ b = min(a,b) and a ∨ b = max(a,b). We use
bdiag(A1,...,AN) to denote a block diagonal matrix with diagonal blocks given
by A1,...,AN .
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2. IDENTIFICATION AND ESTIMATION

2.1. Identification

Throughout, we assume that the factor loadings are nonstochastic while the factors
are random. To identify the factors and factor loadings, we try to impose as minimal
conditions as possible on {f (0)

t },{f (1)
it }, and {f (2)

jt }, as stated in Assumption I.

Assumption I.

(i) E[f (1)
it ] = 0 and E[f (2)

jt ] = 0 for all i,j and t;
(ii) E[f (0)

t f (1)′
it ] = 0 and E[f (0)

t f (2)′
jt ] = 0 for all i, j and t, and

maxt{ 1
N

∑
i,i1

||E(f (1)
it f (1)′

i1t )||+ 1
M

∑
j,j1

||E(f (2)
jt f (2)′

j1t )||} ≤ C < ∞;
(iii)E[f (0)

t uijt] = 0,E[f (1)
it uijt] = 0, and E[f (2)

jt uijt] = 0 for all i, j and t;
(iv) {(f (0)

t ,f (1)
it ,f (2)

jt ),t ≥ 1} is weakly stationary, E[f (0)
t f (0)′

t ] > 0,E[f (1)
it f (1)′

it ] > 0 and

E[f (2)
jt f (2)′

jt ] > 0 for all i, j and t;
(v) E[f (1)

it f (2)′
jt ] = 0 for all (i, j) .

Assumption I(i) assumes that the local factors have mean zero while leaving the
mean of the global factors unspecified. If either E(f (1)

it ) or E(f (2)
jt ) is nonzero but

constant over time, we can recenter the local factors around their expectations to
achieve zero mean. See Remark 2, which follows. The uncorrelation assumption
between the global and local factors in Assumption I(ii) can be thought of as a
normalization, as we discuss in Remark 3, which follows. A similar assumption
has been made in the literature on multi-level factor models (see Wang, 2014;
Breitung and Eickmeier 2016; Choi et al., 2018; Han, 2021, among others). In
particular, Wang (2014) studies the identification of a two-level factor model
where the two sets of factors are labeled as global and sector factors. He finds
that the uncorrelation between the global and sector factors is necessary for the
separate identification of the two sets of factors. In addition, the uncorrelation
assumption makes it possible to conduct a variance decomposition in the spirit
of ANOVA. This is important for the determination of the relative importance
of the global and local factors in explaining the underlying response variable.
Note that we do not require that f (1)

i1t and f (1)
i2t with i1 �= i2 (or f (2)

j1t and f (2)
j2t with

j1 �= j2) be uncorrelated, which significantly relaxes the uncorrelation condition
among local factors in Choi et al. (2018) and Han (2021). But as reflected in the
second part of Assumption I(ii), we do require weak cross-sectional dependence
among the local factors in order to separate the local factors from the global
ones. In the presence of strong cross-sectional dependence in the local factors, it
becomes difficult to separate the local factors from the global ones. For example,
if f (1)

it = g1t1{i ∈ G1}+g2t1{i ∈ G2}, where G1 and G2 form a partition of [N],g1t

and g2t have finite second moments, and 1{·} is the usual indicator function, then
it is easy to see 1

N

∑
i,i1

||E(f (1)
it f (1)′

i1t )|| is generally divergent to infinity at rate
N so that the second part of Assumption I(ii) is violated. In this extreme case,
{(g1t,g2t)} can be treated as a part of the global factors with sparse loadings.
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Assumption I(iii) assumes orthogonality between the factors and the idiosyncratic
error terms. Assumption I(iv) assumes weak stationarity and positive definiteness
of certain matrices. Assumption I(v) requires the two types of local factors to be
uncorrelated. See Remark 4 for further discussion.

We can rewrite model (1.1) as

yijt = λ
(0)′
ij f (0)

t +u(0)
ijt , where u(0)

ijt = λ
(1)′
ij f (1)

it +λ
(2)′
ij f (2)

jt +uijt, (2.1)

u(0)
ijt = λ

(1)′
ij f (1)

it +u(1)
ijt , where u(1)

ijt = λ
(2)′
ij f (2)

jt +uijt, (2.2)

u(0)
ijt = λ

(2)′
ij f (2)

jt +u(2)
ijt , where u(2)

ijt = λ
(1)′
ij f (1)

it +uijt. (2.3)

In matrix form, we can write

Y = F(0)�(0)′ +U(0), (2.4)

U(0)
i = F(1)

i �
(1)′
i +U(1)

i for i ∈ [N], (2.5)

U(0)
·j = F(2)

j �
(2)′
·j +U(2)

·j for j ∈ [M], (2.6)

where

yij
T×1

= (yij1,...,yijT)′, Y
T×NM̄

= {yij}i∈[N], j∈Mi,

F(0)

T×r(0)
= (f (0)

1 ,...,f (0)
T )′, �(0)

NM̄×r(0)
= {λ(0)

ij }i∈[N], j∈Mi,

u(0)
ij

T×1

= (u(0)
ij1 ,...,u(0)

ijT )′,U(0)
i

T×Mi

= {u(0)
ij }j∈Mi, t∈[T],U

(0)
·j

T×Nj

= {u(0)
ij }i∈Nj, t∈[T],

F(1)
i

T×r(1)
i

= (f (1)
i1 ,...,f (1)

iT )′, �
(1)
i

Mi×r(1)
i

= {λ(1)
ij }j∈Mi,

F(2)
j

T×r(2)
j

= (f (2)
j1 ,,...,f (2)

jT )′, �
(2)
·j

Nj×r(2)
j

= {λ(2)
ij }i∈Nj,

and the definitions of U(0),U(1)
i , and U(2)

·j are analogous to those of Y,U(0)
i , and

U(0)
·j , respectively. Below, we will write Y = {

yijt
}
, �(0) = {λ(0)

ij },F(0) = {
f 0
t

}
,F(1)

i =
{f (1)

it },�(1)
i = {λ(1)

ij }, etc., Similar notations apply to the estimators.

1. Identification of r(0), f (0)
t , and λ

(0)
ij . We identify the global factors and global fac-

tor loadings based on model (2.1). Note that we can treat u(0)
ijt as a new error term

because c(1)
ijt + c(2)

ijt (= λ
(1)′
ij f (1)

it + λ
(2)′
ij f (2)

jt ) is uncorrelated with c(0)
ijt (= λ

(0)′
ij f (0)

t )

and the cross-sectional dependence in c(1)
ijt + c(2)

ijt is much weaker than that in

c(0)
ijt under Assumption I(ii). If we stack the (i,j) indices to a single index as in

(2.4), then we can view model (2.1) or (2.4) as a standard 2D factor model and
apply the PCA method to estimate it as in Bai (2003). We can determine r(0) by
maximizing the ratio of two adjacent eigenvalues of YY ′ when the eigenvalues
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are ordered in descending order, as suggested by (AH). To identify F(0) and
�(0), we need to impose certain normalization conditions, as discussed in Bai
(2003). Following Bai (2003), we impose the normalization condition that
F(0)′F(0)/T = Ir(0) and �(0)′�(0) is an r(0) × r(0) diagonal matrix with diagonal
elements stacked in descending order along its main diagonal line. Then we can
identify r(0),λ

(0)′
ij f (0)

t , and a rotated version of λ
(0)
ij and f (0)

t .

2. Identification of r(1)
i and(f (1)

it ,λ
(1)
ij ). After identifying λ

(0)′
ij f (0)

t , we can identify

u(0)
ijt ≡ yijt −λ

(0)′
ij f (0)

t . Then, we can identify r(1)
i and (f (1)

it ,λ
(1)
ij ) for each i based

on model (2.2) or (2.5) by treating u(0)
ijt as the response variable and noting that

u(1)
ijt and f (1)

it are uncorrelated. For each i, we impose the normalization condition

that F(1)′
i F(1)

i /T = I
r(1)
i

and �
(1)′
i �

(1)
i is an r(1)

i × r(1)
i diagonal matrix.

3. Identification of r(2)
j and (f (2)

jt ,λ
(2)
ij ). By exchanging the roles of the i and j

indices in Step 2, we can identify r(2)
j and a rotated version of (f (2)

jt ,λ
(2)
ij ).

Remark 1. Assumption I only specifies some essential conditions for the
separation between the global and local factors, which, in conjunction with
Assumptions 1–3, which follows, are sufficient to identify the global factors. The
singular values corresponding to global and local factors diverge at different rates,
which is the key to achieve the separation between the global and two-types of local
factors. Define the T ×NM̄ matrices U = {uijt} and C(l) = {c(l)

ijt } for l = 0,1,2. Then,
Y = C(0) +C(1) +C(2) +U. Intuitively, we can show that under the key conditions
in Assumption I and Assumptions 1–3,

1

(NM̄T)1/2

∥∥C(0)
∥∥

sp = �(1),

1

(NM̄T)1/2

∥∥C(1)
∥∥

sp = �
(
N−1/2 +T−1/2),

1

(NM̄T)1/2

∥∥C(2)
∥∥

sp = �
(
M−1/2 +T−1/2

)
,

1

(NM̄T)1/2
‖U‖sp = �

(
T−1/2

)
,

where �(·) denotes the exact probability order. The smaller order of
∥∥C(1)

∥∥
sp

(similarly
∥∥C(2)

∥∥
sp) than

∥∥C(0)
∥∥

sp is mainly due to two reasons: (1) E(f (1)
it ) = 0,

and (2) only weak cross-sectional correlations are allowed in {f (1)
it }i∈[N] such that

max
t

1

N

N∑
i=1

N∑
i1=1

∥∥∥E(f (1)
it f (1)′

i1t )

∥∥∥ ≤ C < ∞. (2.7)
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See Assumption I(i) and (ii). In contrast, the global factor f (0)
t may or may not have

zero mean, and it certainly does not satisfy a condition like (2.7).7 This explains
why we can separate the local factors from the global factors. Similarly, we can
separate the effect of U from the global factors. This explains why we can rely
on (2.4) to identify the global factor component C(0). For details, see the proof of
Lemma S2.1 in the Supplementary Material. Given the identification of C(0), we
can rely on (2.5) and (2.6) to identify the two types of local factors as in the 2D
case.

Remark 2. Assumption I(i) imposes that the local factors have zero mean,
which can be thought of as a normalization condition, as we argue below. Consider
two cases. First, the original global factors do not contain a constant term. If either
E[f (1)

it ] or E[f (2)
jt ] is nonzero but does not change over time, we can rewrite model

(1.1) as

yijt = λ
(0∗)′
ij f (0∗)

t +λ
(1)′
ij f (1∗)

it +λ
(2)′
ij f (2∗)

jt +uijt,

where λ
(0∗)
ij = (λ

(0)′
ij ,λ

(1)′
ij E[f (1)

it ] + λ
(2)′
ij E[f (2)

jt ])′,f (0∗)
t = (f (0)′

t ,1)′,f (1∗)
it = f (1)

it −
E[f (1)

it ], and f (2∗)
jt = f (2)

jt −E[f (2)
jt ]. By construction, the new local factors f (1∗)

it and

f (2∗)
jt have zero mean, and the new global factor f (0∗)

t is obtained by augmenting the

original global factor f (0)
t with the constant 1. Similarly, consider the second case

where the original global factors already contain a constant such that f (0)
t = [1,f(0)′

t ]′
with the loadings [λ(00)

ij ,λ
(01)′
ij ]′. Then, we can write

yijt =
[
λ

(00∗)
ij ,λ

(01)′
ij

]
f (0)′
t +λ

(1)′
ij f (1∗)

it +λ
(2)′
ij f (2∗)

jt +uijt,

where λ
(00∗)
ij = λ

(00)
ij +λ

(1)′
ij E[f (1)

it ] +λ
(2)′
ij E[f (2)

jt ]. Again, the new local factors f (1∗)
it

and f (2∗)
jt have zero mean.

Remark 3. The uncorrelation assumption in Assumption I(ii), is often assumed
in multidimensional and multilevel/hierarchical factor models (see, e.g., Choi
et al. (2018, Assump. 1(ii)) Han (2021, Assump. 1(a))). This assumption can
also be thought of as a normalization, as it can be satisfied by linear projections
and redefining factors and factor loadings. Specifically, suppose that the original
factors f (0)

t ,f (1)
it , and f (2)

jt do not satisfy Assumption I(ii) such that E[f (0)
t f (1)′

it ] �= 0

and E[f (0)
t f (2)′

jt ] �= 0. Then, by linear projections, we can find δ
(1)
i (an r(1)

i × r(0)

matrix) and δ
(2)
j (an r(2)

j × r(0) matrix) such that

f (1)
it = δ

(1)
i f (0)

t + e(1)
it for i ∈ [N], f (2)

jt = δ
(2)
j f (0)

t + e(2)
jt for j ∈ [M],

E[f (0)
t e(1)′

it ] = 0, and E[f (0)
t e(2)′

jt ] = 0. Then, model (1.1) implies that

yijt = (λ
(0)
ij + δ

(1)′
i λ

(1)
ij + δ

(2)′
j λ

(2)
ij )′f (0)

t +λ
(1)′
ij e(1)

it +λ
(2)′
ij e(2)

jt +uijt.

7If one wrote f (0)
t as f (0)

it , then f (0)
it ’s would be fully dependent across i.
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Then, we can redefine f (0)
t ,e(1)

it and e(2)
jt as new factors and their coefficients as

factor loadings. By construction, the new factors satisfy Assumption I(ii). Note that
r(0),r(1)

i , and r(2)
j are unchanged through this normalization. So the identification

of r(0),r(1)
i , and r(2)

j does not rely on Assumption I(ii).

Remark 4. Assumption I(v) is not innocuous and it can be relaxed at the cost
of much more lengthy arguments. In particular, our Algorithms 2.2 and 2.3 which
follows can still be applied even when the two types of local factors are correlated.
However, to show the asymptotic results, we need to introduce rather complicated
notations and argue with projections of one type of local factors onto the other. In
an earlier version of this article, we showed the detailed results. Intuitively, suppose
that Assumption I(v) is not satisfied, we could consider the linear projections for
f (2)
jt and f (1)

it under Assumption I(iv):

f (2)
jt = �

(1)′
ij f (1)

it + e(1)
ijt and f (1)

it = �
(2)′
ij f (2)

jt + e(2)
ijt , (2.8)

where �
(1)
ij = [E(f (1)

it f (1)′
it )]−1

E(f (1)
it f (2)′

jt ),�
(2)
ij = [E(f (2)

jt f (2)′
jt )]−1

E(f (2)
jt f (1)′

it ), and

e(1)
ijt and e(2)

ijt are the least squares projection errors. By construction, E[f (1)
it e(1)′

ijt ] = 0

and E[f (2)
jt e(2)′

ijt ] = 0. Substituting (2.8) into the error terms in (2.2) and (2.3),
respectively, yields

u(0)
ijt =λ

(1�)′
ij f (1)

it +u(1�)
ijt , and (2.9)

u(0)
ijt =λ

(2�)′
ij f (2)

jt +u(2�)
ijt , (2.10)

where λ
(1�)
ij = λ

(1)
ij + �

(1)
ij λ

(2)
ij ,λ

(2�)
ij = λ

(2)
ij + �

(2)
ij λ

(1)
ij ,u(1�)

ijt = λ
(2)′
ij e(1)

ijt + uijt, and

u(2�)
ijt = λ

(1)′
ij e(2)

ijt +uijt. Then by construction, u(1�)
ijt and f (1)

it are uncorrelated and u(2�)
ijt

and f (2)
jt are uncorrelated. Comparing models (2.9) and (2.10) with models (2.2) and

( 2.3), we see that local factors f (1)
it and f (2)

jt are not affected. In other words, f (1)
it

and f (2)
jt can still be consistently estimated in Steps 1.2 and 1.3 of Algorithm 2.3,

which follows, respectively. After obtaining the consistent estimators of f (1)
it

and f (2)
jt , we can consistently estimate the factor loadings λ

(1)
ij and λ

(2)
ij in Step

1.4 of Algorithm 2.3, which follows. Again, for ease of exposition, we impose
Assumption I(v) here.

2.2. Determination of the Number of Global and Local Factors

Our method to determine the number of factors is a two-step method. The first step
obtains the initial consistent estimators based on the above three-step identification
strategy, and the second step updates the estimators. In theory, we show that the
first-step estimators and second-step estimators are both consistent. However, in
simulations, we find that the second step can improve the accuracy of the estimators
in terms of the probability of determining the correct number of factors.
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Here, we propose to extend (AH)’s method to determine r(0),r(1)
i , and r(2)

j and
remark that other methods can also be applied. Pick a reasonably large integer rmax.
We first introduce (AH)’s ER and GR estimators for a generic 2D data matrix.

Algorithm 2.1. ER and GR estimators of the number of factors.
Consider a generic T ×N data matrix Y . Let μ1,...,μrmax be the first rmax

largest eigenvalues of YY ′
/(NT ) (a T ×T matrix) in descending order. Define

the “zero-th” eigenvalue as μ0 = ∑min(N ,T )
k=1 μk/ ln(min(N ,T )) . Then the ER and

GR estimators of factor numbers are defined respectively as

rER = arg max
0≤k≤rmax

μk

μk+1
and rGR = arg max

0≤k≤rmax

ln
(
1+μ∗

k

)
ln

(
1+μ∗

k+1

),
where μ∗

k = μk
V(k) and V (k) = ∑min(N ,T )

j=k+1 μj.

It is well known that the GR estimator performs slightly better than the ER
estimator as it uses the information on all eigenvalues.

Algorithm 2.2. Determination of the numbers of global and local factors.
Step 1: Obtain the initial consistent estimators of {r(0),r(1)

i ,r(1)
j }.

1. Apply Algorithm 2.1 to Y = {
yijt

}
(a T × NM̄ matrix) based on (2.4) to obtain

r̃(0), the ER/GR estimator of r(0). The PCA estimator F̃(0) = (f̃ (0)
1 ,..., f̃ (0)

T )′ of F(0)

is obtained as
√

T times the normalized eigenvectors corresponding to the r̃(0)

largest eigenvalues of YY ′. Let �̃(0) = Y ′F̃(0)/T = {λ̃(0)
ij }i∈[N], j∈Mi . Let ũ(0)

ijt ≡
yijt − λ̃

(0)′
ij f̃ (0)

t ,ũ(0)
ij = (ũ(0)

ij1 ,...,ũ(0)
ijT )′, Ũ(0)

i = {ũ(0)
ij }j∈Mi, and Ũ(0)

·j = {ũ(0)
ij }i∈Nj .

2. For each i, apply Algorithm 2.1 and PCA to Ũ(0)
i based on (2.5). Let r̃(1)

i and
(F̃(1)′

i ,�̃
(1)′
i ) be the ER/GR estimator of r(1)

i and PCA estimators of (F(1)′
i ,�

(1)′
i ),

respectively, where F̃(1)
i = (f̃ (1)

i1 ,..., f̃ (1)
iT )′ and �̃

(1)
i = (λ̃

(1)
i1 ,...,λ̃(1)

iMi
)′.

3. For each j, apply Algorithm 2.1 and PCA to Ũ(0)
·j based on (2.6). Let r̃(2)

j and

(F̃(2)′
j ,�̃

(2)′
·j ) be the ER/GR estimator of r(2)

j and PCA estimators of (F(2)′
j ,�

(2)′
·j ),

respectively, where F̃(2)
j = (f̃ (2)

j1 ,..., f̃ (2)
jT )′ and �

(2)
·j = (λ̃

(2)
1j ,...,λ̃(2)

Njj
)′. Let ỹ(0)

ijt ≡
yijt − λ̃

(1)′
ij f̃ (1)

it − λ̃
(2)′
ij f̃ (2)

jt .

Step 2 Obtain the updated estimators of {r(0),r(1)
i ,r(1)

j }.
1. Apply the Algorithm 2.1 and PCA to Ỹ(0) = {ỹ(0)

ijt } (a T ×NM̄ matrix) to obtain

the updated estimator (r̂(0)′,F̂(0)′,�̂(0)′) of (r(0),F(0)′,�(0)′), where F̂(0) = {f̂ (0)
t }

and �̂(0) = {λ̂(0)
ij }. Let ỹ(1)

ijt ≡ yijt − λ̂
(0)′
ij f̂ (0)

t − λ̃
(2)′
ij f̃ (2)

jt and ỹ(2)
ijt ≡ yijt − λ̂

(0)′
ij f̂ (0)

t −
λ̃

(1)′
ij f̃ (1)

it .

2. For each i, apply Algorithm 2.1 to Ỹ(1)
i = {ỹ(1)

ijt } (a T ×Mi matrix) to obtain the

updated estimator r̂(1)
i of r(1)

i .
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3. For each j, apply Algorithm 2.1 to Ỹ(2)
j = {ỹ(2)

ijt } (a T ×Nj matrix) to obtain the

updated estimator r̂(2)
j of r(2)

j .

Our final estimators of (r(0),r(1)
i ,r(2)

j ) are (r̂(0), r̂(1)
i , r̂(2)

j ), respectively. Note
that in Algorithm 2.2, there is no tuning parameter involved and users do not
need to choose anything other than rmax. The requirement on rmax is that rmax ≥
max(r(0), maxi r

(1)
i , maxj r

(2)
j ) and it be fixed. For the practical choice of rmax, we

want to avoid a too small number and recommend rmax = 8 following (AH) and
Bai and Ng (2002).

2.3. Estimation of the Global and Local Factors and Factor Loadings

After determining the number of factors, we apply Algorithm 2.3, which follows
to estimate all factors and factor loadings. Here, we propose a two-step approach to
estimate the factors and factor loadings for any given (r(0),r(1)

i ,r(2)
j ) and remark that

the factor numbers can be replaced by their consistent estimates, say, (r̂(0), r̂(1)
i , r̂(2)

j )

obtained in Algorithm 2.2.

Algorithm 2.3. Estimation of factors and factor loadings for given (r(0),r(1)
i ,r(2)

j ).
Step 1: Obtain the initial consistent estimators of the factors and factor

loadings.

1. Apply the PCA to Y = {
yijt

}
to obtain the initial estimators F̃(0) = {f̃ (0)

t } and

�̃(0) = {λ̃(0)
ij } of F(0) and �(0) as in Step 1(1) in Algorithm 2.2. Define ũ(0)

ijt ,Ũ(0)
i ,

and Ũ(0)
·j as in Algorithm 2.2.

2. For each i, apply PCA to Ũ(0)
i to obtain the PCA estimator F̃(1)

i = {f̃ (1)
it } of F(1)

i ,

and run the OLS regression of F̃(1)
i on F̃(0) to obtain the residual �F(1)

i = {�f (1)
it }.

3. For each j, apply PCA to Ũ(0)
·j to obtain the PCA estimator F̃(2)

j = {f̃ (2)
jt } of F(2)

j ,

and run the OLS regression of F̃(2)
j on F̃(0) to obtain the residual �F(2)

j = {�f (1)
jt }.8

4. For each (i,j) pair, run the OLS regression of yij on �Fij = (F̃(0), �F(1)
i , �F(2)

j ) to

obtain the estimator �λij = (�λ(0)′
ij ,�λ(1)′

ij ,�λ(2)′
ij )′ of λij = (λ

(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′.

Step 2: Obtain the more efficient estimators of the factors and factor loadings

1. For each t, run the OLS regression of Y··t = {yijt} (an NM̄ ×1 vector) on {�λij} to
obtain the updated estimator f̆t = (f̆ (0)′

t ,F̆(1)′
·t ,F̆(2)′

·t )′ of ft = (f (0)′
t ,F(1)′

·t ,F(2)′
·t )′,

where F(1)
·t = (f (1)′

1t ,...,f (1)′
Nt )′,F(2)

·t = (f (2)′
1t ,...,f (2)′

Mt )′,F̆(1)
·t = (f̆ (1)′

1t ,..., f̆ (1)′
Nt )′ and

F̆(2)
·t = (f̆ (2)′

1t ,..., f̆ (2)′
Mt )′. Let F̆(0) = {f̆ (0)

t },F̆(1)
i = {f̆ (1)

it }, and F̆(2)
j = {f̆ (2)

jt }.

8The OLS regressions in Step 1(2) (resp. Step 1(3)) ensure that �F(1)
i (resp. �F(2)

j ) and F̃(0) are orthogonal in finite
samples.
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2. For each (i,j) pair, run the OLS regression of yij on F̆ij = (F̆(0),F̆(1)
i ,F̆(2)

j ) to

obtain the estimator λ̆ij = (λ̆
(0)′
ij ,λ̆

(1)′
ij ,λ̆

(2)′
ij )′ of λij.

Our final estimators of (f (0)′
t ,f (1)′

it ,f (2)′
jt )′ and (λ

(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′ are (f̆ (0)′

t , f̆ (1)′
it , f̆ (2)′

jt )′

and (λ̆
(0)′
ij ,λ̆

(1)′
ij ,λ̆

(2)′
ij )′, respectively. Note that there is no tuning parameter involved

in Algorithm 2.3. To improve the finite sample performance, we can iterate Steps
2.1 and 2.2 in Algorithm 2.3, by updating the estimators of factors and loadings.

Remark 5. The first step in Algorithm 2.3, basically follows the identification
strategy. We can show that the first-step estimators are consistent. The purpose of
the second step is to improve the estimation efficiency. To see this, for example,
the first-step estimation of the global factor is based on

yijt = λ
(0)′
ij f (0)

t +u(0)
ijt , where u(0)

ijt = λ
(1)′
ij f (1)

it +λ
(2)′
ij f (2)

jt +uijt, (2.11)

while the second-step estimation is based on

yijt = λ
(0)′
ij f (0)

t +λ
(1)′
ij f (1)

it +λ
(2)′
ij f (2)

jt +uijt, (2.12)

where (λ
(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′ are estimated. Since uijt has a smaller variance than

u(0)
ijt under Assumption I(iii), the estimator of the global factor based on (2.12)

is asymptotically more efficient than that based on ( 2.11). The local factor
components in u(0)

ijt create strong cross-sectional dependence and thus, slow down

the convergence of the estimator of f (0)
t in general. In fact, our theory suggests

that the first-step estimator of the global factor has a slower convergence rate than
the second-step estimator except for some special cases. Even in the special case
where the first- and second-step estimators have the same convergence rate, the
second-step estimator usually has a smaller variance. In our simulations, we find
that the second-step estimator of the global factor has a much smaller MSE than
the first-step one.

Remark 6. The specification of our model (1.1) is quite general and includes
many interesting special cases. Model (1.3) discussed above is one example.
Another example is

yijt = λ
(0)′
ij f (0)

t +λ
(1)′
j f (1)

it +λ
(2)′
i f (2)

jt +uijt,

where the local factor loadings only depend on one cross-sectional dimension.
Another example is that we can further impose a factor structure on the factor
loadings. For notational simplicity, we assume that r(0) = r(1)

i = r(2)
j = 1. Then, the

model can be written as

yijt = (λ
(0)′
i· λ

(0)
·j ) f (0)

t + (λ
(1)′
i· λ

(1)
·j ) f (1)

it + (λ
(2)′
i· λ

(2)
·j ) f (2)

jt +uijt, (2.13)

where λ
(0)
i· ,λ

(0)
·j ,λ

(1)
i· ,λ

(1)
·j ,λ

(2)
i· , and λ

(2)
·j are the factor loadings. Our estimation

procedure can be easily modified to incorporate the restrictions in these special
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cases. For example, to estimate model (2.13), we can first apply our method and
then apply PCA to the estimated factor loadings.

Remark 7. One limitation of our model, and factor models in general, is that
we can only identify the factor and factor loadings up to a rotation matrix. In this
article, we impose the standard normalization (F′F/T is an identity matrix and
�′� is a diagonal matrix where F and � denote the factor matrix and the factor
loading matrix, respectively), as we discuss the identification part in Section 2.1.
Consequently, we can only identify a specific linear combination of the factors
and their loadings. Even with normalization, the sign of both the factors and
loadings remains indeterminate. To resolve this ambiguity, we rely on empirical
context and subjective judgment. In our application, for example, we determine
the sign of the estimated global factor to align with historical global recessions, as
illustrated in Figure 2. Specifically, we assign the sign such that the global factor
exhibits lower values during recession periods. This approach is economically
intuitive given that our dependent variable measures export growth. As Bai and Ng
(2013) discuss, practitioners may alternatively consider some other normalization
conditions, though these require careful implementation.

3. ASYMPTOTIC THEORY: DETERMINATION OF r(0),r(1)
i , AND r(2)

j

In this section, we study the asymptotic properties of the estimators of r(0),r(1)
i and

r(2)
j . We first study the consistency of the first-step estimators r̃(0), r̃(1)

i , and r̃(2)
j in

Algorithm 2.2, and then study that of the second-step estimators r̂(0), r̂(1)
i , and r̂(2)

j .

3.1. Consistency of r̃(0), r̃(1)
i and r̃(2)

j

To proceed, we define some notations. Let m = min(N,M,T),
m̄ = max(N,M,T),R(1) = ∑N

i=1 r(1)
i , and R(2) = ∑M

j=1 r(2)
j . Let F(1) = (F(1)

1 ,...,F(1)
N )

and F(2) = (F(2)
1 ,...,F(2)

M ), which are T × R(1) and T × R(2) matrices, respectively.
Let Uij =

(
uij1,...,uijT

)′
and Ui = {Uij}j∈Mi for i ∈ [N]. Note that U = (U1,...,UN) .

Analogously, we can define U† = (U·1,...,U·M), where U·j = {Uij}i∈Nj for j ∈ [M].
Note that U = U†S, where S is an NM̄ × NM̄ permutation matrix that permutes
the columns of the T × NM̄ matrix U† to obtain the T × NM̄ matrix U. It is well
known that S can be obtained by permuting the columns of the identity matrix
INM̄ and all permutation matrices are orthogonal matrices. As a result, we have
SS′ = INM̄ and U† = US′. Define

�(1) = bdiag(�(1)
1 ,...,�(1)

N ) and �(2) = bdiag(�(2)
·1 ,...,�(2)

·M ).

Note that �(1) and �(2) are NM̄ ×R(1) and NM̄ ×R(2) matrices, respectively. Then,
we have

U(0) = F(1)�(1)′ +F(2)�(2)′S +U = F(1,2)�(1,2)′ +U,
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where F(1,2) = (F(1),F(2)) and �(1,2) = (�(1),S′�(2)). Let �̃�(0) ≡ 1
NM̄

�(0)′�(0).
Define

μ̄
(0)
l = 1

NM̄T
ψl(�

(0)′�(0)F(0)′F(0)) for l ∈ [r(0)],

c̄�(1) = max
i∈[N]

1

M̄
ψ1(�

(1)′
i �

(1)
i ), c�(1) = min

i∈[N], r(1)
i >0

1

M̄
ψmin(�

(1)′
i �

(1)
i ),

c̄F(1) = 1

T ∨N
ψ1(F(1)F(1)′),

c̄�(2) = max
j∈[M]

1

N̄
ψ1(�

(2)′
·j �

(2)
·j ), c�(2) = min

j∈[M], r(2)
j >0

1

N̄
ψmin(�

(2)′
·j �

(2)
·j ),

c̄F(2) = 1

T ∨M
ψ1(F(2)F(2)′).

Let c and C be generic positive constants that may change over places. We make
the following assumptions.

Assumption 1.

(i) For each (i,j),Nj/N → τ1j and Mi/M → τ2i as m → ∞, where τ1j and τ2i are
bounded away from zero uniformly in j and i.

(ii) m̄(lnT)4 /m2 → 0 as m → ∞.
(iii) 0 ≤ r(0),r(1)

i ,r(2)
j ≤ rmax, where rmax is a fixed integer.

Assumption 2.

(i) plimm→∞ μ̄
(0)
l = μ

(0)
l ∈ (0,∞) for l ∈ [r(0)].

(ii) plimm→∞ c̄F(�) = cF(�) < ∞ for � = 1,2.
(iii)max0≤�≤2 maxi,j ||λ(�)

ij || ≤ c̄λ < ∞,�̃�(0) → ��(0) > 0, and limm→∞(c�(1) ∧
c�(2) ) ≥ c > 0.

(iv) maxt{E||f (0)
t ||4 + 1

NM

∑
i,i1,j,j1

∥∥E(
uijtui1j1t

)∥∥} ≤ C.

(v) Let cU = 1
NM̄

ψ1
(
UU′) and c0

U = 1
T ψ1

(
E

[
U′U

])
.c0

U ≤ C and cU is stochasti-
cally bounded.

Assumption 3.

(i) 1
NM2T

∑
i1,i2,j1,j2,j3,j4,t,s

∣∣E(
ξi1j1j2tξi2j3j4s

)∣∣ ≤ C for ξi1j1j2t = ui1j1tui1j2t

−E(ui1j1tui1j2t).
(ii) There exists an integer L0 ≥ rmax + 2r(0) such that either

1
NM̄T

ψL0(F
(1,2)�(1,2)′�(1,2)F(1,2)′) ≥ 1

m̄ c(0)
L0

or 1
NM̄T

ψL0

(
UU′) ≥ 1

T c(0)
L0

, where

c(0)
L0

is bounded away from zero in probability.

Assumption 1 imposes some general conditions on Mi,Nj, M,N,T,r(0),r(1)
i , and

r(2)
j . Note that we assume that Mi’s diverge to infinity at the same rate as M,Nj’s

diverge to infinity at the same rate as N, r(0),r(1)
i , and r(2)

j are uniformly bounded
above by a finite integer rmax. These conditions can be relaxed at the cost of more
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complicated notations and lengthy arguments. We do not restrict N,M, and T to
diverge to infinity at the same rate but do require that one should not diverge as
fast as the square of the other. This condition appears reasonable for most macro,
finance, and trade applications.

Assumption 2 imposes conditions on the factors, factor loadings, and error
terms. Assumption 2(i) is a strong factor assumption which is commonly adopted
in the literature despite the fact that it rules out weak factors considered by
Onatski (2012) and Bai and Ng (2023). Assumption 2(ii) implies that ||F(1)||sp =
Op

(
N1/2 +T1/2

)
and ||F(2)||sp = Op

(
M1/2 +T1/2

)
, which can be verified under

some primitive conditions on the zero-mean local factors. Assumption 2 (iii)
assumes that the factor loadings are nonrandom and uniformly bounded. It is
possible to relax this assumption to allow the factor loadings to be random with
uniform finite fourth moments. Assumption 2(iv) allows error terms to be weakly
cross-sectionally and serially dependent. Assumption 2(v) imposes high level
conditions on the spectral norm of UU′ and E

(
U′U

)
. Noting that U is a T × NM̄

matrix, it is standard to assume that

‖U‖sp = Op(T
1/2 + (NM̄)1/2),

which is equivalent to the requirement 1
NM̄

ψ1
(
UU′) = Op (1) under Assumption 1

(ii). (See, e.g., Latała, 2005; Moon and Weidner, 2017; Su and Ju, 2018. In fact,
if we follow Bai and Saranadasa (1996), Chen and Qin (2010), Vershynin (2011),
and Ma et al. (2020) and assume that U = AE, where A is a T × n nonrandom
matrix such that ‖A‖sp ≤ C < ∞ and E is an n × NM̄ random matrix whose
entries are independent random variables with mean zero and (4 + ε)th moment
for some ε > 0, then E‖U‖sp = O

(
T1/2 + (NM̄)1/2

)
(see, e.g., (Vershynin, 2011,

Thm. 1.2)). Alternatively, we can follow the literature (e.g., (AH)) and assume
that U = A1/2

T VB1/2
NM̄

, where A1/2
T and B1/2

NM̄
are the symmetric square roots of the

T × T and NM̄ × NM̄ p.s.d. deterministic matrices AT and BNM̄, respectively and
V is a T × NM̄ matrix with elements vijt being i.i.d. random variables with zero
mean, unit variance, and finite fourth moment, limsupT→∞ ψ1(AT) ≤ c̄A < ∞,
and limsupm→∞ ψ1

(
BNM̄

) ≤ c̄B < ∞. Noting that V ′ is a “tall” random matrix
(i.e., NM̄ � T) under Assumption 1(ii), Vershynin (2012, Thm. 5.31) implies that
ψ1(

1
NM̄

VV ′) a.s.→ 1 and ψT( 1
NM̄

V ′V)
a.s.→ 1. Then, we have

c̄U = 1

NM̄
ψ1

(
UU′)

= 1

NM̄
ψ1

(
A1/2

T VBNM̄V ′A1/2
T

)
≤ ψ1

(
BNM̄

) 1

NM̄
ψ1

(
A1/2

T VV ′A1/2
T

)

≤ ψ1
(
BNM̄

)
ψ1(AT)

NM̄
ψ1

(
VV ′) ≤ c̄Ac̄B{1+o a.s. (1)}.
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On the other hand, using the fact that 1
T E

[
V ′V

] = INM̄, we have

c̄0
U = 1

T
ψ1

(
E

(
U′U

)) = 1

T
ψ1

(
B1/2

NM̄
E

[
V ′ATV

]
B1/2

NM̄

)
≤ψ1(AT)

1

T
ψ1

(
B1/2

NM̄
E

[
V ′V

]
B1/2

NM̄

)
≤ ψ1(AT)ψ1

(
BNM̄

) ≤ c̄Ac̄B.

Thus, Assumption 2(v) is satisfied.
Assumption 3(i) imposes further conditions on the error term

{
uijt

}
requiring

that the dependence along either the two cross-sectional dimensions or the time
dimension should not be too strong. In particular, it would be satisfied if uijt’s are
independent along the two cross-sectional dimensions and weakly dependent along
the time dimension (say, satisfying certain strong mixing and moment conditions).
Assumption 3(ii) imposes further conditions on F(1,2)�(1,2)′ and U. In Section S7.1
of the Supplementary Material, we give some primitive conditions such that either
case in Assumption 3(ii) can be satisfied. As shown in the proof of Lemma S2.1(ii)
in the Supplementary Material, Assumption 3 ensures that 1

NM̄T
ψL0

(
U(0)′U(0)

) ≥
1
m̄ c̄L0 . Alternatively, we can assume such a high level condition directly and
emphasize that it may be satisfied under some primitive conditions, including those
specified in Assumption 3.

The following theorem states the first main result in the article.

Theorem 3.1. Suppose that Assumption I holds. Suppose Assumptions 1–3
hold. Let r̃(0) be the first-step ER or GR estimator of r(0). Let m = min(N,M,T) .
Then, P

(
r̃(0) = r(0)

) → 1 as m → ∞.

Theorem 3.1 states that the first-step ER or GR estimator r̃(0) of r(0) is consistent.
In the proof, we allow r(0) ≥ 1 as well as r(0) = 0, but have to treat these two
cases separately. Given the consistent estimate of r(0), it is possible to estimate the
number of the local factors consistently.

To study the consistency of the preliminary estimators r̃(1)
i and r̃(2)

j of the number

of local factors, we introduce the following notations. Let C(1)
j and C(2)

i be the

T × Nj and T × Mi matrices with typical elements c(1)
ijt and c(2)

ijt , respectively. Let

U(1)
i = Ui +C(2)

i ,U(2)
·j = U·j +C(1)

j ,F
(1)
j = {F(1)

i }i∈Nj, and F
(2)
i = {F(2)

j }j∈Mi . Define

γ
(0)
st = 1

NM̄

∑
i,j

E(u(0)
ijt u(0)

ijs ), ζ
(0)
st = 1

NM̄

∑
i,j

u(0)
ijt u(0)

ijs −γ
(0)
st ,

ci,u = 1

Mi ∨T
ψ1

(
U′

iUi
)
, c·j,u = 1

Nj ∨T
ψ1(U

′
·jU·j),

c
F

(1)
j

= 1

Nj ∨T
ψ1(F

(1)
j F

(1)′
j ), c

F
(2)
i

= 1

Mi ∨T
ψ1(F

(2)
i F

(2)′
i ),

c(0)
i = 1

MiT

∑
t

∑
j∈Mi

E(u(0)
ijt )2, and c(0)

·j = 1

NjT

∑
t

∑
i∈Nj

E(u(0)
ijt )2.
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Let cand c̄ (with c ≤ c̄) be generic positive constants that do not depend on
(N,M,T). The following three assumptions are needed to study the asymptotic
properties of the first-step estimators of the global and local factors and their
associated loadings and the consistency of r̃(1)

i and r̃(2)
j in Theorem 3.2, which

follows.

Assumption 4.

(i) The eigenvalues of �
1/2
�(0)�F(0)�

1/2
�(0) are distinct.

(ii) maxt
∑

s |γ (0)
st | ≤ C.

(iii)maxs,t E|ζ (0)
st |4 ≤ C

(
N−2 +M−2

)
.

(iv) maxt E|| 1
NM̄

√
T

∑
i,j,s f (0)

s [u(0)
ijs u(0)

ijt −E(u(0)
ijs u(0)

ijt )]||2 ≤ C
(
N−1 +M−1

)
.

(v) E|| 1
NM̄

√
T

∑
i,j,t λ

(0)
ij u(0)

ijt f (0)′
t ||2 ≤ C(N−1 +M−1).

Assumption 5. For any fixed ε > 0, we have the following.

(i) P(|| 1
T F(0)′F(0) − �F(0) || ≥ εT−1/2 lnT) = o(m̄−1),P(maxi || 1

T F(1)′
i F(1)

i −
�

F(1)
i

|| ≥ εT−1/2 lnT) = o(m̄−1), P(maxj || 1
T F(2)′

j F(2)
j −�

F(2)
j

||≥εT−1/2 lnT) =
o(m̄−1), and maxi || 1

Mi
�

(1)′
i �

(1)
i − �

�
(1)
i

|| + maxj || 1
Nj

�
(2)′
·j �

(2)
·j − �

�
(2)
·j

|| =
o(1), where the eigenvalues of �

F(1)
i

,�
F(2)

j
,�

�
(1)
i

, and �
�

(2)
·j

are all bounded

below and above, respectively, by c and c̄ for all i with r(1)
i ≥ 1 and all j with

r(2)
j ≥ 1.

(ii) P(maxs,t ||ζ (0)
st || ≥ ε(N−1/2 + M−1/2) lnT) = o(m̄−1) and

P(maxt || 1
NM̄

∑
i,j λ

(0)
ij u(0)

ijt || ≥ ε(N−1/2 +M−1/2) lnT) = o(m̄−1).

(iii) P(maxi,j||1
T

∑
t f (0)

t u(0)
ijt ||≥εT−1/2 lnT)=o(m̄−1),P(maxi | 1

MiT

∑
t

∑
j∈Mi

(u(0)
ijt )2

− c(0)
i | ≥ ε) = o(m̄−1) and P(maxj | 1

NjT

∑
t

∑
i∈Nj

(u(0)
ijt )2 − c(0)

·j | ≥ ε) =
o(m̄−1), where c ≤ c(0)

i ,c(0)
·j ≤ c̄∀(i,j) .

Assumption 6.

(i) P(|c̄U −E(c̄U)| ≥ ε) + P
(∣∣c̄F(�) −E(c̄F(�) )

∣∣ ≥ ε
) = o(m̄−1)for � ∈ [2]and

∀ε > 0.
(ii) P(maxi

∣∣ci,u −E(ci,u)
∣∣ ≥ ε) + P(maxj

∣∣c·j,u −E(c·j,u)
∣∣ ≥ ε) = o(m̄−1), and

P(maxi |c
F

(2)
i

−E(c
F

(2)
i

)| ≥ ε)+P(maxj |c
F

(1)
j

−E(c
F

(1)
j

)| ≥ ε)= o(m̄−1)∀ε > 0,

where maxiE
(
ci,u

)+maxjE
(
cj,u

)+maxiE(c
F

(2)
i

)+maxjE(c
F

(1)
j

) ≤ C.

(iii) Let r̄ = maxi r
(1)
i ∨ maxj r

(2)
j . There exists an integer L ≥ rmax + 2(r̄ + r(0))

and a fixed constant cL > 0 such that P(mini c
(1)
iL ≥ cL) = 1 − o(m̄−1) and

P(minj c
(2)
jL ≥ cL) = 1 − o(m̄−1), where c(1)

iL = 1
Mi∨T ψL(UiU′

i)and c(2)
jL =

1
Nj∨T ψL(U·jU′

·j).

Assumption 4(i) is commonly assumed in the literature and is required for
the consistent estimation of certain eigenvectors. Assumptions 4(ii) and 4(iii) are
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analogous to Assumptions C.2 and C.5 in Bai and Ng (2002), respectively. Bai
and Ng (2002) assume that maxs,t |γ (0)

st | ≤ C and 1
T

∑
s,t |γ (0)

st | ≤ C, in parallel with
our Assumption 4(ii), both of which can be verified under weak serial dependence
conditions. If u(0)

ijt does not contain the two local factor components, i.e., u(0)
ijt = uijt,

we can strengthen the term N−2 + M−2 to N−2M−2 in Assumption 4(iii) and the
term N−1 + M−1 to N−1M−1 in Assumption 4(iv) and (v). So the presence of the
local factor components slows down the convergence rate of our first-step global
factor estimator.

Assumption 5(i)–(iii) imposes some (uniform) convergence rates for a variety
of objects. These assumptions can be verified via the use of various Bernstein-type
exponential inequalities under various weak dependence and moment conditions.
See Section S7.2 of the Supplementary Material for the remark on the verification
of Assumption 5(iii). Assumption 6 imposes conditions on the eigenvalues of
certain random matrices, which can be verified under some primitive conditions on
the elements of the random matrices. In Sections S7.3–S7.4 of the Supplementary
Material, we state some primitive conditions to verify Assumption 6 (i) and (iii)
and the other conditions in Assumption 6 can be verified similarly.

The following theorem states the uniform consistency of r̃(1)
i and r̃(2)

j .

Theorem 3.2. Suppose that Assumption I holds. Suppose Assumptions 1–6
hold. Let r̃(1)

i and r̃(2)
j be the first-step ER or GR estimator of r(1)

i and r(2)
j ,

respectively. Then, as m → ∞,

(i) P(r̃(1)
i = r(1)

i ∀i = 1,...,N) → 1,
(ii) P(r̃(2)

j = r(2)
j ∀j = 1,...,M) → 1.

Theorem 3.2 states that the first-step ER or GR estimators r̃(1)
i and r̃(2)

j are
uniformly consistent. To prove it, we need to study the asymptotic properties
of the first-step estimators of the global factors and factor loadings. Let �

(0)
i =

{λ(0)
ij }j∈Mi,�

(0)
·j = {λ(0)

ij }i∈Nj,�̃
(0)
i = {λ̃(0)

ij }j∈Mi and �̃
(0)
·j = {λ̃(0)

ij }i∈Nj . As we have

demonstrated in Lemma S4.1 in the Supplementary Material, the estimators F̃(0)

and {λ̃(0)
ij } have the following mean square (MS) convergence rates:

(i) 1
T

∥∥∥F̃(0) −F(0)H̃(0)

∥∥∥2 = Op(M−1 +N−1 +T−2),

(ii) 1
Mi

∥∥∥�̃
(0)
i −�

(0)
i [H̃(0)′]−1

∥∥∥2 = Op(T−1),

(iii) 1
Nj

∥∥∥�̃
(0)
·j −�

(0)
·j [H̃(0)′]−1

∥∥∥2 = Op(T−1),

(iv) 1
NM̄

∑
i,j

∥∥∥λ̃
(0)
ij − [H̃(0)]−1λ

(0)
ij

∥∥∥2 = Op(T−1),

where H̃(0) = [ 1
NM̄

�(0)′�(0)] 1
T F(0)′F̃(0)[W̃(0)]−1and W̃(0) is the r(0) × r(0) diagonal

matrix of the first r(0) largest eigenvalues of 1
NM̄T

YY ′. Essentially, these results
indicate that the first-step procedure is able to estimate the global factor loadings at
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the desirable T−1 MS convergence rate; but the global factors can only be estimated
at the (M−1 + N−1 + T−2)-rate, instead of [(MN)−1 + T−2] -rate. In addition, to
study the uniform consistency of r̃(1)

i and r̃(2)
j , we need certain uniform results on

�̃
(0)
i and �̃

(0)
j , which are studied in Lemma S4.2 in the Supplementary Material.

3.2. Consistency of r̂(0), r̂(1)
i , and r̂(2)

j

To study the uniform consistency of the second-step estimators r̂(0), r̂(1)
i , and r̂(2)

j ,

we add some notations. Let fijt = (f (0)′
t ,f (1)′

it ,f (2)′
jt )′,λij = (λ

(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′,u(1�)

ijt =
uijt +λ

(2)′
ij f (2)

jt , and u(2�)
ijt = uijt +λ

(1)′
ij f (1)

it . Let U(1�)
i and U(2�)

j denote the T ×Mi and

T ×Nj with typical elements u(1�)
ijt and u(2�)

ijt , respectively. Define

γ
(1)
i,st = 1

Mi

∑
j∈Mi

E(u(1�)
ijt u(1�)

ijs ), ζ
(1)
i,st = 1

Mi

∑
j∈Mi

u(1�)
ijt u(1�)

ijs −γ
(1)
i,st ,

γ
(2)
j,st = 1

Nj

∑
i∈Nj

E(u(2�)
ijt u(2�)

ijs ), ζ
(2)
j,st = 1

Nj

∑
i∈Nj

u(2�)
ijt u(2�)

ijs −γ
(2)
j,st ,

γst = 1

NM̄

N∑
i=1

∑
j∈Mi

E(uijtuijs), and ζst = 1

NM̄

N∑
i=1

∑
j∈Mi

uijtuijs −γst.

The following two assumptions are needed for the study of uniform consistency
of r̂(0), r̂(1)

i and r̂(2)
j in Theorem 3.3, which follows.

Assumption 7.

(i) The eigenvalues of �
1/2

�
(1)
i

�
F(1)

i
�

1/2

�
(1)
i

(resp. �
1/2

�
(2)
·j

�
F(2)

j
�

1/2

�
(2)
·j

) are distinct for all

r(1)
i ≥ 2 (resp. r(2)

j ≥ 2).

(ii) maxi,t
∑

s |γ (1)
i,st |+maxj,t

∑
s |γ (2)

j,st |+maxt
∑

s |γst| ≤ C.

(iii)maxi,s,t E|ζ (1)
i,st |4 ≤ CM−2, maxj,s,t E|ζ (2)

j,st |4 ≤ CN−2 and maxs,t E |ζst|4 ≤
C(N−2 +M−2).

(iv) maxt E||∑i,j,s f (0)
s [uijsuijt −E(uijsuijt)]||2 ≤ CNM̄T andE||∑i,j,t λ

(0)
ij f (0)′

t uijt||2 ≤
CNM̄T .

(v) maxi,j
1
T E||∑t ςijt||2 +maxi,t

1
Mi
E||∑j ς

(1)
ijt ||2 +maxj,t

1
Nj
E||∑i ς

(2)
ijt ||2 ≤ C for

ςijt ∈ {f (0)
t f (1)′

it ,f (0)
t f (2)′

jt ,f (1)
it f (2)′

jt ,fijtuijt},ς(1)
ijt ∈ {λ(0)

ij uijt,λ
(1)
ij uijt,λ

(1)
ij u(1�)

ijt }, and

ς
(2)
ijt ∈ {λ(0)

ij uijt,λ
(2)
ij uijt,λ

(2)
ij u(2�)

ijt }.

Assumption 8.

(i) maxiE|| 1√
TMi

∑
t,j λijf ′

ijtuijt||2 +maxjE|| 1√
TNj

∑
t,i λijf ′

ijtuijt||2 ≤ C.
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(ii) maxi,t
1

TMi

∑
j,s

∥∥E(
ςijst

)∥∥ + maxj,t
1

TNj

∑
i,s ||E

(
ςijst

) || + maxi,t E|| 1√
TMi∑

s,j[ςijst − E
(
ςijst

)
]||2+maxj,t E|| 1√

TNj

∑
s,i

[
ςijst −E

(
ςijst

)] ||2 ≤ C for

ςijst = fijsuijsuijt.
(iii) maxi

1
TMi

∑
j,s,t

∥∥E(
ςijst

)∥∥ + maxj
1

TNj

∑
i,s,t

∥∥E(
ςijst

)∥∥ + maxiE|| 1

TM1/2
i∑

j,s,t[ςijst − E
(
ςijst

)
]||2+maxiE|| 1

TN1/2
j

∑
i,s,t

[
ςijst −E

(
ςijst

)] ||2 ≤ C for

ςijst ∈ {f (1)
it f (0)′

t uijsuijt,f
(2)
jt f (0)′

t uijsuijt}.
(iv) maxi,j || 1

T

∑
t[ςijt − E

(
ςijt

)
]|| = Op((lnT/T)1/2) for ςijt ∈ {fijtuijt,fijtf ′

ijt,

(c(1)
ijt )2,(c(2)

ijt )2,(u(1�)
ijt )2,(u(2�)

ijt )2}, maxi,s,t ||ς(1)
i,st || = Op((lnT/M)1/2), and

maxj,s,t ||ς(2)
j,st || = Op((lnT/N)1/2).

(v) maxi,t || 1
Mi

∑
j∈Mi

ς
(1)
ijt || = Op

(
(lnT/M)1/2

)
and maxj,t || 1

Nj

∑
i∈Nj

ς
(2)
ijt || =

Op
(
(lnT/N)1/2

)
for ς

(l)
ijt ∈ {λ(l)

ij uijt,λ
(l)
ij u(l�)

ijt } for l ∈ [2] .

(vi) P(maxi |c(1)
iU −E(c(1)

iU )| ≥ ε) + P(maxj |c(2)
jU −E(c(2)

jU )| ≥ ε) = o(m̄−1), where

c(1)
iU = 1

TMi
tr(U(1�)

i U(1�)′
i ),c(2)

jU = 1
TNj

tr(U(2�)
j U(2�)′

j ), and c ≤E(c(1)
iU ),E(c(2)

jU )≤ c̄.

Assumption 7(i)–(iv) parallels Assumption 4(i)–(v). The first part of Assump-
tion 7(v) imposes weak serial dependence in the process {(f (0)

t ,f (1)
it ,f (2)

jt ,uijt),

t ≥ 1} and the other two parts require that
{
uijt

}
be weakly correlated along the

i and j crosssection dimensions. Assumption 8(i)–(iii) imposes some moment
conditions that are satisfied under weak serial or cross-sectional dependence.
Assumption 8(iv)–(vi) imposes some uniform probability orders that can be
verified under primitive conditions.

Given the uniform consistency of the first-step estimators r̃(0), r̃(1)
i , and r̃(2)

j , we
can obtain preliminary consistent estimates of the local factors and factor loadings.
But because these are the intermediate results, we relegate them to Section S4
of the Supplementary Material to save space. The following theorem studies the
(uniform) consistency of the second-step estimators r̂(0), r̂(1)

i and r̂(2)
j .

Theorem 3.3. Suppose that Assumption I holds. Suppose Assumptions 1–8
hold. Let r̂(0), r̂(1)

i and r̂(2)
j be the second-step ER or GR estimator of r(0),r(1)

i and

r(2)
j , respectively. Then, as m → ∞,

(i) P
(
r̂(0) = r(0)

) → 1,

(ii) P(r̂(1)
i = r(1)

i ∀i = 1,...,N) → 1,

(iii) P(r̂(2)
j = r(2)

j ∀j = 1,...,M) → 1.

Theorem 3.3 implies that the second-step estimators r̂(0), r̂(1)
i , and r̂(2)

j are con-
sistent uniformly in (i,j) . Simulations demonstrate that these estimators typically

https://doi.org/10.1017/S0266466625100091 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100091


THREE-DIMENSIONAL FACTOR MODELS 27

outperform the first-step estimators r̃(0), r̃(1)
i , and r̃(2)

j and thus we recommend them
for practical use.

Remark 8. We have shown the consistency of our estimators of the number of
factors. Given this result, we can further test the hypothesis about the number of
factors. For example, we may be interested in testing the null hypothesis: r(2)

j =
0,∀j = 1,...,M. That is, there are only global factors and one type of local factors
as in model (1.3). One simple approach is compare the difference between the
estimated factor components under the null and under the alternative. We can also
borrow the idea of testing rank of matrices, as in Kleibergen and Paap (2006) and
Chen and Fang (2019). We leave the details for future research.

4. ASYMPTOTIC PROPERTIES OF THE SECOND-STEP ESTIMATORS
OF THE FACTORS AND FACTOR LOADINGS

In this section, we study the asymptotic distributions of the estimators of the global
and local factors and factor loadings. Given the fact that we can consistently
estimate r(0),r(1)

i , and r(2)
j , we assume that they are known in the following

analyses. We assume that r(0) > 0 but do allow r(1)
i and r(2)

j to be 0 for some i,j.
We comment on the case of r(0) = 0 in Remark 10, which follows.

4.1. Asymptotic Properties of the Second-Step Estimators of Global
Factors and Factor Loadings

To state the asymptotic properties of the second-step estimators of global
factors, we introduce some new notations. Let Uij· = (

uij1,...,uijT
)′

, Ui·t =
{uijt}j∈Mi,U·jt = {uijt}i∈Nj , and U··t = {uijt}i∈[N], j∈Mi . Let λij = (λ

(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′,

c1i = 1
M̄

�
(0)′
i �

(0)
i ( 1

NM̄
�(0)′�(0))−1, and c2j = 1

N̄
�

(0)′
·j �

(0)
·j ( 1

NM̄
�(0)′�(0))−1. Let

EF (·) =E(·|F) and F denotes the minimal sigma-field generated by {f (0)
t },{f (1)

it },
and {f (2)

jt }. Finally,

Vt = 1√
NM̄

∑
i,j

(λ
(0)
ij −χ1iλ

(1)
ij −χ2jλ

(2)
ij )uijt,

B1t = 1

NM̄T

∑
i,j,s

H̃(0)′f (0)
s E(uijsuijt),

B2t = 1

NM̄T

∑
i,j,s

[H̃(0)]−1χ1iH
(1)
i H(1)′

i E(f (1)
is uijsuijt),

B3t = 1

NM̄T

∑
i,j,s

[H̃(0)]−1χ2jH
(2)
j H(2)′

j E(f (2)
js uijsuijt), and

Bt =B1t −B2t −B3t, (4.1)
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where χ1i and χ2j are defined in (S3) in Section S1 of the Supplementary Material,
H(1)

i and H(2)
j are, respectively, the probability limits of H̃(1)

i and H̃(2)
j defined

in (S5) in Section S1 of the Supplementary Material (see also the statement of
Theorem 4.1, which follows). Let H̆(0) and �0 be as defined, respectively in (S4)
and (S2) in Section S1 of the Supplementary Material. Let ω

ii1
1 and ω

jj1
2 be as

defined below (S2).
To study the asymptotic properties of the second-step estimators of the global

and local factors in Theorem 4.1, we add the following two assumptions.

Assumption 9.

(i) maxi,j,t E
∥∥fijt

∥∥2q ≤ C for some q > 2.
(ii) 1

T

∑
r E|| 1√

N

∑
i c1i[ξ1i,rt −E(ξ1i,rt)]||2 + 1

T

∑
r E|| 1√

M

∑
j c2j[ξ2j,rt −E(ξ2j,rt)]||2

≤ C, where ξ1i,rt = f (1)′
ir H(1)

i H(1)′
i f (1)

it and ξ2j,rt = f (2)′
jr H(2)

j H(2)′
j f (2)

jt .

(iii) c ≤ μmin(Q) ≤ c̄, maxi
∑N

i1=1 ||ωii1
1 || ≤ c̄, and maxj

∑M
j1=1 ||ωjj1

2 || ≤ c̄.

(iv) maxi,j || 1√
T

F(0)′Uij·|| + maxt ||
√

NM̄
T

∑T
s=1 f (0)

s ζst|| = Op((lnT)1/2), and

maxi,t
1√
Mi

||�(l)′
i Ui·t|| + maxj,t

1√
Nj

||�(l)′
j U·jt|| + maxt || 1√

NM̄
�(0)′U··t|| =

Op((lnT)1/2) for l = 0,1,2.
(v) maxi || 1√

TMi

∑
j∈Mi

∑T
t=1 ξijt||+maxj || 1√

TNj

∑
i∈Nj

∑T
t=1 ξijt||} = Op((lnT)1/2)

for ξijt ∈ {f (0)
t uijtλ

′
ij,H

(1)′
i f (1)

it uijtλ
′
ij,H

(2)′
j f (2)

jt uijtλ
′
ij}.

(vi) maxi
1

MiT

∑
j,j1,t

∣∣E(
uij1tuijt

)∣∣ + maxj
1

NjT

∑
i,i1,t

∣∣E(
uijtui1jt

)∣∣ +
maxi,j

1
T

∑
r,s{||E[f (1)

is f (1)′
ir uijsuijr]|| + ||E[f (2)

js f (2)′
jr uijsuijr]||] ≤ C, and

1
NM̄T

∑
i,j,r

∑
i1,j1,r1

∣∣EF (uijrui1j1r1)
∣∣ = Op (1) .

(vii) (N +M)(T−q/2 +T−2+2/q) = o(1) .

Assumption 10.

(i) For each t, 1
(NM̄)1/2

∑
i,j(λ

(0)
ij − χ1iλ

(1)
ij − χ2jλ

(2)
ij )uijt

d→ N (0,�(0)
t ) for some

�
(0)
t > 0.

(ii) For each (i,t) with r(1)
i ≥ 1,

∑N
i1=1 ω

ii1
1

1√
Mi1

∑
j∈Mi1

λ
(1)
i1j ui1jt

d→N (0,�(1)
it ) for

some �
(1)
it > 0.

(iii) For each (j,t) with r(2)
j ≥ 1,

∑M
j1=1 ω

jj1
2

1√
Nj1

∑
i∈Nj1

λ
(2)
ij1

uij1t
d→ N (0,�(2)

jt ) for

some �
(2)
jt > 0.

Assumption 9(i)–(ii) imposes some additional moment conditions. Assump-
tion 9(iii) ensures the large dimensional matrix Q and its inverse to be well
behaved. Assumption 9 (iv)–(vi) imposes some uniform convergence conditions.
Like Assumptions F.3 and F.4 in Bai (2003), Assumption 10(i)–(iii) requires that
the normalized sample mean objects obey some versions of the central limit
theorem.
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Theorem 4.1 reports the asymptotic distributions of the second-step estimators
of the factors.

Theorem 4.1. Suppose that Assumption I holds. Suppose Assumptions 1–10
hold. Then, we have the following.

(i) 1
T

∥∥∥F̆(0) −F(0)H̆(0)

∥∥∥2 = Op((NM)−1 +T−2),

(ii)
√

NM̄(f̆ (0)
t − H̆(0)′f (0)

t − H̃(0)′�−1
0 H̃(0)Bt) = H(0)′�−1

0 Vt + op (1)
d→ N (0, lim(N,M)→∞[H(0)′]�−1

0 ×�
(0)
t �−1

0 H(0)),

(iii)
√

Mi(f̆
(1)
it − H̃(1)′

i f (1)
it ) = H̃(1)′

i

∑N
i1=1 ω

ii1
1

1√
Mi1

∑
j∈Mi1

λ
(1)
i1j ui1jt + op (1)

d→
N (0, H(1)′

i �
(1)
it H(1)

i ),

(iv)
√

Nj(f̆
(2)
jt − H̃(2)′

j f (2)
jt ) = H̃(2)′

j

∑M
j1=1 ω

jj1
2

1√
Nj1

∑
i∈Nj1

λ
(2)
ij1

uij1t +op (1)
d→ N (0,

H(2)′
j �

(2)
jt H(2)

j ),

where H(0) = �
1/2
�(0)ϒ

(0)(W(0))−1/2,W(0) denotes the diagonal matrix consist-

ing of the eigenvalues of �
1/2
�(0)�F(0)�

1/2
�(0) in descending order with the corre-

sponding eigenvector matrix denoted as ϒ(0) such that ϒ(0)′ϒ(0) = Ir(0);H(1)
i =

�
1/2

�
(1)
i

ϒ
(1)
i (W(1)

i )−1/2,W(1)
i denotes the diagonal matrix consisting of the eigenval-

ues of �
�

(1)
i

�
F(1)

i
in descending order with the corresponding eigenvector matrix

denoted as ϒ
(1)
i such that ϒ

(1)′
i ϒ

(1)
i = I

r(1)
i

; and H(2)
j is analogously defined.

Remark 9. Theorem 4.1(i) reports the MS convergence rate of F̆(0), and
Theorem 4.1(ii) reports the asymptotic distribution of f̆ (0)

t . Let f̈ (0)
t denote the PCA

estimator of f (0)
t in (1.1) by assuming the absence of the local factor components

under the same normalization rules as used to obtain the first-step estimator f̃ (0)
t .

Let F̈(0) = (f̈ (0)
1 ,..., f̈ (0)

T )′. Then, we can readily show that 1
T

∥∥F̈(0) −F(0)Ḧ(0)
∥∥2 =

Op((NM)−1 +T−2), and√
NM̄(f̈ (0)

t − Ḧ(0)′f (0)
t − Ḧ(0)′Q−1

00 Ḧ(0)B1t) = [W(0)]−1 1

T
F̈(0)′F(0)V̈t +op (1)

= H(0)′Q−1
00 V̈t +op (1)

d→ N (0, lim
(N,M)→∞

H(0)′Q−1
00 �̈

(0)
t Q−1

00 H(0)),

where Q00 = 1
NM̄

�(0)′�(0),Ḧ(0) is a rotational matrix, V̈t = 1√
NM̄

∑
i,j λ

(0)
ij uijt, and

�̈
(0)
t denotes the asymptotic variance of V̈t. Note that B1t is present even in the

absence of the local factors.9 Obviously, the MS rate Op(T−2 + (NM)−1) is the

9In Bai (2003)’s 2D factor model with N cross-sectional units and T time series observations, the term that
corresponds to our B1t is also of Op(T−1), which is op(N−1/2) under the usual condition N/T2 = o(1) and thus
asymptotically vanishing. In contrast, the cross-sectional dimension in our case is NM̄, which explains why we need
NM/T2 = o(1) in order for B1t to vanish here.
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optimal rate that is achievable in a 3D factor model in the absence of the local
factors. But our second-step estimator f̆ (0)

t of the global factors have three bias
terms associated with B1t,B2t, and B3t, all of which can be shown to be Op

(
T−1

)
and would be vanishing if NM/T2 → 0. In general, f̆ (0)

t is not as asymptotically
efficient as f̈ (0)

t . This reflects the cost of estimating the local factors and factor
loadings whose slow convergence rates generally affect the asymptotic distribution
of f̆ (0)

t . To see the sufficient conditions to ensure the asymptotic equivalence of f̆ (0)
t

and f̈ (0)
t , we focus on a special case where the local factor loadings are nearly

orthogonal to the global ones in the sense

1

Mi
�

(0)′
i �

(1)
i = o(1) uniformly in i and

1

Nj
�

(0)′
·j �

(2)
·j = o(1) uniformly in j.

(4.2)

In this case, we can readily show that
√

NM̄H̃(0)′�−1
0 H̃(0)Bt =√

NM̄Ḧ(0)′Q−1
00 Ḧ(0)B1t + op (1) and �−1

0 Vt = Q−1
00 V̈t + op (1) . As a result, f̆ (0)

t

is as asymptotically efficient as f̈ (0)
t and we say it is oracle efficient in this case.

Remark 10. Theorem 4.1(iii) and (iv) reports the asymptotic distributions of
f̆ (1)
it , and f̆ (2)

jt , respectively. Let f̈ (1)
it denote the PCA estimator of f (1)

it in (1.1) by

assuming the absence of f (0)
t and f (2)

jt under the same normalization rules as used

to obtain the first-step estimator f̃ (1)
it . Define f̈ (2)

jt analogously. Then, we can show
that√

Mi(f̈
(1)
it − Ḧ(1)′

i f (1)
it )

d→ N (0,[W(1)
i ]−1Q(1)

i �̈
(1)
it Q(1)′

i [W(1)
i ]−1), and√

Nj(f̈
(2)
jt − Ḧ(2)′

j f (2)
jt )

d→ N (0,[W(2)
j ]−1Q(2)

j �̈
(2)
jt Q(2)′

j [W(2)
j ]−1),

where Ḧ(1)
i and Ḧ(2)

j are certain rotational matrices; W(1)
i is as defined in The-

orem 4.1 and Q(1)
i = [W(1)

i ]1/2ϒ
(1)′
i �

−1/2

�
(1)
i

; and W(2)
j and Q(2)

j are analogously

defined; �̈
(1)
it and �̈

(2)
jt are the asymptotic variances of 1√

Mi

∑
j∈Mi

λ
(1)
ij uijt and

1√
Nj

∑
i∈Nj

λ
(2)
ij uijt, respectively. Like f̈ (1)

it and f̈ (2)
jt , the estimators f̆ (1)

it and f̆ (2)
jt do

not have asymptotic biases. But f̆ (1)
it (resp. f̆ (2)

jt ) is generally not asymptotically

equivalent to the infeasible estimator f̈ (1)
it (resp. f̈ (2)

jt ). Exceptions occur when

maxi || 1
Mi

∑
j∈Mi

λ
(1)
ij λ

(2)′
ij || = o(1), maxj || 1

Nj

∑
i∈Nj

λ
(1)
ij λ

(2)′
ij || = o(1),and N and M

pass to infinity at the same rate. In this case, we can readily show that

N∑
i1=1

ω
ii1
1

1√
Mi1

∑
j∈Mi1

λ
(1)
i1j ui1jt =(

1

Mi
�

(1)′
i �

(1)
i )−1 1√

Mi

∑
j∈Mi

λ
(1)
ij uijt +op (1),

M∑
j1=1

ω
jj1
2

1√
Nj1

∑
i∈Nj1

λ
(2)
ij1

uij1t =(
1

Nj
�

(2)′
·j �

(2)
·j )−1 1√

Nj

∑
i∈Nj

λ
(2)
ij uijt +op (1),
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H̃(1)
i = Ḧ(1)

i + op(M
−1/2
i ), and H̃(2)

j = Ḧ(2)
j + op(N

−1/2
j ). Then, f̆ (1)

it and f̆ (2)
jt are

asymptotically equivalent to their infeasible versions, respectively. In addition, it
is easy to see that even if r(0) = 0, the results in Theorem 4.1(iii)–(iv) continue to
hold.

To make inferences on the global factors, one needs to consistently estimate the
asymptotic variance and biases. See Section 4.3, which follows and Section S6 of
the Supplementary Material for the discussion on the estimates.

4.2. Asymptotic Properties of the Estimators of the Factor Loadings

In this section, we study the asymptotic properties of the second-step estimators
of the global and local factor loadings.

Let f̆ijt = (f̆ (0)′
t , f̆ (1)′

it , f̆ (2)′
jt )′ and F̆ij = (f̆ij1,..., f̆ijT)′. For each (i,j) pair, consider the

time series OLS regression of yij on F̆ij

yij = F̆ijλij + v̆ij,

where λ
‡
ij = (([H̆(0)]−1λ

(0)
ij )′,([H̃(1)

i ]−1λ
(1)
ij )′,([H̃(2)

j ]−1λ
(2)
ij )′)′ denotes the “true”

value of λij in the above regression and v̆ij ≡ yij − F̆ijλ
‡
ij. Let λ̆ij =

(λ̆
(0)′
ij ,λ̆

(1)′
ij ,λ̆

(2)′
ij )′ denote the OLS estimator of λij in the above regression. Let H̃ij =

bdiag(H̃(0),H̃(1)
i ,H̃(1)

j ) and Hij =bdiag(H(0),H(1)
i ,H(1)

j ). The following theorem

reports the asymptotic distribution of λ̆ij.

Theorem 4.2. Suppose that Assumption I holds. Suppose Assumptions 1–10

hold. If 1
T1/2

∑
t fijtuijt

d→ N (0,�ij) for some �ij > 0, then we have

√
T(λ̆ij −λ

‡
ij)

d→ N (0, H′
ij�ijHij).

Remark 11. Theorem 4.2, in conjunction with the result in Theorem 2 of Bai
(2003), implies that for � = 0,1,2,λ̆(�)

ij is asymptotically equivalent to λ̈
(�)
ij , which

is obtained by assuming the absence of the other two factor components in (1.1).
In this sense, we can say these estimators enjoy the oracle efficiency property. In
particular, for the estimator of the global factor loadings, we have
√

T(λ̆
(0)
ij − [H̆(0)]−1λ

(0)
ij )

d→ N (0, H(0)′�(0)
ij H(0)),

where �
(0)
ij ≡ limT→∞Var( 1

T1/2

∑
t f (0)

t uijt). Nevertheless, λ̆(0)
ij ,λ̆

(1)
ij , and λ̆

(2)
ij are not

asymptotically independent because �ij is generally not a block diagonal matrix.

4.3. Inference on the Global Factors

In this section, we consider inferences on the global factors. We relegate the
inferences on the global factor loadings to the Section S6.2of the Supplementary
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Material. The inferences on the local factors and factor loadings are analogous to
those in the 2D case and thus omitted.

Let 

(0)
t = [H(0)′]�−1

0 �
(0)
t �−1

0 H(0), the asymptotic variance of f̆ (0)
t . To make

inferences on f (0)
t , we need to estimate both the asymptotic variance 


(0)
t and

the asymptotic bias H(0)′�−1
0 H(0)Bt. Let U··t = {uijt}i∈[N], j∈Mi . We assume that

the large-dimensional process {U··t, t ≥ 1} is covariance-stationary with variance-
covariance matrix � ≡E(U··tU′··t), an NM̄ ×NM̄ matrix. Let � = {λ(0)

ij −χ1iλ
(1)
ij −

χ2jλ
(2)
ij }, an NM̄ × r(0) matrix, such that Vt = 1√

NM̄
�′U··t. Let �̆ = {λ̆(0)

ij −
χ̆1iλ̆

(1)
ij − χ̆2jλ̆

(2)
ij }, an NM̄ × r(0) matrix, where χ̆1i and χ̆2jare defined in (S7) in

the Supplementary Material.
Note that

H(0)′�−1
0

1√
NM̄

�′U··t = (H(0)′�−1
0 H(0))[H(0)]−1 1√

NM̄
�′U··t,

where Var(�′U··t) = �′��. We propose to estimate H(0)′�−1
0 H(0) by �̆−1

0 , where
�̆0 is as defined below (S6) in the Supplementary Material. Suppose that �̆ is a
consistent estimator of � in the sense ||�̆ −�||sp = op (1) . Then, we can estimate



(0)
t consistently by


̆
(0)
t ≡ �̆−1

0 �̆t�̆
−1
0 ,

where �̆t ≡ �̆ ≡ 1
NM̄

�̆′�̆�̆ is a consistent estimator of [H(0)]−1�
(0)
t [H(0)′]−1. So

the key is to find an estimator �̆ such that ||�̆ −�||sp = op (1).
Let ŭijt = yijt − λ̆

(0)′
ij f̆ (0)

t − λ̆
(1)′
ij f̆ (1)

it − λ̆
(2)′
ij f̆ (2)

jt . Define

σ̆ij,i1j1 = 1

T

T∑
t=1

ŭijtŭi1j1t and θ̆ij,i1j1 = 1

T

T∑
t=1

(
ŭijtŭi1j1t − σ̆ij,i1j1

)2
.

We follow the lead of Fan, Liao, and Mincheva (2013)’s POET estimator and
propose to estimate � by �̆ = {σ̆T

ij,i1j1
}, where

σ̆T
ij,i1j1

=
{

σ̆ij,i1j1 if (i,j) = (i1,j1)
sij,i1j1

(
σ̆ij,i1j1

)
if (i,j) �= (i1,j1)

,

where sij,i1j1 (·) is the soft thresholding function: sij,i1j1 (z) ≡ sgn(z)
(|z|− τij,i1j1

)
+ ,

τij,i1j1 = C1(m−1 lnT)1/2(θ̆ij,i1j1)
1/2, and C1 is a positive constant. We will show that

||�̆ −�||sp = op (1) under some additional conditions.
Let ιl be the lth column of Ir(0) . Let ν̆ts = (ν̆ts,1,...,ν̆ts,r(0) )′, where ν̆ts,l =

1
NM̄

∑
i,j ι

′
l(f̆

(0)
s − χ̆1i f̆

(1)
is − χ̆2j f̆

(2)
js )ŭijsŭijt. Let

θ̆ts,l = 1

NM̄

∑
i,j

[
ι′l(f̆

(0)
s − χ̆1i f̆

(1)
is − χ̆2j f̆

(2)
js )ŭijsŭijt − ν̆ts,l

]2
and ν̆T

ts,l = sts,l
(
ν̂ts,l

)
,
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where sts,l (z) = sgn(z)
(|z|− τts,l

)
+ ,τts,l = C2,l(m−1 lnT)1/2(θ̆ts,l)

1/2, and C2,l is a

positive constant. We propose to estimate the bias term Bt by B̆t = 1
T

∑T
s=1 ν̆T

ts .
To study the consistency of the above estimators, we add the following assump-

tion.

Assumption 11.

(i) The process {U··t, t ≥ 1} is covariance-stationary with covariance matrix � =
E

(
U··tU′··t

) = {
σij,i1j1

}
.

(ii) There exists γ ∈ [0,1) such that maxi,j
∑

i1,j1

∣∣σij,i1j1

∣∣γ ≤ C for some C > 0.
(iii) Let ωT = T1/(2q)m−1/2 lnT .T−1/2+1/(2q)(N ∨ M)1/(2q)(lnT)1/2 → 0 and

T−1ω
1−γ

T (NM)1/2 → 0 as m → ∞.

Assumption 11(i) is typically assumed in the literature. Assumption 11(ii)
strengthens the typical weak cross-sectional dependence condition
maxi,j

∑
i1,j1

∣∣σij,i1j1

∣∣ = O(1) . It is satisfied if uijt’s satisfy certain m-dependence
condition cross-sectionally or the correlation between uijt and ui1j1t vanishes
sufficiently fast as the “distance” between (i,j) and (i1,j1) increases.

The following theorem reports the consistency of 
̆
(0)
t ,B̆t, and �̆−1

0 B̆t.

Theorem 4.3. Suppose that Assumption I holds. Suppose Assumptions 1–11
hold. Then,

(i) 
̆
(0)
t = 


(0)
t +op (1),

(ii) B̆t = Bt +op
(
(NM)−1/2

)
(iii) �̆−1

0 B̆t = H(0)′�−1
0 H(0)Bt +op

(
(NM)−1/2

)
.

Given the above results, we can make inferences on the global factors. The
procedure is standard and omitted for brevity.

5. MONTE CARLO SIMULTATIONS

5.1. DGPs and Implementation

We consider four DGPs, where the true numbers of factors are all specified as
r(0) = 1,r(1)

i = 2, and r(2)
j = 1. DGPs 1 and 2 are ideal cases where all the factors and

error terms are i.i.d. random variables. In DGP 1, all factor loadings are generated
from N (0,1), while in DGP 2, all factor loadings are drawn from N (1,1) . As
shown in our theory, whether factor loadings have zero means has important
implications for the estimator of the global factors. We purposefully use these two
ideal DGPs to illustrate the different impacts of local factor components on the
estimators of global factors.

DGPs 3 and 4 are more realistic. In DGP 3, the error terms are both serially-
correlated and cross-sectionally dependent. DGP 4 is the most complicated case
where local factors are cross-sectionally dependent and the error terms are serially
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correlated and cross-sectionally dependent. All four DGPs are generated according
to (1.1). Below are the details of the four DGPs.

Elements of (λ
(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′ are all i.i.d. N (0,1) random variables in DGP 1.

Elements of (λ
(0)′
ij ,λ

(1)′
ij ,λ

(2)′
ij )′ are all i.i.d. N (1,1) random variables in DGPs 2–

4. In DGPs 1 and 2, elements in (f (0)′
t ,f (1)′

it ,f (2)′
jt ,uijt) are all i.i.d. N (0,1) random

variables.
In DGP 3, the error terms uijt is generated as

uijt = (
u1ijt +u2ijt +u3ijt

)
/
√

3, (5.1)

where u1ijt = 0.5u1i−1,jt + √
0.75e1ijt,u2ijt = 0.5u2i,j−1,t + √

0.75e2ijt,u3ijt =
0.5u3ij,t−1 +√

0.75e3ijt and elements of (e1jit,e2jit,e3ijt) are all i.i.d. N (0,1) random
variables. Here, u1ijt,u2ijt, and u3ijt all follow an AR(1) structure and generate
dependence along the i,j, and t dimensions respectively, and the error term uijt is
normalized to have variance 1. Elements in (f (0)′

t ,f (1)′
it ,f (2)′

jt )′ are all i.i.d. N (0,1)

random variables.
In DGP 4, f (1)

it and f (2)
jt are cross-sectionally dependent. Specifically, the two i-

specific factors, denoted as f (1)
it ≡ (f (1)

it,1,f
(1)
it,2)

′, and the one j-specific factor, f (2)
jt , are

generated, respectively, as

f (1)
it,1 =

(
i+1∑
k=i

f ∗
kt + e∗

it

)
/
√

3, f (1)
it,2 ∼ N (0,1) and f (2)

jt =
⎛
⎝ j+1∑

k=j

f ∗∗
kt + e∗∗

jt

⎞
⎠/

√
3,

(5.2)

where f ∗
kt,f

∗∗
kt ,e∗

it, and e∗∗
jt are i.i.d. N (0,1) random variables. All the factors are

normalized to have variance 1. Here, f (1)
it,1 and f (2)

jt are cross-sectionally dependent.10

For example, Cov(f (1)
i−1,t,1,f

(1)
i,t,1) = 1

3 and Cov(f (2)
j−1,t,f

(2)
j,t ) = 1

3 . Elements in f (0)
t are

all i.i.d. N (0,1) random variables. In DGP 4,uijt is also generated as ( 5.1).
We consider six combinations of sample sizes: (N,M,T) = (50,50,50),

(50,50,100), (50,100,50), (100,100,50), (50,100,100), and (100,100,100).
The number of replications is 250. We find that in our simulations, (AH)’s GR
estimator performs slightly better than their ER estimator. Therefore, we focus
on the GR estimator with rmax = 8. We set C1 = 0.25 in the POET estimator and
C2,l = 0.25 in the bias estimator, both of which are discussed in Section 4.3.

5.2. Simulation Results

Table 1 compares the first-step (initial), second-step (final), and oracle estimators
of global factors for DGPs 1 and 2.11 The oracle estimators are obtained as in
the 2D case where the local factor components are absent and the true number

10We have also tried serially correlated factors, and find similar results. The detailed results are available upon request.
11The results for DGPs 3 and 4 are similar to those for DGP 2 and are omitted to save space.
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of global factors is known. For convenience, for these two DGPs f (0)
t ’s are fixed

and normalized such that F(0)′F(0)/T = 1. Therefore, f (0)
t is treated as the true

parameter. Table 1 reports the bias, variance and MSEs of the three types of
estimators. Note that the bias, variance, and MSEs all depend on t. For ease of
reporting, we take the average values over t. We use these two ideal DGPs to
confirm some key theoretical findings. First, in DGP 1, our final estimator of
the global factors should be oracle efficient in the sense that it is asymptotically
equivalent to the oracle estimator. In DGP 2, our final estimator is not oracle
efficient, and the presence of local factor components should inflate the asymptotic
variance of the final estimators of the global factors. Specifically, the “nearly
orthogonal” condition of (4.2) in Remark 9 is satisfied in DGP 1, and violated
in DGP 2. This theoretical result is supported by our simulations. Although for
DGP 1, our final estimator has a larger variance and MSE than the oracle estimator
when the sample size is small, the differences become smaller when the sample size
increases. For example, when (N,M,T) = (100,100,100), the MSEs of our final
estimator and the oracle estimators are 1.08×10−4 and 0.99×10−4, respectively.
In contrast, for DGP 2, the MSE of our final estimator (1.17×10−4) is larger than
that of the oracle estimator (0.50×10−4) even when (N,M,T) = (100,100,100).

Second, although in both DGPs, our final estimators of global factors are√
NM̄-consistent, the initial estimators behave differently for these two DGPs.

Consider the simple case where N,M, and T pass to infinity at the same rate.
In DGP 1, the initial estimator of the global factor is

√
NM̄-consistent, while

in DGP 2, the initial estimator is only min(
√

N,
√

M)-consistent. In DGP 2, the
asymptotic variance of the initial estimator is only of the order of

(
N−1 +M−1

)
.

Our simulation results confirm those theoretical implications. For both DGPs,
the MSEs of our final estimator decline with N and M. For DGP 1, the MSE
of the initial estimator appears to decrease at the NM̄-rate. For example, when
(N,M,T) = (50,50,50) and (N,M,T) = (100,100,100), the MSEs of the initial
estimators are 31.59×10−4 and 7.51×10−4, respectively. In contrast, for DGP 2,
the MSE of the initial estimator declines slowly with N and M. For example, when
(N,M,T) = (50,50,50) and (N,M,T) = (100,100,100), the MSEs of the initial
estimators are 175.36×10−4 and 83.88×10−4, respectively.

Third, for both DGPs, we find that the second-step estimators are much more
efficient than the first-step estimators. For example, for DGP 1, when (N,M,T) =
(100,100,100), the MSEs of the first-step and second-step estimators are 7.51 ×
10−4 and 1.08×10−4, respectively. For DGP 2, when (N,M,T) = (100,100,100),

the MSEs of the first-step and second-step estimators are vastly different, being
83.88×10−4 and 1.17×10−4, respectively.

Table 2 shows the proportions of replications in which the number of factors
determined by our method is less than, equal to, and greater than the true number
out of total 250 replications. Our method can determine the true number of factors
with a correct rate close to 100% for all the sample sizes considered. Table 3
presents the performance of our estimators. In Panel A, we report the coefficient
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of determination (R2) for the regression of true factors on the estimated factors.
Since the estimated factors should estimate the linear span of the true factors, we
expect the R2 to be high. Indeed, for the global factors, we find that the R2 is
almost 1.00 for all sample sizes under scrutiny. For the two i-specific local factors
and one j-specific local factor, the R2’s are all equal to or above 0.95. The general
pattern is that when the sample size increases, the performance of our estimators
improves. Panel B reports the correlations between the true factor components and
the estimated factor components, which are all above 0.95 for all sample sizes.

Table 4 reports the empirical coverage of 95% confidence intervals (CIs) for the
global factors based on the theory in Section 4.3. In general, when the sample size
is small, we have under-coverage. For example, when (N,M,T) = (50,50,50), the
actual coverages for DGPs 1–4 are 90.6%, 88.8%, 88.1%, and 86.5%, respectively.
In general, the performance deteriorates when the DGP becomes more and more
complicated. The worst performance occurs in DGP 4 where both local factors are
cross-sectionally dependent and the error terms are serially correlated and cross-
sectionally dependent. However, the performance improves when the sample size
increases. For example, when (N,M,T) = (100,100,100), the actual coverages
are 96.6%, 95.7%, 94.9%, and 94.2% for DGPs 1–4, respectively.

6. AN EMPIRICAL APPLICATION TO INTERNATIONAL TRADE

We apply our new method to study the international trade flows. Let yijt denote the
log change of the trade flows: yijt = ln

(
Exportijt

)− ln
(
Exportij,t−1

)
, where Exportijt

is the trade flow from source country i to destination country j at year t. Here, we
consider the growth of trade volume. How to understand trade growth has been a
fundamental and long-standing issue in the international trade literature (see, e.g.,
Baier and Bergstrand, 2001).12

6.1. Data

The sample includes 49 source countries and 58 destination countries over 34 years
(1973−2006) . Thus, N = 49,M = 58, and T = 34. With missing values, the total
sample size is 46,852. The data are obtained from the companion website of Head
and Mayer (2014). The details of the construction of the sample can be found
in Section S10 of the Supplementary Material. All the data are demeaned as yijt −
1
T

∑T
t=1 yijt for all (i,j) pairs before the estimation.

12Here, we consider a simple log-linearized equation for the trade growth. There is some recent literature on nonlinear
models for trade data (see, e.g., Santos Silva and Tenreyro, 2006). It will be interesting to extend our method to
nonlinear models, but it is beyond the scope of this article.
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Table 2. Determination of the correct numbers of factors

Global factors Local i-factors Local j-factors

r̂(0) r̂(1)
i r̂(2)

j

DGP (N,M,T) < 1 = 1 > 1 < 2 = 2 > 2 < 1 = 1 > 1

(50,50,50) 0 1 0 0 .99 .01 0 1 0

1 (50,100,50) 0 1 0 0 1 0 0 1 0

(100,100,50) 0 1 0 0 1 0 0 1 0

(50,50,100) 0 1 0 0 .98 .02 0 1 0

(50,100,100) 0 1 0 0 1 0 0 1 0

(100,100,100) 0 1 0 0 1 0 0 1 0

(50,50,50) 0 1 0 0 1 0 0 1 0

2 (50,100,50) 0 1 0 0 1 0 0 1 0

(100,100,50) 0 1 0 0 1 0 0 1 0

(50,50,100) 0 1 0 0 1 0 0 1 0

(50,100,100) 0 1 0 0 1 0 0 1 0

(100,100,100) 0 1 0 0 1 0 0 1 0

(50,50,50) 0 1 0 0 .99 0 0 1 0

3 (50,100,50) 0 1 0 0 1 0 0 1 0

(100,100,50) 0 1 0 0 1 0 0 1 0

(50,50,100) 0 1 0 0 1 0 0 1 0

(50,100,100) 0 1 0 0 1 0 0 1 0

(100,100,100) 0 1 0 0 1 0 0 1 0

(50,50,50) 0 1 0 0 1 0 0 1 0

4 (50,100,50) 0 1 0 0 1 0 0 1 0

(100,100,50) 0 1 0 0 1 0 0 1 0

(50,50,100) 0 1 0 0 1 0 0 1 0

(50,100,100) 0 1 0 0 1 0 0 1 0

(100,100,100) 0 1 0 0 1 0 0 1 0

Note: Numbers in the main entries are the proportions of replications in which the selected number of
factors is less than, equal to, or greater than the true number of factors out of total 250 replications.
For r̂(1)

i and r̂(2)
j , the numbers are also averaged over i and j, respectively.

6.2. The Number of Factors and Variance Decomposition

Using our method with rmax = 8, we find that there is one global factor, i.e., r̂(0) = 1.
The numbers of estimated source country factors (r̂(1)

i ) and destination country
factors (r̂(2)

j ) are presented in Figure 1. The median numbers of these two local
factors are both 1. Most of the source country factor numbers are either 0 or 1,
whereas most of the destination country factor numbers are 1.

https://doi.org/10.1017/S0266466625100091 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100091


38 XUN LU ET AL.

Table 3. Performance of estimated factors and estimated components

Panel A: coefficient of determination Panel B: correlation between

(R2) for the regression of true the estimated components

factors on the estimated factors and true components (cmpts)

Global Local Local Global Local Local

DGP (N,M,T) factors i-factors j-factors cmpts i-cmpts j-cmpts

1st 2nd

factor factor

(50,50,50) 1.00 0.96 0.96 0.95 0.96 0.97 0.97

1 (50,100,50) 1.00 0.97 0.97 0.96 0.96 0.97 0.97

(100,100,50) 1.00 0.97 0.97 0.97 0.96 0.97 0.97

(50,50,100) 1.00 0.97 0.97 0.97 0.98 0.98 0.98

(50,100,100) 1.00 0.98 0.98 0.97 0.98 0.98 0.98

(100,100,100) 1.00 0.98 0.98 0.98 0.98 0.98 0.98

(50,50,50) 1.00 0.96 0.96 0.97 0.97 0.98 0.98

2 (50,100,50) 1.00 0.97 0.97 0.97 0.97 0.98 0.98

(100,100,50) 1.00 0.97 0.97 0.97 0.97 0.98 0.98

(50,50,100) 1.00 0.97 0.97 0.98 0.98 0.99 0.99

(50,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

(100,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

(50,50,50) 1.00 0.96 0.96 0.96 0.97 0.98 0.98

3 (50,100,50) 1.00 0.97 0.97 0.96 0.97 0.98 0.98

(100,100,50) 1.00 0.97 0.97 0.97 0.97 0.98 0.98

(50,50,100) 1.00 0.97 0.97 0.97 0.98 0.99 0.99

(50,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

(100,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

(50,50,50) 1.00 0.96 0.96 0.96 0.97 0.98 0.98

4 (50,100,50) 1.00 0.97 0.97 0.96 0.97 0.98 0.98

(100,100,50) 1.00 0.97 0.97 0.97 0.97 0.98 0.98

(50,50,100) 1.00 0.97 0.97 0.97 0.98 0.99 0.99

(50,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

(100,100,100) 1.00 0.98 0.98 0.98 0.98 0.99 0.99

Note: Numbers in the main entries of Panel A are the R2 for the regression of the true factors on the
estimated factors averaging over 250 replications. For local i-factors and local j-factors, the numbers
are also averaged over i and j, respectively. Numbers in the main entries of Panel B are the correlations
between estimated and true factor components averaging over 250 replications. For local i-components
and local j-components, the numbers are also averaged over i and j, respectively.
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Table 4. Empirical coverage of 95% CIs for global factors

(N,M,T) DGP 1 DGP 2 DGP 3 DGP 4

(50,50,50) 90.6% 88.8% 88.1% 86.5%

(50,100,50) 91.7% 89.2% 89.1% 87.3%

(100,100,50) 94.4% 92.7% 89.9% 88.7%

(50,50,100) 90.9% 90.2% 90.0% 88.8%

(50,100,100) 94.2% 93.2% 92.5% 91.4%

(100,100,100) 96.6% 95.7% 94.9% 94.2%

Note: Numbers in the main entries are the empirical coverage of 95% CIs for global factors based on
the inference methods in Section 4.3.
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Figure 1. The numbers of local factors for the trade application.

We examine how much the sample variance of the trade growth can be explained
by global factors and local factors. Table 5 presents the variance decomposition for
the whole sample and selected countries. The decomposition for all countries can
be found in Section S10 of the Supplementary Material. For the whole sample,
we find that global factors can explain about 14.4% of the total sample variance,
while the source country factors and destination country factors can explain about
21.0% and 28.1%, respectively. The sample covariance between the two local
components is quite small. In total, the factors can explain about 64.2% of the
sample variance. We can also conduct the variance decomposition country by
country, say, for a given source country (a subsample with the same i index) or
for a given destination country (a subsample with the same j index). For example,
when China is a source country, the global factors, source country (China) factors,
and destination country factors can explain 7.4%, 12.5%, and 43.0% of its sample
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Table 5. Variance decomposition for whole sample and selected countries

Variance Variance

Variance of source destination Total

global country country variance

components components components explained

Whole sample 14.4% 21.0% 28.1% 64.2%

China 7.4% 12.5% 43.0% 63.4%

Source Germany 22.3% 12.4% 35.1% 72.5%

countries Japan 13.8% 0% 46.2% 60.0%

U.K. 14.5% 0% 39.1% 53.6%

U.S. 19.7% 31.6% 18.0% 75.2%

China 6.4% 54.4% 15.0% 77.2%

Destination Germany 32.8% 17.2% 10.1% 62.4%

countries Japan 25.0% 21.1% 15.2% 60.5%

U.K. 14.8% 17.8% 0% 32.6%

U.S. 21.9% 14.7% 19.5% 56.2%

variance, respectively. This suggests that the variation of China’s export is mainly
affected by its destination countries. When China is a destination country, the
global factors, source country factors, and destination country (China) factors can
explain 6.4%, 54.4%, and 15.0% of its sample variance, respectively. This shows
that China’s import is mainly driven by its source countries. This decomposition
exercise for China seems to suggest that China’s trading partners have relatively
large impacts on China’s international trade flows, while the global factors and
its own factors play a relatively small role. For the U.S., we find that the global
factors and its own factors are more important than its trading partners’ factors.
Specifically, when the U.S. is a source country, the global factors, source country
(U.S.) factors and destination country factors can explain 19.7%, 31.6%, and
18.4% of its sample variance, respectively. When the U.S. is a destination country,
the global factors, source country factors, and destination country (U.S.) factors
can explain 21.9%, 14.7%, and 19.5% of its sample variance, respectively.

6.3. Global Factors

The upper panel of Figure 2 plots the estimated global factors (bias-corrected) and
its 95% CIs. The bias-corrected and non-bias-corrected estimates are similar in this
application. The CIs are narrow, which suggests our estimates are quite precise
with small standard errors. The shaded areas in the figure indicate five global
recessions during the sample period (1973–2006): 1974–75, 1980–83, 1990–93,
1998, and 2001–02. In general, the estimated factors reflect the global business
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Figure 2. Global factor and factor loadings for the trade application.

cycles and have relatively low values during the recession periods. The lowest
point of the global factor occurs during the early 1980s recession. The lower panel
of Figure 2 shows the histograms of the estimates of global factor loadings. The
majority of global factor loadings are positive with a median value of 0.10, which
means that approximately a one-standard-deviation increase of the global factor
leads to about 10% absolute increase in the growth rate of export.

One natural question is how the estimated global factor is linked to other global
economic variables. In Figure 3, we plot the estimated global factors against
four economic variables: (i) the world economic growth, (ii) the lagged world
economic growth, (iii) the log change of the world openness index, and (iv) the log
change of the crude oil price (constant price), where openness index is defined as
exports and imports of goods and services measured as a share of gross domestic
product (GDP). The sources of these data are described in the Section S10.1of
the Supplementary Material. For ease of comparison, all the series are normalized
to have mean zero and variance one. Apparently, the estimated factors reflect
those fundamental economic variables. The correlations between the estimated
global factors and these four economic variables are 0.46, 0.59, 0.72, and 0.64,
respectively.

6.4. Local Factors

Since there are a large number of local factors, we select two representative coun-
tries: China and the U.S. Figure 4 shows the source country factors and destination
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Figure 3. Comovement between the (standardized) estimated global factors and some economic
variables for the trade application.

country factors for China and the U.S. against their economic growth.13 We find
that for both China and the U.S., the correlations between the source country
factors and their economic growth are not high (0.28 and 0.12, respectively). The
destination country factors are more closely related to their economic growth, with
correlations being 0.44 and 0.58 for China and the U.S., respectively.

As our method allows general pattern of correlations in the local factors, in
Figure 5, we plot the histogram of the following four types of sample correlations:
(i) the cross-sectional correlation between f (1)

it ’s, (ii) the cross-sectional correlation
between f (2)

jt ’s, (iii) the time-series correlation between f (1)
it ’s, and (iv) the time-

series correlation between f (2)
jt ’s, which are defined, respectively, as,14

(i) the correlation between
{

f (1)
i1,t

}T

t=1
and

{
f (1)
i2,t

}T

t=1
for all pairs of (i1,i2),

(6.1)

13For both countries, the numbers of local factors are all determined to be 1 except that there are four source country
factors for the U.S., in which case we plot the first factor (the factor corresponding to the largest eigenvalue).
14If the number of local factors is larger than one, we use the first factor (the factor corresponding to the largest
eigenvalue) to calculate the sample correlations.
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Source country factor and economic growth: China
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Figure 4. (Standardized) local factors and economic growth for the trade application.

(ii) the correlation between
{

f (2)
j1,t

}T

t=1
and

{
f (2)
j2,t

}T

t=1
for all pairs of (j1,j2),

(6.2)

(iv) the correlation between
{

f (1)
i,t1

}N

i=1
and

{
f (1)
i,t2

}N

i=1
for all pairs of (t1,t2),

(6.3)

(iv) the correlation between
{

f (2)
j,t1

}M

j=1
and

{
f (2)
j,t2

}M

j=1
for all pairs of (t1,t2) .

(6.4)

In this application, we find that most of the correlations are below 0.5. This
suggests that the correlations in the local factors are small.

In sum, we find that global factors, source country factors, and destination
country factors are all important for international trade flows, which account
for 14.4%, 21.0%, and 28.1% of its sample variance, respectively. We find that
there is one global factor and the extracted global factor is closely related to
some fundamental global economic variables, such as the lagged world economic
growth, the openness index, and the crude oil price. The median numbers of source
country factors and destination country factors are both one. The magnitudes of
variance decomposition for individual countries vary across countries.
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Figure 5. Correlations in the estimated local factors for the trade application.

7. CONCLUSION

This article studies the estimation and inference for 3D factor models where there
are both global factors and two types of local factors. Such models have potential
applications in many economic fields. We determine the number of factors based
on the ER or GR statistics of Ahn and Horenstein (2013). Given the number of
factors, we propose a two-step estimation method based on PCA, which is easy
to implement. We derive the inferential theory for the estimators, including the
convergence rates and limiting distributions under general conditions that allow
both serial correlation and cross-sectional dependence. The new method is applied
to study the international trade flow data.

There are many interesting topics for further research. First, in our framework,
we allow correlations within the same type of local factors. In empirical research,
we are often interested in the correlations and may want to test whether the
correlations are equal to zero. Therefore, we can study the asymptotic properties
for the estimators of the correlations and develop a testing procedure. Second, so
far, we only consider a pure factor structure. We may extend our model to allow
exogenous regressors in the same spirit as in two dimensional panel models with
interactive fixed effect models (see, e.g., Bai, 2009). Alternatively, we may allow
the factors or factor loadings to depend on observable covariates, as in Fan et al.
(2016a) and Fan et al. (2016b). Third, we only consider stationary and strong
factors in our model. It is possible to consider nonstationary factors with unit-
root-type behavior (e.g., Bai and Ng, 2004), weak factors (e.g., Onatski, 2012) or
structural changes (e.g., Cheng, Liao, and Schorfheide, 2016) and develop separate
theories. We are exploring these topics in ongoing works.
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